
Parallel Algorithms

Yan Gu

CS142: Algorithm Engineering

2

Course announcement

• Problem-solving training 1 is due on Wednesday

• Only 10 of you (less than half) have already solved some problems

• 3 solved all problems

• Another 2 solved two problems

• As a comparison, we also gave out 3 problems (but harder) in CS 218
with the same deadline

• Over 80% have solved problems already

• Over 60% have solved all problems

Modified score-to-grade mapping

•A+: very top performance in the class

•A: 85%

•A-: 82%

•B+: 78%

•B: 75%

•C: 68%

•D: 60%

•F: <60%
3

Course announcement

• Performance-engineering assignment 1 is out

• 60% written, practice the basic concepts and design parallel algorithms

• 40% programming, implement the algorithms and engineer performance

• Deadline: Jan 20 (Wednesday)

4

For the programming part

• Each of you will be assigned to a lab machine WCH133-01~WCH133-47

• Reservation is via this link:
https://docs.google.com/spreadsheets/d/1QiDI8_IMRzlymicn6vQYwv-
mauQxzDKMVgDryNVsGjo/edit?usp=sharing

• Final performance testing is on ti-05 (a 12-core machine)
• Only use ti-05 for reporting numbers, not for debugging

• You get bonus candies if your solution is the fastest

• Start earlier!!!

5

https://docs.google.com/spreadsheets/d/1QiDI8_IMRzlymicn6vQYwv-mauQxzDKMVgDryNVsGjo/edit?usp=sharing

Parallel Algorithms

Yan Gu

CS142: Algorithm Engineering

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Processor cores

Normalized
transistor count

Clock speed (MHz)

Stanford’s CPU DB [DKM12]Year

Technology Scaling After 2004

Parallel machines

8

4 cores, 8 hyperthreading
Usually $700-$1500

AWS: 144 hyper-threads and 2TB of memory

Each of them a multi-
core machine

0.01 to ~6 dollars per hour

❖96-cores, 192 hyper-threading
❖1.5TB of main memory
❖Cost: about 30k USD, mostly due to
memory

Multi-core Programming

9

• We need to learn theory:
• Making performance predictable

• Not let this to happen →

Scheduler

10

Scheduler

• The program generate
tasks

• The scheduler maps each
task to a processor (e.g.,
whenever a processor is
available)

Program

Scheduler

• Consider it as a complier. Programmers then only need to focus on high-
level algorithm design

11

Code in high-level language

Compiler

Executable machine code

Generate parallel tasks and their

dependency

Scheduler

Parallel execution order using 𝒑 processors

• We always assume an effective scheduler

• We design algorithms only focusing on generating parallel tasks

Binary Fork-Join Model

• You write the code exactly the same as
the sequential code, except that

• The “in parallel” instruction: fork two tasks (functions) and they can be
run in parallel (but not necessarily run in parallel)

• The “parallel for” instruction: all iterations in this for loop can be run in
parallel

12

copy(A, B, n) {
parallel for (i=0; i<n; i++)

B[i] = A[i];
}

fork

fork fork

……𝑛 tasks in parallel

log 𝑛 levels of fork

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

It’s extremely easy to implement such an algorithm

• Cilk, PBBS, the Java fork-join framework, X10, Habanero, Intel Threading
Building Blocks (TBB), and the Microsoft Task Parallel Library

13

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

reduce(A, n) {
if (n == 1) return A[0];
L = cilk_spawn reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
cilk_sync;
return L+R;

}

It’s extremely easy to implement such an algorithm

• Simple for theoretical analysis –
we’ll see in a while

• Simple for programming – almost
exactly the code!

14

reduce(A, n) {
if (n == 1) return A[0];
L = cilk_spawn reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
cilk_sync;
return L+R;

}

Cost model: work-span

15

• For all computations, draw a DAG
• A->B means that B can be performed only

when A has been finished

• Work: the total number of operations

• Span (depth): the longest length of
chain

• It shows the dependency of operations in the algorithm

Computational DAG

16

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

1 32 654 87

3 7 11 15

+ + + +

10 26

+ +

36

+

Cost model: work-span

• Work: The total number of operations in the algorithm
• Sequential running time when the algorithm runs on one processor

• Work-efficiency: the work is (asymptotically) no more than the best (optimal)
sequential algorithm

• Goal: make the parallel algorithm efficient when a small number of processor are
available

17

1 32 654 87

3 7 11 15

10 26

36

+ + + +

+ +

+ Work: 𝑂(𝑛)

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

Cost model: work-span

• Span (depth): The longest dependency chain
• Total time required if there are infinite number of processors

• Our goal is usually to make span polylogarithmic

• Goal: make the parallel algorithm faster and faster when more and more processors
are available (scalability)

18

Span: 𝑂(log 𝑛)

1 32 654 87

3 7 11 15

10 26

36

+ + + +

+ +

+

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

Compute work and span

• When we see a in-parallel (fork-join,
spawn-sync):
• in-parallel

• Task1

• Task2

• Work = work of Task1 + work of Task2+O(1)

• Span = max(span of Task1, span of Task2)+O(1)

19

Fork

Join

Task1 Task2

Compute work and span

• 𝑾 𝒏 = 𝟐𝑾
𝒏

𝟐
+ 𝚯(𝟏)

• ⇒ 𝑾 𝒏 = 𝚯(𝒏)

• 𝑺 𝒏 = 𝑺
𝒏

𝟐
+ 𝚯 𝟏

• ⇒ 𝑺 𝒏 = 𝚯(𝐥𝐨𝐠𝒏)

20

reduce(A, n) {
if (n == 1) return A[0];
L = spawn reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
sync;
return L+R;

}

1 32 654 87

3 7 11 15

10 26

36

+ + + +

+ +

+

Reduce – how to schedule it?

1 32 654 87

3 7 11 15

10 26

36

+ + + +

+ +

+

Round 1

Round 2

Round 3

Round 4

• Find at most 𝒑 tasks that do not depend on each other and execute them
in parallel

• Can be executed in time
𝑾

𝒑
+ 𝑺 using 𝒑 processors for a DAG with work 𝑾

and span 𝑺

•
𝑾

𝒑
+ 𝑶 𝑺 in practice, usually a big constant in the big-O

Golden standard for a parallel algorithm

•Simple

•Work-efficient

• (Asymptotically) Use no more work than the sequential algorithm

• Fast or no (much) slower on one core

•Low span

• Ideally logarithmic or polylogarithmic

• Fast when there are lots of cores

22

Programming fork-join parallelism

23

Binary Fork-Join Model

• You write the code exactly the same as
the sequential code, except that

• The “in parallel” instruction: fork two tasks (functions) and they can be
run in parallel (but not necessarily run in parallel)

• The “parallel for” instruction: all iterations in this for loop can be run in
parallel

24

copy(A, B, n) {
parallel for (i=0; i<n; i++)

B[i] = A[i];
}

fork

fork fork

……𝑛 tasks in parallel

log 𝑛 levels of fork

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

Cost model: work-span

25

• For all computations, draw a DAG
• A->B means that B can be performed only

when A has been finished

• Work: the total number of operations

• Span (depth): the longest length of
chain

• It shows the dependency of operations in the algorithm

Fork-join parallelism

• Supported by many programming
languages

• Cilk/cilk+ (silk – thread)
• Based on C++

• Execute two tasks in parallel
• do_thing_1 can be done in parallel in

another thread

• do_thing_2 will be done by the current
thread

• Parallel for-loop: execute 𝑛 tasks in
parallel
• For cilk, it first forks two tasks, then four,

then eight, … in O(log n) rounds

26

cilk_spawn do_thing_1;
do_thing_2;
cilk_sync;

cilk_for (int i = 0; i < n; i++) {
do_something;

}

#include <cilk/cilk.h>
#include <cilk/cilk_api.h>

Fork

Join

As long as you can design a parallel algorithm in fork-join,

implementing them requires very little work on top of your

sequential C++ code

Cilk

• The name comes from silk because “silk
thread”

• A quick brain teaser: what is the
difference/common things between string
and thread?
• If you don’t know what am asking / find they

have nothing in common, you must be a
programmer

• They are both thin, long cords

27

Fork-join parallelism

• A lightweighted library: PBBS (Problem-based benchmark suite)

• Code available at: https://github.com/cmuparlay/pbbslib

28

#include “pbbslib/utilities.h”

par_do([&] () {do_thing_1;},
[&] () {do_thing_2;});

parallel_for (0, 100, [&] (int i) {Do_something});

lambda expression

(must be function calls)

You can also use cilk or openmp to

compile your code

https://github.com/cmuparlay/pbbslib

Implementing parallel reduce in cilk

29

int reduce(int* A, int n) {
if (n == 1) return A[0];
int L, R;
L = cilk_spawn reduce(A, n/2);

R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

Pseudocode Code using Cilk

It is still valid is running sequentially,

i.e., by one processor

Implementing parallel reduce in PBBS

30

#include “pbbslib/utilities.h”

void reduce(int* A, int n, int& ret) {
if (n == 1) ret = A[0]; else {
int L, R;
par_do([&] () {reduce(A, n/2, L);},

[&] () {reduce(A+n/2, n-n/2, R);});
ret = L+R;

}
}

parallel_for (0, 100, [&] (int i) {A[i] = i;});

lambda expression

(must be function calls)

You can also use cilk or openmp to

compile your code

Testing parallel reduce

31

Sequential running time 0.61s

Parallel code on 24 threads* 4.51s

Parallel code on 4 threads 17.14s

Parallel code on 1 thread 59.95s

Input of 𝟏𝟎𝟗 elements

*: 12 cores with 24 hyperthreads

int reduce(int* A, int n) {
if (n == 1) return A[0];
int L, R;
L = cilk_spawn reduce(A, n/2);

R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

Self-speedup:

13.29

Code was running on course server

Testing parallel reduce

32

Sequential running time 0.61s

Parallel code on 24 threads* 4.51s

Parallel code on 4 threads 17.14s

Parallel code on 1 thread 59.95s

Input of 𝟏𝟎𝟗 elements

*: 12 cores with 24 hyperthreads

int reduce(int* A, int n) {
if (n == 1) return A[0];
int L, R;
L = cilk_spawn reduce(A, n/2);
R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

Speedup:

??

Code was running on course server

• A cilk-spawn is
about 100 cycles

33

Image from ithare.com:

http://ithare.com/infographics-operation-costs-in-

cpu-clock-cycles/

http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/

Implementation trick 1:
coarsening

34

Coarsening

• Forking and joining are costly – this is the overhead of using parallelism

• If each task is too small, the overhead will be significant

• Solution: let each parallel task get enough work to do!

35

int reduce(int* A, int n) {
if (n < threshold) {

int ans = 0;
for (int i = 0; i < n; i++)

ans += A[i];
return ans; }

int L, R;
L = cilk_spawn reduce(A, n/2);
R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

int reduce(int* A, int n) {
if (n == 1) return A[0];
int L, R;
L = cilk_spawn reduce(A, n/2);
R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

Testing parallel reduce with coarsening

36

Algorithm Threshold Time

Sequential running time - 0.61s

Parallel code on 24 threads 100 0.27s

Parallel code on 24 threads 10000 0.19s

Parallel code on 24 threads 1000000 0.19s

Parallel code on 24 threads 10000000 0.22s

Input of 𝟏𝟎𝟗 elements

Best threshold depends on the machine parameters and the problem

Testing parallel reduce with coarsening

37

Algorithm Threshold Time

Sequential running time - 0.61s

Parallel code on 24 threads 100 0.27s

Parallel code on 24 threads 10000 0.19s

Parallel code on 24 threads 1000000 0.19s

Parallel code on 24 threads 10000000 0.22s

Input of 𝟏𝟎𝟗 elements

In the best case using 24 threads improves the performance by about 3 times.

- The reduce algorithm is I/O bounded (will be discussed in the course later)

- # threads is small

- Can expect better speedup in algorithms like matrix multiplication

Divide-and-conquer + coarsening

• Coarsening means that we don’t want each subtask running in parallel to
be too small

• Is there an alternative way to make it simpler?

38

Prefix Sum (Scan)

39

Prefix sum

In = 1 2 3 4 5 6 7 8

Out = 0 1 3 6 10 15 21 28 36

The most widely-used building block in parallel

algorithm design

5 6 7 81 2 3 4

A divide-and-conquer algorithm

41

5 6 7 81 2 3 4

36

2610

1573 11

Up-sweep

Input:

Down-sweep

10 15 21 280 1 3 6Output:

+0

+10+0

+21+3+0 +10

Pseudocode for scan

42

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return A[0..n]=L+R;
}

5 6 7 81 2 3 45 6 7 81 2 3 4

36

2610

1573 11

Up-sweep

Input:

Down-sweep

10 15 21 280 1 3 6Output:

+0

+10+0

+21+3+0 +10

scan(A, n, ps) {
if (n == 1) { A[0]=ps; return;}
In parallel:

scan(A, n/2, ps);
scan(A+n/2, n-n/2, ps+LeftSum);

}

Parallel merge

43

Parallel merging

• Given two sorted arrays, merge them into one sorted array

• Sequentially, use two moving pointers

44

0 4 7 8

1 2 3 5 6 9

0 1 2 3 4 5 6 7 8 9

A parallel merge algorithm

• Find the median 𝒎 of one array

• Binary search it in the other array

• Put 𝒎 in the correct slot

• Recursively, in parallel do:
• Merge the left two sub-arrays into the

left half of the output

• Merge the right ones into the right half
of the output

45

93 4 62

0 1 5 7 8

41 2 30 96 7 85

Binary search

32

0 1

96

5 7 8

Subproblem 1:

Merge 2,3 with 0,1

Subproblem 2:

Merge 6,9 with 5,7,8

A parallel merge algorithm

46

93 4 62

0 1 5 7 8

41 2 30 96 7 85

Binary search

32

0 1

96

5 7 8

Subproblem 1:

Merge 2,3 with 0,1

Subproblem 2:

Merge 6,9 with 5,7,8
//merge array A of length n1 and array B of length
n2 into array C.
Merge(A’, n1, B’, n2, C) {
if (A’ is empty or B’ is empty) base_case;
m = n1/2;
m2 = binary_search(B’, A’[m]);
C[m+m2+1] = A’[m];
in parallel:
merge(A’, m, B’, m2, C);
merge(A’+m+1, n1-m-1, B’+m2+1, n2-m2-1, C+m+m2);

return C;
}

