CS142: Algorithm Engineering

Parallel Algorithms

Yan Gu

Course announcement

* Problem-solving training 1 is due on Wednesday

* Only 10 of you (less than half) have already solved some problems
* 3 solved all problems
* Another 2 solved two problems

* As a comparison, we also gave out 3 problems (but harder) in CS 218
with the same deadline

 Over 80% have solved problems already
* Over 60% have solved all problems

Modified score-to-grade mapping

 A+: very top performance in the class
*A: 85%

* A-: 82%

*B+: 78%

*B: 75%

*C: 68%

*D: 60%

*F: <60%

Course announcement
* Performance-engineering assignment 1 is out
* 60% written, practice the basic concepts and design parallel algorithms

* 40% programming, implement the algorithms and engineer performance

 Deadline: Jan 20 (Wednesday)

For the programming part

 Each of you will be assigned to a lab machine WCH133-01~WCH133-47

* Reservation is via this link:
https://docs.google.com/spreadsheets/d/1QiDI8 IMRzlymicn6vQYwyv-

mauQxzDKMVgDryNVsGjo/edit?usp=sharing

* Final performance testing is on ti-05 (a 12-core machine)

* Only use ti-05 for reporting numbers, not for debugging
 You get bonus candies if your solution is the fastest

o Start earlier!!!

https://docs.google.com/spreadsheets/d/1QiDI8_IMRzlymicn6vQYwv-mauQxzDKMVgDryNVsGjo/edit?usp=sharing

CS142: Algorithm Engineering

Parallel Algorithms

Yan Gu

Technology Scaling After 2004

1,000,000
100,000
Normalized
10,000 transistor count
1,000 Clock speed (MHz)
100 . ;3—0—‘ e
:’ »® "“ Processor cores
10 :
¢
~ ’ ’ I I
1 | | u iR | 1 | |]
*
0 *

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Year Stanford’s CPU DB [DKM12]

+96-cores, 192 hyper-threading

4 cores, 8 hyperthreading i +1.5TB of main memory

Usually $700-51500 T SIS - Cost: about 30k USD, mostly due to
— A memory

aWS . J——m \ Each of them a multi-
core machine
.y -

-,-
m-— TN\
;-
o]
o

AWS: 144 hyper-threads and 2TB of memory
0.01 to ~6 dollars per hour

Multi-core Programming

* We need to learn theory:
« Making performance predictable

* Not let this to happen —

Scheduler Program

* The scheduler maps each
task to a processor (e.g.,
whenever a processor is
available)

10

Scheduler

* Consider it as a complier. Programmers then only need to focus on high-
level algorithm design

Compiler

Executable machine code

Parallel execution order using p processors

» We always assume an effective scheduler
* We design algorithms only focusing on generating parallel tasks

11

logn levels of fork fork

fork

Binary Fork-Join Model

 You write the code exactly the same as
the sequential code, except that

n tasks in parallel

* The “in para
run in paralle

 The “paralle
parallel

lel” instruction: for
(but not necessari

for” instruction: al

K two tasks (functions) and they can be
y run in parallel)

iterations in this for loop can be run in

reduce(A, n) {
if (n

In parallel:

L

R

return L+R;

1) return A[O];

reduce(A, n/2);
reduce(A + n/2, n-n/2);

copy(A, B, n) {
parallel for (i=0; i<n; i++)
B[i] = A[1];

12

It’s extremely easy to implement such an algorithm

* Cilk, PBBS, the Java fork-join framework, X10, Habanero, Intel Threading
Building Blocks (TBB), and the Microsoft Task Parallel Library

reduce(A, n) {
if (n == 1) return A[O];
In parallel:
L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
return L+R;

reduce(A, n) {
if (n == 1) return A[Q];
L = cilk spawn reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
cilk_sync;
return L+R;

13

It’s extremely easy to implement such an algorithm

$include <iostream>
#include <cstdio>

#include <stdlib.h>
#include <cilk/cilk.h>
#include <cilk/cilk api.h>
using namespace std;

 Simple for theoretical analysis -
we’ll see in a while

* Simple for programming - almost

O] o o W

gint reduce (int* A, int n) {

exactly the code! o i a = 1) retusn AL
10 int L, R;
11 L = cilk spawn reduce(R, n/2);
12 R = reduce(A+n/”, n-n/?);
reduce(A, n) { 13 cilk sync;
if (n == 1) return A[0@]; N, et T
L = cilk spawn reduce(A, n/2); 16
. 17 Bint main() {
R = PedUCE(A + n/2) n'n/Z), 18 int n = atoi(argv[!']);

. . 19 int* A = new int[n]:
C11k—sync’ 20 cilk for (int i = 0; i < n; i++) A[i] = i;
r\etur\n L+R; 21 cout << reduce(A, n) << endl;

22
} 23 return 0;
24 L}

14

Cost model: work-span

* For all computations, draw a DAG

* A->B means that B can be performed only
when A has been finished

* Work: the total number of operations

* Span (depth): the longest length of
chain

* |t shows the dependency of operations in the algorithm

15

reduce(A, n) {
. if (n == 1) return A[Q];
COmpUtathnal DAG In parallel:

L = reduce(A, n/2);

R = reduce(A + n/2, n-n/2);
return L+R;

}
/\
/\ /\
o~ o~ T~ T~
1 2 3 4 5 6 I 3
3 I 11 15
—t —tr
10 26
\\\\\\\\\\\\\\:t;//////////////

36

16

Cost model: work-span

1 2 3 4 5 6 7 8
3 7 11 15
\-l-/

10 26
_I/

36

reduce(A, n) {
if (n == 1) return A[Q];
In parallel:
L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
return L+R;

}

Work: 0 (n)

* Work: The total number of operations in the algorithm
 Sequential running time when the algorithm runs on one processor
« Work-efficiency: the work is (asymptotically) no more than the best (optimal)

sequential algorithm

 Goal: make the parallel algorithm efficient when a small number of processor are

available

17

Cost model: work-span

1 2 3 4 5 6 7 8
3 7 11 15
\-l-/

10 26
_I/

36

 Span (depth): The longest dependency chain

reduce(A, n) {
if (n == 1) return A[Q];
In parallel:
L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
return L+R;

}

Span: O(logn)

* Total time required if there are infinite number of processors

 Qur goal is usually to make span polylogarithmic

» Goal: make the parallel algorithm faster and faster when more and more processors

are available (scalability)

18

Compute work and span Fork

* When we see a in-parallel (fork-join,

spawn-sync): Taskl Task?2
* in-parallel

 Task1
 Task2

* Work = work of Task1 + work of Task2+0(1)
* Span = max(span of Task1, span of Task2)+0(1)

Join

19

Compute work and span

reduce(A, n) {
’ W(n) - ZW(E) T 9(1) if (n == 1) return A[Q];
. _ L = spawn reduce(A, n/2);
= W(n) o G(n) R = reduce(A + n/2, n-n/2);
sync;
return L+R;
}
¢ S(n) =5(3) + (1)
* = S(n) = 0(logn) 1 2 3 4 5 6 7 8
3 7 11 15
— + - -+ =
10 26
— o+
36

20

* Find at most p tasks that do not depend on each other and execute them
in parallel

 Can be executed in time % + S using p processors for a DAG with work W
and span S

o %+ O(S) in practice, usually a big constant in the big-0

Golden standard for a parallel algorithm

* Simple

» Work-efficient
* (Asymptotically) Use no more work than the sequential algorithm
* Fast or no (much) slower on one core

* Low span

* |deally logarithmic or polylogarithmic

* Fast when there are lots of cores

22

Programming fork-join parallelism

logn levels of fork fork

fork

Binary Fork-Join Model

 You write the code exactly the same as
the sequential code, except that

n tasks in parallel

* The “in para
run in paralle

 The “paralle
parallel

lel” instruction: for
(but not necessari

for” instruction: al

K two tasks (functions) and they can be
y run in parallel)

iterations in this for loop can be run in

reduce(A, n) {
if (n

In parallel:

L

R

return L+R;

1) return A[O];

reduce(A, n/2);
reduce(A + n/2, n-n/2);

copy(A, B, n) {
parallel for (i=0; i<n; i++)
B[i] = A[1];

24

Cost model: work-span

* For all computations, draw a DAG

* A->B means that B can be performed only
when A has been finished

* Work: the total number of operations

* Span (depth): the longest length of
chain

* |t shows the dependency of operations in the algorithm

25

As long as you can design a parallel algorithm in fork-join,
implementing them requires very little work on top of your

FO I’k-jOi n pal‘a||9| ism sequential C++ code

* Supported by many programming #include <cilk/cilk.h>
|anguages #include <cilk/cilk _api.h>
 Cilk/cilk+ (Si"(- thread) Fork =P cilk_spawn do_thing 1;
 Based on C++ do_thing_2;

- - ilk ;
« Execute two tasks in parallel Join =¥ cilk_sync

 do_thing_1 can be done in parallel in

another thread
* do_thing_2 will be done by the current
thread cilk_for (int i = 0; i < n; i++) {
« Parallel for-loop: execute n tasks in do_something;
parallel }

 For cilk, it first forks two tasks, then four,
then eight, ... in O(log n) rounds

26

Cilk

* The name comes from silk because “silk
thread”

* A quick brain teaser: what is the
difference/common things between string E-
and thread? G

File:Spool of string.jpg - Wikipedia Pack of 100 Yo-Yo Strings 50... Jute Twine String Natural 250...

® If you don,t knOW What am aSking /find they en.wikipedia.org latiendadelyoyo.com officemax.co.nz - In stock
have nothing in common, you must be a
programmer

Product

 They are both thin, long cords

L

Irish Linen Bookbinding Thread... Amazon.com: GOELX Silk Thread Shiny and ... Browse Threads - WonderFil
talasonline.com - In stock amazon.com wonderfil.ca

21

Fork-join parallelism

* A lightweighted library: PBBS (Problem-based benchmark suite)
* Code available at: https://github.com/cmuparlay/pbbslib

You can also use cilk or openmp to
| #include “pbbslib/utilities.h” | compile your code

par_do([&] () {do_thing_1;}, \
[&] () {do_thing_2;}); ¥ lambda expression

(must be function calls)

/

parallel_for (0, 100, [&] (int i) {Do_something}); |

28

https://github.com/cmuparlay/pbbslib

Implementing parallel reduce in cilk

Pseudocode

Code using Cilk

reduce(A, n) {
if (n == 1) return A[O];
In parallel:
L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
return L+R;

int reduce(int* A, int n) {
if (n == 1) return A[QO];
int L, R;
L = cilk_spawn reduce(A, n/2);
R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

It is still valid is running sequentially,
l.e., by one processor

Implementing parallel reduce in PBBS

|#include “pbbslib/utilities.h”l You can also use cilk or openmp to
compile your code

void reduce(int* A, int n, int& ret) {
if (n == 1) ret = A[9]; else {

int L, R;
par_do([&] () {reduce(A, n/2, L);},

[&] () {reduce(A+n/2, n-n/2, R);}); lambda expression
ret = L+R; (must be function calls)

}
¥

|para11e1_for (0, 100, [&] (int 1) {A[i] = 1i;});

30

_ int reduce(int* A, int n) {
Testing parallel reduce if (n == 1) return A[@];
int L, R;
L = cilk_spawn reduce(A, n/2);
R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

Input of 10° elements

Sequential running time
Parallel code on 24 threads*
Parallel code on 4 threads
Parallel code on 1 thread

Self-speedup:
13.29

Code was running on course server
*: 12 cores with 24 hyperthreads 31

_ int reduce(int* A, int n) {
Testing parallel reduce if (n == 1) return A[@];

int L, R;
L = cilk _spawn reduce(A, n/2);
R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

Input of 10° elements

Sequential running time 0.61 s> Speedup:
Parallel code on 24 threads* 4.51s 27
Parallel code on 4 threads 17.14s

Parallel code on 1 thread 59.95s

Code was running on course server
*: 12 cores with 24 hyperthreads 32

Operation Costin CPU Cycles

“Simple” register-register op (ADD,OR,etc.)
Memory write

Bypass delay: switch between

integer and floating-point units

“Right” branch of “if”
Floating-point/vector addition
Multiplication (integer/float/vector)
Return error and check

L1 read

TLB miss

L2 read

“Wrong” branch of “if” (branch misprediction)
Floating-point division

128-bit vector division

Atomics/CAS

C function direct call

Integer division

C function indirect call

C++ virtual function call

L3 read

Main RAM read

NUMA: different-socket atomics/CAS
(guesstimate)

NUMA: different-socket L3 read
Allocation+deallocation pair (small objects)
NUMA: different-socket main RAM read
Kernel call

Thread context switch (direct costs)
C++ Exception thrown+caught

Thread context switch (total costs,
including cache invalidation)

Distance which light travels
while the operation is performed

100 101 102
[~1 |
[03 |
12|
13|
34 |
10-12]
10-20 |
[10-60 |
15-30 |
15-30 |
[15-40 |
EXI
EXIN
[100-150 |
95

Not all CPU operations are created ecual

103 104 10% 108

1000-1500
5000-10000

410000 - 1 million

allhe,

30km

* A cilk-spawn is
about 100 cycles

Image from ithare.com:

http://ithare.com/infographics-operation-costs-in-

cpu-clock-cycles/

33

http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/

Implementation trick 1:
coarsening

Coarsening

* Forking and joining are costly - this is the overhead of using parallelism
* If each task is too small, the overhead will be significant
* Solution: let each parallel task get enough work to do!

int reduce(int* A, int n) {
if (n < threshold) {
int ans = 0;
for (int 1 = @; i < n; i++)
ans += A[i];
return ans; }
int L, R;
L = cilk_spawn reduce(A, n/2);
R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

int reduce(int* A, int n) {
if (n == 1) return A[O];
int L, R;
L = cilk_spawn reduce(A, n/2);
R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

35

Testing parallel reduce with coarsening

Input of 10° elements
Algorithm
Sequential running time

Para
Para
Para
Para

e

e
e
e

CcodC
COC
COC

CcodC

e on 24t
e on 24t
e on 24t
e on 24t

nreac
nreac
nreac

nreac

S

S
S
S

Threshold
100
10000
1000000
10000000

Time
0.61s
0.27s
0.19s
0.19s
0.22s

Best threshold depends on the machine parameters and the problem

36

Testing parallel reduce with coarsening

Input of 10° elements

Algorithm Threshold Time

Sequential running time - 0.61s
Parallel code on 24 threads 100 0.27s
Parallel code on 24 threads 10000 0.19s
Parallel code on 24 threads 1000000 0.19s
Parallel code on 24 threads 10000000 0.22s

In the best case using 24 threads improves the performance by about 3 times.

- The reduce algorithm is I/O bounded (will be discussed in the course later)

- # threads is small

- Can expect better speedup in algorithms like matrix multiplication 37

Divide-and-conquer + coarsening

 Coarsening means that we don’t want each subtask running in parallel to
be too small

* |s there an alternative way to make it simpler?

38

Prefix Sum (Scan)

Prefix sum

n = 1 2 3 4 5 6 7 8
§ 1111111
Out= O 1% 3% 6 H10%15 218 28836

» 39

The most widely-used building block in parallel
algorithm design

A divide-and-conquer algorithm

Up-sweep 10 26 Down-sweep +0 +10
3 7 11 15 +0 +3 +10 +21
N NN N ANA A NEERAN

Input: | 2|2 /3|4/5|6 |7 8| Output: |0 1|3 6|10/ 15|21|28

41

Pseudocode for scan

36 +0
T T
Up-sweep 10 26 Down-sweep +0 +10
T T 2 N
3 7 11 15 +0 +3 +10 +21
N N NN\ AN SN N N

Input: | 2|2 /3|4/5|6 |7 8| Output: |0 1|3 6|10/ 15|21|28

reduce(A, n) { scan(A, n, ps) {
if (n == 1) return A[O]; if (n == 1) { A[@]=ps; return;}
In parallel: In parallel:
L = reduce(A, n/2); scan(A, n/2, ps);
R = reduce(A + n/2, n-n/2); scan(A+n/2, n-n/2, ps+LeftSum);
return A[O..n]=L+R; }
}

42

Parallel merge

43

Parallel merging

* Given two sorted arrays, merge them into one sorted array
» Sequentially, use two moving pointers

raid
e,

01 23 45 6 7 8 9

44

A parallel merge algorithm

* Find the median m of one array
* Binary search it in the other array
* Put m in the correct slot

 Recursively, in parallel do:

» Merge the left two sub-arrays into the
left half of the output

« Merge the right ones into the right half
of the output

Subproblem 1: Subproblem 2:
Merge 2,3 with 0,1 Merge 6,9 with 5,7,8

B %) &

45

A parallel merge algorithm Binary search

Subproblem 2:

//merge array A of length nl and array B of length Subproblem 1;:
" ¢ © Y © g Merge 6,9 with 5,7,8

n2 into array C. Merge 2,3 with 0,1
Merge(A’, nl, B’, n2, C) {
if (A’ is empty or B’ is empty) base case; m
m=nl/2;
m2 = binary search(B’, A’[m]);
C[m+m2+1] = A’[m]; m

in parallel:

merge(A’, m, B’, m2, C);
merge(A’+m+1, nl-m-1, B’+m2+1, n2-m2-1, C+m+m2); ’ ‘
return C;
} 01 2 3 45 6 7 8 9

46

