
Algorithm Engineering
(aka. How to Write Fast Code)

Introduction to the course

CS260 – Lecture 1

Yan Gu

Many slides in this lecture are borrowed from the first lecture in 6.172 Performance Engineering of Software Systems at MIT.

The credit is to Prof. Charles E. Leiserson, and the instructor appreciates the permission to use them in this course.

CS260:
Algorithm
Engineering
Lecture 1

2

Why care performance?

Introduction to modern
computing system

Course policies

Software Properties

• There are many things that are also important in programming
• Compatibility, functionality, reliability, correctness, debuggability, robustness,

portability, … and more

• If the programmers are willing to sacrifice performance for
other properties, why study performance?

3

Time is money, it buys other things

• There are many things that are also important in programming
• Compatibility, functionality, reliability, correctness, debuggability, robustness,

portability, … and more

• Performance is the currency of computing. You can often “buy”
needed properties with performance

• Better performance means to get better results in a limited
amount of time

• For an iterative numerical algorithm, spending more time means better
accuracy

• For a learning algorithm, training for more time means better model

4

Computer Programming in the Early Days

IBM System/360

Launched: 1964

Clock rate: 33 KHz

Data path: 32 bits

Memory: 524 Kbytes

Cost: $5,000/month

Apple II

Launched: 1977

Clock rate: 1 MHz

Data path: 8 bits

Memory: 48 Kbytes

Cost: $1,395

Performance optimization and engineering were common,
because machine resources were limited

Many programs strained the machine’s resources

∙Programs had to be planned around the machine

∙Many programs would not “fit” without intense performance
engineering

DEC PDP-11

Launched: 1970

Clock rate: 1.25 MHz

Data path: 16 bits

Memory: 56 Kbytes

Cost: $20,000

Lessons Learned from the 70’s and 80’s

Premature optimization is the
root of all evil. [K79]

Donald Knuth

The First Rule of Program
Optimization: Don’t do it.

The Second Rule of Program
Optimization — For experts

only: Don’t do it yet. [J88]

Michael Jackson

More computing sins are committed in the
name of efficiency (without necessarily achieving
it) than for any other single reason — including

blind stupidity. [W79]

William Wulf

Technology Scaling Until 2004

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

“Moore’s Law”

Stanford’s CPU DB [DKM12]Year

Normalized
transistor count

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Technology Scaling Until 2004

Normalized
transistor count

Clock speed (MHz)

“Dennard scaling”

Stanford’s CPU DB [DKM12]Year

Advances in Hardware

Apple computers with similar prices from 1977 to 2004

Apple II

Launched: 1977

Clock rate: 1 MHz

Data path: 8 bits

Memory: 48 KB

Cost: $1,395

Power Macintosh G4

Launched: 2000

Clock rate: 400 MHz

Data path: 32 bits

Memory: 64 MB

Cost: $1,599

Power Macintosh G5

Launched: 2004

Clock rate: 1.8 GHz

Data path: 64 bits

Memory: 256 MB

Cost: $1,499

Until 2004

Moore’s Law and the scaling of clock frequency

= printing press for the currency of performance

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Technology Scaling After 2004

Clock speed (MHz)

Normalized
transistor count

Stanford’s CPU DB [DKM12]Year

Power Density

Image credit “Idontcare” from
forums.anadtech.com

• Dynamic power ∝
capacitive load × voltage2

× frequency

• Static power: maintain
when inactive (leakage)

• Maximum allowed
frequency determined by
processor’s core voltage

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Technology Scaling After 2004

Clock speed (MHz)

Normalized
transistor count

Stanford’s CPU DB [DKM12]Year

Vendor Solution: Multicore

∙To scale performance, processor

manufacturers put many processing

cores on the microprocessor chip

∙Each generation of Moore’s Law

potentially doubles the number of

cores

Intel Core i7 3960X (Sandy Bridge E), 2011

• 6 cores / 3.3 GHz / 15-MB L3 cache

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Technology Scaling

Processor cores

Normalized
transistor count

Clock speed (MHz)

Stanford’s CPU DB [DKM12]Year

Performance Is No Longer Free

2011 Intel
Skylake

processor

2008
NVIDIA
GT200
GPU

∙Moore’s Law continues to

increase computing ability

∙But now that performance looks

like big multicore processors

with complex cache hierarchies,

wide vector units, GPUs, FPGAs,

etc.

∙Generally, algorithms must be

adapted to utilize this hardware

efficiently!

The data size can easily reach hundreds GB to TB level

Data

17

18

Database /

Data warehouses

Data mining /

Data science Machine learning /

Artificial intelligence

Everyone wants performance!%aa

Many, many

others

Computational

biology

Computer graphics /

computational geometry

Get Faster!

Bug reports for Mozilla “Core” Commit messages for MySQL

Commit messages for OpenSSL Bug reports for the Eclipse IDE

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1999 2004 2009 2014

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1999 2004 2009 2014

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

1999 2004 2009 2014

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

1999 2004 2009 2014

Software Bugs Mentioning “Performance”

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

2001 2003 2005 2007 2009 2011 2013

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

2001 2006 2011

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

2001 2006 2011

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

2001 2006 2011

Mentioning “performance” Mentioning “optimization”

Mentioning “parallel” Mentioning “concurrency”

Software Developer Jobs

Source: Monster.com

Algorithm Engineering Is Still Hard

2017 Intel 7th-generation
desktop processor

∙A modern multicore desktop processor

contains parallel-processing cores,

vector units, caches, prefetchers,

GPU’s, hyperthreading, dynamic

frequency scaling, etc.

∙How can we write algorithms and

software to utilize modern

hardware efficiently?

Overall Structure in this Course

Performance Engineering

Parallelism

I/O efficiency

New Bentley rules

Brief overview of architecture

Algorithm Engineering

Sorting / Semisorting

Matrix multiplication

Graph algorithms

Geometric algorithms

EE/CS217 GPU Architecture and Parallel Programming

CS211 High Performance Computing

CS213 Multiprocessor Architecture and Programming (Stanford CS149)

CS247 Principles of Distributed Computing

http://cs149.stanford.edu/fall19/

This is a tough course…

• Level of difficulties is related to course number

• Usually 20X, 21X are easier, and 260 has the largest number

• You need to spend a lot of time in this course, but you
can learn useful knowledge from this course

• This is a seminar course, and the expected outcome
also includes research abilities

23

Front-loading the course

• Basically there is nothing much you can do in the first
several weeks. I will try to frontload materials so you will
have more time for paper reading and the two projects

• Won’t work usually, but might work since we go online

• Two proposals:

• 3:30-4:50pm

• 4:00-5:20pm

• The overall lecture time remains the same. 13 lectures
taught by me, and many slots remain empty

24

Logistic

• Paper Reading - 15%

• Course Presentation - 20%

• Quiz - 10%

• Midterm Project - 20%

• Final Project - 35%

• Class Participation - 10% bonus

25

Paper Reading - 15%

• Here you can find a list of (about 30) related papers,
categorized in three topics

• You need to submit paper reviews for two papers

• Each review should contain no less than 1000 words and
no more than 3000 words (figures, tables are encouraged
but not counted)

• Describe the problem the paper is trying to solve, why it
is important, the main ideas proposed, and the results
obtained

26

https://docs.google.com/spreadsheets/d/1p8MY0mHKdQHqj_ryI8_q9HpLAGsg2UyymWyOQIu-fbU/edit#gid=0

Course Presentation - 20%

• Each of you will give a presentation on one of your reviewed papers

• Each should be 15-20 minutes long with slides, followed by a
discussion

• It should discuss the motivation for the problem being solved, any
definitions needed to understand the paper, key technical ideas in
the paper, theoretical results and proofs, experimental results, and
existing work

• It should also include any relevant content from related work that
would be needed to fully understand the paper being presented. The
presenter should also present his or her own thoughts on the paper,
and pose several questions for discussion

27

Paper Reading and Course Presentation

• One paper reading is due before your course presentation

• The other paper reading is due on May 15

• The presenter should send this paper review and a draft version
of the slides to Yan at least two days before the presentation,
and Yan will provide feedback

• Also, you are welcome to talk to Yan at any time

28

Quiz - 10%

• A small quiz by the end of Week 4

• When we basically finished the first part of the course

• Only takes 10% of the final score

• The goal of this quiz is to guarantee you understanding the
basic knowledge, which will be helpful for your final project

29

Midterm Project - 20%

• You need to implement one of the designated
algorithms, test the performance, and write a formal
report

• Topics from:

• Sample sort (100%)

• Semisort (110%)

• Matrix multiplication (90%)

• Due: April 29

30

Final Project - 35%

• Proposing and completing an open-ended (research)
project

• The project will be done in groups of 1-2 people and
consist of a proposal, mid-term report, final
presentation, and final report

• Deadlines:
• Proposal: May 4

• Mid-term report: May 22

• Final presentation: June 1-5

• Final report: June 8

31

Class Participation - 10% bonus

• This is a seminar course: participate in discussion!

• This is a one-time course: giving me feedback at the
end of the course won’t help---ask questions or provide
feedback immediately!

• You will waste your time if you are unclear about what
I’m saying. Time is the most valuable!

32

Office Hour

• Tentatively 1:30-2:30pm on Wednesday

• However, since the course goes only, we can do a reservation-
based office hour

• Send me an email if you want to talk to me this week, and I will
reply to you and reserve you a slot

• Ideally during the office hour, but other times are also applicable

33

This is a tough course…

• Please decide if you really want to take this course, or
you want to spend more time on LeetCode

• Either case is fine, but don’t complain the course load later

• Once the roster is fixed, we will proceed to the paper
assigning

• For those who did not attend CS260 in Winter, it is
better to spend some time in looking at the slides

• Assignment 0 is given out for warm up with the course
server

34

https://www.cs.ucr.edu/~yihans/teaching/palgo.html

