
Road Ahead
and

Course Summary

Yan Gu

This lecture does not cover anything in CLRS

CS142: Algorithm Engineering

We are close to finish!

• We have done a lot of programming, some are about making your
algorithm run fast, others are about implementing classic
algorithms or classic problems

• Most of you have done well: about 60% have done almost all the
work and head toward an A or A+

• You deserve the grade, but hopefully the experience is more valuable

Knowledge

3

Data
structures

Methodo-
logies

Certain widely-
used algorithms

Analysis (time
complexity, work-span)

Problem-Solving

Problem
formalization

Mapping to initial solutions,
and further optimizations

Implementation

Reasoning and
debugging

What is a typical interview process? (Google’s
software developer as an example, link)

• Round 1: online assessment (90 minutes)
• Two data structures and algorithms questions that you have to complete in less than

90 minutes in total

• You'll need to write your own test cases as you won't be provided with any

• Round 2: Technical phone interview (1 or 2)
• You will solve data structure and algorithm questions

• You'll share a Google Doc with your interviewer, write your solution directly in the
document and won't have access to syntax highlighting or auto-completion like you
would in a regular IDE

• Finally, in addition to coding questions, you should also be ready to answer a few
typical behavioral questions

https://igotanoffer.com/blogs/tech/google-software-engineer-interview
https://igotanoffer.com/blogs/product-manager/behavioral-interview-questions-tech-companies

What is a typical interview process? (Google’s
software developer as an example)

• Round 3: Onsite interviews
• Onsite interviews are the real test. You'll typically spend a full day at a Google office

and do usually four interviews in total

• You'll typically get three coding interviews with data structure and algorithm
questions, and one system design interviews

• All candidates are expected to do extremely well in coding interviews. If you're
relatively junior (L4 or below) then the bar will be lower in your system design
interviews than for mid-level or senior engineers (e.g. L5 or above)

• You'll use a whiteboard to write your code in most onsite interviews at Google

Check again after 142:

• Can you implement the classic algorithms mentioned in 14/141?

• Dijkstra’s/Prim’s algorithm, Kruskal’s algorithm, Huffman code, 0/1 knapsack,
activity selection, sorting, various data structures

• If so, put them in a code-book. Remind yourself once a while, and review them
before an interview

• Do you have a better sense of algorithmic ideas?

• DP in classic forms (knapsack, LCS, LIS) and variations

• Greedy algorithms

• Representing geometric data (points, directions, polar angles)

• Can you implement an algorithm faster and more accurate within a time limit?

6

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Technology Scaling

Processor cores

Normalized
transistor count

Clock speed (MHz)

Stanford’s CPU DB [DKM12]Year

Vendor Solution: Multicore

∙To scale performance, processor

manufacturers put many processing

cores on the microprocessor chip

∙Each generation of Moore’s Law

potentially doubles the number of cores

Intel Core i7 3960X (Sandy Bridge E), 2011

• 6 cores / 3.3 GHz / 15-MB L3 cache

Check again after 142:

• What is the motivation for parallelism?

• How should we consider and design a parallel algorithm?
• Binary fork-join model, scheduler, work and span analysis

• Examples: reduce, scan, filter/packing, quicksort

• Interesting ideas: computational model, race, functional algorithms/programming

• What is our current architecture, and how to write efficient code on
top of that?
• Computer architecture: executing instructions, and accessing memory

• Things we don’t need to worry: ILP, hyperthreading, vectorization (mostly)

• Things we do need to consider: multicore (parallelism), I/O-efficiency

9

Recall that we have candies for CS 142

• Solved hard training problems, wrote the fastest code for a problem

• Solved bonus questions for homework problems

• Attend the class and discussions, participate in discussions

• Participate in training problem analysis

10

CS142-Algorithm Engineering

COUPON

The candies will directly be added to your final grade

• If I can see you again on the fall quarter, you are welcome
to my office and I will give you the gift

•My office: WCH 335

11

The candies will directly be added to your final grade

• 15 points for training

• 30 points for homework

• 5 points for midterm quiz

• Plus bonus points

• 5 points for training 4

• 25 points for final exam

• 20 points for final project

• Up to 5 points for training problem analysis

12

Tentative score-to-grade mapping

• A+: very top performance in the class

• A: 85%

• A-: 80%

• B+: 75%

• B: 70%

• C: 65%

• D: 60%

13

How about if I’m not satisfied with my current performance

• This is an elective course, so I don’t want to fail any of you

• This is a special time, and there are a lot of uncertainties and unexpected
problems we need to handle

• However, this is a programming course, with 70% weight on homework
and 30% on exams

• You need at least half of the scores for homework to pass

• You can still work on the training and homework problems, and send it to
me via email

• Alternatively, I’m fine if you drop the course (the deadline is in two days)

14

Training problem analysis

• Prepare a 10-minute talk
• What the problem is

• What your solution is and why it is correct

• How to program and what optimization you
use

• If there are other interesting solutions

• (You need to have solved that problem
already)

• You will get 3-5 bonus candies
• 3 candies by default

• Up to 2 bonus candies for good talks

15

Check again after 142:

• Can you implement the classic algorithms mentioned in 14/141?

• Dijkstra’s/Prim’s algorithm, Kruskal’s algorithm, Huffman code, 0/1 knapsack,
activity selection, sorting, various data structure

• If so, put them in a code-book. Remind yourself once a while, and review them
before an interview

• Do you have a better sense of algorithmic ideas?

• DP in classic forms (knapsack, LCS, LIS) and variations

• Greedy algorithms

• Representing geometric data (points, directions, polar angles)

• Can you implement an algorithm faster and more accurate within a time limit?

16

Check again after 142:

• Can you implement the classic algorithms mentioned in 14/141?

• Do you understand and be able to implement the classic algorithms in
CLRS?

• Do you have a better sense of algorithmic ideas?

• And use them to solve challenging problems?

• Can you implement an algorithm faster and more accurate within a time limit?

• And are you able to program a sophisticated algorithm with hundreds of
lines?

17

Check again after 142:

• What is the motivation for parallelism?

• How should we consider and design a parallel algorithm?
• Binary fork-join model, scheduler, work and span analysis

• Examples: reduce, scan, filter/packing, quicksort

• Interesting ideas: computational model, functional algorithms/programming

• What is our current architecture, and how to write efficient code on
top of that?
• Computer architecture: executing instructions, and memory access

• Things we don’t need to worry: ILP, hyperthreading, vectorization (mostly)

• Things we do need to consider: multicore (parallelism), I/O-efficiency

18

Check again after 142:

• What is the motivation for parallelism?

• How should we consider and design a parallel algorithm?

• What are the classic parallel algorithms?

• What is our current architecture, and how to write efficient code on
top of that?

• How to actually engineer an efficient algorithms for modern
architecture?

19

COMBINED BS + MS PROGRAMS

• https://student.engr.ucr.edu/BS-MS-requirements

• More details in PDF: link, one-page overview: link

• Many benefits:
• Save time & money, automatic admission, chance to excel, preparing you better for

industry or pursue a PhD

• Disadvantage: cost you a year of time, and some tuitions

20

https://student.engr.ucr.edu/BS-MS-requirements
https://student.engr.ucr.edu/sites/g/files/rcwecm1536/files/2019-09/BS%20MS%20Program%20Detailed%20Summary%209.27.19.pdf
https://student.engr.ucr.edu/sites/g/files/rcwecm1536/files/2020-11/BS%20%2B%20MS%20Program_One-Sheet.pdf

COMBINED BS + MS PROGRAMS

• https://student.engr.ucr.edu/BS-MS-requirements

• Application requirement:

• Cumulative GPA above 3.4

• Cumulative GPA above 3.2 in all math, science, & engineering courses

• Completion of core courses within two terms of expected graduation

• Minimum grade required in each core course is at least a B-

• Minimum combined GPA for core courses is above 3.2

21

https://student.engr.ucr.edu/BS-MS-requirements

Other options

•Apply for CS master program at UCR

• Just take the courses

•Apply for the CS PhD program at UCR

22

Research opportunities

• Amey Bhangale (complexity), Marek Chrobak (approximate algorithms),
Silas Richelson (cryptography)

• Yan Gu, Yihan Sun (efficient (parallel) algorithms)

• Vagelis Hristidis, Vassilis Tsotras (databases)

• Evangelos Papalexakis (data mining algorithms)

• Ahmed Eldawy (distributed algorithms), Amr Magdy (GIS algorithms)

• Rajiv Gupta, Zhijia Zhao (parallel software)

• Craig Schroeder, Tamar Shinar (graphics and scientific computing)

• Usually during summertime, but can continue during the quarters

• Can discuss more privately

23

24

CS 10&12 (10A/B)
Intro to

programming

CS 14 (10C)
Intro to data struc-
tures & algorithms

CS 111
Discrete

Structures

CS 141
Intermediate Data

Structures &
Algorithms

CS 145
Combinatorial
Optimization
Algorithms

CS 133
Computational

Geometry

CS 142
Algorithm

Engineering

CS 133 Computational Geometry

•Last offering: Spring 2020 (no offering in AY 2020-21)

•By: Ahmed Eldawy

25

Why studying geometry?

•Consider the data that a computer works on

•Except for very special cases (like a sequence), they
usually fall into two categories:

•Objects and their relations
• Usually abstracted as graphs, and we have learned many graph

algorithms

•Objects with their positions
• Abstracted as geometric problems

• Used further in areas such as databases, computer graphics,
data mining, machine learning

26

What are covered in CS 133 Computational Geometry?

•Based on the last offering by Ahmed Eldawy in S20

•Search problems

•Spatial indexing

• Intersection problems (Intersection of lines, rectangles,
and polygons)

•Convex Hull

•Dealunay Triangulation

27

CS 133 Computational Geometry

•Last offering: Spring 2020 (no offering AY 2020-21)

•By: Ahmed Eldawy

28

CS 145 Combinatorial Optimization Algorithms

•Last offering: Fall 2020

•By: Silas Richelson

29

What are covered in CS 145 Combinatorial Optimization?

•Based on the last offering by Silas Richelson in F20

•Sorting (1 lecture)

•Stable Marriage (1 lecture)

•Network flow (1 lecture)

•Linear programming (6 lectures)

•Some random topics about complexity and
randomized/approximate algorithms (~6 lectures)

30

Linear Programming

•A generalization for many problems such as knapsack
problems, network flow

•Most graph problems can be formalized as LP problems

31

CS 145 Combinatorial Optimization Algorithms

•Last offering: Fall 2020

•By: Silas Richelson

32

33

CS 10&12 (10A/B)
Intro to

programming

CS 14 (10C)
Intro to data struc-
tures & algorithms

CS 111
Discrete

Structures

CS 141
Intermediate Data

Structures &
Algorithms

CS 145
Combinatorial
Optimization
Algorithms

CS 133
Computational

Geometry

CS 142
Algorithm

Engineering

34

CS 10&12 (10A/B)
Intro to

programming

CS 14 (10C)
Intro to data struc-
tures & algorithms

CS 111
Discrete

Structures

CS 141
Intermediate Data

Structures &
Algorithms

CS 145
Combinatorial
Optimization
Algorithms

CS 133
Computational

Geometry

CS 142
Algorithm

Engineering
CS 218

Design and Analysis
of Algorithms

CS 218 Design And Analysis Of Algorithms

•Next offerings: Winter 2021 by Yihan, Spring 2021 by Yan

• Tier-1 graduate course

35

What are covered in CS 218 Design And Analysis

Of Algorithms? (Winter 2021 version)

• Divide-and-conquer (1 lecture)

• Greedy (1 lecture)

• Data structures (3 lectures)
• Winning trees, augmented trees, union-find, range trees

• Dynamic programming (4 lectures)
• DP implementations, DP for games, DP on trees, DP with

optimizations

• Graph algorithms (3 lectures)
• Review of 141 algorithms with optimizations, topological sort,

matching

• Randomized algorithms and amortized analysis (2 lectures)
36

Our versions of algorithm courses make an emphasis
on problem-solving

• (Winter 2021 version)

• Solving 15 problems with programming (similar to 142 programming
assignments), 3 problems in every two weeks (25%)

• Written homework (20%)

• Midterm (25%) and Final (30%)

• (Optional proof track, lots of hard problems you can try to solve for bonus
points)

37

CS 218 Design And Analysis Of Algorithms

•Next offerings: Winter 2021 by Yihan, Spring 2021 by Yan

• Tier-1 graduate course

38

39

CS 10&12 (10A/B)
Intro to

programming

CS 14 (10C)
Intro to data struc-
tures & algorithms

CS 111
Discrete

Structures

CS 141
Intermediate Data

Structures &
Algorithms

CS 145
Combinatorial
Optimization
Algorithms

CS 133
Computational

Geometry

CS 142
Algorithm

Engineering
CS 218

Design and Analysis
of Algorithms

40

CS 10&12 (10A/B)
Intro to

programming

CS 14 (10C)
Intro to data struc-
tures & algorithms

CS 111
Discrete

Structures

CS 141
Intermediate Data

Structures &
Algorithms

CS 145
Combinatorial
Optimization
Algorithms

CS 133
Computational

Geometry

CS 142
Algorithm

Engineering
CS 218

Design and Analysis
of Algorithms

CS 214
Parallel

algorithms

CS 214 Parallel algorithms

•Next offering: Spring 2021 by Yihan Sun

• Tier-1 graduate course

41

42

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Processor cores

Normalized
transistor count

Clock speed (MHz)

Stanford’s CPU DB [DKM12]Year

Powerful machines

• 96 cores, 192 hyperthreads,

1.5 TB main memory

• No one in this world can make Dijkstra or Bellman-Ford 100x faster
sequentially, but it is not too hard when we have this many of cores

• Every key component in a system or software is or will be run in parallel

• Learning parallel programming ≠ writing fast parallel code

43

What are covered in CS 214 Parallel Algorithms?

•Computational models

•Divide-and-conquer and recurrences

•Sorting

•Graph algorithms

•Data structures

•Locality and I/O-efficiency

•Scheduling

44

CS 214 Parallel algorithms

•Next offering: Spring 2021 by Yihan Sun

• Tier-1 graduate course

45

46

CS 10&12 (10A/B)
Intro to

programming

CS 14 (10C)
Intro to data struc-
tures & algorithms

CS 111
Discrete

Structures

CS 141
Intermediate Data

Structures &
Algorithms

CS 145
Combinatorial
Optimization
Algorithms

CS 133
Computational

Geometry

CS 142
Algorithm

Engineering
CS 218

Design and Analysis
of Algorithms

CS 214
Parallel

algorithms

47

CS 10&12 (10A/B)
Intro to

programming

CS 14 (10C)
Intro to data struc-
tures & algorithms

CS 111
Discrete

Structures

CS 141
Intermediate Data

Structures &
Algorithms

CS 145
Combinatorial
Optimization
Algorithms

CS 133
Computational

Geometry

CS 142
Algorithm

Engineering
CS 218

Design and Analysis
of Algorithms

CS 214
Parallel

algorithms

CS 219
Advanced
Algorithms

CS 215
Theory of

Computation

CS 216
Advanced

Cryptography

CS 219 Advanced algorithms

• Tier-2 graduate course

• If I’m going to teach it AY 21-22, I would probably cover:
• Randomization and sampling

• High probability analysis

• Advanced graph techniques: sparsification, low-stretch
embedding, spectrum graph theory

• Range and nearest neighbor search (in low and high dimension)

• streaming/online algorithms

48

CS 215 Theory of Computation

•Next offerings: Winter 2021 by Amey Bhangale

• Tier-2 graduate course

•List of topics:

49

Turing machines and computability theory The famous classes P and NP

Decidability NP-completeness

Undecidability and the Halting Problem More examples of NP-complete problems

Reducibility Space complexity and Savitch's Theorem

PCP and the mapping reducibility PSPACE and PSPACE-completeness

Time complexity classes Class NL

https://www.cs.ucr.edu/~jiang/cs215/main06-2x2.pdf
https://www.cs.ucr.edu/~jiang/cs215/main12-2x2.pdf
https://www.cs.ucr.edu/~jiang/cs215/main07-2x2.pdf
https://www.cs.ucr.edu/~jiang/cs215/main13-2x2.pdf
https://www.cs.ucr.edu/~jiang/cs215/main08-2x2.pdf
https://www.cs.ucr.edu/~jiang/cs215/main14-2x2.pdf
https://www.cs.ucr.edu/~jiang/cs215/main09-2x2.pdf
https://www.cs.ucr.edu/~jiang/cs215/main15-2x2.pdf
https://www.cs.ucr.edu/~jiang/cs215/main10-2x2.pdf
https://www.cs.ucr.edu/~jiang/cs215/main16-2x2.pdf
https://www.cs.ucr.edu/~jiang/cs215/main11-2x2.pdf
https://www.cs.ucr.edu/~jiang/cs215/main17-2x2.pdf

CS 216 Advanced Cryptography

•Next offerings: Winter 2021 by Silas Richelson

• Tier-2 graduate course

•List of topics include formal models of security and
applications:

•Public key encryption

•Digital signatures

•Secure protocols

•Etc.
50

51

CS 10&12 (10A/B)
Intro to

programming

CS 14 (10C)
Intro to data struc-
tures & algorithms

CS 111
Discrete

Structures

CS 141
Intermediate Data

Structures &
Algorithms

CS 145
Combinatorial
Optimization
Algorithms

CS 133
Computational

Geometry

CS 142
Algorithm

Engineering
CS 218

Design and Analysis
of Algorithms

CS 214
Parallel

algorithms

CS 219
Advanced
Algorithms

CS 215
Theory of

Computation

CS 216
Advanced

Cryptography

CS 142 is not just an end, but it can also be a start
for your algorithm journey

• UCR offers 8 related algorithm/theory courses after CS 141
• 4 are new this year (142, 214, 216, 219)

• The problem-solving ability is valuable for a variety of purposes
• Yihan and I will provide you further opportunities for training in existing courses:

142 (W21), 218 (W21, S21), and 214 (S21)

• Potential future paths:
• Get sufficient training before finding a job (right after graduation)

• Combined BS + MS Programs at UCR (cover both width and depth)

• Research or attend another graduate school

• More questions, arrange 1-on-1 meeting with me:
https://docs.google.com/spreadsheets/d/1zaHLyGvIEtokIaJwXZjBf014_Tw6S_qLZ9snsDA5bis/edit#gid=0

52

https://docs.google.com/spreadsheets/d/1zaHLyGvIEtokIaJwXZjBf014_Tw6S_qLZ9snsDA5bis/edit#gid=0

