Algorithm Engineering
como- e 11| (@ka. How to Wrrite Fast Code)

Yan Gu

New Bentley rules for
modern programming

Many slides in this lecture are borrowed from the second lecture in 6.172 Performance Engineering of Software Systems at
MIT. The credit is to Prof. Charles E. Leiserson, and the instructor appreciates the permission to use them in this course.

CS260: Scientific writing
Algorithm

Engineering

Lecture 11 New Bentley rules

Trump accused Democrats of introducing the war powers resolution based on political calculations
ahead of the 2020 presidential election. "This was a very insulting resolution introduced by Democrats
as part of a strategy to win an election on November 3 by dividing the Republican Party," Trump said in a
Wednesday statement. "The few Republicans who voted for it played right into their hands." In a

see "compelling" evidence that the U.S. faced an imminent threat posed by Iran and Soleimani, pushing
back on the administration's main claim in justifying the strike against the military general. "While the
president has the right to take action against truly imminent dangers ... it is our responsibility to ensure
he's taking the right actions to protect Americans and our interests," Senate Foreign Relations
Committee Ranking Member Bob Menendez of New Jersey said. "The president does not have authority
to undertake any military action he likes. "Republican lawmakers have been maore willing to buck the
president when it comes to some foreign policy matters and military authority. Last March, the Senate
adopted a bipartisan resolution that would scale back U.S. support for the Saudi-led military campaign in
Yemen, which marked the first time the body voted to cease military support for a war in which U.S.
involvement hasn't been approved by Congress. Trump also vetoed that measure and supporters in the
Senate were unable to overturn it last May. On Thursday, a majority of GOP senators ultimately sided

with the president and paved the wave for his broad authority on potential and future military action.
"We must maintain the measure of deterrence we restored with the decisive strike on Soleimani,"
Senate Majority Leader Mitch McConnell of Kentucky said before the vote. "That starts today with
upholding the president's rightful veto a misguided war powers resolution.” Trump accused Democrats
of introducing the war powers resolution based on political calculations ahead of the 2020 presidential
election. "This was a very insulting resolution introduced by Democrats as part of a strategy to win an
election on November 3 by dividing the Republican Party,"” Trump said in a Wednesday statement. "The
few Republicans who voted for it played right into their hands." In a statement following the president's

Writing also has purposes, just like your presentations

* E.g., essays in GRE/SAT tests

« Know what your goals are, and strive the best to explain / clarify
them

« Paper Reading: not teach me what this paper is about / how
much effort you have spent on reading it; show your
understanding of the content, the same as the presentation

* Project Proposal: describe the problems you want to solve,
prior work, potential challenge, and your plan

* Project Report: More explanation later

Writing style can help a lot!

 In your talks, you use slide titles to guide the audience

* In your report / proposal / paper reading, use section titles
(subsections, paragraph headers) and good paragraphing

* See the papers and sample midterm report for references

Follow the guidance!

* | know many of you do not have much experience in scientific
writing

The goal of this project is not to get the fastest implementations for these
problems in the world---these are some of the mostly-studied algorithms in
computing for decades. The goal is to provide a chance for you to start from a
simple algorithm and experience how you can optimize the performance based
on the theory and practice mentioned in the class. Namely, in your report, you

should Erovide all versions of your imEIementation and emEhasize where the
imerovements are from and bz how much. Of course, the running time for the

final version also matters since basically that shows how much you attempt to
engineer the performance. The midterm project will give you an intuition about

what you can do in a few weeks so it will help you to pick a final project with more
realistic goals.

Follow the guidance!

* | know many of you do not have much experience in scientific
writing

Provide all versions of your implementation
Show how you engineer the performance and by how
Analysis of performance

Design
How to guarantee correctness
Explaining the optimizations

Performance

Experiment setup
Show speedup

Show scalability
Show other measures

Problem adjust (+2 for semisort /-2 for MM) / bonus /

Expected outcome of this course

How to write faster code
How to speak (communicate)
How to write (scientific writing)

 The last two aspects are crucial because:
* You are all very good at CS techniques, and it takes a lot to further improve

* |If you cannot communicate well, employers are hard to identify you from the
great majority of other CS undergrad/grad students

« Communication is an orthogonal dimension, and easy to improve from
bad/okay to good (still hard from good to great)
 But most courses do not cover them because they are costly
« Most courses have >30 students, and grading is done by TAs and readers
| spend ~4h for every of your talk (does not scale to larger classes)

* You should catch the opportunity since there won’t be many courses at UCR
In this style

Some reminders

» Office hour: 1:30-2:30pm Tuesday

* First weekly report for final project is due this
Wednesday (5/13)

* Paper reading is due this Friday (5/15)

CS260: Scientific writing
Algorithm

Engineering

Lecture 11 New Bentley rules

Definition of “Work”

The of a program (on a given input) is the sum total
of all the operations executed by the program.

Optimizing Work

e Algorithm design can produce dramatic reductions in the amount of work
It takes to solve a problem, as when a ®(nlogn)-time sort replaces a
O(n?)-time sort

e Reducing the work of a program does not automatically reduce its
running time, however, due to the complex nature of computer hardware:
= |nstruction-level parallelism (ILP),
= caching,
= vectorization,
= gpeculation and branch prediction,
= eftc.

e Nevertheless, reducing the work serves as a good heuristic for reducing
overall running time

Bentley Rules

Jon Louis Bentley

PRANDCT wALL 3CPTAAAT 3TN

1982

New “Bentley” Rules

Most of Bentley’s original rules dealt with work, but some dealt with the
vagaries of computer architecture four decades ago

We have created a new set of Bentley rules dealing only with work
We have discussed architecture-dependent optimizations in previous
lectures

JonLouis Charles Guy
Bentley Leiserson Blelloch

New Bentley Rules

Data structures Logic
Packing and encoding Constant folding and propagation
Augmentation Common-subexpression elimination
Precomputation Algebraic identities
Compile-time initialization Short-circuiting
Caching Ordering tests
Lazy evaluation Creating a fast path
Sparsity Combining tests
Loops
Hoisting Functions
Sentinels Inlining
Loop unrolling Tail-recursion elimination
Loop fusion Coarsening recursion

Eliminating wasted iterations

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-172-performance-engineering-of-software-systems-fall-2018/lecture-slides/MIT6_172F18_lec2.pdf

Data Structures

Packing and Encoding

The idea of packing iIs to store more than one data value in a machine
word. The related idea of encoding is to convert data values into a
representation requiring fewer bits.

Example: Encoding dates

The string “September 12, 2020” can be stored in 18 bytes — more than two
double (64-bit) words — which must moved whenever a date is manipulated.

Assuming that we only store years between 4096 B.C.E. and 4096 C.E., ther
are about 365.25 x 8192 = 3 M dates, which can be encoded in llog,(3x10°)
= 22 hits, easily fitting in a single (32-bit) word.

But determining the month of a date takes more work than with the string
representation.

Packing and Encoding (2)

Example: Packing dates
Instead, let us pack the three fields into a word:

typedef struct {
ey years 13y
int month: 4;
int day: 5;

} date t;

4

This packed representation still only takes 22 bits, but the individual fields can
be extracted much more quickly than if we had encoded the 3 M dates as
sequential integers.

Sometimes unpacking and decoding are the optimization, depending on
whether more work is involved moving the data or operating on it.

Augmentation

The idea of data-structure augmentation is to add information to a data structure
to make common operations do less work.

=xample: Appending singly linked lists

head

e Appending one list to another requires '
walking the length of the first list to set |_,
its null pointer to the start of the second 1> 1>
e Augmenting the list with a tail pointer head tail
allows appending to operate in constant t| e]

time |_)
*~—>> *~—>

Precomputation

The idea of precomputation is to perform calculations in advance so as to avoid
doing them at "mission-critical” times

Example: Binomial coefficients

(E) T K (nn!— K)!

Computing the “choose” function by implementing this formula can be expensive
(lots of multiplications), and watch out for integer overflow for even modest
values of n and k

\|dea: Precompute the table of coefficients when initializing, and perform table
look-up at runtime

Pascal’s Triangle

n n!
— 1 (%] (%] (%] (%] (%] (%] (%] (%]
k k!'(n —k)!
1 1 (%] (%] (%] (%] (%] (%] (%]
1 2 1 (%] (%] (%] (%] (%] (%]
#define CHOOSE_SIZE 100 1 3 3 1 0 0 0 0 0
int choose[CHOOSE SIZE][CHOOSE SIZE];
1 4 6 4 1 (%] (%] (%] (%]
void init_choose() {

ForN(Intant="0; N “CHO0SE" STZEN" ++nos 1 > 4 4 > 1 0 0 0
choose[n][@] = 1; 1 6 15 20 15 6 1 (%] (%]
choose[n][n] = 1;

} 1 7 21 35 35 21 7 1 (%]

for (int n = 1; n < CHOOSE_SIZE; ++n) { 1 8 28\5% 70 56 28 8 1
choose[@][n] = ©;
for (int k = 1; k < n; ++k) {
choose[n][k] = choose[n-1][k-1] +
choose[n-1][k];
choose[k][n] = ©;
}
}

) 7

Sparsity

The idea of exploiting sparsity Is to avoid storing and computing on zeroes.
“The fastest way to compute is not to compute at all.”

Example: Sparse matrix multiplication
(\W4 A

3 06 06 06 1 © 1

© 4 1 06 5 9 4

_| © 06 06 2 0 6 2
y 5 0 6 3 0 0 8
5 0 6 0 8 0 5
.0 0 0 9 7 0)\ 7

Dense matrix-vector multiplication performs n? = 36 scalar multiplies, but only
14 entries are nonzero.

Sparsity

The idea of exploiting sparsity Is to avoid storing and computing on zeroes.
“The fastest way to compute is not to compute at all.”

Example: Sparse matrix multiplication
(\W4 A

3 1 1
4 1 5 9 4
_ 2 6 2
y 5 3 8
5 8 5

\ S 7 JUT7)

Dense matrix-vector multiplication performs n? = 36 scalar multiplies, but only
14 entries are nonzero.

Sparsity (2)

Compressed Sparse Row (CSR)

® 1 2 3 4 5 6 7 8 9 10 11 12 13
rows: @6 2 6 8 10 11 14

AN

cols: © 4, 1 2 4 5 3 5, 00 3 0/ 4 3 4
vals: 3 1. 4 1 5 9 2 6 5 3 5 8 9 7

o 0300 0 1 0
19041059\+
2.0 0 0 2 0 6 =6
3¢50 0 3 0 0 nNz=14
4§99995@¢
s €9 0 0 8 9 7 48
e 1,2 3 4 5

Storage is O(n+nnz) instead of n?

Sparsity (3)

CSR matrix-vector multiplication

typedef struct {
i G Y THANEZY,
int *rows; // length n
it $'Coll S5 // length nnz
double *vals; // length nnz
} sparse _matrix_t;

void spmv(sparse matrix_t *A, double *x, double *y) {
TOrMeint Tys 05T %" A->n'si++)-
yli] =.9;
for (int k = A->rows[i]; k < A->rows[i+1l]; k++) {
it a=""A-P>cols{ ks
y[i] += A->vals[k] * x[j];
}
}

: 7

Number of scalar multiplications = nnz, which is potentially much less than n?

Sparsity (4)

Storing a static sparse graph

Vertex IDs O 1 2 3 4
Offsets 0 2 5 5 6 7
Edges 1 3 2 3 4 2 2

Can run many graph algorithms efficiently on this representation, e.g.,
breadth-first search, PageRank

Can store edge weights with an additional array or interleaved with Edges

Logic

Constant Folding and Propagation

The idea of constant folding and propagation is to evaluate constant expressions
and substitute the result into further expressions, all during compilation

#tinclude <math.h>

void orrery() {
const double radius = 6371000.0;
const double diameter = 2 * pradius;
const double circumference = M_PI * diameter;
const double cross area = M_PI * radius * radius;
const double surface _area = circumference * diameter;
const double volume = 4 * M PI * radius * radius * radius / 3;

e .

7

With a sufficiently high optimization level, all the expressions are evaluated at
compile-time

Algebraic Identities

The idea of exploiting algebraic identities Is to replace expensive algebraic
expressions with algebraic equivalents that require less work.

#include <stdbool.h>
#include <math.h>

typedef struct {
double x; // x-coordinate
double vy; // y-coordinate
double z; // z-coordinate
double r; // radius of ball
} ball_t;

double square(double x) {
return x*x;

}

bool collides(ball t *bl, ball t *b2) {
double d = sgrt(square(bl->x - b2->x)
+ square(bl->y - b2->y)
+ square(bl->z - b2->z));
return d <= bl->r + b2->r;

: 4

Algebraic Identities

The idea of exploiting algebraic identities Is to replace expensive algebraic
expressions with algebraic equivalents that require less work.

#include <stdbool.h>
#include <math.h>

typedef struct {
double x; // x-coordinate
double y; // y-coordinate

double z; // z-coordinate bool collides(ball_t *bl, ball_t *b2) {
double r; // radius of ball double dsquared = square(bl->x - b2->x)
} ball t; + square(bl->y - b2->y)
3 + square(bl->z - b2->z);
double square(double x) { return dsquared <= square(bl->r + b2->r);
return x*x; }
} F

bool collides(ball t *bl, ball t *b2) {
double d = sgrt(square(bl->x - b2->x)
L ke ¥ e B Vu < v exactly when u < v?
+ square(bl->z - b2->z));

return d <= bl->r + b2->r;

: 4

Creating a Fast Path

#include <stdbool.h>
#include <math.h>

typedef struct {
double x; // x-coordinate
double y; // y-coordinate
double z; // z-coordinate
double r; // radius of ball
} ball t;

double square(double x) {
return x*x;

¥

bool collides(ball t *bl, ball t *b2) {
double dsquared = square(bl->x - b2->x)

+ square(bl->y - b2->y)

+ square(bl->z - b2->z);

return dsquared <= square(bl->r + b2->r);

} 4

Creating a Fast Path

#tinclude <stdbool.h>
#include <math.h>

typedef struct {
double x; // x-coordinate
double y; // y-coordinate
double z; // z-coordinate
double r; // radius of ball
Tball €

double square(double x) {
return x*x;

}

bool collides(ball t *bl, ball t *b2) {
double dsquared = square(bl->x - b2->x)

+ square(bl->y - b2->y)

+ square(bl->z - b2->z);

return dsquared <= square(bl->r + b2->r);

}

Creating a Fast Path

#tinclude <stdbool.h>
#include <math.h>

typedef struct {
double x; // x-coordinate
double y; // y-coordinate
double z; // z-coordinate
double r; // radius of ball
Tball €

double square(double x) {
return x*x;

}

bool collides(ball t *bl, ball t *b2) {
if ((abs(bl->x - b2->x) > (bl->r + b2->r)) ||
(abs(bl->y - b2->y) > (bl->r + b2->r)) ||
(abs(bl->z - b2->z) > (bl->r + b2->r)))
return false;
double dsquared

square(bl->x - b2->x)
square(bl->y - b2->y)
square(bl->z - b2->z);
return dsquared <= square(bl->r + b2->r); Z;;7

+ +

Short-Circuiting

When performing a series of tests, the idea of short-circuiting is to stop evaluating

as soon as you know the answer

#include <stdbool.h>
// All elements of A are nonnegative

It SUme =0 ;

Lo NN =" 10, 1< 0 ST e
sum += A[i];

}

return sum > limit;

}

bool sum_exceeds(int *A, int n, int limit) {

#include <stdbool.h>
// All elements of A are nonnegative

bool sum _exceeds(int *A, int n, int limit) {

int sum = 0;
FORN(InESIA=" 0, %< R)
sum += A[i];
if (sum > limit) {
return true;
}
}

return false;

}

7

Note that && and || are short-circuiting logical operators,

and & and | are not

Ordering Tests

Consider code that executes a sequence of logical tests. The idea of ordering
lests is to perform those that are more often “successful” — a particular
alternative is selected by the test — before tests that are rarely successful.
Similarly, inexpensive tests should precede expensive ones.

#include <stdbool.h>
bool is whitespace(char c) {
If(eus= INERE [gco=5 U AT [NerS=pt (SRLE cha=Shnt)9
return true;
}
return false;
} 7

#include <stdbool.h>
bool is whitespace(char c) {
(=, LSS0 [Nct == N\ SR ep=Sil Nt LRI che=Sahrt 5]
return true;

}

return false;

}

Loops

Hoisting

The goal of — also called

— IS to avoid

recomputing loop-invariant code each time through the body of a loop

##tinclude <math.h>

void scale(double *X, double *Y, int N) {
Forp M(ENit e =, O ;s KNy deF). +{
AL s XL e (s IR RL/200)
}
}

##include <math.h>

void scale(double *X, double *Y, int N) {
double factor = exp(sqrt(M _PI/2));
FORNC IR =" 0, 18w R S5 e {
Y R =N i ST ackon;
}
}

Loop Fusion

The idea of loop fusion — also called jamming — is to combine multiple loops

over the same index range into a single loop body, thereby saving the
overhead of loop control

For ST niGAi= O5s I - nkpfr+i.)

R = A RSB IR T LR, BLE TS ForS(Intst= G5 15K ki)
} Gl ig] CAPRELAEL Bl] N = BT
Dijsad] (A LTIR < =NBI[k] . %2 B G ATEid.:

@R (N« IR=ROT 1 W o P
DT a0 T =P B R 2B [e Al ik }

}

#

Eliminating Wasted Iterations

The idea of eliminating wasted iterations is to modify loop bounds to avoid
executing loop iterations over essentially empty loop bodies.

RO ST Nl = " O 15K ket)
50 e T ERE VSR OES: 5jm T s Set T, et
i L > LRI
int temp = A[i][]];
A[i][3] = A[J][1];
A[j][1] = temp;
}
}
}

Ror S(IniGM= 15 I nkpfr+d) *
50 e (TN VEROER. Sjmec ¥ v S, et
int temp .= A[i][3];
AT I L3 = ~Alsili[T 1
A[JI[i] = temp;

Functions

Inlining

The idea of inlining Is to avoid the overhead of a function call by replacing a call
to the function with the body of the function itself

double square(double x) {

K o
: return x*Xx; double sum of_squares(double *A, int n) {

double sum = 0.0;

For (®Ent i =98, 1< A5 ++i) o
double temp = A[i];
sum += temp*temp;

double sum_of_squares(double *A, int n) {
double sum = 0.0;
FEOr (dnt N O i< gtk R {

sum += square(A[i]); ieturn sum;
} J

return sum; }

} 7

Inlining

The idea of inlining Is to avoid the overhead of a function call by replacing a call
to the function with the body of the function itself

double square(double x) { static inline double square(double x) {
REELR NS return x*x;
} }
double sum_of_squares(double *A, int n) { double sum_of_squares(double *A, int n) {
double sum = 0.0; double sum = 0.0;
Tor” (NS 0 i< rgat) { For (inERitE 0;- < ngaarri)e {
sum += square(A[i]); sum += square(A[i]);
} }
return sum; return sum;
} }
7 4

Tail-Recursion Elimination

The idea of tail-recursion elimination is to replace a recursive call that occurs as
the last step of a function with a branch, saving function-call overhead

Voldy quisdiksortiCinT *Atant -Ms {
iikf - 2GRS
LAEE = DRt i ELoOR(A N5
quicksort (A, r);
GUT CKSORE (At ™+« TR — o2t) 5
}
}

void quicksort(int *A, int n) {
while (n > 1) {
N '=_partision(a,t nis
QUITRSORE (Arui)%
ARE= o PRRERT Y
N A=l 1,
}
}

Coarsening Recursion

The idea of coarsening recursion is to increase the size of the base case and
handle it with more efficient code that avoids function-call overhead

#define THRESHOLD 20
viord - quiicksorti(int - * A, SThEgn 1
while (n > THRESHOLD) {
intdrt="partition(A,Th);

void quicksort(int *A, int n) { quicksort (A, r);
fih i ke F0he: §15) 5 e gl
TR & PRkt Cron@os) N -=r + 1;
guiekSert (A r); }
ANE=- P L // insertion sort for small arrays
== 0 0he 1 ; fopr @Rt TH1E Sed S 15
} int key = A[j];
} 7 Thitt 1. =t 1

while (i >= 0 && A[i] > key) {
A[i+1] = A[i];
L ¥
}
A[i+1] = key;
}

} 7

Summary

New Bentley Rules

Data structures Logic
Packing and encoding Constant folding and propagation
Augmentation Common-subexpression elimination
Precomputation Algebraic identities
Compile-time initialization Short-circuiting
Caching Ordering tests
Lazy evaluation Creating a fast path
Sparsity Combining tests
Loops
Hoisting Functions
Sentinels Inlining
Loop unrolling Tail-recursion elimination
Loop fusion Coarsening recursion

Eliminating wasted iterations

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-172-performance-engineering-of-software-systems-fall-2018/lecture-slides/MIT6_172F18_lec2.pdf

Closing Advice

Avoid premature optimization. First get correct working
code. Then optimize, preserving correctness by
regression testing.

Reducing the work of a program does not necessarily
decrease Its running time, but it iIs a good heuristic.

The compiler automates many low-level optimizations.

To tell if the compiler is actually performing a particular
optimization, look at the assembly code.

