
Algorithm Engineering 
(aka. How to Write Fast Code)

An Overview of    
Computer Architecture

CS260 – Lecture 9

Yan Gu

Many slides in this lecture are borrowed from the first and second lecture in Stanford CS149 Parallel Computing.             

The credit is to Prof. Kayvon Fatahalian, and the instructor appreciates the permission to use them in this course.



0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Moore’s law: #transistors doubles every 18 months

Processor cores

Normalized 
transistor count

Clock speed (MHz)

Stanford’s CPU DB [DKM12]Year



Until ~15 years ago: two significant reasons for 
processor performance improvement

• Increasing CPU clock frequency
• No longer work after 2005 due to energy issues

• Exploiting instruction-level parallelism (superscalar execution)
• Have a ceiling on the parallelism we can get (<3)

3



Part 1: Parallel Execution



Summary: parallel execution

• Several forms of parallel execution in modern processors
- Superscalar: exploit ILP within an instruction stream.  Process different 

instructions from the same instruction stream in parallel (within a core)

- Parallelism automatically and dynamically discovered by the hardware during 

execution (not programmer visible) 

- Multi-core: use multiple processing cores

- Provides thread-level parallelism: simultaneously execute a completely different 

instruction stream on each core

- Programmers/algorithms decide when to do so (e.g., via cilk_spawn, cilk_for)

- SIMD: use multiple ALUs controlled by same instruction stream (within a core)

- Efficient design for data-parallel workloads: control amortized over many ALUs

- Vectorization usually declared by programmer, but can be inferred by loop analysis 

by advanced compiler



Part 2: Accessing Memory



Terminology

• Memory latency
- The amount of time for a memory request (e.g., load, store) from a 

processor to be serviced by the memory system

- Example: 100 cycles, 100 nsec

• Memory bandwidth
- The rate at which the memory system can provide data to a processor

- Example: 20 GB/s



Stalls

• A processor “stalls”  when it cannot run the next instruction in 
an instruction stream because of a dependency on a previous 
instruction.

• Accessing memory is a major source of stalls
ld r0 mem[r2]

ld r1 mem[r3]

add r0, r0, r1

• Memory access times ~ 100’s of cycles
- Memory “access time” is a measure of latency

Dependency: cannot execute ‘add’ instruction until data at mem[r2] and 

mem[r3] have been loaded from memory 



38 GB/sec

L3 cache

(8 MB)

L1 cache

(32 KB)

L2 cache

(256 KB)

...

Memory
DDR4 DRAM

(Gigabytes)

Core 1

L1 cache

(32 KB)

L2 cache

(256 KB)

Core P

Review: why do modern processors have caches?



Processors run efficiently when data is resident in caches

Caches reduce memory access latency *

* Caches also provide high bandwidth data transfer to CPU

38 GB/sec

L3 cache

(8 MB)

L1 cache

(32 KB)

L2 cache

(256 KB)

...

Memory
DDR4 DRAM

(Gigabytes)

Core 1

L1 cache

(32 KB)

L2 cache

(256 KB)

Core P

Caches reduce length of stalls (reduce latency)



Prefetching reduces stalls (hides latency)

•All modern CPUs have logic for prefetching data into caches
- Dynamically analyze program’s access patterns, predict what it will access soon

•Reduces stalls since data is resident in cache when accessed

predict value of r2, initiate load

predict value of r3, initiate load

...

... 

...

...

...

...

ld r0 mem[r2]

ld r1 mem[r3]

add r0, r0, r1

data arrives in cache

data arrives in cache

Note: Prefetching can also reduce 

performance if the guess is wrong

(hogs bandwidth, pollutes caches)

These loads are cache hits



Multi-threading reduces stalls

• Idea: interleave processing of multiple threads on the same core 
to hide stalls

• Like prefetching, multi-threading is a latency hiding, not a 
latency reducing technique



Runnable

Runnable

Runnable

Runnable

Hiding stalls with multi-threading

Time

1 2 3 4

Stall

Stall

Done!

Stall

Stall

Done!

Fetch/

Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2

Elements 8 … 15

Thread 3

Elements 16 … 23

Thread 4

Elements 24 … 31

Thread 1

Elements 0 … 7



Throughput computing trade-off

Key idea of throughput-oriented systems:

Potentially increase time to complete work by any one thread, 

in order to increase overall system throughput when running 

multiple threads.

During this time, this thread is runnable, but it is not being executed by 
the processor. (The core is running some other thread.)

Runnable

Time

1 2 3 4

Stall

Done!

Thread 2

Elements 8 … 15

Thread 3

Elements 16 … 23

Thread 4

Elements 24 … 31

Thread 1

Elements 0 … 7



Storing execution contexts

Fetch/

Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Context storage

(or L1 cache)

Consider on-chip storage of execution contexts a finite resource.



Fetch/

Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Many small contexts (high latency hiding ability)

1 core (16 hardware threads, storage for small working set per thread)



Four large contexts (low latency hiding ability)

1 core (4 hardware threads, storage for larger working set per thread)

Fetch/

Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7



Hardware-supported multi-threading

• Core manages execution contexts for multiple threads
- Runs instructions from runnable threads (processor makes decision about which thread 

to run each clock, not the operating system)

- Core still has the same number of ALU resources: multi-threading only helps use them 
more efficiently in the face of high-latency operations like memory access

• Interleaved multi-threading (a.k.a. temporal multi-threading)
- What I described on the previous slides: each clock, the core chooses a thread, and 

runs an instruction from the thread on the ALUs

• Simultaneous multi-threading (SMT)
- Each clock, core chooses instructions from multiple threads to run on ALUs

- Extension of superscalar CPU design

- Example: Intel Hyper-threading (2 threads per core)



Multi-threading summary

• Benefit: use a core’s execution resources (ALUs) more efficiently
-Hide memory latency
-Fill multiple functional units of superscalar architecture
- (when one thread has insufficient ILP)

• Costs
-Requires additional storage for thread contexts

- Increases run time of any single thread

(often not a problem, we usually care about throughput in parallel apps)

-Requires additional independent work in a program (more independent work than ALUs!)

-Relies heavily on memory bandwidth

- More threads → larger working set → less cache space per thread

- May go to memory more often, but can hide the latency 



A fictitious multi-core chip

16 cores

8 SIMD ALUs per core (128 total)

4 threads per core

16 simultaneous instruction streams

64 total concurrent instruction streams

512 independent pieces of work are 
needed to run chip with maximal latency 
hiding ability



= SIMD function unit,

control shared across 32 units

(1 MUL-ADD per clock)

“Shared” memory

(96 KB)

Execution contexts (registers)

(256 KB)

▪ Instructions operate on 32 pieces of data at a time 

(instruction streams called “warps”).  

▪ Think: warp = thread issuing 32-wide vector 

instructions

▪ Different instructions from up to four warps can be 

executed simultaneously (simultaneous multi-

threading)

▪ Up to 64 warps are interleaved on the SM 

(interleaved multi-threading)

▪ Over 2,048 elements can be processed 

concurrently by a core

NVIDIA GTX 1080 core (“SM”)

Source: NVIDIA Pascal Tuning Guide

GPUs: extreme throughput-oriented processors

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode



NVIDIA GTX 1080

There are 20 SM cores on the GTX 1080:

That’s 40,960 pieces of data being processed concurrently to get maximal latency hiding!



...

CPU vs. GPU memory hierarchies

76 GB/sec

L3 cache

(20 MB)

L1 cache

(32 KB)

L2 cache

(256 KB)

...

Memory
DDR4 DRAM

(Hundreds GB 

to TB)

Core 1

Core 8

L1 cache

(32 KB)

L2 cache

(256 KB)

CPU:
Big caches, few 

threads per core, 

modest memory BW

Rely mainly on caches 

and prefetching 

(automatic)

GPU:
Small caches, 

many threads, 

huge memory BW

Rely heavily on 

multi-threading for 

performance 

(manual)

Execution

contexts

(256 KB)

L1 cache

Scratch-

pad

(64 KB)

...

Execution

contexts

(256 KB)

L1 cache

Scratch-

pad

(64 KB)

Core 1

Core 20

L2 cache

(2 MB)

320 GB/sec
Memory
DDR5 DRAM

(4-12 GB)



Bandwidth limited!

If processors request data at too high a rate, the memory system cannot keep up.

No amount of latency hiding helps this.

Overcoming bandwidth limits are a common challenge for 

application developers on throughput-optimized systems.



Bandwidth is a critical resource

Performant parallel programs will:

• Organize computation to fetch data from memory less often

- Reuse data previously loaded by the same thread

(traditional intra-thread temporal locality optimizations)

- Share data across threads (inter-thread cooperation)

• Request data less often (instead, do more arithmetic: it’s “free”)

- Useful term: “arithmetic intensity” — ratio of math operations to data 
access operations in an instruction stream

- Main point: programs must have high arithmetic intensity to utilize 
modern processors efficiently



Summary

• Three major ideas that all modern processors employ to varying degrees

- Provide multiple processing cores
- Simpler cores (embrace thread-level parallelism over instruction-level 

parallelism)

- Amortize instruction stream processing over many ALUs (SIMD)
- Increase compute capability with little extra cost

- Use multi-threading to make more efficient use of processing resources 
(hide latencies, fill all available resources)

• Due to high arithmetic capability on modern chips, many parallel 
applications (on both CPUs and GPUs) are bandwidth bound

• GPU architectures use the same throughput computing ideas as CPUs: but 
GPUs push these concepts to extreme scales



Review slides
(additional examples for review and to check our understanding)



Putting together the concepts from the lectures:
(if you understand the following sequence you understand this lecture)



Running code on a simple processor
My very simple program:

compute sin(x) using Taylor expansion

Fetch/

Decode

Execution

Context

ALU

(Execute)

My very simple processor:

completes one instruction per clock

void sinx(int N, int terms, float* x, float* result)

{

for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6;  // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{ 

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}



void sinx(int N, int terms, float* x, float* result)

{

for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6;  // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{ 

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

Unmodified program

Execution

Context

My single core, superscalar processor:

executes up to two instructions per clock

from a single instruction stream.

Fetch/

Decode

Exec

1

Fetch/

Decode

Exec

2

Independent operations in 

instruction stream

(They are detected by the processor 

at run-time and may be executed in 

parallel on execution units 1 and 2)

Review: superscalar execution



Modify program to create multiple threads 
(multiple instruction streams) 

My dual-core processor:

executes one instruction per clock

from an instruction stream on each core.

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

void sinx(int N, int terms, float* x, float* result)

{

cilk_for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6;  // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{ 

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

Review: multi-core execution (two cores)



My superscalar dual-core processor:

executes up to two instructions per clock

from an instruction stream on each core.

Execution
Context

Fetch/

Decode

Exec

1

Fetch/

Decode

Exec

2

Execution
Context

Fetch/

Decode

Exec

1

Fetch/

Decode

Exec

2

Review: multi-core + superscalar execution
Modify program to create multiple threads 

(multiple instruction streams) 
void sinx(int N, int terms, float* x, float* result)

{

cilk_for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6;  // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{ 

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}



My quad-core processor:

executes one instruction per clock

from an instruction stream on each core.

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Review: multi-core (four cores)
Modify program to create multiple threads 

(multiple instruction streams) 
void sinx(int N, int terms, float* x, float* result)

{

cilk_for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6;  // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{ 

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}



Observation: program must execute many iterations of the same loop body.

Optimization: share instruction stream across execution of multiple iterations (single instruction multiple data = SIMD)

My SIMD quad-core processor:

executes one 8-wide SIMD instruction per clock

from an instruction stream on each core.

Fetch/
Decode

Execution
Context

Fetch/
Decode

Execution
Context

Fetch/
Decode

Execution
Context

Fetch/
Decode

Execution
Context

void sinx(int N, int terms, float* x, float* result)

{

cilk_for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6;  // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{ 

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

Review: four, 8-wide SIMD cores



void sinx(int N, int terms, float* x, float* result)

{

cilk_for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6;  // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{ 

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

Review: four SIMD, multi-threaded cores
Observation: memory operations have very long latency

Solution: hide latency of loading data for one iteration by 
executing arithmetic instructions from other iterations

Fetch/
Decode

Memory load

Memory store

Execution
Context

Execution
Context

Fetch/
Decode

Execution
Context

Execution
Context

Fetch/
Decode

Execution
Context

Execution
Context

Fetch/
Decode

Execution
Context

Execution
Context

My multi-threaded, SIMD quad-core processor:

executes one SIMD instruction per clock

from one instruction stream on each core.  But 

can switch to processing the other instruction 

stream when faced with a stall.



Summary: four superscalar, SIMD, multi-threaded cores

Execution
Context

Execution
Context

Fetch/

Decode
Fetch/

Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/

Decode
Fetch/

Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/

Decode
Fetch/

Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/

Decode
Fetch/

Decode

SIMD Exec 2

Exec 1

My multi-threaded, superscalar, SIMD quad-core processor:

executes up to two instructions per clock  from one instruction stream on each core 

(in this example: one SIMD instruction + one scalar instruction). 

Processor can switch to execute the other instruction stream when faced with stall.



Connecting it all together

A simple quad-core processor:

Execution
Context

Execution
Context

Fetch/

Decode
Fetch/

Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/

Decode
Fetch/

Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/

Decode
Fetch/

Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/

Decode
Fetch/

Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

L3 Cache
Memory 

Controller

Memory Bus 

(to DRAM)

On-chip 

interconnect

Four cores, two-way multi-threading per core (max eight threads active on chip at once), up to two 

instructions per clock per core (one of those instructions is 8-wide SIMD)



Lecture Review

• In the lectures you have talked about a brief history of the evolution of 
architecture

• Instruction-level parallelism (ILP)

• Multiple processing cores

• Vector (superscalar, SIMD) processing

• Multi-threading (hyper-threading)

• Caching

• What we cover:
• Programming perspective of view



Next lecture 

• I/O-efficient algorithms: algorithms incur fewer memory 
accesses
• How to model the cost

• How to design efficient algorithms with fewer I/Os


