
Algorithm Engineering
(aka. How to Write Fast Code)

Algorithm Engineering and
Graph Processing systems

CS260 – Lecture 10

Yan Gu

CS260:
Algorithm
Engineering
Lecture 10

2

What is algorithm engineering

Graphs

Graph processing systems

Overall Structure in this Course

Performance Engineering

Parallelism

I/O efficiency

New Bentley rules

Brief overview of architecture

Algorithm Engineering

Sorting / Semisorting

Matrix multiplication

Graph algorithms

Geometric algorithms

What is Algorithm Engineering?

Theory Practice

O(n log n)
O(n)

O(log n)

• For many decades, theory and practice are two separate areas

• Theory studies computability (e.g., complexity classes)

• Writing faster codes was done the system community
• Almost every undergrads know the algorithms with best bounds for classic

problems such as SCC, sorting, connectivity, convex hull

• Research is mostly about specific input instances, detail tuning, on HPCs

What is Algorithm Engineering?

Theory Practice

O(n log n)
O(n)

O(log n)

• No longer the case in the past decades since computer
architecture becomes significantly more sophisticated

• Parallelism, I/O efficiency, new hardware such as non-volatile
memories

O(n log n)
O(n)

O(log n)

• Good empirical performance

• Confidence that algorithms will perform well in many different settings

• Ability to predict performance (e.g. in real-time applications)

• Important to develop theoretical models to capture properties of technologies

Use theory to inform practice and
practice to inform theory.

Bridging Theory and Practice

What is Algorithm Engineering?

• Algorithm design

• Algorithm analysis

• Algorithm implementation

• Optimization

• Profiling

• Experimental evaluation

Theory Practice

O(n log n)
O(n)

O(log n)

Source: MIT 6.886 by Julian Shun

What is Algorithm Engineering?

Source: “Algorithm Engineering – An Attempt at a Definition”, Peter Sanders

Source: MIT 6.886 by Julian Shun

Algorithm Design & Analysis

• Constant factors matter!

• Avoid unnecessary computations

• Simplicity improves applicability and can lead to better
performance

• Think about locality and parallelism

• Think both about worst-case and real-world inputs

• Use theory as a guide to find practical algorithms

• Time vs. space tradeoffs

Algorithm 1
N log2 N

Algorithm 2
1000 NComplexity

Source: MIT 6.886 by Julian Shun

Implementation

• Write clean, modular code
• Easier to experiment with different methods, and can save a lot of

development time

• Write correctness checkers
• Especially important in numerical and geometric applications due to

floating-point arithmetic, possibly leading to different results

• Save previous versions of your code!
• Version control helps with this

Source: MIT 6.886 by Julian Shun

Experimentation

• Instrument code with timers and use performance profilers (e.g.,
perf, gprof, valgrind)

• Use large variety of inputs (both real-world and synthetic)
• Use different sizes

• Use worst-case inputs to identify correctness or performance issues

• Reproducibility
• Document environmental setup

• Fix random seeds if needed

• Run multiple timings to deal with variance

Source: MIT 6.886 by Julian Shun

Experimentation II

• For parallel code, test on varying number of processors to study
scalability

• Compare with best serial code for problem

• For reproducibility, write deterministic code if possible
• Or make it easy to turn off non-determinism

• Use numactl to control NUMA effects on multi-socket machines

Source: MIT 6.886 by Julian Shun

What is Algorithm Engineering?

• Algorithm design

• Algorithm analysis

• Algorithm implementation

• Optimization

• Profiling

• Experimental evaluation

Theory Practice

O(n log n)
O(n)

O(log n)

Source: MIT 6.886 by Julian Shun

CS260:
Algorithm
Engineering
Lecture 10

14

What is algorithm engineering

Graphs

Graph processing systems

What is a graph?

• Vertices model (a set of) objects

• Edges model relationships between objects

Edge
Vertex Vertex

Alice Bob

Carol David

Eve

Fred Greg

Hannah
https://commons.wikimedia.org/wiki/File:Protein_Interaction_Netw
ork_for_TMEM8A.png

Julian

Source: MIT 6.172 by Julian Shun

Social networks

Source: MIT 6.172 by Julian Shun

Collaboration networks

Source: MIT 6.172 by Julian Shun

Erdős number:
Number of hops to

Erdős via

collaboration

Transportation networks

Source: MIT 6.172 by Julian Shun

Computer networks

Source: rawbytes.com

Source: MIT 6.172 by Julian Shun

Biological
networks

• Protein-protein
interaction (PPI)
networks

Other Applications
• Biological networks
• Financial transaction networks
• Economic trade networks
• Food web
• Various types of biological networks
• Image segmentation in computer vision
• Scientific simulations
• Many more…

Source: MIT 6.172 by Julian Shun

What is a graph?

• Edges can be directed / undirected
• Relationship can go one way or both ways

http://farrall.org/papers/webgraph_as_content.htmlhttp://www3.nd.edu/~dwang5/courses/spring15/assignments/A1/
Assignment1_SocialSensing.html

Source: MIT 6.172 by Julian Shun

What is a graph?

• Edges can be weighted / unweighted (unit weighted)
• Denotes “strength”, distance, etc.

https://msdn.microsoft.com/en-us/library/aa289152(v=vs.71).aspx

Distance between cities Flight costs

Source: MIT 6.172 by Julian Shun

What is a graph?

• Vertices and edges can have types and metadata
Google Knowledge Graph

http://searchengineland.com/laymans-visual-guide-googles-knowledge-graph-search-api-241935

Source: MIT 6.172 by Julian Shun

Social network queries

• Examples:
• Finding all your friends who went to the same high school as you

• Finding common friends with someone

• Social networks recommending people whom you might know

• Advertisement recommentations

http://www.facebookfever.com/introducing-facebook-new-graph-
api-explorer-features/

http://allthingsgraphed.com/2014/10/16/your-linkedin-network/

Source: MIT 6.172 by Julian Shun

Transportation network queries

• Examples:
• Find the cheapest way traveling from one city to the other

• Decide where to build a hub/add a flight to make more profit

• Find the shortest way to visit a set of locations (e.g., postman)

Source: MIT 6.172 by Julian Shun

Biological
network queries

• Example:
• Find patterns in

biological networks

• Find similarity between
different species

Source: UCR CS 260 (214) by Yihan Sun

Graph Problems

Reachability based Distance based Other

Undirected

Breadth-first search (BFS)
Connectivity
Biconnectivity
Spanning forest
Low-diameter
decomposition (LDD)

Minimum spanning forest /
tree (undirected)
Single-source shortest-paths
(SSSP)
All-pair shortest-paths
(APSP)
Betweenness centrality (BC)
Spanner / Hopset

Maximal independent
set (MIS)
Matching
Graph coloring
Coreness
Isomorphism

Directed
Strongly Connected
Components (SCC)

Page rank

Graph Problems

Reachability based Distance based Other

Undirected

Breadth-first search (BFS)
Connectivity
Biconnectivity
Spanning forest
Low-diameter
decomposition (LDD)

Minimum spanning forest /
tree (undirected)
Single-source shortest-paths
(SSSP)
All-pair shortest-paths
(APSP)
Betweenness centrality (BC)
Spanner / Hopset

Maximal independent
set (MIS)
Matching
Graph coloring
Coreness
Isomorphism

Directed
Strongly Connected
Components (SCC)

Page rank

• Planar graphs (graphs that can be drawn on a plain)

• Dynamic graphs (can change over time)

Real-world graph sizes in 2019

30

Graph Num. Vertices Num. Undirected Edges

soc-LiveJournal 4.8M 85M

com-Orkut 3M 234M

Twitter 41M 2.4B

Facebook (2011) [1] 721M 68.4B

Hyperlink2014 [2] 1.7B 124B

Hyperlink2012 [2] 3.5B 225B

Facebook (2018) > 2B > 300B

Yahoo! 272B 5.9T

Google (2018) > 100B 6T

Brain Connectome 100B (neurons) 100T (connections)

: Publicly available graphs
[1] The Anatomy of the Facebook Social Graph, Ugander et al. 2011
[2] http://webdatacommons.org/hyperlinkgraph/

: Private graph datasets
Source: CMU 15-853 by Laxman Dhulipala

Graph Representation

31

Graph Representations
• Vertices labeled from 0 to n-1

0 1 0 0 0

1 0 0 1 1

0 0 0 1 0

0 1 1 0 0

0 1 0 0 0

Adjacency matrix
(“1” if edge exists,

“0” otherwise)

0 1 2 3 4

0

1

3

2

4

Edge list

(0,1)
(1,0)
(1,3)
(1,4)
(2,3)
(3,1)
(3,2)
(4,1)

• Space?

O(n2) O(m)

Source: MIT 6.172 by Julian Shun

𝑛 = # of vertices
𝑚 = # of edges

Graph Representations
• Adjacency list

• Array of pointers (one per vertex)

• Each vertex has an unordered list of its edges

• Can substitute linked lists with arrays for better cache performance

∙ Tradeoff: more expensive to update graph

Space requirement?

O(n+m)

Source: MIT 6.172 by Julian Shun

𝑛 = # of vertices
𝑚 = # of edges

Graph Representations

• Compressed sparse row (CSR)
• Two arrays: Offsets and Edges

• Offsets[i] stores the offset of where vertex i’s edges start in Edges

0 4 5 11

2 7 9 16 0 1 6 9 12

...

...

Offsets

Edges

Vertex IDs 0 1 2 3

• How do we compute the offset array?

• Space?
∙ O(n+m)

Source: MIT 6.172 by Julian Shun

𝑛 = # of vertices
𝑚 = # of edges

CS260:
Algorithm
Engineering
Lecture 10

35

What is algorithm engineering

Graphs

Graph processing systems

Graph Processing Frameworks

Graph processing frameworks/libraries
Pregel, Giraph, GPS, GraphLab, PowerGraph, PRISM, Pegasus, Knowledge Discovery Toolbox,
CombBLAS, GraphChi, GraphX, Galois, X-Stream, Gunrock, GraphMat, Ringo, TurboGraph,
TurboGraph++, FlashGraph, Grace, PathGraph, Polymer, GPSA, GoFFish, Blogel, LightGraph,
MapGraph, PowerLyra, PowerSwitch, Imitator, XDGP, Signal/Collect, PrefEdge, EmptyHeaded,
Gemini, Wukong, Parallel BGL, KLA, Grappa, Chronos, Green-Marl, GraphHP, P++, LLAMA, Venus,
Cyclops, Medusa, NScale, Neo4J, Trinity, GBase, HyperGraphDB, Horton, GSPARQL, Titan, ZipG,
Cagra, Milk, Ligra, Ligra+, Julienne, GraphPad, Mosaic, BigSparse, Graphene, Mizan, Green-Marl,
PGX, PGX.D, Wukong+S, Stinger, cuStinger, Distinger, Hornet, GraphIn, Tornado, Bagel,
KickStarter, Naiad, Kineograph, GraphMap, Presto, Cube, Giraph++, Photon, TuX2, GRAPE, GraM,
Congra, MTGL, GridGraph, NXgraph, Chaos, Mmap, Clip, Floe, GraphGrind, DualSim, ScaleMine,
Arabesque, GraMi, SAHAD, Facebook TAO, Weaver, G-SQL, G-SPARQL, gStore, Horton+, S2RDF,
Quegel, EAGRE, Shape, RDF-3X, CuSha, Garaph, Totem, GTS, Frog, GBTL-CUDA, Graphulo, Zorro,
Coral, GraphTau, Wonderland, GraphP, GraphIt, GraPu, GraphJet, ImmortalGraph, LA3, CellIQ,
AsyncStripe, Cgraph, GraphD, GraphH, ASAP, RStream, and many others…

• Provides high level primitives for graph algorithms

• Reduce programming effort of writing efficient parallel graph programs

Four papers about graph processing systems in CS 260
• Ligra: a lightweight graph processing framework for shared

memory
• Frontier-based algorithms similar to BFS

• Julienne: A Framework for Parallel Graph Algorithms using
Work-efficient Bucketing, by Zhongqi Wang

• Distance-based algorithms such as SSSP, 𝑘-core

• Aspen: Low-Latency Graph Streaming Using Compressed
Purely-Functional Trees, by Xiaojun Dong

• Graph processing systems for dynamic graphs

• Sage: Semi-Asymmetric Parallel Graph Algorithms for NVRAMs,
by Kristian Tram

• Graph processing systems optimized for non-volatile main memories
37

Parallel BFS Algorithm

s0

1

1

2

2

2

2

1

Frontier

Source: MIT 6.172 by Julian Shun

Ligra: based on shared-memory multicore machines

• Motivating example: breadth-first search

parents = {-1, ..., -1}
// d = dst: vertex to “update” (just encountered)
// s = src: vertex on frontier with edge to d

procedure UPDATE(s, d)
return compare-and-swap(parents[d], -1, s);

procedure COND(i)
return parents[i] == -1;

procedure BFS(G, r)
parents[r] = r;
frontier = {r};
while (size(frontier) != 0) do:

frontier = EDGEMAP(G, frontier, UPDATE, COND);

39

Semantics of EDGEMAP:
Foreach vertex i in frontier, call UPDATE for all neighboring vertices j
for which COND(j) is true. Add j to returned set if UPDATE(i, j) returns true

Source: Stanford CS 149 by Kayvon Fatahalian

Parallel BFS Algorithm

s0

1

1

2

2

2

2

1

Frontier

• Can process each frontier in parallel
• Parallelize over both the vertices and their outgoing edges

Source: MIT 6.172 by Julian Shun

Implementing EDGEMAP

• Assume the frontier is small

procedure EDGEMAP_FORWARD(G, U, F, C):
result = {}
parallel foreach v in U do:

parallel foreach v2 in out_neighbors(v) do:
if (C(v2) == 1 and F(v,v2) == 1) then

add v2 to result
remove duplicates from result
return result

Work:
O(|U| + sum of outgoing edges from U)

Span: polylogarithmic

41

parents = {-1, ..., -1}
// d = dst: vertex to “update” (just encountered)
// s = src: vertex on frontier with edge to d

procedure UPDATE(s, d)
return compare-and-swap(parents[d], -1, s);

procedure COND(i)
return parents[i] == -1;

procedure BFS(G, r)
parents[r] = r;
frontier = {r};
while (size(frontier) != 0) do:

frontier = EDGEMAP(G, frontier, UPDATE, COND);

graph set of vertices

(previous frontier)

update function on neighbor vertex

condition check on neighbor vertex

Visiting every edge on frontier can be wasteful

• Each step of BFS, every edge on frontier is visited
• Frontier can grow quickly for social graphs (few steps to visit all nodes)

• Most edge visits are wasteful! (they don’t lead to a successful “update”)

42Source: Stanford CS 149 by Kayvon Fatahalian

s0

1

1

2

2

2

2

1

Frontier

Visiting every edge on frontier can be wasteful

• Each step of BFS, every edge on frontier is visited
• Frontier can grow quickly for social graphs (few steps to visit all nodes)

• Most edge visits are wasteful! (they don’t lead to a successful “update”)

43Source: Stanford CS 149 by Kayvon Fatahalian

Implementing EDGEMAP for large frontier size

• Assume the frontier is large

procedure EDGEMAP_FORWARD(G, U, F, C):
result = {}
parallel foreach v in U do:

foreach v2 in out_neighbors(v) do:
if (C(v2) == 1 and F(v,v2) == 1) then

add v2 to result
remove duplicates from result
return result

Work for a round:
Still can be as large as O(|E|),
but usually less than that since once the loop
can quit once one of the in-neighbors is visited

44

procedure EDGEMAP_BACKWARD(G, U, F, C):
result = {}
parallel foreach v in V do:
if (C(v) == 1)

foreach v2 in in_neighbors(v) do:
if (v2∈U and F(v2,v) == 1) then

add v to result and break
pack the result and return

Page rank in Ligra
r_cur = {1/|V|, ... 1/|V|};
r_next = {0,...,0};
diff = {}

procedure PRUPDATE(s, d):
atomicIncrement(&r_next[d], r_cur[s] / vertex_degree(s));

procedure PRLOCALCOMPUTE(i):
r_next[i] = alpha * r_next[i] + (1 - alpha) / |V|;
diff[i] = |r_next[i] - r_cur[i]|;
r_cur[i] = 0;
return 1;

procedure COND(i):
return 1;

procedure PAGERANK(G, alpha, eps):
frontier = {0, ... , |V|-1}
error = HUGE;
while (error > eps) do:

frontier = EDGEMAP(G, frontier, PRUPDATE, COND);
frontier = VERTEXMAP(frontier, PRLOCALCOMPUTE);
error = sum of per-vertex diffs // this is a parallel reduce
swap(r_cur, r_next);

return err

45

Ligra summary

• System abstracts graph operations over vertices and edges

• Frontier-based graph traversal algorithms

• These basic operations permit a surprisingly wide space of
graph algorithms:

• Betweenness centrality

• Connected components

• Single-source shortest paths (Bellman-Ford)

• graph radii estimation

Ligra: a Lightweight Framework for Graph Processing for Shared Memory [Shun and Blelloch 2013]

46

Ligra

• Simple library
with many
useful examples

47

Elements of good graph processing system design
(and other domain-specific systems)

48

#1: good systems identify the most important cases, and
provide most benefit in these situations

• Structure of code mimics the natural structure of problems in
the domain

• Graph processing algorithms are designed in terms of per-vertex operations

• Efficient expression: common operations are easy and intuitive
to express

• Efficient implementation: the most important optimizations in
the domain are performed by the system for the programmer

49Source: Stanford CS 149 by Kayvon Fatahalian

#2: good systems are usually simple systems

• They have a small number of key primitives and operations
• Ligra: only two operations! (vertexmap and edgemap)

• Allows compiler/runtime to focus on optimizing these primitives
Provide parallel implementations, utilize appropriate hardware

• Common question that good architects ask: “do we really need
that?” (can this concept be reduced to a primitive we already
have?)

• Better theoretical bounds / performance

50Source: Stanford CS 149 by Kayvon Fatahalian

#3: good primitives compose

• Composition of primitives allows for wide application scope,
even if scope remains limited to a domain

• Ligra supports a wide variety of graph algorithms

• Composition often allows optimization to generalizable
• If system can optimize A and optimize B, then it can optimize programs that

combine A and B

• Sign of a good design
• System ultimately is used for applications original designers never

anticipated

51Source: Stanford CS 149 by Kayvon Fatahalian

Wednesday’s lecture

• Julienne: A Framework for Parallel Graph Algorithms using
Work-efficient Bucketing, by Zhongqi Wang

• Distance-based algorithms such as SSSP, 𝑘-core

• Aspen: Low-Latency Graph Streaming Using Compressed
Purely-Functional Trees, by Xiaojun Dong

• Graph processing systems for dynamic graphs

• Sage: Semi-Asymmetric Parallel Graph Algorithms for NVRAMs,
by Kristian Tram

• Graph processing systems optimized for non-volatile main memories

52

