
Parallel In-Place Algorithms: Theory and Practice

ABSTRACT
Many parallel algorithms use at least linear auxiliary space in the

size of the input to enable computations to be done independently

without conflicts. Unfortunately, this extra space can be prohibi-

tive for memory-limited machines, preventing large inputs from

being processed. Therefore it is desirable to design parallel in-place

algorithms that use sublinear or polylogarithmic auxiliary space.

In this paper, we bridge the gap between theory and practice

for parallel in-place (PIP) algorithms. We first define two compu-

tational models based on nested-parallelism, which better reflect

modern parallel programming environments. We then introduce

many new parallel in-place algorithms that are simple and efficient

both theoretically and practically. The algorithmic highlight is the

Decomposable Property introduced in this paper, which enables

existing non-in-place but highly-optimized parallel algorithms to

be converted into parallel in-place algorithms. Using this property,

we obtain algorithms for random permutation, list contraction,

tree contraction, and merging that take linear work, O(ϵn) auxil-
iary space, and O((1/ϵ)polylog(n)) span for ϵ < 1. We also present

new parallel in-place algorithms such as scan, filter, and minimum

spanning tree using other techniques.

In addition to theoretical results, we present experimental results

for implementations of many new parallel in-place algorithms. We

show that on a 72-core machine with two-way hyper-threading,

the in-place versions are competitive with or outperform existing

parallel algorithms for the same problems that use linear auxiliary

space.

ACM Reference Format:
. 2019. Parallel In-Place Algorithms: Theory and Practice. In Proceedings
of ACM Symposium on Parallelism in Algorithms and Architectures (SPAA
2020). ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/nnnnnnn.

nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SPAA 2020, July 14–17, 2020, Philadelphia, PA
© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Parallel In-Place Algorithms: Theory and Practice SPAA 2020, July 14–17, 2020, Philadelphia, PA

1 INTRODUCTION
Due to the rise of multicore machines with tens to hundreds of

cores and terabytes of memory, and the availability of program-

ming languages and tools that simplify shared-memory parallelism,

many parallel algorithms have been designed for large-scale data

processing. Compared to distributed or external-memory solutions,

one of the biggest challenge for using multicores in large-scale

data processing is the limited memory capacity of a single machine.

Traditionally, parallel algorithm design has mostly focused on so-

lutions with low work and span complexities. However, to enable

data to be processed in parallel without conflicts, many existing

parallel algorithms are not in-place, in that they require Ω(n) auxil-
iary memory for an input of size n. For example, in the shuffling

step of distribution sort (sample sort) or radix sorting algorithms,

even if we know the destination of each element in the final sorted

array, it is difficult to directly move them all to their final locations

in parallel in the same input array due to conflicts. As a result,

parallel algorithms for this task (e.g., [22, 24]) use an auxiliary array

of linear size to copy the elements into their correct final locations.

While many parallel multicore algorithms are work-efficient and

have low span, the Ω(n) auxiliary memory required by the algo-

rithms can prevent larger inputs from being processed. Purchasing

or renting machines multicore machines with larger memory capac-

ities is an option, but for large enough machines, the cost increases

roughly linearly with the memory capacity, as shown in Figure 1.

Furthermore, additional energy costs need to be paid for machines

that are owned, and the energy cost increases proportionally with

the memory capacity. Therefore, designing parallel in-place (PIP)
algorithms, which use auxiliary space that is sublinear (or even poly-
logarithmic) in the input size can lead to considerable savings. In

addition, in-place algorithms can also reduce the number of cache

misses and page faults due to their lower memory footprint, which

in turn can improve overall performance, especially in parallel al-

gorithms where memory bandwidth and/or latency is a scalability

bottleneck.

There has been recent work studying theoretically-efficient and

practical parallel in-place algorithms for sample sorting [6], radix

sorting [59], and constructing implicit search tree layouts [13].

These PIP algorithms achieve better performance than previous

algorithms in almost all cases. While these algorithms are insightful

and motivate the PIP setting, they are individual algorithms for

specific problems and have different notions of what “in-place”

means in the parallel setting. In this paper, we propose two models

for the PIP setting, the strong PIP model and the relaxed PIP
model that generalize the ideas in previous work, which allow

polylogarithmic space and sublinear space, respectively. The new

models are defined based on nested-parallelism, so not only we

restrict the size of auxiliary space, scheduling guarantees based on

work-stealing can also be provided, such as the number of steals,

parallel running time and I/O-complexity.

We then introduce PIP algorithms based on the twomodels. Some

of them are common practice and they are summarized here, and

the cost bounds are given in plain text. The rest are new to the best

of our knowledge, and we distinguish them by listing our results

in theorems and corollaries. The results of some algorithmic build-

ing blocks are summarized in Table 1. The algorithmic highlight

Model Problems Work-efficient

Strong PIP

Model

Permuting tree layout ✓ [13]

Reduce, rotating ✓

Scan (prefix sum) ✓ *

Filter, partition, quicksort

Merging, mergesort

Set operations ✓ [16]

Relaxed PIP

Model

Random permutation ✓ *

List/tree contraction ✓ *

Merging, mergesort ✓ *

Filter, partition, quicksort ✓

(Bi-)Connectivity [10]

Minimum spanning tree *

Table 1: Algorithms based on the strong PIP model and the relaxed

PIP model. “Work-efficient” indicates if the PIP algorithm have

the asymptotically same work (number of operations) as the best

parallel non-in-place algorithm. Algorithms with (*) are new and

they highly rely on existing non-in-place parallel algorithms. Other

results without citations are either used in practice or require mod-

erate changes from existing algorithms. Merging and mergesort in

the relaxed model is discussed in [48] but the new algorithm in this

paper is much simpler. If a problem has a work-efficient solution in

the strong PIP model, it will not be listed again in the relaxed PIP

model.

in this paper is the Decomposable Property defined in Section 4

The high-level idea is that if we can reduce a problem of size n
with work

1W (n) to a subproblem with size (1 − ϵ)n using ϵ ·W (n)
work, then we can have an efficient algorithm on the relaxed PIP

model. In many cases, the algorithm for such reduction is the same

algorithm (but on a subproblem with smaller size), which means we

can convert any existing non-in-place but highly-optimized parallel

algorithms to PIP algorithms, which are efficient both theoretically

and practically. We show many examples in this paper, such as ran-

dom permutation, list/tree contraction, merging and mergesort. All

these algorithms are simple. For instance, our merging algorithm

in Section 4.3 is much simpler than existing work [48] since we can

directly use any classic merging algorithm in [51] and turn it into

a PIP algorithm. We have also designed other PIP algorithms with-

out using the Decomposable Property, including scan, radixsort,

minimum spanning tree, etc.

Since most of the new algorithms in this paper are simple, we

carefully engineer five of them, and compare them to the very

efficient non-in-place implementation in PBBS [67]. The running

time of typical input size is shown in Figure 2 and more details

in Section 7. We show that for very simple primitives (e.g., scan,

filter), if the input does not need to be kept, we should use the

in-place version since they leads to better performance. For more

complicated algorithms such as random permutation, list and tree

contraction, our new algorithms are highly based on existing non-

in-place algorithms. Hence, we show that if we engineer them

carefully, the in-place versions can have competitive or even better

1
The total number of operations.
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Figure 1: Purchase and rental price for high-end multicore servers. The left figure shows the purchase price of an RAX XT24-42S1 server

with 72 CPU cores (Xeon Gold 5220). The DRAM capacity is the decisive part of overall purchase price. The right figure is the rental price of

AWS (Amazon Web Services) x1e-series multicore instances vs. the memory capacity.
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Figure 2: Running time of the PIP algorithms and non-in-place

implementations in PBBS [67]. Since most of the PIP algorithms in

this paper are simple and practical, we implement some of them

and compared them to the PBBS implementations, which are not

in-place. For scan and filter the input size is 10
9
and for other

problems the input size is 10
8
. Running times are on a 72-core

machine with two-way hyper-threading, and more details are in

Section 7. In all cases, the new PIP algorithms have competitive

or better performance, with the additional advantage of using less

additional space.

performance. As a result, in addition to smaller auxiliary space, the

in-place algorithms can also lead to good performance in many

cases due to the smaller memory footprint.

In conclusion, in this paper we bridge the gap between theory

and practice for parallel in-place (PIP) algorithms, and the contribu-

tions include computational models, new PIP algorithms, algorithm

design pattern, implementation and experiment verification. We

show that many PIP algorithms can actually be simple and efficient

both theoretically and practically. Meanwhile, this paper also leads

to interesting future work. For example, most of the algorithms

we implemented are in the relaxed PIP model which already have

good practical performance, but it is of theoretical interest to design

work-efficient algorithms in the strong PIP model.

2 PRELIMINARIES
Work-Span Model. In this paper, we use the classic work-span

model for fork-join parallelism in analyzing parallel algorithms [34].

We assume a set of threads that have access to a shared memory.

Each thread supports the same operations as in the sequential RAM

model, but also has a fork instruction that forks two new child

threads. When a thread performs a fork, the two child threads all

start by running the next instruction, and the original thread is

suspended until all the children terminate. A computation starts

with a single root thread and finishes when that root thread finishes.

Thework of an algorithm is the total number of instructions and the

span (aka. depth) is the longest sequence of dependent instructions

in the computation. The Cilk randomized work-stealing scheduler

can execute an algorithm with workW and span D inW /p +O(D)
time whp2 on a machine with p processors [5, 26]. Note that since

our model is based on binary forking, the span of an algorithm

with input size n is Ω(logn). Furthermore, when using the Cilk

scheduler [25], a fork-join program that uses S1 space allocated

in a stack-allocated fashion
3
when run on one processor will use

O(PS1) space when run on P processors [26].

Problem definitions. Here we define the problems used in multi-

ple places in this paper. Other problems are defined in the corre-

sponding sections.Reduce takes as input a sequence [a1,a2, ...,an ],
an associative binary operator ⊕, and an identity element i , and
returns a1 ⊕ a2 ⊕ ... ⊕ an . Scan takes the same input. An inclusive

scan returns the ordered set [a1, (a1 ⊕ a2), ..., (a1 ⊕ a2 ⊕ ... ⊕ an )].
An exclusive scan returns [i,a1, (a1 ⊕ a2), ..., (a1 ⊕ a2 ⊕ ... ⊕ an−1)],
in addition to the sum of all elements. Filter takes an arrayA and a

predicate function f , and returns a new array containing a ∈ A for

which f (a) is true, in the same order as in A. Partition is similar

to filter, but in addition to placing the elements a where f (a) is true
at the beginning of the array, elements a for which f (a) is false will
appear at the end of the array, in the same order as they appear in

A.

3 MODELS FOR PARALLEL IN-PLACE
ALGORITHMS

In this section, we will review the existing in-place PRAM model

for designing PIP algorithms and describe two new PIP models

that are more flexible than the existing model and more accurately

reflect modern parallel programming environments.

Existing in-place PRAMmodel. The existing model for design-

ing parallel in-place algorithms used by most prior work [13, 43, 44,

2
We sayO (f (n))with high probability (whp) to indicateO (cf (n))with probability
at least 1 − n−c for c ≥ 1, where n is the input size.

3
Memory allocation in a stack-allocated fashion requires freeing the memory allocated

after a fork before the corresponding join.

2



Parallel In-Place Algorithms: Theory and Practice SPAA 2020, July 14–17, 2020, Philadelphia, PA

49, 56, 60, 74] has P processors that are fully synchronized between

each step, and the running time of an algorithm is the maximal

number of steps T used by any processor. In this model, the space

S is the sum of the space used across the processors. An alternate

version of this model is defined by Berney et al. [13] based on

analyzing the work and span of the algorithm [51], but it is not

based on fork-join parallelism and still assumes bulk synchroniza-

tion between steps. This model requires the computation to use

O(logn)-word additional space per processor when mapping to any

P ≥ 1 processors. Algorithms designed based on this variant are

strictly stronger than the classic in-place PRAM model since they

achieve small auxiliary space and depth simultaneously.

We believe that we should consider PIP models based on fork-

join (nested) parallelism for the following reasons. Modern parallel

programming languages, such as Cilk and OpenMP, support fork-

join parallelism, which significantly simplifies the implementation

of parallel algorithms. Provably efficient runtime schedulers have

been designed for fork-join parallel programs [5, 27]. Furthermore,

modern multicore architectures are not bulk-synchronous, and

instead allow parallel processes to run asynchronously. Finally, in

environments with multiple jobs running, the number of available

processors can vary throughout the computation, which can be

handled by the scheduler [5], but this is challenging to handle in

the PRAM model.

Therefore, this paper proposes two models for designing paral-

lel in-place algorithms that uses fork-join parallelism. Algorithms

designed in our new models are processor-oblivious and can be

dynamically scheduled to run efficiently on real-world multicore

machines. Existing results on multiprogrammed environments [5],

cache complexity [1, 20, 22, 69], write-efficiency [9, 17, 18], cache-

adaptivity [11, 12, 57], and resource-obliviousness [30, 31] for fork-

join programs apply to PIP algorithms designed in our models.

The strong PIPmodel. We start by defining the strong PIP model,

which resembles the definition of in-place in the sequential setting.

Definition 3.1 (Strong PIP model and algorithms). The strong PIP
model assumes a nested-parallel computation using O(logn)-word
auxiliary space sequentially in a stack-allocated fashion for an input

size of n. We say that an algorithm is strong PIP if it runs on the

strong PIP model and has polylogarithmic span.

For a PIP algorithm in the strong PIP model, the Cilk work-

stealing scheduler [25] can bound the total auxiliary space to be

O(P logn) words, where P is the number of processors that the

computation uses [26]. All strong PIP algorithms discussed in this

paper only uses O(logn)-word auxiliary space sequentially, but

we believe that relaxing it to O(polylog(n)) words may also be

reasonable.

The strong PIP model is equivalent to Berney et al.’s model [13]

when mapping to a PRAM, but our model is based on 2-way fork-

join parallelism. Similar to Berney et al.’s model, the algorithms

based on the strong PIP model can achieve both small auxiliary

space and small span, which are much stronger than previous algo-

rithms [43, 44, 49, 56, 60, 74] in the classic in-place PRAM model.

The goal of these algorithms is to achieve space-time optimality [56],

where the product of auxiliary space S and PRAM time T is Θ̃(n)
where n is the input size. This means that these algorithms are ei-

ther space-efficient but not quite parallel, or the other way around.

Achieving low span and low auxiliary space simultaneously can

have practical benefits even with a small number of processors—the

overhead of scheduling fork-join parallelism in practice is propor-

tional to the span of the computation [5, 26].

The relaxed PIPmodel. Many algorithms designed in the in-place

PRAM model [43, 44, 49, 56, 60, 74] aim to have a good tradeoff

between additional space S and span D such that S ·D = Θ̃(n). Here
we abstract this goal as the relaxed PIP model and refer to these

algorithms as relaxed PIP algorithms.

Definition 3.2 (Relaxed PIP model and algorithms). The relaxed
PIP model assumes a nested-parallel computation using O(logn)-
word stack-allocated space sequentially and O(ϵn) shared (heap-

allocated) auxiliary space for an input of size n for n−c < ϵ < 1 for

some constant 0 < c < 1. We say that an algorithm is relaxed PIP if

it runs on the relaxed PIP model and has O(polylog(n)/ϵ) span for

all values of ϵ .

The Cilk work-stealing scheduler [25] can bound the total auxil-

iary space to beO(ϵn+P logn) for p processors [26]. Algorithms in

the relaxed PIP model allow sublinear space, which is less restric-

tive than the strong PIP model. However, the relaxed PIP model

provides more flexibility in algorithm design, while still being use-

ful in practice as they still use less space than their non-in-place

counterparts. In the next section, we introduce a general property,

which allows any existing parallel algorithm with polylogarithmic

span that satisfies the property to easily be converted into a PIP

algorithm in the relaxed PIP model.

4 DECOMPOSABLE PROPERTY
Designing strong PIP algorithms can be hard. However, if we relax

the auxiliary space to sublinear (the relaxed PIP model), then we

believe we can find relaxed PIP algorithms for many more problems.

In this section, we introduce the Decomposable Property, which
enables any algorithm that satisfies the property to be converted

into a relaxed PIP algorithm. Meanwhile, if the existing algorithm

is work-efficient, then the corresponding relaxed PIP algorithm will

also be work-efficient.

Theorem 4.1 (Decomposable Property). Consider a problem
with size n and a parallel algorithm to solve it with workW (n) =
O(n polylog(n)). If it can be reduced to a smaller problem size (1−ϵ)·n
using ϵ ·W (n) work and space, and polylogarithmic span D(n), then
there is a relaxed PIP algorithm for this problem withW (n) work,
O(polylog(n)/ϵ) span, and O(ϵn) auxiliary space.

Proof. Let r be the value such thatW (n) = nr . For any given

auxiliary space O(ϵn) where n−c < ϵ < 1 for some constant 0 <

c < 1, we can iteratively reduce the problem size by ϵn/r (this size
remains the same throughout the algorithm for r/ϵ rounds), such
that each round takes O(ϵn) work and space. We restrict the work

W (n) to be O(n polylog(n)), so that r is polylogarithmic and the

auxiliary space ϵn is always larger than r . This means that we can

reduce the problem size by at least 1. By applying this reduction for

r/ϵ rounds, we have a relaxed PIP algorithm withW (n) work and

D(n)r/ϵ = O(polylog(n)/ϵ) span, using O(ϵn) auxiliary space. �

The high-level idea of the Decomposable Property is that, for

a problem of size n, if we can reduce the problem size to n − n′

3
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(a) The swaps (b) The dependences

Figure 3: An example when H = [0, 0, 1, 3, 1, 2, 3, 1]. Figure (a)
indicates the destinations of the swaps shown by H . The de-
pendences of the swaps are shown by Figure (b), indicating
the order of the swaps.

using work proportional to n′, then we can control the additional

space by varying the size of n′ to fit in the auxiliary space. This

can provide theoretically-efficient algorithms once they satisfy this

property. On the practical side, we observe that this reduction step

is usually corresponds to solving a subproblem that is the same as

the original problem but with a smaller size. Hence, we can use

the best existing non-in-place algorithm for this step, so that the

overall performance for the entire PIP algorithm can be competitive

or even better than the non-in-place algorithm. In the rest of this

section, we will introduce some problems satisfying this property.

4.1 Random Permutation
Generating random permutations in parallel is a useful subrou-

tine in many parallel algorithms. Many parallel algorithms (e.g.,

randomized incremental algorithms) require randomly permuting

the input elements in order to achieve good theoretical guaran-

tees. Hence, random permutations have been well-studied both

theoretically [2, 3, 35, 40–42, 45, 47, 58, 61, 68] and experimen-

tally [33, 46, 68]. Sequentially, Knuth [54] (Durstenfeld’s [36]) shuf-

fle (shown below) has linear work, where H [i] is an integer uni-

formly drawn between 0 and i − 1, and A[·] is the output random
permutation.

1 Function Knuth-Shuffle(A, H)
2 for i ← n − 1 to 0 do A[i] ← i

3 for i ← n − 1 to 0 do swap(A[i], A[H [i]])

A recent work by Shun et al. [68] has shown that this sequential

iterative algorithm is readily parallel. The key idea is to allow multi-

ple swaps to be applied in parallel as long as the sets of source and

destination locations of the swaps are disjoint. We show an example

in Figure 3. In Figure 3(a) we link the sources and destinations of

the swaps. In this example, we can swap location 5 and 2, 7 and

1, and 6 and 3 simultaneously in the first round since these three

swaps do not interfere with each other. If the nodes pointing to the

same node are chained together and the self-loops are removed, we

get the dependences of the computation. An example is shown in

Figure 3(b). We can execute the swaps for all leaf nodes and remove

them from the tree in a round-based manner, and guarantee to

finish in O(logn) rounds whp [68]. The pseudocode of this parallel

algorithm is shown in Algorithm 1. The work and span can be

shown as O(n) expected and O(log2 n) whp, respectively [68].

Algorithm 1: Parallel-Knuth-Shuffle(A,H ) [68]

1 R ← {−1, . . . ,−1}

2 parallel for i ← n − 1 to 0 do A[i] ← i

3 while swaps unfinished do
4 parallel foreach swap (i,H [i]) do
5 R[i] ← max(R[i], i)

6 R[H [i]] ← max(R[H [i]], i)

7 parallel foreach swap (i,H [i]) do
8 if R[i] = i and R[H [i]] = i then swap(A[H [i]],A[i])

9 Reset R and pack the leftover swaps

10 return A

We now show the Decomposable Property of random per-

mutation. The property for the sequential algorithm is easy to

see—after the first ϵn swaps, which we refer to as one round, the
problem reduces to a subproblem of size (1−ϵ)nwhich can be solved
using the same algorithm. The parallel algorithm (Algorithm 1) uses

an additional array R, and each swap reserves the two slots in R.
If a swap successfully reserves the two slots, then it can perform

the actual swap, and otherwise it will wait until the next round

to try again. We note that for the first ϵn swaps in a round, the

overall access for R and H arrays requires 3ϵn locations (H [i], R[i]
and R[H [i]]). Theoretically, we can use a parallel hash table to store

these values using O(ϵn) space. When the load factor of the hash

table is no more than a half, each update or query requires O(1)
expected cost and O(logn) whp [53, 66]. The longest dependence

length among the first ϵn swaps in a phase is bounded by O(logn)
since it cannot be longer than the overall dependence length for all

n swaps, which is bounded byO(logn). The overall span in a phase

is O(log2 n), with the additional factor of logn due to hash table in-

sertions queries. The entire algorithm finishes after 1/ϵ rounds and

is work-efficient. By applying 4.1, we obtain the following corollary.

Corollary 4.2. There is a relaxed PIP algorithm for random per-
mutation using O(n) expected work, O((log2 n)/ϵ) span whp, and
O(ϵn) auxiliary space.

Constant-dimension linear programming and smallest en-
closing disks. Based on the relaxed PIP algorithm for random

permutation, it is straightforward to design the relaxed PIP algo-

rithms for these two problems based on the randomized incremental

construction [23, 65]. The randomized algorithms after randomly

permuting the input elements takesO(d logn) space (words), where
d is the dimension. By replacing the random permutation to the

above algorithm, we can get relaxed PIP algorithms for constant-

dimension linear programming and smallest enclosing disks in

O(d!n) expected work andO(ϵn) auxiliary space withO((log2 n)/ϵ)
span whp.

4.2 List/Tree Contraction
List ranking [4, 7, 32, 50–52, 62, 63, 71–73] is one of the most canon-

ical problems in the study of parallel algorithms. The problem is

given a set of linked lists, to return to each element in each list its

position in the list. The problem is fundamental because it has many

applications as a subroutine in other algorithms, while the problem

4
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Algorithm 2: List-Contraction(L) [68]
Input: A doubly-linked list L of size n. Each element li has a

random priority p(li ).

1 R ← {0, . . . , 0}

2 while element left do
3 parallel foreach uncontracted element i do
4 if p(li ) < p(prev(li )) or p(li ) < p(next(li )) then

R[i] ← 1

5 parallel foreach uncontracted element i do
6 if R[i] = 1 then Splice element i out and update

pointers

7 pack the leftover (uncontracted) elements

8 return A

itself seems inherently sequential. List contraction is used to con-

tract a linked list into a single node, and is used as a subroutine in

list ranking.

We now discuss the Decomposable Property of list contrac-

tion. The order of contracting elements does not matter as long as

all elements are eventually contracted. Therefore, similar to random

permutation, we can also work on ϵn elements in a round, and apply

existing parallel list contraction algorithms [4, 7, 32, 51, 52, 62, 63,

71–73] to contract these ϵn elements. These algorithms contract a

list but can be easily adapted to rank the list by adding a second

phase that expands the contracted nodes in a reverse order. Shun et

al. [68] showed a simple randomized algorithm (Algorithm 2) [68],

which takes linear work and O(log2 n) span whp. For a problem of

size n, we can work on ϵn elements and contract them using the

algorithm by Shun et al., which requires O(ϵn) space and expected

work, and O(log2 n) span whp (no more than the span for n ele-

ments). Then the problem reduces to a subproblemwith size (1−ϵ)n.
We can iteratively apply this for 1/ϵ rounds (fixing the number of

elements in each round), and get an relaxed PIP algorithm for list

contraction.

Tree contraction can be considered as a generalization of list

contraction and has ample applications for many tree and graph

applications [9, 51, 58, 64, 68]. Here we will assume we are contract-

ing rooted binary trees in which every internal node has exactly

two children. The Decomposable Property for tree contraction

holds similarly since the ordering of contracted tree nodes does not

matter as long as a parent-child pair is not contracted in the same

round. For a problem of size n, we can work on ϵn tree nodes in

each round and contract them using existing algorithms, and repeat

for 1/ϵ rounds. We can use the parallel tree contraction algorithm

by Shun et al. [68] that requires linear expected work andO(log2 n)
span whp per round.

Corollary 4.3. There are relaxed PIP algorithms for list contrac-
tion and tree contraction using O(n) expected work, O((log2 n)/ϵ)
span whp, and O(ϵn) auxiliary space.

4.3 Merging and Mergesort
Merging two sorted arrays of size n (stored in an array of size 2n)
is another canonical primitive in parallel algorithm design. The in-

place merging algorithms have been studied in the sequential and

the PRAM settings [44, 48], although they are very complicated.

There are lots of sophisticated subtleties in these algorithms in

maintaining constant space in total or per processor on a PRAM.

However, by viewing the algorithm in the relaxed PIP model

and using the Decomposable Property, we can actually base our

algorithms on existing non-in-place merging algorithm and add

some details from the sequential in-place algorithm [48]. The key

idea in [48] to merge in-place is to cut both input arrays into chunks

of size k , and sort the chunks based on the last elements of the

chunks. Then we can merge the first chunks from both input arrays

until the elements in one chunk is used up, and grab the next chuck

for that input array and continue.

To get a relaxed PIP algorithm, we set the chunk size to be k = ϵn
and we also haveO(ϵn) auxiliary space. With this space, we can use

out-of-place algorithm to merge a prefix of sizeO(ϵn) and repeat for
O(1/ϵ) rounds. To start, we also sort the chunks based on the last

elements, and move each chunk to their final destination in parallel

by using the O(ϵn) auxiliary space as a buffer, which will take

O((logn)/ϵ) span to finish sorting the chunks. In the merging phase,

wemove the two chunks from both arrays to the auxiliary space, use

any existing algorithm to merge them until either we run out of the

elements in one chunk (and we load the next chunk to the auxiliary

space), or we gather a full chunk of merged numbers (so we write it

back to the original array). At any time, there can be at most three

chunks in the auxiliary space—two chunks for input arrays and one

for the merged output, so the required auxiliary space isO(ϵn). We

can use any existing out-of-place algorithms [51] to merge in the

auxiliary space that takes linear work and logarithmic span. Such

merging happens for at most 2n/k times (after loading new chunks

to auxiliary space) plus 2n/k times (when the output chunk is full

and needs to flush), and so the overall span is O((logn)/ϵ).

Corollary 4.4. Merging two list of sizen usesO(n)work,O((logn)/ϵ)
span, and O(ϵn) auxiliary space.

Here when ϵ < n−1/2, we do not have sufficient auxiliary space

to sort all 2/ϵ chunks at the beginning, and so we can sort ϵn chunks
at a time and repeat when they are used up. This will not affect the

cost bounds. With the relaxed PIP merging algorithm, a mergesort

algorithm can be relaxed PIP with O(n logn) work, O(ϵn) auxiliary
space, and O((log2 n)/ϵ) span.

4.4 Filter, Unstable Partition, and Quicksort
It is easy to see that we can work on a prefix of the filter prob-

lem of size ϵn using linear work and logarithmic span, and repeat

for 1/ϵ rounds. The only additional work is to move the filtered

elements to the beginning of the array, which requires a parallel

for-loop. Therefore, a relaxed PIP algorithm for filter takes O(n)
work, O((logn)/ϵ) span, and O(ϵn) auxiliary space. We can imple-

ment partition similarly, but instead of moving the filtered elements

to the beginning, we swap the elements so that at the end of the

algorithm, the rest of the elements are moved to the end of the

array. This algorithm has the same cost as filter, but the partition

result is not stable. With the partition algorithm, we can have a

relaxed PIP algorithm for quicksort with O(n logn) expected work

and O((log2 n)/ϵ) span whp, using O(ϵn) auxiliary space.
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5 STRONG PIP ALGORITHMS
The strong PIP model is restrictive because of the polylogarithmic

requirement for auxiliary space. To date, only a few non-trivial

and work-efficient strong PIP algorithms have been proposed (e.g.,

reduce and rotating an array as trivial results, and certain fixed

permutations [13]). In this section, we will review existing strong

PIP algorithms for reduce and rotation, and present new algorithms

for scan (prefix sum), filter, merging, and sorting.

Reduce returns the sum based on associated binary operator ⊕ of

a given array of size n. The classic divide-and-conquer algorithm
for reduce is already strong PIP. It is implemented by dividing the

input array by two equal size subarray, recursively summing them

in parallel, and finally summing together the partial sums from

the two subproblems. Sequentially running this algorithm takes

O(logn) stack space, and so it is an optimal strong PIP algorithm,

using optimal O(n) work and O(logn) span.

Rotating an array. Given an array [a1,a2, ...,an ] and an offset o,
the output is [ao+1, . . . ,an ,a1, . . . ,ao ]. This can be implemented

by first reversing [a1, . . . ,ao ], then reversing [ao+1, . . . ,an ], and
finally reversing the entire array. This strong PIP algorithm is also

optimal, and requires O(n) work and O(logn) span.

5.1 Scan (Prefix Sum)
Scan (prefix sum) is probably the most fundamental algorithmic

primitive in parallel algorithm design. Scan takes the input of an

ordered set [a1,a2, ...,an ], associative binary operator ⊕, and an

identity i , and returns [i,a1, (a1 ⊕ a2), ..., (a1 ⊕ a2 ⊕ ... ⊕ an−1)],
in addition to the total sum of all elements. Here we assume ⊕

is + (addition) for simplicity, but all results in this section apply

to general cases. The non-in-place versions and implementations

have been introduced since the last century, and the work-efficient

version is generally referred to as Blelloch scan [15]. Blelloch scan

contains two phases. The first phase is referred to as the “up-sweep”.

The algorithm is recursive, and for every subproblem it partitions

the range into two halves and computes the two partial sums re-

cursively, then uses the two partial sums to calculate the sum for

the subproblem, and finally stores it in auxiliary space. Then the

algorithm applies another “down-sweep” that propagates the sums

down to each node—for a subsequence, we recursively solve the

left half, and the right half plus the sum of the left half, in parallel.

This algorithm hasO(n) work andO(logn) span, but unfortunately,
it requires linear auxiliary space to store all of the partial sums.

Simple fixes to the classic algorithm. There are a few ways to

make Blelloch scan in-place. For example, we can partition the array

into two equal-size chunks, recursively solve them, and apply a

parallel for-loop to add the sum of the left chunk to every element in

the right chunk. Directly applying this algorithm leads toO(n logn)
work, since the recursion tree has log

2
n levels, and on each level

we need n/2 additions. We can reduce the overhead by stopping the

recursion when we reach a subsequence of size no more than log
2
n

(base cases). We then apply sequential scan for base cases and store

the sum at the end. We then scan on the sum of the base cases,

which takes linear work and computes the prefix sum before the

beginning of each base case. Lastly, we add this prefix sum to the

elements in each base case chunk to get the final scan result. This

Algorithm 3: In-Place-Scan
Input: An integer array A of size n, assuming A0 = 0

Output: The exclusive prefix-sum array of A, and sum σ

1 Up-Sweep(A, 1,n)

2 σ ← An
3 Down-Sweep(A, 1,n, 0)

4 return (A,σ )

5 Function Up-Sweep (array A, s , t )
6 if s = t then return
7 In parallel:
8 Up-Sweep(A, s, ⌊(s + t)/2⌋)

9 Up-Sweep(A, ⌊(s + t)/2⌋ + 1, t)

10 At ← At +A ⌊(s+t )/2⌋

11 Function Down-Sweep (array A, s , t , p)
12 if s = t then As = p, return
13 In parallel:
14 Down-Sweep(A, s, ⌊(s + t)/2⌋,p)

15 Down-Sweep(A, ⌊(s + t)/2⌋ + 1, t ,p +A ⌊(s+t )/2⌋ )

algorithm uses O(n) work, O(log2 n) span, and O(logn) auxiliary
space.

Another way is to use the “Brent-Kung adder” [28] which is a

circuit to compute prefix sum with O(logn) span, O(n) gates, and
O(n logn) area. We can change the circuit to an algorithm that

contains O(logn) parallel for-loops and each for-loop simulates

the gates in one level. The work of this algorithm is linear which

is the same as the number of gates, and the span is O(log2 n)—
O(logn) parallel for-loops each taking O(logn) for forking off the

tasks. Also, the output of the original circuit is inclusive (i.e., the

output is [a1, ..., (a1 ⊕a2 ⊕ ...⊕an )]), but this can be changed to the

exclusive version by using additional work and space. Inspired by

this algorithm, we design the following strong PIP scan algorithm

with optimal work and span bounds.

A new optimal strong PIP algorithm. Similar to Blelloch scan,

our new algorithm as shown in Algorithm 3 contains two phases,

the up-sweep and the down-sweep phases, and both of which are

recursive. The key insight in our new algorithm is to maintain all

intermediate results on the array of n elements (the input array),

similar to the circuit, but use the stack space in the down-sweep

to pass down the desired value. For each recursive problem corre-

sponding to a subarray from index s to t , we partition it into two

halves, s to k and k + 1 to t , where k = ⌊(s + t)/2⌋. In the up-sweep

phase, we first recurse and then add the value in index k to t . These
additions are shown as arrows in the left side of Figure 4. In the

down-sweep phase, we keep the prefix sum p of each subproblem.

Similar to Blelloch scan, we add the sum of the left subproblem to

the prefix sum. Both recursions stop when i = j. An illustration of

this algorithm is shown in Figure 4.

Correctness and efficiency. The correctness and efficiency of this

algorithm is based on the following observation. In the down-sweep

phase, the value ofAt in any recursive call is not being used (except

for the root whereAn is the total sum). Hence, in our algorithm, we

reuse the space for At to store the sum for the next level, until it is
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Figure 4: A new strong PIP scan algorithm that has O (logn) span. It also has an “up-sweep” phase and a “down-sweep” phase. Each pair of
arrows pointing to the same element indicates an add.

the sum of the left recursion and will never be rewritten thereafter.

By doing so, we squeeze the useful part of a reduce tree, with

size exactly n, into the input array, and expand them back to the

prefix sum by using p in the stack space. Hence, the new strong

PIP scan algorithm usesO(n) work, andO(logn) span andO(logn)
sequential auxiliary space. The span is optimal since doing O(n)
operations requires Ω(logn) span.

Theorem 5.1. The new strong PIP scan algorithm is optimal, using
O(n) work, O(logn) span, and O(logn) sequential auxiliary space.

Note that compared to the circuit-based algorithms, our new

algorithm uses the stack space to pass the prefix sum down to each

recursive subproblem, so Algorithm 3 are not required to be in a

2-way recursion. In fact, picking a slightly larger fan-out can be

helpful in practice to reduce the overhead caused by function calls

since the recursion tree will be shallower.

5.2 Other Strong PIP Algorithms
Filter, unstable partition, andquicksortConsider ak-way divide-
and-conquer algorithm for filter—equally partition the array into k
chunks, filter each chunk, and pack the filtered results together. For

one level of recursion, it takes linear work and O(k logn) span for

packing if we sequentially work on each chunk, but within each

chunk move the elements in parallel. This algorithm only requires a

constant amount of extra space to store pointers. The number of lev-

els of recursion is O(logk n), and so the overall work is O(n logk n)

and the span isO(k logn) per level for a total ofO((k/logk) log2 n)
span. In theory we can plug in k as any constant, which gives a

strong PIP algorithm with O(log2 n) span and O(logn) auxiliary
space, although it is not work-efficient. In practice, we can guaran-

tee work-efficiency by picking k = nϵ wheren is the input size. This

does not achieve polylogarithmic span but has good performance

in practice. Similar to Section 4.4, we can use this filter algorithm

to implement an unstable partition algorithm (with the same cost

bounds as filter), and a quicksort algorithm that applies partition

for O(logn) recursive levels whp.

Merging andmergesort Now, let us consider merging two sorted

arrays of size n (stored in an array of size 2n). Again, we can use a 2-

way divide-and-conquer approach—use a dual binary search to find

the median of all 2n elements, and in parallel swap the out-of-place

elements in two arrays, and recursively merge the two subproblems

each with overall size n. We note that in the recursive subproblems,

the two input arrays do not necessarily have the same size. The

recursion depth is log
2
n, and the work to swap elements in each

level is upper bounded by O(n). A mergesort can be implemented

accordingly with the merging algorithm. Therefore, we have strong

PIPs algorithm for merging and mergesort with polylogarithmic

span and auxiliary space although again they are not work-efficient.

Set operationsWe now consider computing the union, intersect,

and difference of two sets of size n andm < n. If the two sets are

given in a tree format, then the existing algorithms [16, 21, 70] are

already strong PIP and work-optimal (O(m log(n/m + 1)) work). If
the sets are given in an array, and the output is also a consecutive

array, then the work is Ω(n +m). We can use filter and merging to

implement set operations in this case, so they can be strong PIP.

However, the resulting algorithms are not work-efficient, since our

strong PIP filter and merging algorithms are not work-efficient.

6 OTHER RELAXED PIP GRAPH
ALGORITHMS

In this section, we will introduce several relaxed PIP graph algo-

rithms, including graph connectivity, biconnectivity, and minimum

spanning tree/forest.

Designing graph algorithms for the strong PIP model is hard

since the input graph G = (V ,E) contains the vertex set and edge

set, but the output is some other information related to the graph

and the output size is usually proportional to the vertex set size

(e.g., single-source shortest distances, spanning tree, and strongly

connected components). Therefore, it does not seem reasonable to

represent the output only using polylogarithmic space. The excep-

tion is s-t connectivity, which has been studied in the sequential

in-place setting [8, 29, 38, 39, 55], but these random-walk based

algorithms are inherently sequential.

On the other hand, it seems reasonable to study graph algorithms

in the relaxed PIP model if we do not require the output to be

explicitly written out. In this case, we could design an algorithm

that uses O(ϵn) space and for arbitrary ϵ < 1, and returns a data

structure from which the output of the graph algorithm can be

obtained with additional work.

6.1 Connectivity and Biconnectivity
A recent work by Ben David et al. [10] introduced a compressed

scheme for graph connectivity information. The standard output

size for graph connectivity and biconnectivity is O(n) and O(m) re-
spectively. The new results in [10] requiresO(k logn+m/k) output
size with an O(k) and O(k2) expected query cost respectively. The

cost to construct such a compressed (bi)connectivity oracle takes

O(km) expected work and O(k3/2 log3 n) span. Hence, by applying

k = 1/ϵ , graph (bi)connectivity usesO(ϵm) auxiliary space,O(m/ϵ)

expected work, and O(log3 n/ϵ3/2) span for n−1/2 logn < ϵ < 1.

This algorithm is almost relaxed PIP other than a factor ofO(ϵ−1/2)
more for the span bound. The algorithm is not work-efficient as
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compared to the non-in-place version, but the work-space trade-

off holds even for the simpler s-t connectivity in the sequential

setting [37] (arbitrary (bi)connectivity is strictly harder than s-t
connectivity).

The high-level idea in these algorithms is to select a subset of

the vertices as the “centers” with probability 1/k and only keep

information for these center vertices. This is referred to as the

implicit decomposition of the graph. For a query to a non-center

vertex v , we apply a breadth-first search from v to the first center c ,
which is expected to search for O(k) = O(1/ϵ) vertices. Clearly for

connectivity, v has the same output value as c . For biconnectivity,
we need additional local analysis to get the output for v from c ,
which requires O(k2) work.

6.2 Minimum Spanning Tree/Forest
The previous idea of implicit decomposition can be extended to min-

imum spanning tree (MST) or forest (MSF), and we will introduce

it in this paper. For simplicity we assume the graph is connected,

and we can use the similar approach in [10] for disconnected cases.

The difference between MST and spanning tree is that MST is

unique for a graph (break ties consistently). Therefore, for a query

to vertex v , instead of using a BFS to find the center, we need to

search out to a center using the MST edges. This can be achieved by

using a Prim’s-like best-first search algorithm from v that requires

a priority queue rather than a FIFO queue. This gives an additional

O(logk) term for the work to compute the implicit decomposition

of the graph (the queue will contains O(k) vertices on average for

each search).

Based on the decomposition, we can compute the “spanning

tree” for them/k clusters that each contains one center and a few

other vertices. The output size of this spanning tree is O(m/k).
To compute the spanning tree in parallel, we can use Borůvka’s

algorithm—enumerating all edges for O(logn) rounds until the

entire graph is connected. In each round, we run classic Borůvka’s

algorithm to find theminimum outgoing edges from each connected

component, which takesO(mk logk)work—O(k logk)work to find
the cluster of each endpoint of an edge for allm edges. By setting

k = 1/ϵ , we the following theorem.

Theorem 6.1. Given a graph with n vertices and m edges, the
MST/MSF can be computed using O((m logn log 1/ϵ)/ϵ) expected
work, O(ϵn) auxiliary space, and O(polylog(n) log 1/ϵ)/ϵ) span.

A more detailed analysis for correctness and cost bounds can be

found in the full version of this paper.

7 IMPLEMENTATION AND EXPERIMENTS
In the previous sections we show parallel in-place algorithms with

good theoretical guarantees. We note that many new algorithms

in this paper are simple and the motivations for PIP algorithms

are due to practical concerns. Hence, in this section we discuss

how to implement these algorithms efficiently so that they can

outperform or at least be competitive to the non-in-place algorithms.

Here we discuss implementations for five algorithms: scan, filter,

random permutation, list contraction, and tree contraction. The

implementations for the first two are fairly straightforward, and

the last three are based on deterministic reservation [19].

7.1 Experimental Setup
We run all of our experiments on a 72-core Dell PowerEdge R930

(with two-way hyper-threading) with 4×2.4GHz Intel 18-core E7-

8867 v4 Xeon processors (with a 4800MHz bus and 45MB L3 cache)

and 1TB of main memory. We compile the code using the g++
compiler (version 5.4.1) with the -O3 flag. Parallelism is supported

by Cilk Plus.

7.2 Scan and Filter
For scan, we implement Algorithm 3 and coarsen at subproblem size

256 (switch to sequential scan, the threshold barely affect the run-

ning time). We implement the PIP filter algorithm in Section 5.2, but

we keep the implementation work-efficient by setting the branch-

ing factor k as

√
n and apply one round of recursion. We compare

to the non-in-place versions in PBBS in which scan is the classic

implementation [14] and filter is similar to our implementation

but the output is in a separate array. In PBBS filter, it packs each
√
n chunk to the output array and packs again across the chunks.

We note that PBBS does this is because PBBS is a library so that

it provides the non-destructive implementations. The reason for

such comparison is to show that if we allow rewriting the input,

then there is a significant performance gain due to smaller memory

footprint.

The running time and scalability (relative speedup) for scan and

filter are shown in Figure 6. For filter, 50% entries are in the output.

The in-place version of scan is about 50% faster consistently due to

smaller memory footprint. Filter is about 15% faster, which is less

than scan since the output size is smaller so the save of memory

footprint is also less. This experiment indicates that using the in-

place version can improve the performance and should be used if

the input does not need to be kept.

7.3 Deterministic Reservations
As mentioned in Section 4, algorithms designed based on the De-

composable Property can use the existing highly optimized non-

in-place implementations. Our random permutation, list and tree

contraction implementations are based on deterministic reserva-

tions, which is a framework introduced by Blelloch et al. [19]. Shun

et al. [68] implemented the fastest non-in-place algorithms for these

three problems.

This framework gives a framework for iterates in a parallel al-

gorithm to check if all of their dependencies have been satisfied

using shared data structures. Deterministic reservations proceeds

in rounds, where each round consists of a reserve phase, followed

by a synchronization point, and then a commit phase. Algorithm 1

and 2 are shown in such a framework that the first parallel for-loop

writes to locations in shared data structure R corresponding to the

steps (iterates). After synchronizing, then the second parallel for-

loop checks whether an iterate can execute in the commit phase.

Iterates that fail to execute will be automatically packed by the

framework and retry in the next round. This is repeated until no

iterates remain.

To achieve the best practical performance, instead of try all

iterates simultaneously, the framework only works on a prefix of

all the iterates. After each round, the failed iterates are packed and

new iterates are added so that sufficient tasks are processed in the
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next round. In practice, we pick the prefix containing 2% of the

overall elements. This gives a nice trade-off between extra work and

parallelism by adjusting the size of the prefix, and at the same time

it naturally meets our requirement for controlling the execution

size in the relaxed PIP algorithm.

For PIP algorithms, we usually need an additional phase in each

round, which we refer to as the cleaning phase. In classic parallel

algorithms based on deterministic reservations, we only initialize

the reservation array R at the beginning of the algorithm (line 1 in

Algorithm 1 and 2). For PIP algorithms, we need to clean the data

and reuse the space for the next round. In practice, we will discuss

how to clean the data since different approaches of this phase lead

to significant varied performance.

7.4 Random Permutation
We implement the PIP random permutation algorithm (Algorithm 1)

based on deterministic reservation. We have four implementations

(RP-Naïve, RP-Flat, RP-OneRes, and RP-Final) and compare it to

the best non-in-place counterpart (RP-PBBS in the PBBS). We test

their performance on inputs of 10 million to 1 billion 32-bit integers.

The actual and relative running time is shown in Figure 5.

RP-Naïve. The framework of deterministic reservations allows us

to work on a prefix of all active iterates. We note such prefix-based

executing patterns are what we need for the PIP random permuta-

tion algorithm discussed in Section 4. Hence, we can directly use

parallel hash tables to replace the auxiliary arrays R and H , and

we refer to this implementation as this algorithm RP-Naïve. Unfor-
tunately, compared to RP-PBBS, RP-Naïve has poor performance

(2.9–3.5x overhead shown in Figure 5). We now discuss some of our

preliminary attempts to improve the performance.

RP-Flat. Our first attempt is to use an array to replace the hash

table to store the H array. We note that in Algorithm 1, the access

of H [i] is always associated i (so as the R array in Algorithm 2),

which corresponds to each iterate (swap) in this round. We modify

the code of deterministic reservations such that it also provides

the index of each iterate in the overall list of active iterates. In

this way we can store the value of H [i] in a consecutive array. We

refer to this implementation as RP-Flat, and it reduces the runtime

overhead to about 2–2.5x over RP-PBBS.

RP-OneRes. RP-PBBS uses two reservations (Line 5 and Line 6 in

Algorithm 1). Our second attempt is to use just one reservation.

The reason that RP-PBBS does so is that in the commit phase, the

algorithm can immediately reset R[i] and R[H [i]] if their value is i .
We note that such an advantage for two reservations does not hold

when using hash tables to store R. When using a hash table for R, it
is too costly to directly reset R[i] and R[H [i]] in the commit phase.

This would correspond to deletions in the hash table and deletions

in concurrent hash tables are very slow, so it might be more efficient

to erase the entire hash table at the end of each round. If so, we

can instead apply just one reservation in Line 6, and modify the

if-condition in Line 8 to (R[i] = ⊥ || R[i] = i) && R[H [i]] = i . Here
⊥ indicates the initialized value of hash table, meaning that key

i is not found in the hash table. We refer to this implementation

as RP-OneRes. RP-OneRes’s runtime overhead is about 1.5–2x over

RP-PBBS.

RP-Final. Our third attempt is to use a consecutive array for R[i],
similar to the approach forH [i]. Unfortunately, this is not applicable
since we do not have the inverse mapping from iterate (swap) i to
the index of its swap in the active list of all swaps in this round.

However, we know that a large portion of the index is consecutive—

in particular, all newly-added swaps in a round will be consecutive.

Hence, we modify the code for deterministic reservations such that

the framework provides the range of the consecutive indexes and

the range of the keys. For each access to R, we first check if the

key falls in the range. If so we map it to the associated index and

reserve R in the array. Otherwise, we insert it to the hash table. We

refer to this implementation as RP-Final, and it is about 30–40%

slower than RP-PBBS.

Performance and analysis The actual and relative running time

of all five implementations is shown in Figure 5. All of them have

similar and consistent scalability, and the relative performance,

shown in the right part of the figure, indicates the speedup of

each optimization. By applying three optimizations to RP-Naïve,
RP-Final only has a modest overhead of 30–40% over RP-PBBS
while only using 10% auxiliary space.

All of the above implementations takeO(n) work, and the actual
performance is largely decided by the number of random memory

accesses of the program. To better understand the performance, we

list the approximate number of serial and random accesses per swap

per round in Table 3. We can see the performance curves almost

match the number of random accesses per swap per round, and

the overhead of RP-Final is in computing hash functions, linear

probing, and cleaning the hash tables. The overall additional space

for RP-Final is about 10% when input is 4-byte integers (smaller

for larger items). In Table 4, we show the tradeoff between running

time and the additional space.

7.5 List and Tree Contraction
Similar to random permutation, for list and tree contraction, we can

base our PIP implementation on the highly-optimized non-in-place

implementations in PBBS [67], which is the implementation of the

algorithms in [68]. In this case, all accesses in Algorithm 2 and tree

contraction is R[i]. Instead of using a hash table to maintain R, we
note that for a prefix of sizep, we can allocate a boolean array of size
p and modify the framework for deterministic reservation and pass

the index of this iteration in the prefix. In the commit and reserve

phase, we can directly modify the value in this boolean array, so

that the auxiliary space is limited to p and can be tuned. To achieve

the best performance, p is set to be n/50 in our experiment, which

is small compared to the input size. In fact, this implementation is

more efficient than the PBBS version since overall it decreases the

memory footprint.

Similar to the other algorithms, we test the performance from 10

million to 200 million entries that each contains two 64-bit pointers.

Such input does not contain the data to be computed, but adding

that will increase the same running time for all implementations.

The running time is shown on the left side in Figure 6. We also fix

the input size to be 100 million and test the relative speedup when

varying the number of processors. The in-place versions are about

5% faster in a consistent way in almost the entire parameter space.

The speedup is from the save of memory footprint, but the cost of

9
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Figure 5: The actual and relative running time of different implementations for random permutation. The input are integers with size vary

from 10 million to 1 billion. The running times in the right figure is normalized to RP-PBBS.

Input size: 10M 30M 100M 300M 1000M

RP-PBBS 43.7 89.2 283 781 2680

RP-Naïve 134 256 910 2580 9330

RP-Flat 98.1 187 644 1880 6280

RP-OneRes 77.1 133 422 1370 5250

RP-Final 65.6 131 388 1160 3960

Table 2: Wall-clock running time of the five implemen-

tations, shown in milliseconds.

Phase: Reserve Commit Cleaning

RP-PBBS 2/1 2/1 0/0

RP-Naïve 0/3 0/3 3/0

RP-Flat 1/2 1/2 2/0

RP-OneRes 1/1 1/2 1/0

RP-Final 1/1 2/1 1/0

Table 3: Number of serial/random access per swap per

round (approximately).

Additional space 1% 2% 4% 10%

Running time (ms) 537 425 411 388

Table 4: Running time with different restrictions on ad-

ditional space. The input is 100 million integers.

accessing the array R in both versions is small since the majority of

the cost is in checking the previous and next element, which incurs

random access and is more costly.

8 CONCLUSION
In this paper we study the theory and practice of parallel in-place

(PIP) algorithms, which is an area that was not paid attention previ-

ously but is getting emphasized recently. Inspired by recent work,

we defined two models for designing PIP algorithms—the strong

PIP model and the relaxed PIP model, and both are based on nested-

parallelism. In addition to restricting auxiliary space, PIP algorithms

designed based on the newmodels have scheduling guarantees such

as the number of steals, parallel running time, I/O-efficiency.

The key algorithmic contribution in this paper is the Decom-

posable Property that bridges the PIP setting and the classic non-

in-place setting. Based on the Decomposable Property, we have

designed a list of simple and efficient PIP algorithms based on the

existing parallel algorithms. Meanwhile, we have also shown many

other new PIP algorithms in both of our models. Due to the sim-

plicity of the new PIP algorithms, we implemented five of them

and they all have competitive or even better performance than

existing implementations. We have also mentioned many new open

problems in this paper yet to be explored, especially for the strong

PIP model.
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A DETAILS FOR RANDOM PERMUTATION
We compare our implementation of the new relaxed PIP algorithm

to the code in PBBS library, and here we refer to it as RP-PBBS.
RP-PBBS runs in rounds that each processes 2% of all swaps, since

empirically this provides the best overall performance. We note

that this naturally fits into our PIP random permutation algorithm.

We also process 2% of all swaps that gives the best performance for

all our algorithms. We will analyze the space cost that in our final

version, in which only less than 10% additional space is used. We

also show the work-space tradeoff when the auxiliary space is very

limited.

RP-Naïve. The framework of deterministic reservations allows us

to work on a prefix of all active iterates. We note such prefix-based

executing patterns are what we need for the PIP random permuta-

tion algorithm discussed in Section 4. Hence, we can directly use

parallel hash tables to replace the auxiliary arrays R and H , and

we refer to this implementation as this algorithm RP-Naïve. Unfor-
tunately, compared to RP-PBBS, RP-Naïve has poor performance

in practice. When varying input size for 10 million to 1 billion,

RP-Naïve requires 2.9–3.5x running time of the RP-PBBS algorithm
as shown in Figure 5, which can be a significant overhead. We
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now propose three implementation optimizations to reduce such

overhead to only 35–50%.

RP-Flat: packing H [i] as an array. In RP-PBBS, the value of H [i]
is computed by a hash function. Since generating a good hash func-

tion in practice is expensive and this value is used in a variety of

places, we store it in an array H to avoid recomputation. We note

that in Algorithm 1, the access of H [i] is always associated i (so as

the R array in Algorithm 2), which corresponds to each swap in

this round. We modify the code of deterministic reservations such

that it also provides the index of each swap in the overall list of

active iterates. In this way we can store the value of H [i] in a con-

secutive array. By doing so, we reduce the hash table insert/query

of each swap from three to two. We refer to this implementation as

RP-Flat.

RP-OneRes: using only one reservation. RP-PBBS uses two pri-

ority updates (line 5 and line 6 in Algorithm 1). The reason to do so

is that in the commit phase, the algorithm can immediately reset

R[i] and R[H [i]] if their value is i . The algorithm in total uses two

serial accesses (to R[i]) and two random accesses (to R[H [i]]) and
such implementation achieves the best performance.

In our in-place version, we note that such advantage for two

priority updates does not hold. The reason is that, when using a

hash table for R, it is too costly to directly reset R in the commit

phase—such operation corresponds to a delete in the hash table.

Deletions in concurrent hash tables are very slow, and we observe

that it is much more efficient to erase the entire hash table at the

end of each round. Since we can hold values of R to the end of the

round, we can instead apply just one priority update in line 6 and

save the other one line 5. Then if-condition in line 8 is modified to

(R[i] = ⊥ || R[i] = i) && R[H [i]] = i

Here ⊥ indicates the initialized value of hash table, meaning that

key i is not found in the hash table. One can check that these two

implementations are equivalent, and by doing so, we reduce the

hash table insert of each swap from two to one, which consequently

reduce the hash table size by a half and reduce the overall memory

footprint. We refer to this implementation as RP-OneRes.

RP-Final: packing the consecutive part of R[i] in an array. In
the new if-condition, for all swaps from i we check the value of

R[i], so ideally we can use a similar approach forH [i], so that when
accessing R[i] we need a sequential access to an array rather than a

random access to a hash table. Unfortunately, this is not applicable

since we do not have the back mapping from swap i to the index of
this swap in the active list of all swaps in this round. This will cause

problem when the destination of a swap is the source of another

swap in this round.

Although we do not have the back mapping from each swap

to the index in the active list, we do know that a large potion of

the index is consecutive—for all newly added swaps in a round.

Hence, we modify the code for deterministic reservation such that

it provides the range of the consecutive indexes and the range of

the keys. With these, we use an array with the size of the active list.

For reserving R[H [i]], we first check if the key falls in the range,

and if so we map it to the associated index and update in the array.

Otherwise we insert it to the hash table. This is similar for checking

the values in the commit phase, and in this way the access of R[i] is

mostly serial while accessing R[H [i]] is mostly random. By doing

so, we can save about one random access per swap per round. The

estimate numbers of serial and random accesses per swap per round

is shown in Table 3. When cleaning the array, we first check if the

value is changed, and only reset those changed once. Since this

array is mostly empty, this will save many writes that are costly.

We refer to this implementation as RP-Final.
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