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Course announcement

• Problem-solving training 2 is available (due date: next Wednesday)

• Performance-engineering homework 1 is due 11:59 PM today

• You can check your                                                                                
candy count by submitting                                                                          
an empty file on gradescope
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Course announcement

• Grading for problem-solving training 1 is available
• However, I still have some confusions

• 23 students have registered for the course

• 18 have solved at least one problem

• Only 16 submitted the report

• 23 students on ilearn, banner, and igrade

• 18 has reserved lab machines

• 25 students on piazza and gradescope

• For those who solved problems after our first due, please resubmit an 
updated report and denote which are solved after the first due
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Scheduler

• Consider it as a complier. Programmers then only need to focus on high-
level algorithm design
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Code in high-level language

Compiler

Executable machine code

Generate parallel tasks and their 

dependency

Scheduler

Parallel execution order using 𝒑 processors

• We always assume an effective scheduler

• We design algorithms only focusing on generating parallel tasks



Binary Fork-Join Model

• You write the code exactly the same as                                                      
the sequential code, except that 

• The “in parallel” instruction: fork two tasks (functions) and they can be 
run in parallel (but not necessarily run in parallel)

• The “parallel for” instruction: all iterations in this for loop can be run in 
parallel
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copy(A, B, n) {
parallel for (i=0; i<n; i++)

B[i] = A[i];
}

fork

fork fork

……𝑛 tasks in parallel

log 𝑛 levels of fork

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}



Cost model: work-span
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• For all computations, draw a DAG
• A->B means that B can be performed only 

when A has been finished

• Work: the total number of operations

• Span (depth): the longest length of 
chain

• It shows the dependency of operations in the algorithm 



Computational DAG

8

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

1 32 654 87

3 7 11 15

+ + + +

10 26

+ +

36

+



Cost model: work-span

• Work: The total number of operations in the algorithm
• Sequential running time when the algorithm runs on one processor

• Work-efficiency: the work is (asymptotically) no more than the best (optimal) 
sequential algorithm

• Goal: make the parallel algorithm efficient when a small number of processor are 
available
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1 32 654 87

3 7 11 15

10 26

36

+ + + +

+ +

+ Work: 𝑂(𝑛)

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}



Cost model: work-span

• Span (depth): The longest dependency chain
• Total time required if there are infinite number of processors

• Our goal is usually to make span polylogarithmic

• Goal: make the parallel algorithm faster and faster when more and more processors 
are available (scalability)
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Span: 𝑂(log 𝑛)

1 32 654 87

3 7 11 15

10 26

36

+ + + +

+ +

+

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}



Compute work and span

• When we see a in-parallel (fork-join,        
spawn-sync): 
• in-parallel

• Task1

• Task2

• Work = work of Task1 + work of Task2+O(1)

• Span  = max(span of Task1, span of Task2)+O(1)
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Fork

Join

Task1 Task2



Programming fork-join parallelism

12



Binary Fork-Join Model

• You write the code exactly the same as                                                      
the sequential code, except that 

• The “in parallel” instruction: fork two tasks (functions) and they can be 
run in parallel (but not necessarily run in parallel)

• The “parallel for” instruction: all iterations in this for loop can be run in 
parallel
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copy(A, B, n) {
parallel for (i=0; i<n; i++)

B[i] = A[i];
}

fork

fork fork

……𝑛 tasks in parallel

log 𝑛 levels of fork

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}



Fork-join parallelism

• Supported by many programming 
languages

• Cilk/cilk+ (silk – thread)
• Based on C++

• Execute two tasks in parallel
• do_thing_1 can be done in parallel in 

another thread

• do_thing_2 will be done by the current 
thread

• Parallel for-loop: execute 𝑛 tasks in 
parallel
• For cilk, it first forks two tasks, then four, 

then eight, … in O(log n) rounds
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cilk_spawn do_thing_1;
do_thing_2;
cilk_sync;

cilk_for (int i = 0; i < n; i++) {
do_something;

}

#include <cilk/cilk.h>
#include <cilk/cilk_api.h>

Fork

Join

As long as you can design a parallel algorithm in fork-join, 

implementing them requires very little work on top of your 

sequential C++ code



Fork-join parallelism

• A lightweighted library: PBBS (Problem-based benchmark suite)

• Code available at: https://github.com/cmuparlay/pbbslib
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#include “pbbslib/utilities.h”

par_do([&] () {do_thing_1;}, 
[&] () {do_thing_2;});

parallel_for (0, 100, [&] (int i) {Do_something}); 

lambda expression 

(must be function calls)

You can also use cilk or openmp to 

compile your code

https://github.com/cmuparlay/pbbslib


Implementing parallel reduce in cilk
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int reduce(int* A, int n) {
if (n == 1) return A[0];
int L, R;
L = cilk_spawn reduce(A, n/2);

R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

Pseudocode Code using Cilk

It is still valid is running sequentially, 

i.e., by one processor



Implementing parallel reduce in PBBS
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#include “pbbslib/utilities.h”

void reduce(int* A, int n, int& ret) {
if (n == 1) ret = A[0]; else {
int L, R;
par_do([&] () {reduce(A, n/2, L);}, 

[&] () {reduce(A+n/2, n-n/2, R);});
ret = L+R;

}
}

parallel_for (0, 100, [&] (int i) {A[i] = i;}); 

lambda expression 

(must be function calls)

You can also use cilk or openmp to 

compile your code



Implementation trick 1:
coarsening
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• A cilk-spawn is 
about 100 cycles
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Image from ithare.com: 

http://ithare.com/infographics-operation-costs-in-

cpu-clock-cycles/

http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/


Coarsening

• Forks and Joins are costly – they are the overhead of using parallelism

• If each task is too small, the overhead will be significant

• Solution: let each parallel task get enough work to do!
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int reduce(int* A, int n) {
if (n < threshold) {

int ans = 0;
for (int i = 0; i < n; i++) 

ans += A[i];
return ans; }

int L, R;
L = cilk_spawn reduce(A, n/2);
R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

int reduce(int* A, int n) {
if (n == 1) return A[0];
int L, R;
L = cilk_spawn reduce(A, n/2);
R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }



Computational Model

21



Time complexity
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• Mergesort, quicksort: 𝑶 𝒏 log 𝒏

• Insertion sort, bubble sort: 𝑶 𝒏𝟐

•But what is time complexity?



What is an algorithm?

• An algorithm (/ˈælɡərɪðəm/) is a finite sequence of well-defined, 
computer-implementable instructions, typically to solve a class of 
problems or to perform a computation (from Wikipedia)

23



• Unit cost for:
• Any instruction on Θ(log 𝑛)-bit words

• Read/write a single memory location from an infinite memory

• The cost measure: time complexity

Random-Access Machine (RAM)

CPU

Memory

1

1



The equivalent programming model

cost times

𝑐1 𝑛

𝑐2 𝑛 − 1

0 -

𝑐4 𝑛 − 1

𝑐5 ෍
𝑗=2

𝑛

(𝑡𝑗 + 1)

𝑐6 ෍
𝑗=2

𝑛

𝑡𝑗

𝑐7 ෍
𝑗=2

𝑛

𝑡𝑗

𝑐8 𝑛 − 1
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Computational 
Model

Algorithm 𝑨

Cost measure 𝒇

Cost bound 𝒇 𝑨



Binary Fork-Join Model

• In addition to RAM instructions,                                                                 
you can also use 

• The “in parallel” instruction: fork two tasks (functions) and they can be 
run in parallel (but not necessarily run in parallel)

• The “parallel for” instruction: all iterations in this for loop can be run in 
parallel
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copy(A, B, n) {
parallel for (i=0; i<n; i++)

B[i] = A[i];
}

fork

fork fork

……𝑛 tasks in parallel

log 𝑛 levels of fork

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}



Cost model: work-span
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• For all computations, draw a DAG
• A->B means that B can be performed only 

when A has been finished

• Work: the total number of operations

• Span (depth): the longest length of 
chain

• It shows the dependency of operations in the algorithm 



Compute work and span

• When we see a in-parallel (fork-join,        
spawn-sync): 
• in-parallel
• Task1
• Task2

• Work = work of Task1 + work of Task2+O(1)

• Span = max(span of Task1, span of Task2)+O(1)

• When you see a serial code:

• Task1

• Task2

• Work = work of Task1 + work of Task2

• Span = work of Task1 + work of Task2
29

Fork

Join

Task1 Task2
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Computational 
Model

Algorithm 𝑨

Cost measure:
work 𝒇
span 𝒈

Cost bounds 𝒇 𝑨 , 𝒈(𝑨)



Race
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Some materials are from 6.172 Performance Engineering 

of Software Systems, credits to Charles Leiserson



Why is parallelism “hard”?

32

Theory Practice

Non-determinism!!



Why is parallelism “hard”?
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• Scheduling is unknown

• Relative ordering for operations is unknown

• Hard to debug
• Bugs can be non-deterministic!

• Bugs can be different if you rerun the code

• Referred to as race hazard / condition

Non-determinism!!



Race hazard can cause severe consequences
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• Therac-25 radiation therapy machine 
— killed 3 people and seriously 
injured many more (between 1985 
and 1987). https://en.wikipedia.org/wiki/Therac-25

• North American Blackout of 2003 —
left 50 million people without power 
for up to a week. 
https://en.wikipedia.org/wiki/Northeast_blackout_of_2003

• Race bugs are notoriously difficult to 
discover by conventional testing!

https://en.wikipedia.org/wiki/Therac-25
https://en.wikipedia.org/wiki/Northeast_blackout_of_2003


Determinacy Races

• Definition: a determinacy race occurs when two logically parallel 
instructions access the same memory location and at least one of the 
instructions performs a write.
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direct_reduce(A, n) {
parallel_for (i=0;i<n;i++)

sum = sum + a[i];
return sum;

}



Determinacy Races

• Definition: a determinacy race occurs when two logically parallel 
instructions access the same memory location and at least one of the 
instructions performs a write.
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sum = 0

r0 = sum

r0 += a[0]

sum = r0

r1 = sum

r1 += a[1]

sum = r1

return sum

direct_reduce(A, n) {
parallel_for (i=0;i<2;i++)

sum = sum + a[i];
return sum;

}



Determinacy Races

• Definition: a determinacy race occurs when two logically parallel 
instructions access the same memory location and at least one of the 
instructions performs a write.
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sum = 0

r0 = sum

r0 += a[0]

sum = r0

r1 = sum

r1 += a[1]

sum = r1

return sum

1

2

3

4

5

6

direct_reduce(A, n) {
parallel_for (i=0;i<2;i++)

sum = sum + a[i];
return sum;

}



Determinacy Races

• Definition: a determinacy race occurs when two logically parallel 
instructions access the same memory location and at least one of the 
instructions performs a write.

38

direct_reduce(A, n) {
parallel_for (i=0;i<2;i++)

sum = sum + a[i];
return sum;

}

sum = 0

r0 = sum

r0 += a[0]

sum = r0

r1 = sum

r1 += a[1]

sum = r1

return sum

1

2

5

3

4

6



Types of Races 

• Suppose that instruction A and instruction B both access a location x, and
suppose that A∥B (A is parallel to B).

• Two sections of code are independent if they have no determinacy races 
between them. 
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A B Race Type

Read Read No race

Read Write Read race

Write Read Read race

Write Write Write race



Avoiding races

• Iterations of a parallel_for loop should be independent

• Between two in_parallel tasks, the code of the two calls should be 
independent, including code executed by further in_parallel tasks
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reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}



Avoiding races

• Iterations of a parallel_for loop should be independent

• Between two in_parallel tasks, the code of the two calls should be 
independent, including code executed by further in_parallel tasks
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reduce(A, n) {
if (n == 1) return A[0];
if (n is odd) n=n+1;
parallel_for i=1 to n/2
B[i]=A[2i]+A[2i+1];

return reduce(B, n/2); 
}



Benefit of being race-free

• Scheduling is still unknown

• Relative ordering for operations is still unknown

• However, the computed value of each instruction is deterministic!
• Check the correctness of the sequential execution

• Check if the parallel execution is the same as the sequential one

42



This is not the end…

• Consider a hash table

• A key-value pair is inserted to a random location based on the key

• No guarantee that no two keys will not be inserted to the same location

• More relaxed definition is given in CS214 Parallel Algorithms offered in S21
• Other interesting concepts such as race detection and false sharing

• More parallel algorithms, programming, and formal training

43



Prefix Sum (Scan)

44



Prefix sum

In =            1     2     3     4   5     6     7     8

Out =  0     1     3     6    10   15  21   28   36

The most widely-used building block in parallel 

algorithm design



5 6 7 81 2 3 4

A divide-and-conquer algorithm
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5 6 7 81 2 3 4

36

2610

1573 11

Up-sweep

Input:

Down-sweep

10 15 21 280 1 3 6Output:

+0

+10+0

+21+3+0 +10



Pseudocode for scan
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reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return A[0..n]=L+R;
}

5 6 7 81 2 3 45 6 7 81 2 3 4

36

2610

1573 11

Up-sweep

Input:

Down-sweep

10 15 21 280 1 3 6Output:

+0

+10+0

+21+3+0 +10

scan(A, n, ps) {
if (n == 1) { A[0]=ps; return;}
In parallel:

scan(A, n/2, ps);
scan(A+n/2, n-n/2, ps+LeftSum);

}



Filtering / packing

48



Parallel filtering / packing

• Given an array 𝑨 of elements and a predicate function 𝒇, output an array 
𝑩 with elements in 𝑨 that satisfy 𝒇
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4 2 9 3 6 5 7 11 10 8

9 3 5 7 11

𝑓 𝑥 = ቊ
𝑡𝑟𝑢𝑒 𝑖𝑓 𝑥 𝑖𝑠 𝑜𝑑𝑑
𝑓𝑎𝑙𝑠𝑒 𝑖𝑓 𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛

𝐴 =

𝐵 =



Parallel filtering / packing

• Sequentially, we just read the array from left to right and put those 
satisfying 𝒇 into an input array

• How can we know the length of 𝑩 in parallel?
• Count the number of red elements – parallel reduce

• 𝑂(𝑛) work and 𝑂(log 𝑛) span
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4 2 9 3 6 5 7 11 10 8𝐴 =

0 0 1 1 0 1 1 1 0 0



Parallel filtering / packing

• How can we know where should 9 go?
• 9 is the first red element, 3 is the second, …
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4 2 9 3 6 5 7 11 10 8𝑨 =

0 0 1 1 0 1 1 1 0 0

0 0 0 1 2 2 3 4 5 5

9 3 5 7 11𝐵 =

0 1 2 3 4index

Prefix sum of flags

flags of A

Filter(A, n, B, f) {
new array flag[n], ps[n];
parallel_for (i = 0 to n-1) {
flag[i] = f(A[i]); }

ps = prefix_sum(flag, n);
parallel_for(i=0 to n-1) {
if (f(A[i]))

B[ps[i]] = A[i];
} }



Parallel Filtering/packing

•𝑂(𝑛) work

•𝑂(log 𝑛) span
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Filter(A, n, B, f) {
new array flag[n], ps[n];
parallel_for (i = 0 to n-1) {
flag[i] = f(A[i]); }

ps = prefix_sum(flag, n);
parallel_for(i=0 to n-1) {
if (f(A[i]))

B[ps[i]] = A[i];
} }



Parallel Quicksort
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Sequential quicksort

• How to move elements around? 
(using 6 as a pivot)
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0 2 9 8 1 3 5 7 4 6

Partition(A, n, x) {
i = 0; j = n-1;
while (i < j) {
while (A[i] < x) i++;
while (A[j] > x) j++;
if (i < j) {

swap A[i] and A[j];
i++; j--;

}
}

}

0 2 9 8 1 3 5 7 4 6

0 2 4 8 1 3 5 7 9 6

0 2 4 5 1 3 8 7 9 6

• 𝚯(𝒏) time for one round

0 2 4 8 1 3 5 7 9 6

0 2 4 5 1 3 8 7 9 6

: j

: i



Sequential quicksort

• Use a pivot and partition the array 
into two parts

• Sort each of them recursively
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• Use a pivot and partition the array 
into two parts

• Sort each of them recursively, in 
parallel

Parallel quicksort

qsort(A, n) {
t = partition(A, A[random()]);
In parallel:
qsort(A, t);
qsort(A+t, n-t);

}

qsort(A, n) {
t = partition(A, A[random()]);
qsort(A, t);
qsort(A+t, n-t);

}



Parallel quick sort

• The partitioning algorithm costs 𝑶(𝒏) time. So even if the problem is 
always perfectly partitioned

• 𝑊 𝑛 = 2𝑊
𝑛

2
+ 𝑂(𝑛)

• 𝑆 𝑛 = 𝑆
𝑛

2
+ 𝑂 𝑛

• 𝑆 𝑛 = 𝑂(𝑛)?

• Have to partition in parallel!
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qsort(A, n) {
t = partition(A, A[random()]);
In parallel:
qsort(A, t);
qsort(A+t, n-t);

}



Application of filter: partition in quicksort

• For an array A, move elements in A smaller than 𝒌 to the left and those 
larger than 𝒌 to the right

• Two filters!!
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6 2 9 4 1 3 5 8 7 0A

2 4 1 3 5 0 6 9 8 7
Possible 

output:

Partition by 6



Using filter for partition
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6 2 9 4 1 3 5 8 7 0

0 1 0 1 1 1 1 0 0 1

Partition(A, n, k, B) {
new array flag[n], ps[n];
parallel_for (i = 1 to n) {
flag[i] = (A[i]<k); }

ps = scan(flag, n);
parallel_for(i=1 to n) {
if (A[i]<k)

B[ps[i]] = A[i];
} 
//symmetric for the right half

}

A

flag

X 2 X 4 1 3 5 X X 0A

0 0 1 1 2 3 4 5 5 5Prefix sum 

of flag

using 6 as a pivot

2 4 1 3 5 0pack

Predicator: if A[i]<pivot 

(Looking at the left part as an example)

6 9 8 7



Parallel quicksort

• Work
• Exactly the same as sequential version

• 𝑂(𝑛 log 𝑛) in expectation

• Span
• 𝑂 log 𝑛 × (#rounds of recursions) = 𝑂(log2 𝑛) in expectation

59

qsort(A, n) {
t = parallel_partition(A, A[random()]);
In parallel:
qsort(A, t);
qsort(A+t, n-t);

}



Summary

60



Topics covered today

• Computational models and cost measures
• RAM model and time complexity

• The binary fork-join model and work-span analysis

• Will be more in the future

• Race: two logically parallel instructions access the same memory location 
and at least one of the instructions performs a write
• Should be avoided and can be avoided

• Filtering/packing: based on scan

• Quicksort: based on filtering
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What we have talked about so far: parallel algorithms

• Avoid low-level details
• The binary fork-join model

• Scheduler

• Cost measures: work and span

• Coarsening: for divide-and-conquer algorithms

• Some parallel algorithms
• Reduce → Scan → Pack → Partition → Quicksort

• Parallel thinking
• Consider problems as primitives, and build one on top of others

• Functional programming
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The next two lectures

•An Overview of Computer Architecture
• Instruction level parallelism (ILP)

• Multiple processing cores

• Vector (superscalar, SIMD) processing

• Multi-threading (hyper-threading)

• Caching
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