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What is Algorithm Engineering?
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 For many decades, theory and practice are two separate areas
 Theory studies computability (e.g., complexity classes)

* Writing faster codes was done the system community

« Almost every undergrads know the algorithms with best bounds for classic
problems such as SCC, sorting, connectivity, convex hull

« Research is mostly about specific input instances, detail tuning, on HPCs




What is Algorithm Engineering?
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* No longer the case in the past decades since computer
architecture becomes significantly more sophisticated

« Parallelism, 1/O efficiency, new hardware such as non-volatile
memories




Bridging Theory and Practice
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- Good empirical performance

- Confidence that algorithms will perform well in many different settings

- Ability to predict performance (e.g. in real-time applications)

- Important to develop theoretical models to capture properties of technologies
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Use theory to inform practice and
practice to inform theory.




What is Algorithm Engineering?

* Algorithm design
* Algorithm analysis
* Algorithm implementation

* Optimization
* Profiling

* Experimental evaluation
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What is Algorithm Engineering?
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Algorithm Design & Analysis

Algorithm 1 Algorithm 2
Complexity N log, N 1000 N

« Constant factors matter!
 Avoid unnecessary computations

« Simplicity improves applicability and can lead to better
performance

* Think about locality and parallelism

* Think both about worst-case and real-world inputs
« Use theory as a guide to find practical algorithms
* Time vs. space tradeoffs

Source: MIT 6.886 by Julian Shun



Implementation

 Write clean, modular code

« Easier to experiment with different methods, and can save a lot of
development time

 Write correctness checkers

« Especially important in numerical and geometric applications due to
floating-point arithmetic, possibly leading to different results

e Save previous versions of your code!
 Version control helps with this

Source: MIT 6.886 by Julian Shun



Experimentation

* Instrument code with timers and use performance profilers (e.g.,
perf, gprof, valgrind)

« Use large variety of inputs (both real-world and synthetic)
« Use different sizes
« Use worst-case inputs to identify correctness or performance issues

* Reproducibility
« Document environmental setup
* Fix random seeds if needed

 Run multiple timings to deal with variance

Source: MIT 6.886 by Julian Shun



Experimentation ||

* For parallel code, test on varying number of processors to study
scalability

« Compare with best serial code for problem

* For reproducibility, write deterministic code if possible
* Or make it easy to turn off non-determinism

 Use numactl to control NUMA effects on multi-socket machines

Source: MIT 6.886 by Julian Shun



What is Algorithm Engineering?

* Algorithm design
* Algorithm analysis
* Algorithm implementation

* Optimization
* Profiling

* Experimental evaluation
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What is a graph?

@ - @

 Vertices model (a set of) objects
- Edges model relationships between objects
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Source: MIT 6.172 by Julian Shun
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Social networks
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Collaboration networks

2.8ERET) 4. THICREMALHER

Sed k‘:;‘( ’
.""{ Vvlz.EA‘z o (:\,‘ 'L,L.a

e sans ,T?Ef j oD

Fuw J.d .
yé,._.,lj.;‘ ‘.,,, ,,' Jl! u \‘ T— % m
A3 J fas .aum mmi- (ranic)
B

RANIH

-
= \& ‘~”’”f N2 - Erdés number:
\-,J:”% == == Number of hops to
' = S Erdds via

/y
collaboration

:J_illN'!)
(LA

T i
G (Hivasar)

THIMASO4)

Vou NEYMANI

‘%‘4; !.! ‘&w\(\‘/\

e

(A = oS
£ 4 GRAK ErDO

= —— Eira
G r e u-u‘?),——-——~.::""" G
LN eses S

7(- .4...:5 \\‘“\i - N

./ \ - r\.// §J

AT \L’/' j o

gu'r )1;'!' E‘;

: j / ¢

i {’--—s. Kerdic At Faiecd 2

XTI . } ! I /, v\usue{l,é@ < ;D p / 3

o L_—)’/LL’/ 1}! ,} e e T G Cnliq

o c} /,,,,‘3 il ,//{ };L_ }f,\_.._::‘-“’/ 1430 N Genniicii »

<> cm“*\ / «:Lﬁ\. (Lancvais) (Levinson) g }-\.. AT o

—— 546/0”50’/ i / _:;z,”_’,.."j s ~—

/ G

““?r_..

R

@ Figure 1
appear in Toplcs in Graph Theorty (v, Harary, ed.) New York Academy of Sciences (1979).

Source: MIT 6.172 by Julian Shun "




Transportation networks
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Computer networks

Tier 2

The Internet

Tier 2

Tier 3
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Source: MIT 6.172 by Julian Shun




Biological
networks
* Protein—-protein

interaction (PPI)
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Other Applications

- Biological networks

 Financial transaction networks

« Economic trade networks

- Food web

« Various types of biological networks

- Image segmentation in computer vision
« Scientific simulations

 Many more...

Source: MIT 6.172 by Julian Shun



What is a graph?

« Edges can be directed / undirected
« Relationship can go one way or both ways
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What is a graph?

- Edges can be weighted / unweighted (unit weighted)
« Denotes “strength”, distance, etc.

Distance between cities Flight costs
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https://msdn.microsoft.com/en-us/library/aa289152(v=vs.71).aspx

Source: MIT 6.172 by Julian Shun




What is a graph?

 Vertices and edges can have types and metadata
Google Knowledge Graph

D

. Mona Lisa

Source: MIT 6.172 by Julian Shun



Social network queries
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« Examples:
« Finding all your friends who went to the same high school as you
* Finding common friends with someone
« Social networks recommending people whom you might know
« Advertisement recommentations

Source: MIT 6.172 by Julian Shun




« Examples:
* Find the cheapest way traveling from one city to the other
« Decide where to build a hub/add a flight to make more profit
* Find the shortest way to visit a set of locations (e.g., postman)

Source: MIT 6.172 by Julian Shun



o\ ¥
s
0'. i »"’.

Biological
network queries

« Example:

* Find patterns in
biological networks Q

. . . . o P CNT
* Find similarity between®; *
different species L
& el

MAN2A1 '::‘:o

A 2% N oes

= . AMBRAT ouer cey®
N e
Q‘Hcm —

P
) y\

s C}ONA11
9 o oo e ®
NFATC3 o‘:o CACNB2
A ® ®otupn7B K ®
: / holb«a e @ % ° 0‘:.\. o ’
—" ! '

Source: UCR CS 260 (214) by Yihan Sun



Graph Problems

Reachability based Distance based Other

Undirected

Directed




Graph Problems

Reachability based Distance based Other
Breadth-first search (BFS) Minimum spanning forest / Maximal independent
Connectivity tree (undirected) set (MIS)
Biconnectivity Single-source shortest-paths Matching
Undirected Spanning forest (SSSP) Graph coloring
Low-diameter All-pair shortest-paths Coreness
decomposition (LDD) (APSP) Isomorphism
Betweenness centrality (BC)
Directeq  Strongly Connected Spanner / Hopset Page rank
Components (SCC)

 Planar graphs (graphs that can be drawn on a plain)
« Dynamic graphs (can change over time)




Real-world graph sizes in 2019

Graph Num. Vertices Num. Undirected Edges
soc-LiveJournal 4.8M 85M
com-Orkut 3M 234M
Twitter 41M 2.4B
Facebook (2011) [1] 721M 68.4B
Hyperlink2014 [2] 1.7B 124B
Hyperlink2012 [2] 3.5B 225B
Facebook (2018) > 2B > 300B
Yahoo! 272B 5.9T
Google (2018) > 100B 6T
Brain Connectome 100B (neurons) 100T (connections)

@ : Publicly available graphs |
[1] The Anatomy of the Facebook Social Graph, Ugander et al. 2011
‘ : Prlvate g ra ph datasets [2] http://webdatacommons.org/hyperlinkgraph/

Source: CMU 15-853 by Laxman Dhulipala 30




Graph Representation

31



Graph Representations n= #; offve(;tices
- Vertices labeled from 0 to n-1 m = # OF €dges

0010100, 0.1)
@ ol1l0]|0]0O ggi
O(n) (O[]0 bt 14  O(m)
ololo|1]0 (2,3)
ol1]1]0]o0 (3.1)
@ ol1]o0]o0o]o0 (3.2)
. . (4,1)
Adjacency matrix
(“1" if edge exists, Edge list
‘0" otherwise)
* Space?

Source: MIT 6.172 by Julian Shun



Graph Representations n = # of vertices
m = # of edges

« Adjacency list
« Array of pointers (one per vertex)
« Each vertex has an unordered list of its edges
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« Can substitute linked lists with arrays for better cache performance
o Tradeoff: more expensive to update graph

Source: MIT 6.172 by Julian Shun



n = # of vertices

Graph Representations
P P m = # of edges

« Compressed sparse row (CSR)
« Two arrays: and Edges
[i] stores the offset of where vertex i’s edges start in Edges

Vertex IDs
Offsets

Edges

0

1

2

3

0

11

2

7

9

16

0

12

* How do we compute the offset array?

* Space?
e O(n+m)

Source: MIT 6.172 by Julian Shun
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Graph Processing Frameworks

* Provides high level primitives for graph algorithms
 Reduce programming effort of writing efficient parallel graph programs

Graph processing frameworks/libraries

Pregel, Giraph, GPS, GraphlLab, PowerGraph, PRISM, Pegasus, Knowledge Discovery Toolbox,
CombBLAS, GraphChi, GraphX, Galois, X-Stream, Gunrock, GraphMat, Ringo, TurboGraph,
TurboGraph++, FlashGraph, Grace, PathGraph, Polymer, GPSA, GoFFish, Blogel, LightGraph,
MapGraph, PowerlLyra, PowerSwitch, Imitator, XDGP, Signal/Collect, PrefEdge, EmptyHeaded,
Gemini, Wukong, Parallel BGL, KLA, Grappa, Chronos, Green-Marl, GraphHP, P++, LLAMA, Venus,
Cyclops, Medusa, NScale, Neo4], Trinity, GBase, HyperGraphDB, Horton, GSPARQL, Titan, ZipG,
Cagra, Milk, Ligra, Ligra+, Julienne, GraphPad, Mosaic, BigSparse, Graphene, Mizan, Green-Marl,
PGX, PGX.D, Wukong+S, Stinger, cuStinger, Distinger, Hornet, Graphln, Tornado, Bagel,
KickStarter, Naiad, Kineograph, GraphMap, Presto, Cube, Giraph++, Photon, TuX2, GRAPE, GraM,
Congra, MTGL, GridGraph, NXgraph, Chaos, Mmap, Clip, Floe, GraphGrind, DualSim, ScaleMine,
Arabesque, GraMi, SAHAD, Facebook TAO, Weaver, G-SQL, G-SPARQL, gStore, Horton+, S2RDF,
Quegel, EAGRE, Shape, RDF-3X, CuSha, Garaph, Totem, GTS, Frog, GBTL-CUDA, Graphulo, Zorro,
Coral, GraphTau, Wonderland, GraphP, Graphlt, GraPu, Graphlet, ImmortalGraph, LA3, CelllQ,
AsyncStripe, Cgraph, GraphD, GraphH, ASAP, RStream, and many others:




Four papers about graph processing systems in CS 260

* Ligra: a lightweight graph processing framework for shared

memory
 Frontier-based algorithms similar to BFS

« Julienne: A Framework for Parallel Graph Algorithms using
Work-efficient Bucketing, by Zhonggi Wang
 Distance-based algorithms such as SSSP, k-core

* Aspen: Low-Latency Graph Streaming Using Compressed
Purely-Functional Trees, by Xiaojun Dong
» Graph processing systems for dynamic graphs

« Sage: Semi-Asymmetric Parallel Graph Algorithms for NVRAMSs,
by Kristian Tram
« Graph processing systems optimized for non-volatile main memories

37



Parallel BFS Algorithm

Frontier

o8

Source: MIT 6.172 by Julian Shun



Ligra: based on shared-memory multicore machines

* Motivating example: breadth-first search

parents = {-1, ..., -1}
// d = dst: vertex to “update” (just encountered)
// s = src: vertex on frontier with edge to d

procedure UPDATE(s, d)
return compare-and-swap(parents[d], -1, s);

procedure COND(1i)

return parents[i] == -1;

procedure BFS(G, r) Semantics of EDGEMAP:
parents[r] = r; Foreach vertex i in frontier, call UPDATE for all neighboring vertices j
frontier = {r}; for which COND(j) is true. Add j to returned set if UPDATE(i, j) returns true

while (size(frontier) != 0) do:
frontier = EDGEMAP(G, frontier, UPDATE, COND);

Source: Stanford CS 149 by Kayvon Fatahalian 39



Parallel BFS Algorithm

Frontier

12
O e 9

« Can process each frontier in parallel
 Parallelize over both the vertices and their outgoing edges

Source: MIT 6.172 by Julian Shun



Implementing EDGEMAP

« Assume the frontier is small |
graph set of vertices

%revious frontier)

procedure EDGEMAP_FORWARD(G, U, F, C3=- — condition check on neighbor vertex

result = {} . .
parallel foreach v in U do: update function on neighbor vertex

parallel foreach v2 in out_neighbors(v) do:
if (C(v2) == 1 and F(v,v2) == 1) then
add v2 to result SFENRETER = Tl oney =il

remove duplicates from result // d = dst: vertex to “update” (just encountered)
return result // s = src: vertex on frontier with edge to d

procedure UPDATE(s, d)
return compare-and-swap(parents[d], -1, s);

Work:

O(lUl + sum of Outgoing edges from U) procedure COND(1i)

return parents[i] == -1;

. . procedure BFS(G, r)
Span: polylogarithmic parents[r] = r;
frontier = {r};
while (size(frontier) != 0) do:
frontier = EDGEMAP(G, frontier, UPDATE, COND);




Visiting every edge on frontier can be wasteful

« Each step of BFS, every edge on frontier Is visited
* Frontier can grow quickly for social graphs (few steps to visit all nodes)
* Most edge visits are wasteful! (they don't lead to a successful “update™)

Frontier

12
O e L9

;

Source: Stanford CS 149 by Kayvon Fatahalian 42



Visiting every edge on frontier can be wasteful

« Each step of BFS, every edge on frontier Is visited
* Frontier can grow quickly for social graphs (few steps to visit all nodes)
* Most edge visits are wasteful! (they don't lead to a successful “update™)

- claimed child: edge points to 3.0B} ' ' ' ' ' -
unvisited vertex (useful work) Claimed Child
. . . 2.5Bf Failed Child |+
- failed child: edge points to vertex
- - - Peer
found in this step via another edge 2 0B

Valid Parent

- peer: edge points to a vertex that
was added to frontier in same step

Neighbors
=
()}
v}

as current vertex
1.0B
- valid parent: edge points to vertex
found in previous step 0.58}
00 1 2 3 4 5 6

Step
Source: Stanford CS 149 by Kayvon Fatahalian [Credit: Beamer et al. 5(12] 43




Implementing EDGEMAP for large frontier size

« Assume the frontier is large

procedure EDGEMAP_BACKWARD(G, U, F, C):
procedure EDGEMAP_FORWARD(G, U, F, C): result = {}
result = {} . parallel foreach v in V do:
parallel foreach v in U do: . o
. . ) if (C(v) == 1)
foreach v2 in out_neighbors(v) do: foreach v2 in in_neighbors(v) do:
if (C(v2) == 1 and F(v,v2) == 1) then " _neighoors .
add v2 to result if (v2eU and F(v2,v) == 1) then

remove duplicates from result

add v to result and break
return result

pack the result and return

Frontier

Work for a round:
Still can be as large as O(|E|),

but usually less than that since once the loop E

can quit once one of the in-neighbors is visited

44



Page rank in Ligra

r_cur = {1/|V|, ... 1/|V]};
r_next = {0,...,0};
diff = {}

procedure PRUPDATE(s, d):
atomicIncrement(&r_next[d], r_cur[s] / vertex_degree(s));

procedure PRLOCALCOMPUTE(i):
r_next[i] = alpha * r_next[i] + (1 - alpha) / |V|;

diff[i] = |r_next[i] - r_cur[i]];
r_cur[i] = 0;
return 1;

procedure COND(i):
return 1;

procedure PAGERANK(G, alpha, eps):

frontier = {0, ... , |V]|-1}

error = HUGE;

while (error > eps) do:
frontier = EDGEMAP(G, frontier, PRUPDATE, COND);
frontier = VERTEXMAP(frontier, PRLOCALCOMPUTE);
error = sum of per-vertex diffs // this is a parallel reduce
swap(r_cur, r_next);

return err

45



Ligra summary

« System abstracts graph operations over vertices and edges
* Frontier-based graph traversal algorithms

 These basic operations permit a surprisingly wide space of
graph algorithms:
* Betweenness centrality
« Connected components
» Single-source shortest paths (Bellman-Ford)

e graph radii estimation

Ligra: a Lightweight Framework for Graph Processing for Shared Memory [Shun and Blelloch 2013]

46



Ligra

« Simple library
with many
useful examples

Ligra

Introduction
Getting Started
Tutorial: BFS
Tutorial: KCore

API
Vertex

Graph
Running Code

Examples

Download GitHub

Examples

Implementation files are provided in the apps/ directory:

BFS.C (breadth-first search)

BFS-Bitvector.C (breadth-first search with a bitvector to mark visited vertices)
BC.C (betweenness centrality)

Radii.C (graph eccentricity estimation)

Components.C (connected components)

BellmanFord.C (Bellman-Ford shortest paths)

PageRank.C

PageRankDelta.C

BFSCC.C (connected components based on BFS)

KCore.C (computes k-cores of the graph)

Eccentricity Estimation

Code for eccentricity estimation is available in the apps/eccentricity/ directory:

kBFS-Ecc.C (2 passes of multiple BFS's)
kBFS-1Phase-Ecc.C (1 pass of multiple BFS's)

FM-Ecc.C (estimation using Flajolet-Martin counters; an implementation of a
variant of HADI from TKDD '11)

Loglog-Ecc.C (estimation using LogLog counters; an implementation of a
variant of HyperANF from WWW '11)

RV.C (parallel implementation of the algorithm by Roditty and Vassilevska
Williams from STOC "13)



Elements of good graph processing system design
(and other domain-specific systems)

48



[

#1: good systems identify the most important cases, and
provide most benefit in these situations

« Structure of code mimics the natural structure of problems in
the domain
« Graph processing algorithms are designed in terms of per-vertex operations

« Efficient expression: common operations are easy and intuitive
to express

« Efficient implementation: the most important optimizations in
the domain are performed by the system for the programmer

Source: Stanford CS 149 by Kayvon Fatahalian 49



|

#2. good systems are usually simple systems

* They have a small number of key primitives and operations
* Ligra: only two operations! (vertexmap and edgemap)

* Allows compiler/runtime to focus on optimizing these primitives
Provide parallel implementations, utilize appropriate hardware

« Common question that good architects ask: “do we really need
that?” (can this concept be reduced to a primitive we already
have?)

 Better theoretical bounds / performance

Source: Stanford CS 149 by Kayvon Fatahalian
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|

#3: good primitives compose

L

-l

« Composition of primitives allows for wide application scope,
even If scope remains limited to a domain
 Ligra supports a wide variety of graph algorithms

« Composition often allows optimization to generalizable

* |f system can optimize A and optimize B, then it can optimize programs that
combine Aand B

« Signh of a good design

« System ultimately is used for applications original designers never
anticipated

Source: Stanford CS 149 by Kayvon Fatahalian
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Wednesday's lecture

« Julienne: A Framework for Parallel Graph Algorithms using
Work-efficient Bucketing, by Zhongqgi Wang

 Distance-based algorithms such as SSSP, k-core

« Aspen: Low-Latency Graph Streaming Using Compressed
Purely-Functional Trees, by Xiaojun Dong

» Graph processing systems for dynamic graphs

« Sage: Semi-Asymmetric Parallel Graph Algorithms for NVRAMSs,
by Kristian Tram

« Graph processing systems optimized for non-volatile main memories

52



