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Many slides in this lecture are borrowed from the second lecture in 6.172 Performance Engineering of Software Systems at 

MIT. The credit is to Prof. Charles E. Leiserson, and the instructor appreciates the permission to use them in this course.



CS260: 
Algorithm 
Engineering 
Lecture 11

2

Scientific writing

New Bentley rules



3



Writing also has purposes, just like your presentations

• E.g., essays in GRE/SAT tests

• Know what your goals are, and strive the best to explain / clarify 
them

• Paper Reading: not teach me what this paper is about / how 
much effort you have spent on reading it; show your 
understanding of the content, the same as the presentation

• Project Proposal: describe the problems you want to solve, 
prior work, potential challenge, and your plan

• Project Report: More explanation later
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Writing style can help a lot!

• In your talks, you use slide titles to guide the audience

• In your report / proposal / paper reading, use section titles 
(subsections, paragraph headers) and good paragraphing

• See the papers and sample midterm report for references

5



Follow the guidance!
• I know many of you do not have much experience in scientific 

writing
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Follow the guidance!
• I know many of you do not have much experience in scientific 

writing
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Provide all versions of your implementation 5/10

Show how you engineer the performance and by how 5/10

Analysis of performance 5/10

Design
How to guarantee correctness 3/10

Explaining the optimizations 6/10

Performance

Experiment setup
Show speedup 6/10

Show scalability 3/10

Show other measures 9/10

Problem adjust (+2 for semisort /-2 for MM) / bonus



Expected outcome of this course

• The last two aspects are crucial because:
• You are all very good at CS techniques, and it takes a lot to further improve

• If you cannot communicate well, employers are hard to identify you from the 
great majority of other CS undergrad/grad students

• Communication is an orthogonal dimension, and easy to improve from 
bad/okay to good (still hard from good to great)

• But most courses do not cover them because they are costly
• Most courses have >30 students, and grading is done by TAs and readers

• I spend ~4h for every of your talk (does not scale to larger classes)

• You should catch the opportunity since there won’t be many courses at UCR 
in this style
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How to write faster code

How to speak (communicate)

How to write (scientific writing)



Some reminders

• Office hour: 1:30-2:30pm Tuesday 

• First weekly report for final project is due this 
Wednesday (5/13)

• Paper reading is due this Friday (5/15)

9



CS260: 
Algorithm 
Engineering 
Lecture 11

10

Scientific writing

New Bentley rules



The work of a program (on a given input) is the sum total 

of all the operations executed by the program.

Definition of “Work”



Optimizing Work

● Algorithm design can produce dramatic reductions in the amount of work 

it takes to solve a problem, as when a 𝚯(𝒏log𝒏)-time sort replaces a 

𝚯 𝒏𝟐 -time sort

● Reducing the work of a program does not automatically reduce its 

running time, however, due to the complex nature of computer hardware:

▪ instruction-level parallelism (ILP),

▪ caching,

▪ vectorization,

▪ speculation and branch prediction,

▪ etc.

● Nevertheless, reducing the work serves as a good heuristic for reducing 

overall running time



Bentley Rules



Jon Louis Bentley

1982



New “Bentley” Rules

● Most of Bentley’s original rules dealt with work, but some dealt with the 

vagaries of computer architecture four decades ago

● We have created a new set of Bentley rules dealing only with work

● We have discussed architecture-dependent optimizations in previous 

lectures

Jon Louis 
Bentley

Charles 
Leiserson

Guy 
Blelloch

Yan
Gu



New Bentley Rules

Data structures 
● Packing and encoding

● Augmentation

● Precomputation

● Compile-time initialization

● Caching

● Lazy evaluation

● Sparsity

Loops
● Hoisting

● Sentinels

● Loop unrolling

● Loop fusion

● Eliminating wasted iterations

Logic
● Constant folding and propagation

● Common-subexpression elimination

● Algebraic identities

● Short-circuiting

● Ordering tests

● Creating a fast path

● Combining tests

Functions
● Inlining

● Tail-recursion elimination

● Coarsening recursion

link

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-172-performance-engineering-of-software-systems-fall-2018/lecture-slides/MIT6_172F18_lec2.pdf


Data Structures



Packing and Encoding
The idea of packing is to store more than one data value in a machine 

word.  The related idea of encoding is to convert data values into a 

representation requiring fewer bits.

Example: Encoding dates
● The string “September 12, 2020” can be stored in 18 bytes — more than two 

double (64-bit) words — which must moved whenever a date is manipulated.

● Assuming that we only store years between 4096 B.C.E. and 4096 C.E., there 

are about 365.25 × 8192 ≈ 3 M dates, which can be encoded in ⎡log2(3×106)⎤
= 22 bits, easily fitting in a single (32-bit) word.

● But determining the month of a date takes more work than with the string 

representation.



Packing and Encoding (2)

Example: Packing dates
● Instead, let us pack the three fields into a word:

typedef struct {
int year: 13;
int month: 4;
int day: 5;

} date_t;

●This packed representation still only takes 22 bits, but the individual fields can 

be extracted much more quickly than if we had encoded the 3 M dates as 

sequential integers.

Sometimes unpacking and decoding are the optimization, depending on 

whether more work is involved moving the data or operating on it.



Augmentation

The idea of data-structure augmentation is to add information to a data structure 

to make common operations do less work.

Example: Appending singly linked lists

head

head tail

●Appending one list to another requires 

walking the length of the first list to set 

its null pointer to the start of the second

●Augmenting the list with a tail pointer 

allows appending to operate in constant 

time



Precomputation

The idea of precomputation is to perform calculations in advance so as to avoid 

doing them at “mission-critical” times

Example: Binomial coefficients

Computing the “choose” function by implementing this formula can be expensive 

(lots of multiplications), and watch out for integer overflow for even modest 

values of n and k

Idea: Precompute the table of coefficients when initializing, and perform table 

look-up at runtime



Pascal’s Triangle

1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

1 2 1 0 0 0 0 0 0

1 3 3 1 0 0 0 0 0

1 4 6 4 1 0 0 0 0

1 5 10 10 5 1 0 0 0

1 6 15 20 15 6 1 0 0

1 7 21 35 35 21 7 1 0

1 8 28 56 70 56 28 8 1

#define CHOOSE_SIZE 100
int choose[CHOOSE_SIZE][CHOOSE_SIZE];

void init_choose() {
for (int n = 0; n < CHOOSE_SIZE; ++n) {
choose[n][0] = 1;
choose[n][n] = 1;

}
for (int n = 1; n < CHOOSE_SIZE; ++n) {

choose[0][n] = 0;
for (int k = 1; k < n; ++k) {
choose[n][k] = choose[n-1][k-1] +

choose[n-1][k];
choose[k][n] = 0;

}
}

}



Sparsity

The idea of exploiting sparsity is to avoid storing and computing on zeroes. 

“The fastest way to compute is not to compute at all.”

Example: Sparse matrix multiplication

y =

3 0 0 0 1 0
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Dense matrix-vector multiplication performs n2 = 36 scalar multiplies, but only 

14 entries are nonzero.



Sparsity

Example: Sparse matrix multiplication

y =

3 1

4 1 5 9

2 6

5 3

5 8

9 7

æ

è

ç
ç
ç
ç
ç
çç

ö

ø

÷
÷
÷
÷
÷
÷÷

1

4

2

8

5

7

æ

è

ç
ç
ç
ç
ç
çç

ö

ø

÷
÷
÷
÷
÷
÷÷

Dense matrix-vector multiplication performs n2 = 36 scalar multiplies, but only 

14 entries are nonzero.

The idea of exploiting sparsity is to avoid storing and computing on zeroes. 

“The fastest way to compute is not to compute at all.”



Sparsity (2)

Compressed Sparse Row (CSR)

3 0 0 0 1 0
0 4 1 0 5 9
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n = 6

nnz = 14

Storage is O(n+nnz) instead of n2



Sparsity (3)

typedef struct {
int n, nnz;
int *rows; // length n
int *cols; // length nnz
double *vals; // length nnz

} sparse_matrix_t;

void spmv(sparse_matrix_t *A, double *x, double *y) {
for (int i = 0; i < A->n; i++) {
y[i] = 0;
for (int k = A->rows[i]; k < A->rows[i+1]; k++) {
int j = A->cols[k];
y[i] += A->vals[k] * x[j];

}
}

}

CSR matrix-vector multiplication

Number of scalar multiplications = nnz, which is potentially much less than n2



Sparsity (4)

Storing a static sparse graph 0

1

2

3

4

0 2 5 5 6 7

1 3 2 3 4 2 2

Offsets

Edges

Vertex IDs    0          1           2          3         4

Can run many graph algorithms efficiently on this representation, e.g., 

breadth-first search, PageRank

Can store edge weights with an additional array or interleaved with Edges



Logic



Constant Folding and Propagation

The idea of constant folding and propagation is to evaluate constant expressions 

and substitute the result into further expressions, all during compilation

#include <math.h>

void orrery() {
const double radius = 6371000.0;
const double diameter = 2 * radius;
const double circumference = M_PI * diameter;
const double cross_area = M_PI * radius * radius;
const double surface_area = circumference * diameter;
const double volume = 4 * M_PI * radius * radius * radius / 3;
// ...

}

With a sufficiently high optimization level, all the expressions are evaluated at 

compile-time



Algebraic Identities

The idea of exploiting algebraic identities is to replace expensive algebraic 

expressions with algebraic equivalents that require less work.

#include <stdbool.h>
#include <math.h>

typedef struct {
double x; // x-coordinate
double y; // y-coordinate
double z; // z-coordinate
double r; // radius of ball

} ball_t;

double square(double x) {
return x*x;

}

bool collides(ball_t *b1, ball_t *b2) {
double d = sqrt(square(b1->x - b2->x)

+ square(b1->y - b2->y)
+ square(b1->z - b2->z));

return d <= b1->r + b2->r;
}



Algebraic Identities

The idea of exploiting algebraic identities is to replace expensive algebraic 

expressions with algebraic equivalents that require less work.

#include <stdbool.h>
#include <math.h>

typedef struct {
double x; // x-coordinate
double y; // y-coordinate
double z; // z-coordinate
double r; // radius of ball

} ball_t;

double square(double x) {
return x*x;

}

bool collides(ball_t *b1, ball_t *b2) {
double d = sqrt(square(b1->x - b2->x)

+ square(b1->y - b2->y)
+ square(b1->z - b2->z));

return d <= b1->r + b2->r;
}

bool collides(ball_t *b1, ball_t *b2) {
double dsquared = square(b1->x - b2->x)

+ square(b1->y - b2->y)
+ square(b1->z - b2->z);

return dsquared <= square(b1->r + b2->r);
}

𝑢 ≤ 𝑣 exactly when 𝑢 ≤ 𝑣2



#include <stdbool.h>
#include <math.h>

typedef struct {
double x; // x-coordinate
double y; // y-coordinate
double z; // z-coordinate
double r; // radius of ball

} ball_t;

double square(double x) {
return x*x;

}

bool collides(ball_t *b1, ball_t *b2) {
double dsquared = square(b1->x - b2->x)

+ square(b1->y - b2->y)
+ square(b1->z - b2->z);

return dsquared <= square(b1->r + b2->r);
}

Creating a Fast Path



Creating a Fast Path

double dsquared = square(b1->x - b2->x)
+ square(b1->y - b2->y)
+ square(b1->z - b2->z);

return dsquared <= square(b1->r + b2->r);
}

#include <stdbool.h>
#include <math.h>

typedef struct {
double x; // x-coordinate
double y; // y-coordinate
double z; // z-coordinate
double r; // radius of ball

} ball_t;

double square(double x) {
return x*x;

}

bool collides(ball_t *b1, ball_t *b2) {



Creating a Fast Path

double dsquared = square(b1->x - b2->x)
+ square(b1->y - b2->y)
+ square(b1->z - b2->z);

return dsquared <= square(b1->r + b2->r);
}

#include <stdbool.h>
#include <math.h>

typedef struct {
double x; // x-coordinate
double y; // y-coordinate
double z; // z-coordinate
double r; // radius of ball

} ball_t;

double square(double x) {
return x*x;

}

bool collides(ball_t *b1, ball_t *b2) {

if ((abs(b1->x – b2->x) > (b1->r + b2->r)) ||
(abs(b1->y – b2->y) > (b1->r + b2->r)) ||
(abs(b1->z – b2->z) > (b1->r + b2->r)))

return false;



Short-Circuiting

When performing a series of tests, the idea of short-circuiting is to stop evaluating 

as soon as you know the answer

#include <stdbool.h>
// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {
int sum = 0;
for (int i = 0; i < n; i++) {
sum += A[i];

}
return sum > limit;

}

#include <stdbool.h>
// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {
int sum = 0;
for (int i = 0; i < n; i++) {
sum += A[i];
if (sum > limit) {
return true;

}
}
return false;

}

Note that && and || are short-circuiting logical operators, 
and & and | are not



Ordering Tests

Consider code that executes a sequence of logical tests.  The idea of ordering 

tests is to perform those that are more often “successful” — a particular 

alternative is selected by the test — before tests that are rarely successful.  

Similarly, inexpensive tests should precede expensive ones.

#include <stdbool.h>
bool is_whitespace(char c) {
if (c == '\r' || c == '\t' || c == ' ' || c == '\n') {
return true;

}
return false;

}

#include <stdbool.h>
bool is_whitespace(char c) {
if (c == ' ' || c == '\n' || c == '\t' || c == '\r') {
return true;

}
return false;

}



Loops



Hoisting

The goal of hoisting — also called loop-invariant code motion — is to avoid 

recomputing loop-invariant code each time through the body of a loop

#include <math.h>

void scale(double *X, double *Y, int N) {
for (int i = 0; i < N; i++) {
Y[i] = X[i] * exp(sqrt(M_PI/2));

}
}

#include <math.h>

void scale(double *X, double *Y, int N) {
double factor = exp(sqrt(M_PI/2));
for (int i = 0; i < N; i++) {
Y[i] = X[i] * factor;

}
}



Loop Fusion

The idea of loop fusion — also called jamming — is to combine multiple loops 

over the same index range into a single loop body, thereby saving the 

overhead of loop control

for (int i = 0; i < n; ++i) {
C[i] = (A[i] <= B[i]) ? A[i] : B[i];

}

for (int i = 0; i < n; ++i) {
D[i] = (A[i] <= B[i]) ? B[i] : A[i];

}

for (int i = 0; i < n; ++i) {
C[i] = (A[i] <= B[i]) ? A[i] : B[i];
D[i] = (A[i] <= B[i]) ? B[i] : A[i];

}



Eliminating Wasted Iterations

The idea of eliminating wasted iterations is to modify loop bounds to avoid 

executing loop iterations over essentially empty loop bodies.

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (i > j) {
int temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}
}

}

for (int i = 1; i < n; ++i) {
for (int j = 0; j < i; ++j) {

int temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}
}



Functions



Inlining

The idea of inlining is to avoid the overhead of a function call by replacing a call 

to the function with the body of the function itself

double square(double x) {
return x*x;

}

double sum_of_squares(double *A, int n) {
double sum = 0.0;
for (int i = 0; i < n; ++i) {

sum += square(A[i]);
}
return sum;

}

double sum_of_squares(double *A, int n) {
double sum = 0.0;
for (int i = 0; i < n; ++i) {

double temp = A[i];
sum += temp*temp;

}
return sum;

}



Inlining

double square(double x) {
return x*x;

}

double sum_of_squares(double *A, int n) {
double sum = 0.0;
for (int i = 0; i < n; ++i) {

sum += square(A[i]);
}
return sum;

}

static inline double square(double x) {
return x*x;

}

double sum_of_squares(double *A, int n) {
double sum = 0.0;
for (int i = 0; i < n; ++i) {

sum += square(A[i]);
}
return sum;

}

The idea of inlining is to avoid the overhead of a function call by replacing a call 

to the function with the body of the function itself



Tail-Recursion Elimination

The idea of tail-recursion elimination is to replace a recursive call that occurs as 

the last step of a function with a branch, saving function-call overhead

void quicksort(int *A, int n) {
if (n > 1) {
int r = partition(A, n);
quicksort (A, r);
quicksort (A + r + 1, n - r - 1);

}
}

void quicksort(int *A, int n) {
while (n > 1) {
int r = partition(A, n);
quicksort (A, r);
A += r + 1;
n -= r + 1;

}
}



Coarsening Recursion

The idea of coarsening recursion is to increase the size of the base case and 

handle it with more efficient code that avoids function-call overhead

void quicksort(int *A, int n) {
while (n > 1) {

int r = partition(A, n);
quicksort (A, r);
A += r + 1;
n -= r + 1;

}
}

#define THRESHOLD 20
void quicksort(int *A, int n) {

while (n > THRESHOLD) {
int r = partition(A, n);
quicksort (A, r);
A += r + 1;
n -= r + 1;

}
// insertion sort for small arrays
for (int j = 1; j < n; ++j) {

int key = A[j];
int i = j - 1;
while (i >= 0 && A[i] > key) {
A[i+1] = A[i];
--i;

}
A[i+1] = key;

}
}



Summary
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Closing Advice

● Avoid premature optimization.  First get correct working 

code.  Then optimize, preserving correctness by 

regression testing.

● Reducing the work of a program does not necessarily 

decrease its running time, but it is a good heuristic.

● The compiler automates many low-level optimizations.

● To tell if the compiler is actually performing a particular 

optimization, look at the assembly code.


