
Parallel Algorithms

Yan Gu

CS142: Algorithm Engineering

2

Course announcement

• Problem-solving training 1 is available

• Start to do it soon!
• Hard to predict the amount of time you need

• You don’t have other homework this week

• 5 of you have already solved some problems

• More have started

3

Course announcement

• Office hour:
• Yan Gu : 1:00 - 2:00 PM Friday

• Xiaojun Dong : 4:00 - 5:00 PM Tuesday

• Recorded video:
• https://www.cs.ucr.edu/~ygu/teaching/142/W21/web/video/L1.mp4

• For future courses, just replace “1” to the lecture label

https://www.cs.ucr.edu/~ygu/teaching/142/W21/web/video/L1.mp4

Parallel Algorithms

Yan Gu

CS142: Algorithm Engineering

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Technology Scaling After 2004

Clock speed (MHz)

Normalized
transistor count

Stanford’s CPU DB [DKM12]Year

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Processor cores

Normalized
transistor count

Clock speed (MHz)

Stanford’s CPU DB [DKM12]Year

Technology Scaling After 2004

7

Shared-memory

Multi-core

Parallelism

Ways to Make Code Faster: Parallelism

8

Shared-memory

Multi-core

Parallelism

What you will learn in this lecture

Multiple processors collaborate to get a task done

Parallel machines

9

4 cores, 8 hyperthreading
Usually $700-$1500

AWS: 144 hyper-threads and 2TB of memory

Each of them a multi-
core machine

0.01 to ~6 dollars per hour

❖96-cores, 192 hyper-threading
❖1.5TB of main memory
❖Cost: about 30k USD, mostly due to
memory

We need to consider parallelism
in algorithm design!

10

(Pictures from 9gag.com)

Theory Practice

11

Multi-core Programming: Theory and Practice

Memory leaking!

Memory leaking: memory which is no longer

needed is not released

(Pictures from 9gag.com)

Theory Practice

12

Multi-core Programming: Theory and Practice

Memory leaking!

Deadlock!

Deadlock: a state in which each member of

a group is waiting for another member,

including itself, to take action, such as

releasing a lock

(Pictures from 9gag.com)

Theory Practice

13

Multi-core Programming: Theory and Practice

Memory leaking!

Data Race

Deadlock!

Data Race: Two or more processors are

accessing the same memory location, and

at least one of them is writing

(Pictures from 9gag.com)

Theory Practice

14

Multi-core Programming: Theory and Practice

Memory leaking!

Data Race

Missing the 10th dog! Did it become a zombie???

Deadlock!

Zombie process: a process that has

completed execution but still has an entry

in the process table

Multi-core Programming

15

• We need to learn theory:
• Making performance predictable

• Not let this to happen →

Parallel algorithms

• We’ll learn some fundamental knowledge about parallel algorithm design

• We’ll practice parallel programming on some simple applications

• If you are interested, take the course CS214 (parallel algorithms) in Spring

• Offered by Yihan Sun, tier-1 graduate course

16

Warm-up: reduce
(Compute the sum of values in an array)

17

A = 1 2 3 4 5 6 7 8

Sum(A): 36

• Cut the input array into smaller segments, sum each up individually,
and finally sum up the sums

6 + 15 + 15 = 36

Sum(A, n) {
int B[p];
for processor i (i=0..p-1) {
for (j=i*n/p to i*n/p+n/p) B[i] += A[j];

}
sync all processors;
for (j = 0 to p) ret += B[i];
return ret; }

A = 1 2 3 4 5 6 7 8

Sum(A): 36

• Cut the input array into smaller segments, sum each up individually,
and finally sum up the sums

• Picking the appropriate number of segments can be annoying
• Machine parameter, runtime environment, algorithmic details

6 + 15 + 15 = 36

A = 1 2 3 4 5 6 7 8

Sum(A): 36

• Cut the input array into smaller segments, sum each up individually,
and finally sum up the sums

6 + 15 + 15 = 36

Sum(A, n) {
int B[p];
for processor i (i=0..p-1) {
for (j=i*n/p to i*n/p+n/p) B[i] += A[j];

}
sync all processors;
for (j = 0 to p) ret += B[i];
return ret; }

What if you have

𝑂(𝑛) processors?

Problems

• Should not assume we know the number of processors 𝒑 ahead
of time

• Algorithm must have good performance (parallelism) for any
given 𝒑 (which even dynamically changes)

• Dealing with system-level issues is error-prone – makes parallel
programming notoriously hard

Is there an easier way for parallel algorithm/programming?

21

Dynamic Multi-threading (task-parallel)

+ Scheduler

22

Dynamic Multi-threading

• Specify parallelism for tasks
• Specify which tasks can be executed in parallel (parallel do, parallel for, …)

• No worry about communication protocols, load balancing, system-level
implementation, # of available processors, …

• The actual execution will be done by a scheduler

• Greatly simplifies programming and theoretical analysis

23

Scheduler

24

Scheduler

• The program generate
tasks

• The scheduler maps each
task to a processor (e.g.,
whenever a processor is
available)

Program

Scheduler

• Consider it as a complier. Programmers then only need to focus on high-
level algorithm design

25

Code in high-level language

Compiler

Executable machine code

Generate parallel tasks and their

dependency

Scheduler

Parallel execution order using 𝒑 processors

• We always assume an effective scheduler

• We design algorithms only focusing on generating parallel tasks

Back to the warm-up example

• Compute the sum (reduce) of all values in an array

26

1 32 654 87

3 7 11 15

10 26

36

+ + + +

+ +

+

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

?

?

? ?

? ?

?

How to evaluate the running time (time
complexity) of a parallel algorithm

(without knowing how many processors can be used)

27

Binary Fork-Join Model

• You write the code exactly the same as
the sequential code, except that

• The “in parallel” instruction: fork two tasks (functions) and they can be
run in parallel (but not necessarily run in parallel)

• The “parallel for” instruction: all iterations in this for loop can be run in
parallel

28

copy(A, B, n) {
parallel for (i=0; i<n; i++)

B[i] = A[i];
}

fork

fork fork

……𝑛 tasks in parallel

log 𝑛 levels of fork

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

It’s extremely easy to implement such an algorithm

• Cilk, PBBS, the Java fork-join framework, X10, Habanero, Intel Threading
Building Blocks (TBB), and the Microsoft Task Parallel Library

29

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

reduce(A, n) {
if (n == 1) return A[0];
L = cilk_spawn reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
cilk_sync;
return L+R;

}

It’s extremely easy to implement such an algorithm

• Simple for theoretical analysis –
we’ll see in a while

• Simple for programming – almost
exactly the code!

30

reduce(A, n) {
if (n == 1) return A[0];
L = cilk_spawn reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
cilk_sync;
return L+R;

}

Cost model: work-span

31

• For all computations, draw a DAG
• A->B means that B can be performed only

when A has been finished

• Work: the total number of operations

• Span (depth): the longest length of
chain

• It shows the dependency of operations in the algorithm

Computational DAG

32

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

1 32 654 87

3 7 11 15

+ + + +

10 26

+ +

36

+

Cost model: work-span

• Work: The total number of operations in the algorithm
• Sequential running time when the algorithm runs on one processor

• Work-efficiency: the work is (asymptotically) no more than the best (optimal)
sequential algorithm

• Goal: make the parallel algorithm efficient when a small number of processor are
available

33

1 32 654 87

3 7 11 15

10 26

36

+ + + +

+ +

+ Work: 𝑂(𝑛)

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

Cost model: work-span

• Span (depth): The longest dependency chain
• Total time required if there are infinite number of processors

• Our goal is usually to make span polylogarithmic

• Goal: make the parallel algorithm faster and faster when more and more processors
are available (scalability)

34

Span: 𝑂(log 𝑛)

1 32 654 87

3 7 11 15

10 26

36

+ + + +

+ +

+

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

Compute work and span

• When we see a in-parallel (fork-join,
spawn-sync):
• in-parallel

• Task1

• Task2

• Work = work of Task1 + work of Task2+O(1)

• Span = max(span of Task1, span of Task2)+O(1)

35

Fork

Join

Task1 Task2

Compute work and span

• 𝑾 𝒏 = 𝟐𝑾
𝒏

𝟐
+ 𝚯(𝟏)

• ⇒ 𝑾 𝒏 = 𝚯(𝒏)

• 𝑺 𝒏 = 𝑺
𝒏

𝟐
+ 𝚯 𝟏

• ⇒ 𝑺 𝒏 = 𝚯(𝐥𝐨𝐠𝒏)

36

reduce(A, n) {
if (n == 1) return A[0];
L = spawn reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
sync;
return L+R;

}

1 32 654 87

3 7 11 15

10 26

36

+ + + +

+ +

+

How do work and span relate to the
real execution and running time?

37

Reduce – how to schedule it?

1 32 654 87

3 7 11 15

10 26

36

+ + + +

+ +

+

Round 1

Round 2

Round 3

Round 4

• Find at most 𝒑 tasks that do not depend on each other and execute them
in parallel

• Can be executed in time
𝑾

𝒑
+ 𝑺 using 𝒑 processors for a DAG with work 𝑾

and span 𝑺

•
𝑾

𝒑
+ 𝑶 𝑺 in practice, usually a big constant in the big-O

Golden standard for a parallel algorithm

•Simple

•Work-efficient

• (Asymptotically) Use no more work than the sequential algorithm

• Fast or no (much) slower on one core

•Low span

• Ideally logarithmic or polylogarithmic

• Fast when there are lots of cores

39

Summary

• Parallel algorithms
• Some theoretical results/tools, help you reason your parallel code/performance

• Dynamic multi-threading
• Keep things simple – only focus on high-level parallelism and dependency
• The actually execution will be done by a scheduler

• Fork-join
• Fork (spawn): create a new thread working on a task in parallel
• Join (sync): synchronous previously forked threads

• Work-span model
• A parallel algorithm/computation can be viewed as a DAG
• Work: the total number of operations. Running time using 1 processor
• Span (depth): the longest dependency chain. Running time using an unlimited

number of processors

40

Next lectures

• How to program a parallel algorithm
• In a simple, efficient, and elegant way

• Still some engineering work to do. What are they?

• More parallel algorithms
• Scan, filter, pack, partition, sorting

• Parallel thinking

41

