CS142: Algorithm Engineering

Parallel Algorithms

Yan Gu

Course announcement

* Problem-solving training 2 is available (due date: next Wednesday)
 Performance-engineering homework 1 is due 11:59 PM today

 You can check your CS142 Winter 2021
candy count by submitting = soee eeo

a n e pt f. I e o n g rad esco p e Edit your course description on the Course Settings page. o Finish grading Programming-solving Training 1.
¢ ACTIVE ASSIGNMENTS RELEASED DUE (PST) » < SUBMISSIONS % GRADED $ PUBLISHED REGRAI
Programming-solving Training 1 JAN 04 MAR 01 AT 12:00AM 16 93% Q ON
\ ' C——
Candies N1 FEE 08 AT 11:00PM 0 0% on

Performance-engineering Homework1 |\ JAN 20 AT 11:59 1 0% ON

Course announcement

* Grading for problem-solving training 1 is available
* However, | still have some confusions
« 23 students have registered for the course
18 have solved at least one problem
* Only 16 submitted the report
23 students on ilearn, banner, and igrade
18 has reserved lab machines
» 25 students on piazza and gradescope

* For those who solved problems after our first due, please resubmit an
updated report and denote which are solved after the first due

CS142: Algorithm Engineering

Parallel Algorithms

Yan Gu

Scheduler

* Consider it as a complier. Programmers then only need to focus on high-
level algorithm design

Compiler

Executable machine code

Parallel execution order using p processors

» We always assume an effective scheduler
* We design algorithms only focusing on generating parallel tasks

logn levels of fork fork

fork

Binary Fork-Join Model

* You write the code exactly the same as
the sequential code, except that

n tasks in parallel

* The “in para
run in paralle

 The “paralle
parallel

lel” instruction: for
(but not necessari

for” instruction: al

K two tasks (functions) and they can be
y run in parallel)

iterations in this for loop can be run in

reduce(A, n) {
if (n

In parallel:

L

R

return L+R;

1) return A[O];

reduce(A, n/2);
reduce(A + n/2, n-n/2);

copy(A, B, n) {
parallel for (i=0; i<n; i++)
B[i] = A[1];

Cost model: work-span

* For all computations, draw a DAG

* A->B means that B can be performed only
when A has been finished

* Work: the total number of operations

* Span (depth): the longest length of
chain

* |t shows the dependency of operations in the algorithm

reduce(A, n) {
. if (n == 1) return A[Q];
COmpUtathnal DAG In parallel:

L = reduce(A, n/2);

R = reduce(A + n/2, n-n/2);
return L+R;

}
/\
/\ /\
o~ o~ T~ T~
1 2 3 4 5 6 I 3
3 I 11 15
—t —tr
10 26
\\\\\\\\\\\\\\:t;//////////////

36

Cost model: work-span

1 2 3 4 5 6 7 8
3 7 11 15
\-l-/

10 26
_I/

36

reduce(A, n) {
if (n == 1) return A[Q];
In parallel:
L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
return L+R;

}

Work: 0 (n)

* Work: The total number of operations in the algorithm
 Sequential running time when the algorithm runs on one processor
« Work-efficiency: the work is (asymptotically) no more than the best (optimal)

sequential algorithm

 Goal: make the parallel algorithm efficient when a small number of processor are

available

Cost model: work-span

1 2 3 4 5 6 7 8
3 7 11 15
\-l-/

10 26
_I/

36

 Span (depth): The longest dependency chain

reduce(A, n) {
if (n == 1) return A[Q];
In parallel:
L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
return L+R;

}

Span: O(logn)

* Total time required if there are infinite number of processors

 Qur goal is usually to make span polylogarithmic

» Goal: make the parallel algorithm faster and faster when more and more processors

are available (scalability)

10

Compute work and span Fork

* When we see a in-parallel (fork-join,

spawn-sync): Taskl Task?2
* in-parallel

 Task1
 Task2

* Work = work of Task1 + work of Task2+0(1)
* Span = max(span of Task1, span of Task2)+0(1)

Join

11

Programming fork-join parallelism

logn levels of fork fork

fork

Binary Fork-Join Model

* You write the code exactly the same as
the sequential code, except that

n tasks in parallel

* The “in para
run in paralle

 The “paralle
parallel

lel” instruction: for
(but not necessari

for” instruction: al

K two tasks (functions) and they can be
y run in parallel)

iterations in this for loop can be run in

reduce(A, n) {
if (n

In parallel:

L

R

return L+R;

1) return A[O];

reduce(A, n/2);
reduce(A + n/2, n-n/2);

copy(A, B, n) {
parallel for (i=0; i<n; i++)
B[i] = A[1];

13

As long as you can design a parallel algorithm in fork-join,
implementing them requires very little work on top of your

FO I’k-jOi n pal‘a||9| ism sequential C++ code

* Supported by many programming #include <cilk/cilk.h>
|anguages #include <cilk/cilk _api.h>
« Cilk/cilk+ (silk - thread) FOrk ==——p["ci1k_spawn do_thing 1;
 Based on C++ do_thing_2;

: : 11k ;
« Execute two tasks in parallel Join =7 cilk_sync

 do_thing_1 can be done in parallel in

another thread
* do_thing_2 will be done by the current
thread cilk_for (int i = 0; i < n; i++) {
« Parallel for-loop: execute n tasks in do_something;
parallel }

 For cilk, it first forks two tasks, then four,
then eight, ... in O(log n) rounds

14

Fork-join parallelism

* A lightweighted library: PBBS (Problem-based benchmark suite)
* Code available at: https://github.com/cmuparlay/pbbslib

You can also use cilk or openmp to
| #include “pbbslib/utilities.h” | compile your code

par_do([&] () {do_thing_1;}, \
[&] () {do_thing_2;}); ¥ lambda expression

(must be function calls)

/

parallel_for (0, 100, [&] (int i) {Do_something}); |

15

https://github.com/cmuparlay/pbbslib

Implementing parallel reduce in cilk

Pseudocode

Code using Cilk

reduce(A, n) {
if (n == 1) return A[O];
In parallel:
L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
return L+R;

int reduce(int* A, int n) {
if (n == 1) return A[QO];
int L, R;
L = cilk_spawn reduce(A, n/2);
R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

It is still valid is running sequentially,
l.e., by one processor

Implementing parallel reduce in PBBS

|#include “pbbslib/utilities.h”l You can also use cilk or openmp to
compile your code

void reduce(int* A, int n, int& ret) {
if (n == 1) ret = A[9]; else {

int L, R;
par_do([&] () {reduce(A, n/2, L);},

[&] () {reduce(A+n/2, n-n/2, R);}); lambda expression
ret = L+R; (must be function calls)

}
¥

|para11e1_for (0, 100, [&] (int 1) {A[i] = 1i;});

17

Implementation trick 1:
coarsening

Operation Costin CPU Cycles

“Simple” register-register op (ADD,OR,etc.)
Memory write

Bypass delay: switch between

integer and floating-point units

“Right” branch of “if”
Floating-point/vector addition
Multiplication (integer/float/vector)
Return error and check

L1 read

TLB miss

L2 read

“Wrong” branch of “if” (branch misprediction)
Floating-point division

128-bit vector division

Atomics/CAS

C function direct call

Integer division

C function indirect call

C++ virtual function call

L3 read

Main RAM read

NUMA: different-socket atomics/CAS
(guesstimate)

NUMA: different-socket L3 read
Allocation+deallocation pair (small objects)
NUMA: different-socket main RAM read
Kernel call

Thread context switch (direct costs)
C++ Exception thrown+caught

Thread context switch (total costs,
including cache invalidation)

Distance which light travels
while the operation is performed

100 101 102
[~1 |
[03 |
12|
13|
34 |
10-12]
10-20 |
[10-60 |
15-30 |
15-30 |
[15-40 |
EXI
EXIN
[100-150 |
95

Not all CPU operations are created ecual

103 104 10% 108

1000-1500
5000-10000

410000 - 1 million

allhe,

30km

* A cilk-spawn is
about 100 cycles

Image from ithare.com:

http://ithare.com/infographics-operation-costs-in-

cpu-clock-cycles/

19

http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/

Coarsening

* Forks and Joins are costly — they are the overhead of using parallelism
* If each task is too small, the overhead will be significant
* Solution: let each parallel task get enough work to do!

int reduce(int* A, int n) {
if (n < threshold) {
int ans = 0;
for (int 1 = @; i < n; i++)
ans += A[i];
return ans; }
int L, R;
L = cilk_spawn reduce(A, n/2);
R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

int reduce(int* A, int n) {
if (n == 1) return A[O];
int L, R;
L = cilk_spawn reduce(A, n/2);
R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

20

Computational Model

Time complexity

* Mergesort, quicksort: 0(n logn)

- Insertion sort, bubble sort: 0(n?)

*But what is time complexity?

22

What is an algorithm?

* An algorithm (/' ®lgarzdam/) is a finite sequence of well-defined,
computer-implementable instructions, typically to solve a class of
problems or to perform a computation (from Wikipedia)

23

Random-Access Machine (RAM)

* Unit cost for:
 Any instruction on ®(log n)-bit words
« Read/write a single memory location from an infinite memory

* The cost measure: time complexity

%

Memory

The equivalent programming model

INSERTION-SORT (A, n)

cost times
for j =2ton) n
key = A[j] Cy n—1
// Insert A[j] into the sorted sequence A[1..] — 1]. 0 -
| = j — 1 Cy n—1
while ; > 0 and A[i] > key Cs PCRE:
Ali + 1] = Ali] Co >
i =i—1 & >
A[i+1] = key Cg n—1

25

Algorithm A4 Cost bound f(A)

26

logn levels of fork fork

Binary Fork-Join Model fork fork

* In addition to RAM instructions, ntasksin parallel |
you can also use

 The “in parallel” instruction: fork two tasks (functions) and they can be
run in parallel (but not necessarily run in parallel)

 The “parallel for” instruction: all iterations in this for loop can be run in

parallel
reduce(A, n) { copy(A, B, n) {
if (n == 1) return A[Q]; parallel for (i=0; i<n; i++)
In parallel: B[i] = A[1i];
L = reduce(A, n/2); }
R = reduce(A + n/2, n-n/2);
return L+R;
J 27

Cost model: work-span

* For all computations, draw a DAG

* A->B means that B can be performed only
when A has been finished

* Work: the total number of operations

* Span (depth): the longest length of
chain

* |t shows the dependency of operations in the algorithm

28

Compute work and span Fork

* When we see a in-parallel (fork-join,
spawn-sync):
* in-parallel
« Task1
* Task2

* Work = work of Task1 + work of Task2+0(1)
* Span = max(span of Task1, span of Task2)+0(1) Join

Taskl Task?2

* When you see a serial code:
* Task1
* Task2

» Work = work of Task1 + work of Task2
* Span = work of Task1 + work of Task2

29

Algorithm A Cost bounds f(4), g(A4)

30

Race

Some materials are from 6.172 Performance Engineering
of Software Systems, credits to Charles Leiserson 31

Why is parallelism “hard”?

Non-determinism!!

32

Why is parallelism “hard”?

Non-determinism!!

* Scheduling is unknown
* Relative ordering for operations is unknown

 Hard to debug
* Bugs can be non-deterministic!
 Bugs can be different if you rerun the code
» Referred to as race hazard / condition

33

Race hazard can cause severe consequences

* Therac-25 radiation therapy machine
— killed 3 people and seriously
injured many more (between 1985
and 1987) https://en.wikipedia.org/wiki/Therac-25

* North American Blackout of 2003 —
left 50 million people without power

for up to a week.
https://en.wikipedia.org/wiki/Northeast blackout of 2003

 Race bugs are notoriously difficult to
discover by conventional testing!

https://en.wikipedia.org/wiki/Therac-25
https://en.wikipedia.org/wiki/Northeast_blackout_of_2003

Determinacy Races

* Definition: a determinacy race occurs when two logically parallel
instructions access the same memory location and at least one of the
instructions performs a write.

direct reduce(A, n) {
parallel for (i=0;i<n;i++)
sum = sum + a[i];
return sum;

} 7

35

Determinacy Races

* Definition: a determinacy race occurs when two logically parallel
instructions access the same memory location and at least one of the
instructions performs a write.

direct reduce(A, n) {
parallel for (i=0;i<2;i++)
sum = sum + a[i];
return sum;

} 7

return sum

36

Determinacy Races

* Definition: a determinacy race occurs when two logically parallel
instructions access the same memory location and at least one of the
instructions performs a write.

direct reduce(A, n) {
parallel for (i=0;i<2;i++)
sum = sum + a[i];
return sum;

} 7

return sum

37

Determinacy Races

* Definition: a determinacy race occurs when two logically parallel
instructions access the same memory location and at least one of the
instructions performs a write.

direct reduce(A, n) {
parallel for (i=0;i<2;i++)
sum = sum + a[i];
return sum;

} 7

return sum

38

Types of Races

* Suppose that instruction A and instruction B both access a location x, and
suppose that A||B (A is parallel to B).

A B RaceType

Read Read No race

Read Write Read race
Write Read Read race
Write Write Write race

 Two sections of code are independent if they have no determinacy races
between them.

39

Avoiding races

* |terations of a parallel_for loop should be independent

« Between two in_parallel tasks, the code of the two calls should be
independent, including code executed by further in_parallel tasks

reduce(A, n) {
if (n == 1) return A[0Q];
In parallel:
L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
return L+R;

} 7

40

Avoiding races

* |terations of a parallel_for loop should be independent

- Between two in_parallel tasks, the code of the two calls should be
independent, including code executed by further in_parallel tasks

reduce(A, n) {
if (n == 1) return A[O];
if (n is odd) n=n+1;
parallel for i=1 to n/2
B[i]=A[21]+A[2i+1];
return reduce(B, n/2);

} 7

41

Benefit of being race-free

 Scheduling is still unknown
* Relative ordering for operations is still unknown

* However, the computed value of each instruction is deterministic!

» Check the correctness of the sequential execution
» Check if the parallel execution is the same as the sequential one

42

This is not the end...

* Consider a hash table
* A key-value pair is inserted to a random location based on the key
* No guarantee that no two keys will not be inserted to the same location

* More relaxed definition is given in CS214 Parallel Algorithms offered in S21
« Other interesting concepts such as race detection and false sharing
» More parallel algorithms, programming, and formal training

43

Prefix Sum (Scan)

Prefix sum

n = 1 2 3 4 5 6 7 8
§ 1111111
Out= O 1% 3% 6 H10%15 218 28836

» 39

The most widely-used building block in parallel
algorithm design

A divide-and-conquer algorithm

Up-sweep 10 26 Down-sweep +0 +10
3 7 11 15 +0 +3 +10 +21
N NN N ANA A NEERAN

Input: | 2|2 /3|4/5|6 |7 8| Output: |0 1|3 6|10/ 15|21|28

46

Pseudocode for scan

36 +0
T T
Up-sweep 10 26 Down-sweep +0 +10
T T 2 N
3 7 11 15 +0 +3 +10 +21
N N NN\ AN SN N N

Input: | 2|2 /3|4/5|6 |7 8| Output: |0 1|3 6|10/ 15|21|28

reduce(A, n) { scan(A, n, ps) {
if (n == 1) return A[O]; if (n == 1) { A[@]=ps; return;}
In parallel: In parallel:
L = reduce(A, n/2); scan(A, n/2, ps);
R = reduce(A + n/2, n-n/2); scan(A+n/2, n-n/2, ps+LeftSum);
return A[O..n]=L+R; }
}

47

Filtering / packing

Parallel filtering / packing

 Given an array A of elements and a predicate function f, output an array
B with elements in A that satisfy f

_ | true if xisodd
flx) = {false if xis even

49

Parallel filtering / packing

* Sequentially, we just read the array from left to right and put those
satisfying f into an input array
* How can we know the length of B in parallel?

« Count the number of red elements - parallel reduce
* O(n) work and O(logn) span

50

Filter(A, n, B, f) {
. - . new array flag[n], ps[n];
Parallel filtering / packing rarailet for o120 to mo1) ¢
flag[i] = f(A[1]); }
* How can we know where should 9 go? ps =15>r<lef1icx_ium(flag, n;;{
. O : : parallel for(i=0 to n-1
9 is the first red element, 3 is the second, ... if (F(A[L]))
B[ps[i]] = A[1i];
P}
A= 4 2 9 3 6 5 / 11 10 8
! !
flags of A 0 0 1 1 0 1] 0 0
Prefix sum of flags 0 0 0] 2 2 3 4 5 5
index] 2 3 4
T
B = 9 5 / 11
51

Parallel Filtering/packing

*0(n) work

*O(logn) span

Filter(A, n, B, f) {
new array flag[n], ps[n];
parallel for (i = © to n-1) {
flag[i] = f(A[i]); }
ps = prefix_sum(flag, n);
parallel_for(i=0 to n-1) {
if (f(A[1]))
B[ps[i]] = A[1];
}o}

52

Parallel Quicksort

Sequential quicksort

Partition(A, n, x) {

. ?
How to move elements around* iZ0; = no1;

(using 6 as a pivot) while (i < 3) {
A =i while (A[i] < X) i++;
0 298135746 while (A[j] > x) j++;
if (1 <) {
0 298135746 swap A[1] and A[]];
it+; J--;
}

0 2481 3 57 9 6 }

}
0248135796

SNEIEE 15 s R * @(n) time for one round

0 24 51 3 87 9 6

NERREREEEE
HERREEEREE
BEEEEEEEEE
BEREEEEEEE
BEREEEEEEE
NERRERRERE

o4

Sequential quicksort Parallel quicksort

* Use a pivot and partition the array * Use a pivot and partition the array

into two parts into two parts
* Sort each of them recursively * Sort each of them recursively, in
parallel

gsort(A, n) {
t = partition(A, A[random()]);
In parallel:

gsort(A, t);

gsort(A+t, n-t);

gsort(A, n) {
t = partition(A, A[random()]);
gsort(A, t);
gsort(A+t, n-t);

J }

55

Parallel quick sort

* The partitioning algorithm costs O(n) time. So even if the problem is
always perfectly partitioned

c W(n) =2w (3) + 0(n) gsort(A, n)

t = partition(A, A[random()]);

. _ n In parallel:
S(n)=3S (2) +0(n) qsort(A, t);
« S(n) = 0(n)? gsort(A+t, n-t);
}

* Have to partition in parallel!

56

Application of filter: partition in quicksort

 For an array A, move elements in A smaller than k to the left and those
larger than k to the right

A |6/2|/9/4|1|3|5/8|7|0
Partition by 6
Possible
2(4/1(3]5 ()lllsa 8|7

output:

* Two filters!!

¥

_ _ . Partition(A, n, k, B) {
Using filter for partition new array flag[n], ps[nl;
parallel for (i =1 to n) {

flag[i] = (A[i]<k); }

(Looking at the left part as an example) ps = scan(flag, n);

using 6 as a inOt parallel for(i=1 to n) {
if (A[i]<k)
A 6 2 94913/ 58, 7|0 B[ps[i]] = A[i];
}
flag |0 |1]0|1]1]1]1]/0]0]1 //symmetric for the right half
}

A (X2 X|{[4/1/3|5 X/ X0

Prefix sum |lo0lol1l1l2/3/lal5/5|5 Predicator: if Ali]<pivot

of flag V4

pack |2|/4(1/3|5/0(6|9 8|7

58

gsort(A, n) {
t = parallel partition(A, A[random()]);

Pal‘a||9| QUiCkSOI't In parallel:

gsort(A, t);
gsort(A+t, n-t);

 Work

 Exactly the same as sequential version
* O(nlogn) in expectation

* Span

« 0O(logn) x (#rounds of recursions) = 0(log? n) in expectation

59

Summary

60

Topics covered today

« Computational models and cost measures
 RAM model and time complexity
 The binary fork-join model and work-span analysis
 Will be more in the future

 Race: two logically parallel instructions access the same memory location
and at least one of the instructions performs a write

e Should be avoided and can be avoided

* Filtering/packing: based on scan
* Quicksort: based on filtering

61

What we have talked about so far: parallel algorithms

* Avoid low-level details

* The binary fork-join model
 Scheduler
« Cost measures: work and span

* Coarsening: for divide-and-conquer algorithms

* Some parallel algorithms
 Reduce = Scan - Pack = Partition = Quicksort

- Parallel thinking

 Consider problems as primitives, and build one on top of others
* Functional programming

62

The next two lectures

* An Overview of Computer Architecture

* Instruction level parallelism (ILP)
 Multiple processing cores

* Vector (superscalar, SIMD) processing
 Multi-threading (hyper-threading)

» Caching

63

