CS142: Algorithm Engineering

An Overview of
Computer Architecture

Yan Gu

Many slides in this lecture are borrowed from the first and second lecture in Stanford CS149 Parallel Computing.
The credit is to Prof. Kayvon Fatahalian, and the instructor appreciates the permission to use them in this course.

L ecture Overview

* In the lectures you will learn a brief history of the evolution of architecture

* Instruction-level parallelism (ILP)

* Multiple processing cores

* Vector (superscalar, SIMD) processing
* Multi-threading (hyper-threading)

* Caching

* What we cover:
» Programming perspective of view

 What we do not cover:
« How they are implemented in the hardware level (CMU 15-742 / Stanford CS149)

http://course.ece.cmu.edu/~ece742/S20/
http://cs149.stanford.edu/fall19/

™~

Moore’s law: #transistors doubles every 18 months

Clock speed (MHz)

1,000,000
100,000
Normalized
10,000 transistor count
1,000 o be
%
100 . '“Q_jL___
TR *
:’ 0‘3“‘ Processor cores
10 :
¢
. ®?
1 || N | |
*
0 *
1970 1975 1980 1985 1990 1995 2000

Year

2005

2010 2015
Stanford’s CPU DB [DKM12]

Key question for computer architecture research:
How to use the more transistors for better performance?

Until ~15 years ago: two significant reasons for
processor performance improvement

* Increasing CPU clock frequency

 Exploiting instruction-level parallelism (superscalar execution)

What is a computer program?

int main(int argc, char** argv) {
int x = 1;
for (int i=0; i<10; i++) {
X = X + X;
}
printf(“%d\n”, x);

return 9;

Review. what Is a program?

From a processor’s perspective, a
program is a sequence of instructions

_main:

100000f10:
100000f11:
100000f14:
100000f18:

100000f1f:

100000f22:
100000f26:
100000f2d:
100000f34:
100000f38:
100000f3e:
100000f41:
100000f44:
100000f47:
100000f4a:
100000f4d:
100000f50:
100000f55:
100000f5c:

100000f5f:

100000f61:
100000f66:
100000f68:
100000f6b:
100000f6d:
100000f71:
100000f72:

pushq
movq
subq
movl
movl
mov(q
movl
movl
cmpl
jge
movl
addl
movl
movl
addl
movl
jmp
leaq
movl
movb
callg
xorl
movl
movl
addq
popq
retq

%rbp

%rsp, %rbp
$32, %rsp

$0, -4(%rbp)
%edi, -8(%rbp)
%rsi, -16(%rbp)
$1, -20(%rbp)
$0, -24(%rbp)
$10, -24(%rbp)
23 <_main+0x45>
-20(%rbp), %eax
-20(%rbp), %eax
%eax, -20(%rbp)
-24(%rbp), Y%eax
$1, %eax

%eax, -24(%rbp)
-33 <_main+0x24>
58(%rip), %rdi
-20(%rbp), %esi
$0, %all

14

%esi, %esi
%eax, -28(%rbp)
%esi, Yeax

$32, %rsp

%rbp

Review. what does a processor do?

It runs programs!

Processor executes instruction referenced by
the program counter (PC)

(executing the instruction will modify machine state:
contents of registers, memory, CPU state, etc.)

Move to next instruction ... e '

Then execute it...

And so on...

_main:

100000f10:
100000f11:
100000f14:
100000f18:

100000f1f:

100000f22:
100000f26:
100000f2d:
100000f34:
100000f38:
100000f3e:
100000f41:
100000f44:
100000f47:
100000f4a:
100000f4d:
100000f50:
100000f55:
100000f5c:

100000f5f:

100000f61:
100000f66:
100000f68:
100000f6b:
100000f6d:
100000f71:
100000f72:

pushq
movq
subq
movl
movl
mov(q
movl
movl
cmpl
jge
movl
addl
movl
movl
addl
movl
jmp
leaq
movl
movb
callg
xorl
movl
movl
addq
popq
retq

%rbp

%rsp, %rbp

$32, %rsp

$0, -4(%rbp)
%edi, -8(%rbp)
%rsi, -16(%rbp)
$1, -20(%rbp)
$0, -24(%rbp)
$10, -24(%rbp)
23 <_main+0x45>
-20(%rbp), %eax
-20(%rbp), %eax
%eax, -20(%rbp)
-24(%rbp), Y%eax
$1, %eax

%eax, -24(%rbp)
-33 <_main+0x24>
58(%rip), %rdi
-20(%rbp), %esi
$0, %all

14

%esi, %esi
%eax, -28(%rbp)
%esi, Yeax

$32, %rsp

%rbp

Instruction level parallelism (ILP)

* Processors did in fact leverage parallel execution to make programs run
faster, it was just invisible to the programmer

Dependent instructions

* Instruction level parallelism (ILP)

- Idea: Instructions must appear to be executed in
program order. BUT independent instructions mul rl, re, ro
can be executed simultaneously by a processor Ll e me
without impacting program correctness

st ri, mem[r2]

)) add ro, ro, r3
- Superscalar execution: processor dynamically add ri, r4, rs

finds independent instructions in an instruction
sequence and executes them in parallel

Independent instructions

ILP example
a = x*x + y*y + z*z

Consider the following program:

// assume ro=x, rl=y, r2=z

mul ro, roe, ro
mul rl, rl, rl
mul r2, r2, r2
add ro, ro, ri
add r3, ro, r2

// now r3 stores value of program variable ‘a’

This program has five instructions, so it will take five clocks to execute, correct?
Can we do better?

ILP example
a = xX*x + y*y + z*z

x*/x y*/y N ¥
\ /
+

ILP =1 7

ILP =3

ILP =1

D —

ILP example
a = x*x + y*y + z*z

// assume ro=x, rl=y, r2=z

. mul re, ro, ro
. mul rl, ri, ri
. mul r2, r2, r2
. add ro, ro, ri
. add r3, ro, r2

unh WDNPE

// now r3 stores value of program variable ¢‘a’

Superscalar execution: processor automatically finds independent instructions in an
instruction sequence and executes them in parallel on multiple execution units!

In this example: instructions 1, 2, and 3 can be executed in parallel

(on a superscalar processor that determines that the lack of dependencies exists)
But instruction 4 must come after instructions 1 and 2

And instruction 5 must come after instructions 3 and 4

A more complex example

Program (sequence of instructions)

Instruction dependency graph

PC Instruction

00 01
Y value during ‘/N
02 04 0

00 | a

o1lb = a execution 5
"4

02 | tmp2 = a + b // 6 N

03 | tmp3 = tmp2 + a // 8 03 06

04 | tmp4d = b + b // 8

5 | tmp5 = b * b // 16 l ‘

06 | tmp6 = tmp2 + tmpd // 14 08 07

07 | tmp7 = tmp5 + tmp6 // 30

08 | if (tmp3 > 7) l\J

09 print tmp3 09 10
else
10 print tmp7

What does it mean for a superscalar processor to “respect program order”?

Diminishing returns of superscalar execution

Most available ILP is exploited by a processor capable of issuing four instructions per clock
(Little performance benefit from building a processor that can issue more)

0 4 8 12 16
Instruction issue capability of processor (instructions/clock)

Source: Culler & Singh (data from Johnson 1991)

Until ~15 years ago: two significant reasons for
processor performance improvement

* Increasing CPU clock frequency

 Exploiting instruction-level parallelism (superscalar execution)

16

Part 1: Parallel Execution

Example program

void sinx(int N, int terms, float* x, float* result)

{
for (int i=@; i<N; i++)
. Compute sin(x) using Taylor expansion:
float numer = x[i],* x[i] * x[i]; Sin(X) =X - X3/3! + X5/5! - X7/7! + ...
M for each element of an array of n

floating-point numbers
for (int j=1; j<=terms; j++)
{
value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;

}

result[i] = value;
}
}

Compile program

void sinx(int N, int terms, float* x, float* result)

{ I
for (int i=@; i<N; i++) x[1i]

float value = x[i]; l
float numer = x[i] * x[i] * x[i];

int denom = 6; // 3! l1d ro, addr[ri]
int sign R mul rl1, ro, ro
mul ri1, rl, re

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);

sign *= -1;
st addr[r2], re

} r‘esult[i]l

Execute program

My very simple processor: executes one instruction per clock

)
!

1d re, addr[ri]
mul rl, ro, ro

Execution Unit mul rl, rl, re
(ALU)

st addr[r2], re

result[i]l

g

Execute program

My very simple processor: executes one instruction per clock

x[i]l
b 1d re, addr[ri]

mul rl, ro, ro
Execution Unit mul rl, rl, re
(ALU)

st addr[r2], re

result[i]l

g

Execute program

My very simple processor: executes one instruction per clock

)
!

1d re, addr[ri]
mul ril, ro, ro

Execution Unit mul rl, rl, re
(ALU)

st addr[r2], re

result[i]l

g

Execute program

My very simple processor: executes one instruction per clock

Execution Unit
(ALU)

g

)
!

1d re, addr[ri]
mul rl, ro, ro

mul ri, rl, ro

st addr[r2], re

result[i]l

Superscalar processor

Recall from the previous: instruction level parallelism (ILP)
Decode and execute two instructions per clock (if possible)

Exec Exec
1 2

==

Note: No ILP exists in this region of the program

1d re, addr[ri]
mul rl, ro, ro
mul ri1, rl, re

st addr[r2], re

!

result[i]l

Aside: Pentium 4

Image credit: http://ixbtlabs.com/articles/pentium4/index.html

‘Sistem Bus {Ememw L2 Cache

L

9

t Cache Bus

Bus Interface Unit

¥

'

Instruction Fetch Unit Instruction Cache (L1) -

Instucton
Decoder

Instuction

Register Alias Table

Retirement
Ratiremant Linit Register File

(Intel Arch.

Reorder Buffer (Instruction Pool) Registers)

Memory
Reorder
Buffer

From

Integer
Unit

Data Cache
Unit {L1)

Reservation Station

SIMD FP
Linit
{FPL)

Internal Data-Results Busas

Processor: pre multi-core era

transistors used to Data cache

perform operations Exec Unit (2 big one)
i (ALU)

that help a single

instruction stream

run fast

More transistors = larger cache, smarter out-of-order logic, smarter branch predictor, etc.
(Also: more transistors — smaller transistors — higher clock frequencies)

Processor: multi-core era (since 2005)

Exec Unit
(ALUV)

i

ldea #1:

Use increasing transistor count to add more
cores to the processor

Rather than use transistors to increase
sophistication of processor logic that
accelerates a single instruction stream

(e.g., out-of-order and speculative operations)

Two cores. compute two elements in parallel

x[1 x[1
re,

mul ri, re, re mul ri, re, re
mul ri, rl, re ExeC EXGC mul ri, rl, re
(ALU) (ALU)

st addr[r2], re

Simpler cores: each core is slower at running a single instruction stream
than our original “fancy” core (e.g., 25% slower)

But there are now two cores: 2 X 0.75 = 1.5 (potential for speedup!)

But our program expresses no parallelism

void sinx(int N, int terms, float* x, float* result)

{
for (int i=@; i<N; i++) . . .
:) This C program, compiled with gcc
float value = x[il; will run as one thread on one of the

float numer = x[i] * x[i] * x[i];

M processor cores

int sign = -1;

:0" (int j=1; jesterms; j+) If each of the simpler processor
value += sign * numer / denom; cores was 25% S|OW9I’ thal‘l the
. original single complicated one, our
enom *= (2*j+2) * (2*j+3);

AN program now runs 25% slower. :-(

}

result[i] = value;
}
}

Using Cilk to provide parallelism

void sinx(int N, int terms, float* x, float* result)
{
cilk _for (int i=@; i<N; i++)
{
float value = x[i];
float numer = x[i] * x[i] * x[i];
int denom = 6; // 3!
int sign = -1;

for (int j=1; j<=terms; j++)

{
value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;

}

result[i] = value;
}
}

Loop iterations declared by the
programmer to be independent

With this information, you
could imagine how a compiler
might automatically generate
parallel threaded code

Four cores. compute four elements in parallel

]
!

!
]
]
!

[] o=

]
!

!
]
]
!

[_]4—

m
pas
D
(9]

(ALU)

I]:[[I > I]:[[I >0
MEI M .

ALV

ALU

-w
<

Sixteen cores, sixteen simultaneous instruction streams

Sixteen cores. compute sixteen elements in parallel

Multi-core examples

Intel “Skylake” Core i7 quad-core CPU
(2015) 20 replicated (“SM”) cores
(2016)

More multi-core examples

(S B 3

Intel Xeon Phi “Knights Corner” 72-core CPU Apple A9 dual-core CPU
(2016) (2015)

A9 image credit: Chipworks (obtained via Anandtech)
http://www.anandtech.com/show/9686/the-apple-iphone-6s-and-iphone-6s-plus-review/3

Parallel program

void sinx(int N, int terms, float* x, float* result)

{ Original compiled program:
cilk_for (int i=@; i<N; i++) .
) Processes one array element using scalar
e e [11] Instructions on scalar registers (e.g., 32-bit floats)
float numer = x[i] * x[i] * x[i];
int denom = 6; // 3!
e S e 1d re, addr[ri]
mul rl1, ro, ro
for (int j=1; j<=terms; j++) mul ri, ri, r@
{
value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;
}
st addr[r2], re
result[i] = value;
}

Summary so far

* How to use the more transistors for better performance?

* Instruction-level parallelism (ILP)
 Automatically detect instructions that can be processed in parallel
* Oblivious to users
 Problem: can only achieve limited parallelism (<3)

* Multiple processors

» Put more processors on the same chip for the additional space
(transistors)

 Can put more and more when we have more space on the chip
 Users must write parallel algorithms and codes to utilize it

36

