
CS260 Assignment 0

March 27, 2020

You need to submit through iLearn by 23:59 April 10. You can use the server provided by
the department, or any other multicore machine that you have access to (better with more
than 10 cores).

1 Log in to Machine ti-05

If you want to use the server provided by the department, here is the instruction.

(a) Log in to bolt.cs.ucr.edu using your cs account.

(b) From there, log in to ti-05:

ssh ti -05

(c) First, enable the compiler, binaries, library paths, etc. This needs to be done every
time you log in to the system.

scl enable devtoolset -7 bash

If you want to use the Intel TBB libraries, use:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH :/usr/local/src/tbb/build/

linux_intel64_gcc_cc7 .3.1 _libc2 .17 _kernel3 .10.0 _release/

(d) Then you can test your own code using cilk or TBB.

Note: To get the best performance and collect reasonable final data, you may
want to have all cores available. Do not wait until the last minute, since debug-
ging and testing needs time, and also the machine might be very busy before
homework deadlines.

Remember to back up all files you have in this machine. It will be repurposed for some other
for Spring quarter.

1

bolt.cs.ucr.edu

2 Downloading Testing Code

In https://github.com/syhlalala/paralgocode, you can find sample code using PBBS
scheduler and cilk.

To download the code, use:

git clone --recurse -submodules https :// github.com/syhlalala/paralgocode.

git

You will find that the PBBS library under pbbssample directory is a sub-repository from the
public PBBS library.

Under each directory there is a separate makefile to compile all the code.

Note: These samples do not give you satisfactory performance. Finally in this problem you
will need to write your own version of these algorithms to get good performance.

3 Answer the Following Questions

1. How many cores do you have in your tested machine? How large is the L1, L2, L3
cache? How many hyperthreads can you use?

2. Test the reduce and scan code in the repository. You can use either cilk or the PBBS
scheduler (or both).

Usually you want to collect the following data:

(a) The sequential running time of the algorithm (i.e., adding them one by one se-
quentially). Compare it with the running time of your parallel algorithm running
on one core.

(b) Change the number of threads (usually 1, 2, 4, 8, ...) and see the scalability curve
of running time.

(c) Test the performance of different input sizes.

Here are some other thing that you can also try. These may not make much difference
for testing the reduce or scan algorithms, but in general they are useful experimental
settings designed to test the performance of an algorithm.

(a) Test the performance using different settings/languages, e.g., using cilk, PBBS
scheduler, OpenMP, etc.

(b) Test different data types (int, float, ...).

(c) Test different input distributions (uniform, Zipfian, exponential, ...).

2

https://github.com/syhlalala/paralgocode

(d) Add optimizations, one at a time, and show performance improvement using each
optimization.

To change the used threads in cilk, change the variable CILK NWORKERS. For PBBS,
change NUM THREADS. For example, in cilk, using

export CILK_NWORKERS=1

to only use one thread in the computation.

3. (Optional) Granularity Control. The reduce algorithm may have unsatisfied per-
formance, especially when you have many cores and small input sizes. This is because
scheduling (forking and joining threads) causes overhead, which is significant when the
input size is small. A simple trick to tackle this is to control the parallelism granularity
(also called coarsening). When the size is small enough, we stop doing recursive calls,
but directly add them up and return.

int reduce(int* A, int n) {

if (n < threshold) {

int ret = 0;

for (int i = 0; i < n; i++) ret += A[i];

return ret;

}

int L, R;

L = cilk_spawn reduce(A, n/2);

R = reduce(A+n/2, n-n/2);

cilk_sync;

return L+R;

}

The appropriate threshold depend on the platform and the tested environment. Next
you need to test the new code with granularity control, and find a good threshold.
Write down your approach for finding the best parameter.

4. (Optional) Finally, try to implement an efficient scan (prefix sum) algorithm. Explain
your code and your optimizations. Again, you need to design experiments to test the
performance of your code. You can use the sample code in the repository as a reference,
but again, that wouldn’t directly give you good performance.

3

	Log in to Machine ti-05
	Downloading Testing Code
	Answer the Following Questions

