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Course announcement

• Problem-solving training 1 is due on Wednesday

• Only 10 of you (less than half) have already solved some problems

• 3 solved all problems

• Another 2 solved two problems

• As a comparison, we also gave out 3 problems (but harder) in CS 218 
with the same deadline

• Over 80% have solved problems already

• Over 60% have solved all problems



Modified score-to-grade mapping

•A+: very top performance in the class

•A: 85%

•A-: 82%

•B+: 78%

•B: 75%

•C: 68%

•D: 60%

•F: <60%
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Course announcement

• Performance-engineering assignment 1 is out

• 60% written, practice the basic concepts and design parallel algorithms 

• 40% programming, implement the algorithms and engineer performance

• Deadline: Jan 20 (Wednesday)
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For the programming part

• Each of you will be assigned to a lab machine WCH133-01~WCH133-47

• Reservation is via this link: 
https://docs.google.com/spreadsheets/d/1QiDI8_IMRzlymicn6vQYwv-
mauQxzDKMVgDryNVsGjo/edit?usp=sharing

• Final performance testing is on ti-05 (a 12-core machine)
• Only use ti-05 for reporting numbers, not for debugging

• You get bonus candies if your solution is the fastest

• Start earlier!!!
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Parallel machines
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4 cores, 8 hyperthreading
Usually $700-$1500

AWS: 144 hyper-threads and 2TB of memory 

Each of them a multi-
core machine

0.01 to ~6 dollars per hour

❖96-cores, 192 hyper-threading
❖1.5TB of main memory 
❖Cost: about 30k USD, mostly due to 
memory 



Multi-core Programming
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• We need to learn theory:
• Making performance predictable

• Not let this to happen →



Scheduler
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Scheduler

• The program generate 
tasks

• The scheduler maps each 
task to a processor (e.g., 
whenever a processor is 
available)

Program



Scheduler

• Consider it as a complier. Programmers then only need to focus on high-
level algorithm design
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Code in high-level language

Compiler

Executable machine code

Generate parallel tasks and their 

dependency

Scheduler

Parallel execution order using 𝒑 processors

• We always assume an effective scheduler

• We design algorithms only focusing on generating parallel tasks



Binary Fork-Join Model

• You write the code exactly the same as                                                      
the sequential code, except that 

• The “in parallel” instruction: fork two tasks (functions) and they can be 
run in parallel (but not necessarily run in parallel)

• The “parallel for” instruction: all iterations in this for loop can be run in 
parallel
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copy(A, B, n) {
parallel for (i=0; i<n; i++)

B[i] = A[i];
}

fork

fork fork

……𝑛 tasks in parallel

log 𝑛 levels of fork

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}



It’s extremely easy to implement such an algorithm

• Cilk, PBBS, the Java fork-join framework, X10, Habanero, Intel Threading 
Building Blocks (TBB), and the Microsoft Task Parallel Library
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reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

reduce(A, n) {
if (n == 1) return A[0];
L = cilk_spawn reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
cilk_sync;
return L+R;

}



It’s extremely easy to implement such an algorithm

• Simple for theoretical analysis –
we’ll see in a while

• Simple for programming – almost 
exactly the code!
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reduce(A, n) {
if (n == 1) return A[0];
L = cilk_spawn reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
cilk_sync;
return L+R;

}



Cost model: work-span
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• For all computations, draw a DAG
• A->B means that B can be performed only 

when A has been finished

• Work: the total number of operations

• Span (depth): the longest length of 
chain

• It shows the dependency of operations in the algorithm 



Computational DAG
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reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

1 32 654 87

3 7 11 15

+ + + +

10 26

+ +

36

+



Cost model: work-span

• Work: The total number of operations in the algorithm
• Sequential running time when the algorithm runs on one processor

• Work-efficiency: the work is (asymptotically) no more than the best (optimal) 
sequential algorithm

• Goal: make the parallel algorithm efficient when a small number of processor are 
available
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1 32 654 87

3 7 11 15

10 26

36

+ + + +

+ +

+ Work: 𝑂(𝑛)

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}



Cost model: work-span

• Span (depth): The longest dependency chain
• Total time required if there are infinite number of processors

• Our goal is usually to make span polylogarithmic

• Goal: make the parallel algorithm faster and faster when more and more processors 
are available (scalability)
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Span: 𝑂(log 𝑛)

1 32 654 87

3 7 11 15

10 26

36

+ + + +

+ +

+

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}



Compute work and span

• When we see a in-parallel (fork-join,        
spawn-sync): 
• in-parallel

• Task1

• Task2

• Work = work of Task1 + work of Task2+O(1)

• Span  = max(span of Task1, span of Task2)+O(1)
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Fork

Join

Task1 Task2



Compute work and span

• 𝑾 𝒏 = 𝟐𝑾
𝒏

𝟐
+ 𝚯(𝟏)

• ⇒ 𝑾 𝒏 = 𝚯(𝒏)

• 𝑺 𝒏 = 𝑺
𝒏

𝟐
+ 𝚯 𝟏

• ⇒ 𝑺 𝒏 = 𝚯(𝐥𝐨𝐠𝒏)
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reduce(A, n) {
if (n == 1) return A[0];
L = spawn reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
sync;
return L+R;

}

1 32 654 87

3 7 11 15

10 26

36

+ + + +

+ +

+



Reduce – how to schedule it?

1 32 654 87

3 7 11 15

10 26

36

+ + + +

+ +

+

Round 1

Round 2

Round 3

Round 4

• Find at most 𝒑 tasks that do not depend on each other and execute them 
in parallel

• Can be executed in time 
𝑾

𝒑
+ 𝑺 using 𝒑 processors for a DAG with work 𝑾

and span 𝑺

•
𝑾

𝒑
+ 𝑶 𝑺 in practice, usually a big constant in the big-O



Golden standard for a parallel algorithm

•Simple

•Work-efficient

• (Asymptotically) Use no more work than the sequential algorithm

• Fast or no (much) slower on one core

•Low span

• Ideally logarithmic or polylogarithmic

• Fast when there are lots of cores
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Programming fork-join parallelism
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Binary Fork-Join Model

• You write the code exactly the same as                                                      
the sequential code, except that 

• The “in parallel” instruction: fork two tasks (functions) and they can be 
run in parallel (but not necessarily run in parallel)

• The “parallel for” instruction: all iterations in this for loop can be run in 
parallel
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copy(A, B, n) {
parallel for (i=0; i<n; i++)

B[i] = A[i];
}

fork

fork fork

……𝑛 tasks in parallel

log 𝑛 levels of fork

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}



Cost model: work-span
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• For all computations, draw a DAG
• A->B means that B can be performed only 

when A has been finished

• Work: the total number of operations

• Span (depth): the longest length of 
chain

• It shows the dependency of operations in the algorithm 



Fork-join parallelism

• Supported by many programming 
languages

• Cilk/cilk+ (silk – thread)
• Based on C++

• Execute two tasks in parallel
• do_thing_1 can be done in parallel in 

another thread

• do_thing_2 will be done by the current 
thread

• Parallel for-loop: execute 𝑛 tasks in 
parallel
• For cilk, it first forks two tasks, then four, 

then eight, … in O(log n) rounds
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cilk_spawn do_thing_1;
do_thing_2;
cilk_sync;

cilk_for (int i = 0; i < n; i++) {
do_something;

}

#include <cilk/cilk.h>
#include <cilk/cilk_api.h>

Fork

Join

As long as you can design a parallel algorithm in fork-join, 

implementing them requires very little work on top of your 

sequential C++ code



Cilk

• The name comes from silk because “silk 
thread”

• A quick brain teaser: what is the 
difference/common things between string
and thread?
• If you don’t know what am asking / find they 

have nothing in common, you must be a 
programmer

• They are both thin, long cords

27



Fork-join parallelism

• A lightweighted library: PBBS (Problem-based benchmark suite)

• Code available at: https://github.com/cmuparlay/pbbslib
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#include “pbbslib/utilities.h”

par_do([&] () {do_thing_1;}, 
[&] () {do_thing_2;});

parallel_for (0, 100, [&] (int i) {Do_something}); 

lambda expression 

(must be function calls)

You can also use cilk or openmp to 

compile your code

https://github.com/cmuparlay/pbbslib


Implementing parallel reduce in cilk
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int reduce(int* A, int n) {
if (n == 1) return A[0];
int L, R;
L = cilk_spawn reduce(A, n/2);

R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

Pseudocode Code using Cilk

It is still valid is running sequentially, 

i.e., by one processor



Implementing parallel reduce in PBBS
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#include “pbbslib/utilities.h”

void reduce(int* A, int n, int& ret) {
if (n == 1) ret = A[0]; else {
int L, R;
par_do([&] () {reduce(A, n/2, L);}, 

[&] () {reduce(A+n/2, n-n/2, R);});
ret = L+R;

}
}

parallel_for (0, 100, [&] (int i) {A[i] = i;}); 

lambda expression 

(must be function calls)

You can also use cilk or openmp to 

compile your code



Testing parallel reduce
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Sequential running time 0.61s

Parallel code on 24 threads* 4.51s

Parallel code on 4 threads 17.14s

Parallel code on 1 thread 59.95s

Input of 𝟏𝟎𝟗 elements

*: 12 cores with 24 hyperthreads

int reduce(int* A, int n) {
if (n == 1) return A[0];
int L, R;
L = cilk_spawn reduce(A, n/2);

R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

Self-speedup:

13.29

Code was running on course server



Testing parallel reduce
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Sequential running time 0.61s

Parallel code on 24 threads* 4.51s

Parallel code on 4 threads 17.14s

Parallel code on 1 thread 59.95s

Input of 𝟏𝟎𝟗 elements

*: 12 cores with 24 hyperthreads

int reduce(int* A, int n) {
if (n == 1) return A[0];
int L, R;
L = cilk_spawn reduce(A, n/2);
R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

Speedup:

??

Code was running on course server



• A cilk-spawn is 
about 100 cycles
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Image from ithare.com: 

http://ithare.com/infographics-operation-costs-in-

cpu-clock-cycles/

http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/


Implementation trick 1:
coarsening
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Coarsening

• Forking and joining are costly – this is the overhead of using parallelism

• If each task is too small, the overhead will be significant

• Solution: let each parallel task get enough work to do!
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int reduce(int* A, int n) {
if (n < threshold) {

int ans = 0;
for (int i = 0; i < n; i++) 

ans += A[i];
return ans; }

int L, R;
L = cilk_spawn reduce(A, n/2);
R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

int reduce(int* A, int n) {
if (n == 1) return A[0];
int L, R;
L = cilk_spawn reduce(A, n/2);
R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }



Testing parallel reduce with coarsening
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Algorithm Threshold Time

Sequential running time - 0.61s

Parallel code on 24 threads 100 0.27s

Parallel code on 24 threads 10000 0.19s

Parallel code on 24 threads 1000000 0.19s

Parallel code on 24 threads 10000000 0.22s

Input of 𝟏𝟎𝟗 elements

Best threshold depends on the machine parameters and the problem



Testing parallel reduce with coarsening
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Algorithm Threshold Time

Sequential running time - 0.61s

Parallel code on 24 threads 100 0.27s

Parallel code on 24 threads 10000 0.19s

Parallel code on 24 threads 1000000 0.19s

Parallel code on 24 threads 10000000 0.22s

Input of 𝟏𝟎𝟗 elements

In the best case using 24 threads improves the performance by about 3 times.

- The reduce algorithm is I/O bounded (will be discussed in the course later)

- # threads is small

- Can expect better speedup in algorithms like matrix multiplication



Divide-and-conquer + coarsening

• Coarsening means that we don’t want each subtask running in parallel to 
be too small

• Is there an alternative way to make it simpler?

38



Prefix Sum (Scan)
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Prefix sum

In =            1     2     3     4   5     6     7     8

Out =  0     1     3     6    10   15  21   28   36

The most widely-used building block in parallel 

algorithm design



5 6 7 81 2 3 4

A divide-and-conquer algorithm

41

5 6 7 81 2 3 4

36

2610

1573 11

Up-sweep

Input:

Down-sweep

10 15 21 280 1 3 6Output:

+0

+10+0

+21+3+0 +10



Pseudocode for scan
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reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return A[0..n]=L+R;
}

5 6 7 81 2 3 45 6 7 81 2 3 4

36

2610

1573 11

Up-sweep

Input:

Down-sweep

10 15 21 280 1 3 6Output:

+0

+10+0

+21+3+0 +10

scan(A, n, ps) {
if (n == 1) { A[0]=ps; return;}
In parallel:

scan(A, n/2, ps);
scan(A+n/2, n-n/2, ps+LeftSum);

}



Parallel merge
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Parallel merging

• Given two sorted arrays, merge them into one sorted array

• Sequentially, use two moving pointers
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0 4 7 8

1 2 3 5 6 9

0 1 2 3 4 5 6 7 8 9



A parallel merge algorithm

• Find the median 𝒎 of one array

• Binary search it in the other array

• Put 𝒎 in the correct slot

• Recursively, in parallel do:
• Merge the left two sub-arrays into the 

left half of the output

• Merge the right ones into the right half 
of the output

45

93 4 62

0 1 5 7 8

41 2 30 96 7 85

Binary search

32

0 1

96

5 7 8

Subproblem 1:

Merge 2,3 with 0,1

Subproblem 2:

Merge 6,9 with 5,7,8



A parallel merge algorithm
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93 4 62

0 1 5 7 8

41 2 30 96 7 85

Binary search

32

0 1

96

5 7 8

Subproblem 1:

Merge 2,3 with 0,1

Subproblem 2:

Merge 6,9 with 5,7,8
//merge array A of length n1 and array B of length 
n2 into array C. 
Merge(A’, n1, B’, n2, C) {
if (A’ is empty or B’ is empty) base_case;
m = n1/2;
m2 = binary_search(B’, A’[m]);
C[m+m2+1] = A’[m];
in parallel:
merge(A’, m, B’, m2, C);
merge(A’+m+1, n1-m-1, B’+m2+1, n2-m2-1, C+m+m2);

return C;
}


