CS142: Algorithm Engineering

Parallel Algorithms

Yan Gu

Course announcement

* Problem-solving training 1 is available

 Start to do it soon!
 Hard to predict the amount of time you need
* You don’t have other homework this week

5 of you have already solved some problems

 More have started

Course announcement

* Office hour:
* Yan Gu : 1:00 - 2:00 PM Friday
» Xiaojun Dong : 4:00 - 5:00 PM Tuesday

* Recorded video:
 https://www.cs.ucr.edu/~ygu/teaching/142/\W21/web/video/L1.mp4
* For future courses, just replace “1” to the lecture label

https://www.cs.ucr.edu/~ygu/teaching/142/W21/web/video/L1.mp4

CS142: Algorithm Engineering

Parallel Algorithms

Yan Gu

Technology Scaling After 2004

1,000,000
100,000
Normalized
10,000 transistor count
1,000
PY Clock speed (MHz)
100 .__Q_._
¢ LR K
ol P ks
10 : S
*
O s :
1 -
*
0 *
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Year

Stanford’s CPU DB [DKM12]

Technology Scaling After 2004

1,000,000
100,000
Normalized
10,000 transistor count
1,000 Clock speed (MHz)
100 . ;3—0—‘ e
:’ »® "“ Processor cores
10 :
¢
~ ’ ’ I I
1 | | u iR | 1 | |]
*
0 *

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Year Stanford’s CPU DB [DKM12]

Ways to Make Code Faster: Parallelism

Shared-memory
Multi-core
Parallelism

What you will learn in this lecture

Shared-memory
Multi-core

Parallelism

Multiple processors collaborate to get a task done

+96-cores, 192 hyper-threading

4 cores, 8 hyperthreading i +1.5TB of main memory

Usually $700-51500 T SIS - Cost: about 30k USD, mostly due to
— A memory

aWS . J——m \ Each of them a multi-
core machine
.y -

-,-
m-— TN\
;-
o]
o

AWS: 144 hyper-threads and 2TB of memory
0.01 to ~6 dollars per hour

We need to consider parallelism
In algorithm design!

Multi-core Programming: Theory and Practice

Memory leaking: memory which is no longer
needed is not released

(Pictures from 9gag.com)

11

Multi-core Programming: Theory and Practice

Deadlock: a state in which each member of
a group is waiting for another member,
including itself, to take action, such as
releasing a lock

} e

(Pictures from 9gag.com)

12

Multi-core Programming: Theory and Practice

Data Race: Two or more processors are
accessing the same memory location, and
at least one of them is writing

(Pictures from 9gag.com)

13

Multi-core Programming: Theory and Practice

Zombie process: a process that has
completed execution but still has an entry

in the process table Missing the 10th dog! Did it become a zombie???
1Y ,\\ L.‘“_‘-' ¢ 3 -
Data

y= — el

(Pictures from 9gag.com)

14

Multi-core Programming

* We need to learn theory:
« Making performance predictable

* Not let this to happen —

15

Parallel algorithms

« We’ll learn some fundamental knowledge about parallel algorithm design
« We'll practice parallel programming on some simple applications

* If you are interested, take the course CS214 (parallel algorithms) in Spring
 Offered by Yihan Sun, tier-1 graduate course

16

Warm-up: reduce
(Compute the sum of values in an array)

17

0 + 15 + 15 =36
A= 1 2 3|4 5 6|7 8
Sum(A): 36

* Cut the input array into smaller segments, sum each up individually,
and finally sum up the sums

Sum(A, n) {
int B[p];
for processor i (i=0..p-1) {
for (j=i*n/p to i*n/p+n/p) B[i] += A[]];
}
sync all processors;
for (j = © to p) ret += B[i];
return ret; }

6 + 15 + 15 =236
A= 1 2 3|4 5 6|7 8

Sum(A): 36
e Cut the input array into smaller segments, sum each up individually,

and finally sum up the sums

* Picking the appropriate number of segments can be annoying
« Machine parameter, runtime environment, algorithmic details

0 + 15 + 15 = 30
A= 1 2 3|14 5 6|7 8
Sum(A): 36

* Cut the input array into smaller segments, sum each up individually,
and finally sum up the sums

Sum(A, n) {
int B[p];
for processor i (i=0..p-1) { :
h O(n) processors?

sync all processors;
for (j = © to p) ret += B[i];
return ret; }

Problems

* Should not assume we know the number of processors p ahead
of time

* Algorithm must have good performance (parallelism) for any
given p (which even dynamically changes)

* Dealing with system-level issues is error-prone — makes parallel
programming notoriously hard

Is there an easier way for parallel algorithm/programming?

21

Dynamic Multi-threading (task-parallel)
+ Scheduler

Dynamic Multi-threading

 Specify parallelism for tasks
 Specify which tasks can be executed in parallel (parallel do, parallel for, ...)

* No worry about communication protocols, load balancing, system-level
implementation, # of available processors, ...

 The actual execution will be done by a scheduler

* Greatly simplifies programming and theoretical analysis

23

Scheduler Program

* The scheduler maps each
task to a processor (e.g.,
whenever a processor is
available)

24

Scheduler

* Consider it as a complier. Programmers then only need to focus on high-
level algorithm design

Compiler

Executable machine code

Parallel execution order using p processors

» We always assume an effective scheduler
* We design algorithms only focusing on generating parallel tasks

25

Back to the warm-up example

* Compute the sum (reduce) of all values in an array

reduce(A, n) {
if (n == 1) return A[QO];
In parallel:
L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
return L+R;

26

How to evaluate the running time (time
complexity) of a parallel algorithm

(without knowing how many processors can be used)

21

logn levels of fork fork

fork

Binary Fork-Join Model

 You write the code exactly the same as
the sequential code, except that

n tasks in parallel

* The “in para
run in paralle

 The “paralle
parallel

lel” instruction: for
(but not necessari

for” instruction: al

K two tasks (functions) and they can be
y run in parallel)

iterations in this for loop can be run in

reduce(A, n) {
if (n

In parallel:

L

R

return L+R;

1) return A[O];

reduce(A, n/2);
reduce(A + n/2, n-n/2);

copy(A, B, n) {
parallel for (i=0; i<n; i++)
B[i] = A[1];

28

It’s extremely easy to implement such an algorithm

* Cilk, PBBS, the Java fork-join framework, X10, Habanero, Intel Threading
Building Blocks (TBB), and the Microsoft Task Parallel Library

reduce(A, n) {
if (n == 1) return A[O];
In parallel:
L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
return L+R;

reduce(A, n) {
if (n == 1) return A[Q];
L = cilk spawn reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
cilk_sync;
return L+R;

29

It’s extremely easy to implement such an algorithm

$include <iostream>
#include <cstdio>

#include <stdlib.h>
#include <cilk/cilk.h>
#include <cilk/cilk api.h>
using namespace std;

 Simple for theoretical analysis -
we’ll see in a while

* Simple for programming - almost

O] o o W

gint reduce (int* A, int n) {

exactly the code! o i a = 1) retusn AL
10 int L, R;
11 L = cilk spawn reduce(R, n/2);
12 R = reduce(A+n/”, n-n/?);
reduce(A, n) { 13 cilk sync;
if (n == 1) return A[0@]; N, et T
L = cilk spawn reduce(A, n/2); 16
. 17 Bint main() {
R = PedUCE(A + n/2) n'n/Z), 18 int n = atoi(argv[!']);

. . 19 int* A = new int[n]:
C11k—sync’ 20 cilk for (int i = 0; i < n; i++) A[i] = i;
r\etur\n L+R; 21 cout << reduce(A, n) << endl;

22
} 23 return 0;
24 L}

30

Cost model: work-span

* For all computations, draw a DAG

* A->B means that B can be performed only
when A has been finished

* Work: the total number of operations

* Span (depth): the longest length of
chain

* |t shows the dependency of operations in the algorithm

31

reduce(A, n) {
. if (n == 1) return A[Q];
COmpUtathnal DAG In parallel:

L = reduce(A, n/2);

R = reduce(A + n/2, n-n/2);
return L+R;

}
/\
/\ /\
o~ o~ T~ T~
1 2 3 4 5 6 I 3
3 I 11 15
—t —tr
10 26
\\\\\\\\\\\\\\:t;//////////////

36

32

Cost model: work-span

1 2 3 4 5 6 7 8
3 7 11 15
\-l-/

10 26
_I/

36

reduce(A, n) {
if (n == 1) return A[Q];
In parallel:
L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
return L+R;

}

Work: 0 (n)

* Work: The total number of operations in the algorithm
 Sequential running time when the algorithm runs on one processor
« Work-efficiency: the work is (asymptotically) no more than the best (optimal)

sequential algorithm

 Goal: make the parallel algorithm efficient when a small number of processor are

available

33

Cost model: work-span

1 2 3 4 5 6 7 8
3 7 11 15
\-l-/

10 26
_I/

36

 Span (depth): The longest dependency chain

reduce(A, n) {
if (n == 1) return A[Q];
In parallel:
L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
return L+R;

}

Span: O(logn)

* Total time required if there are infinite number of processors

 Qur goal is usually to make span polylogarithmic

» Goal: make the parallel algorithm faster and faster when more and more processors

are available (scalability)

34

Compute work and span Fork

* When we see a in-parallel (fork-join,

spawn-sync): Taskl Task?2
* in-parallel

 Task1
 Task2

* Work = work of Task1 + work of Task2+0(1)
* Span = max(span of Task1, span of Task2)+0(1)

Join

35

Compute work and span

reduce(A, n) {
’ W(n) - ZW(E) T 9(1) if (n == 1) return A[Q];
. _ L = spawn reduce(A, n/2);
= W(n) o G(n) R = reduce(A + n/2, n-n/2);
sync;
return L+R;
}
¢ S(n) =5(3) + (1)
* = S(n) = 0(logn) 1 2 3 4 5 6 7 8
3 7 11 15
— + - -+ =
10 26
— o+
36

36

How do work and span relate to the
real execution and running time?

* Find at most p tasks that do not depend on each other and execute them
in parallel

 Can be executed in time % + S using p processors for a DAG with work W
and span S

o %+ O(S) in practice, usually a big constant in the big-0

Golden standard for a parallel algorithm

* Simple

» Work-efficient
* (Asymptotically) Use no more work than the sequential algorithm
* Fast or no (much) slower on one core

* Low span

* |deally logarithmic or polylogarithmic

* Fast when there are lots of cores

39

Summary

- Parallel algorithms
« Some theoretical results/tools, help you reason your parallel code/performance

* Dynamic multi-threading
 Keep things simple — only focus on high-level parallelism and dependency
 The actually execution will be done by a scheduler
* Fork-join
* Fork (spawn): create a new thread working on a task in parallel
« Join (sync): synchronous previously forked threads

» Work-span model
* A parallel algorithm/computation can be viewed as a DAG
« Work: the total number of operations. Running time using 1 processor

» Span (depth): the longest dependency chain. Running time using an unlimited
number of processors

40

Next lectures

* How to program a parallel algorithm
* In a simple, efficient, and elegant way
« Still some engineering work to do. What are they?

* More parallel algorithms
* Scan, filter, pack, partition, sorting
» Parallel thinking

41

