
Graph Algorithms

Yan Gu

CS142: Algorithm Engineering

Graphs

• A good abstraction for a wide range of applications

• Consists mainly of Vertices (nodes) and Edges (arcs)

• Vertices model (a set of) objects

• Edges model relationships between objects

2

Social Network

3

Social networks

Knowledge

5

US
Washington

Capital-of

California State-in

Gavin

Newsom
Governor-of

Resident-in

Map

6

5
1

6

2

4

3

8

7

HUB

Bell Tower

Green

houses

Bookstore

Bourns

Hall

Winston

Chung

Hall

Pierce

Hall

7
22

8

6

1

25

4

3

11

Library

14
15

2

Delta’s route map for USA and Canada

7

Other transportation networks

Collaboration networks

Source: MIT 6.172 by Julian Shun

Erdős number:
Number of hops to

Erdős via

collaboration

Graph of protein–protein interactions (PPI)

10

The graph for code analysis and security

11

Other Applications

• Biological networks

• Financial transaction networks

• Economic trade networks

• Food web

• Various types of biological networks

• Image segmentation in computer vision

• Scientific simulations

• Many more…

Source: MIT 6.172 by Julian Shun

What is a graph 𝐺

• A Graph 𝑮 = 𝑽, 𝑬 , where 𝑽 is a vertex set, and 𝑬 is the edge set

• Usually we say 𝒏 = 𝑽 , the number of vertices; 𝒎 = 𝑬 , the number of
edges

• 𝑽 = 𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏

• 𝑬 = 𝒆𝟏, 𝒆𝟐, … , 𝒆𝒎

13

What is a graph?

• Edges can be directed / undirected
• Relationship can go one way or both ways

http://farrall.org/papers/webgraph_as_content.htmlhttp://www3.nd.edu/~dwang5/courses/spring15/assignments/A1/
Assignment1_SocialSensing.html

Source: MIT 6.172 by Julian Shun

What is a graph?

• Edges can be weighted / unweighted (unit weighted)
• Denotes “strength”, distance, etc.

https://msdn.microsoft.com/en-us/library/aa289152(v=vs.71).aspx

Distance between cities Flight costs

Source: MIT 6.172 by Julian Shun

What is a graph?

• Vertices and edges can have types and metadata
Google Knowledge Graph

http://searchengineland.com/laymans-visual-guide-googles-knowledge-graph-search-api-241935

Source: MIT 6.172 by Julian Shun

Social network queries

• Examples:
• Finding all your friends who went to the same high school as you

• Finding common friends with someone

• Social networks recommending people whom you might know

• Advertisement recommentations

http://www.facebookfever.com/introducing-facebook-new-graph-
api-explorer-features/

http://allthingsgraphed.com/2014/10/16/your-linkedin-network/

Source: MIT 6.172 by Julian Shun

Transportation network queries

• Examples:
• Find the cheapest way traveling from one city to the other

• Decide where to build a hub/add a flight to make more profit

• Find the shortest way to visit a set of locations (e.g., postman)

Source: MIT 6.172 by Julian Shun

Biological
network queries

• Example:
• Find patterns in biological

networks

• Find similarity between
different species

Source: UCR CS 260 (214) by Yihan Sun

Graph Problems

Reachability based Distance based Other

Undirected

Breadth-first search (BFS)
Connectivity
Biconnectivity
Spanning forest
Low-diameter
decomposition (LDD)

Minimum spanning forest /
tree (undirected)
Single-source shortest-paths
(SSSP)
All-pair shortest-paths
(APSP)
Betweenness centrality (BC)
Spanner / Hopset

Maximal independent
set (MIS)
Matching
Graph coloring
Coreness
Isomorphism

Directed
Strongly Connected
Components (SCC)

Page rank

Graph Problems

Reachability based Distance based Other

Undirected

Breadth-first search (BFS)
Connectivity
Biconnectivity
Spanning forest
Low-diameter
decomposition (LDD)

Minimum spanning forest /
tree (undirected)
Single-source shortest-paths
(SSSP)
All-pair shortest-paths
(APSP)
Betweenness centrality (BC)
Spanner / Hopset

Maximal independent
set (MIS)
Matching
Graph coloring
Coreness
Isomorphism

Directed
Strongly Connected
Components (SCC)

Page rank

• Planar graphs (graphs that can be drawn on a plain)

• Dynamic graphs (can change over time)

Real-world graph sizes in 2019

22

Graph Num. Vertices Num. Undirected Edges

soc-LiveJournal 4.8M 85M

com-Orkut 3M 234M

Twitter 41M 2.4B

Facebook (2011) [1] 721M 68.4B

Hyperlink2014 [2] 1.7B 124B

Hyperlink2012 [2] 3.5B 225B

Facebook (2018) > 2B > 300B

Yahoo! 272B 5.9T

Google (2018) > 100B 6T

Brain Connectome 100B (neurons) 100T (connections)

: Publicly available graphs
[1] The Anatomy of the Facebook Social Graph, Ugander et al. 2011
[2] http://webdatacommons.org/hyperlinkgraph/

: Private graph datasets
Source: CMU 15-853 by Laxman Dhulipala

Graph Representation

23

Adjacency Matrix

24

Adjacency Matrix

• Problem: takes too much space 𝑶 𝒏𝟐

25

Adjacency List

26

Adjacency List

• What do scientists use in practice?

27

Compressed sparse row (CSR)

• Two arrays: Offsets and Edges

• Offsets[i] stores the offset of where
vertex i’s edges start in Edges

• Total space: 𝑶 𝒏 +𝒎

28

1 3 7 9

2 5 1 3 4 5 2 4 2

...

...

Offsets

Edges

Vertex IDs 1 2 3 4

Graph Processing Systems

29

Graph Processing Frameworks

Graph processing frameworks/libraries
Pregel, Giraph, GPS, GraphLab, PowerGraph, PRISM, Pegasus, Knowledge Discovery Toolbox,
CombBLAS, GraphChi, GraphX, Galois, X-Stream, Gunrock, GraphMat, Ringo, TurboGraph,
TurboGraph++, FlashGraph, Grace, PathGraph, Polymer, GPSA, GoFFish, Blogel, LightGraph,
MapGraph, PowerLyra, PowerSwitch, Imitator, XDGP, Signal/Collect, PrefEdge, EmptyHeaded,
Gemini, Wukong, Parallel BGL, KLA, Grappa, Chronos, Green-Marl, GraphHP, P++, LLAMA, Venus,
Cyclops, Medusa, NScale, Neo4J, Trinity, GBase, HyperGraphDB, Horton, GSPARQL, Titan, ZipG,
Cagra, Milk, Ligra, Ligra+, Julienne, GraphPad, Mosaic, BigSparse, Graphene, Mizan, Green-Marl,
PGX, PGX.D, Wukong+S, Stinger, cuStinger, Distinger, Hornet, GraphIn, Tornado, Bagel,
KickStarter, Naiad, Kineograph, GraphMap, Presto, Cube, Giraph++, Photon, TuX2, GRAPE, GraM,
Congra, MTGL, GridGraph, NXgraph, Chaos, Mmap, Clip, Floe, GraphGrind, DualSim, ScaleMine,
Arabesque, GraMi, SAHAD, Facebook TAO, Weaver, G-SQL, G-SPARQL, gStore, Horton+, S2RDF,
Quegel, EAGRE, Shape, RDF-3X, CuSha, Garaph, Totem, GTS, Frog, GBTL-CUDA, Graphulo, Zorro,
Coral, GraphTau, Wonderland, GraphP, GraphIt, GraPu, GraphJet, ImmortalGraph, LA3, CellIQ,
AsyncStripe, Cgraph, GraphD, GraphH, ASAP, RStream, and many others…

• Provides high level primitives for graph algorithms

• Reduce programming effort of writing efficient parallel graph programs

GBBS: Graph Based Benchmark Suite

• Connectivity Problems
• Low-Diameter Decomposition

• Connectivity

• Spanning Forest

• Biconnectivity

• Minimum Spanning Tree (MST)

• Strongly Connected Components

• Covering Problems
• Coloring

• Maximal Matching

• Maximal Independent Set

• Approximate Set Cover

31

• Eigenvector Problems
• PageRank

• Substructure Problems
• Triangle Counting

• Approximate Densest Subgraph

• k-Core (coreness)

• Shortest Path Problems
• Unweighted SSSP (Breadth-First Search)

• General Weight SSSP (Bellman-Ford)

• Integer Weight SSSP (Weighted BFS)

• Single-Source Betweenness Centrality

• Single-Source Widest Path

• k-Spanner

https://github.com/ParAlg/gbbs

Engineering Parallel BFS

32

Parallel BFS Algorithm

s0

1

1

2

2

2

2

1

Frontier

• Can process each frontier in parallel
• Parallelize over both the vertices and their outgoing edges

Source: MIT 6.172 by Julian Shun

Forward search

• Assume the frontier is small

procedure BFS_FORWARD(G, U):
result = {}
parallel foreach v in U do:

parallel foreach v2 in out_neighbors(v) do:
if (v2 is not visited) then

add v2 to result
remove duplicates from result
return result

Work:
O(|U| + sum of outgoing edges from U)

Span: polylogarithmic

34

graph set of vertices

(previous frontier)

Visiting every edge on frontier can be wasteful

• Each step of BFS, every edge on frontier is visited
• Frontier can grow quickly for social graphs (few steps to visit all nodes)

• Most edge visits are wasteful! (they don’t lead to a successful “update”)

35Source: Stanford CS 149 by Kayvon Fatahalian

s0

1

1

2

2

2

2

1

Frontier

Visiting every edge on frontier can be wasteful

• Each step of BFS, every edge on frontier is visited
• Frontier can grow quickly for social graphs (few steps to visit all nodes)

• Most edge visits are wasteful! (they don’t lead to a successful “update”)

36Source: Stanford CS 149 by Kayvon Fatahalian

Dual-direction search

• Assume the frontier is large

procedure BFS_FORWARD(G, U, F, C):
result = {}
parallel foreach v in U do:

foreach v2 in out_neighbors(v) do:
if (v2 is visited) then

add v2 to result
remove duplicates from result
return result

Work for a round:
Still can be as large as O(|E|),
but usually less than that since once the loop can quit
once one of the in-neighbors is visited

37

procedure BFS_BACKWARD(G, U, F, C):
result = {}
parallel foreach v in V do:
if (v is not visited)

foreach v2 in in_neighbors(v) do:
if (v2∈U) then

add v to result and break
pack the result and return

Parallel SSSP

38

• On graph 𝑮 = (𝑽, 𝑬,𝒘), with edge weight function 𝒘: 𝒆 ↦ ℝ+ and a
source 𝒔 ∈ 𝑽, compute the shortest distances (paths) of all other
vertices to 𝒔. Let 𝒏 = |𝑽|, 𝒎 = |𝑬|.

• Dijkstra’s algorithm + priority queue
• Work efficient: process each vertex/edge once

• But hard to parallelize?

• Bellman-Ford
• Redundant work: process multiple times

• But parallelism is straightforward

Parallel SSSP

39

3
4

2

1

6

5

17

9
14

13

15

2

4

1

source

SSSP is notoriously hard in parallel

40

Theoretical algorithms:

[BGST16], [Cohen97], [Cohen00], [KS97], [Meyer01],

[Meyer02], [SS99], [Spencer97], [UY91]

Approximate: [ASZ20], [CFR20], [EN19], [Li20], [MPVX15]

No implementations

Practical implementations are

based on 𝚫-stepping [Meyer-

Sanders 03]:

Julienne [DBS17], GAPBS [BAP15],

Galois [NLP13], GraphIt [ZBC+20]

Other platforms: [BPG+17], [DBG +

14], [MAB+10], [ZCZM16], [WDY+16]

Parallel / concurrent priority

queues:

PRAM [BDM+96], [CH94], [CDP96],

[DPS96], [RCP+94]

Concurrent: [AKLS15], [CMH14],

[HKP+13], [LJ13], [LS12], [SL20], [ST05],

[ZMS19]

Others: [BKS15], [Sanders98]

No good

span (based

on Dijkstra)

Not as fast

as Δ-

stepping

No worst-

case bounds

Needs

tunning

Initial distance d[] to infinity

d[s]=0

F={s}, nextF={}

While (|F|>0)

let F’ be the 𝝆 smallest element from F, add other to nextF

parallel-for (v in F’)

parallel-for (u in v’ neighbor)

If (d[u]<d[v]+w(v,u))

d[u]=d[v]+w(v,u), add u to nextF

F=nextF, nextF={}

𝝆-stepping

41

Initial distance d[] to infinity

d[s]=0

F={s}, nextF={}

While (|F|>0)

add v in F with d[v]<i*Delta to F’, add other to nextF

parallel-for (v in F’)

parallel-for (u in v’ neighbor)

If (d[u]<d[v]+w(v,u))

d[u]=d[v]+w(v,u), add u to nextF

F=nextF, nextF={}

𝚫∗-stepping

42

Set up

• A 96-core machine (192 hyperthreads)
• 1.5TB main memory and 36MB*4 L3 cache

• C++ codes compiled with g++ 7.5.0 using CilkPlus with -O3 flag

43

Set up

• 7 graphs tested:
• 5 social and web graphs (scale-free networks): com-orkut (OK), Livejournal (LJ),

Twitter (TW), Friendster (FT), and Webgraph (WB)

• 2 road graphs: RoadUSA (USA), Germany (GE)

• 3 to 89 million vertices, 32 million to 3.6 billion edges

• Scale-free networks use uniformly distributed edge weight [1, 218]

• Road network has edge weight provided in the dataset

• 7 implementations tested:
• 𝚫-stepping: GAPBS [BAP15, ZYB+20], Galois [NLP13], Julienne [DBS17], ours (PQ-𝚫)

• Bellman-Ford: Ligra [SB13], ours (PQ-BF)

• 𝝆-stepping: ours (PQ-𝝆)

44

Heatmap: parallel running time relative to fastest on
each graph

45

Social and Web Graphs Road Graphs

OK LJ TW FT WB Ave. GE USA Ave.

-s
te

p
.

GAPBS 1.92 1.20 2.49 1.42 1.71 1.75 1.28 1.39 1.34

Julienne 2.14 1.63 1.88 1.32 1.82 1.76 38.48 42.55 40.51

Galois 1.42 1.39 1.26 1.50 2.00 1.51 1.27 1.22 1.25

*PQ-𝚫 1.24 1.14 1.55 1.77 1.24 1.39 1.00 1.00 1.00

B
F Ligra 1.98 1.34 1.60 2.47 1.90 1.86 - - -

*PQ-BF 1.39 1.27 1.80 2.25 1.55 1.65 1.76 1.66 1.71

-s
te

p
.

*PQ-𝝆-fix 1.05 1.18 1.00 1.01 1.01 1.05 1.38 1.33 1.35

*PQ-𝝆-best 1.00 1.00 1.00 1.00 1.00 1.00 1.38 1.33 1.35
For all Δ-stepping we use the best Δ. PQ-𝜌-best uses best 𝜌, and PQ-𝜌-fix uses a fixed value of 𝜌
for scale-free networks, and road graphs, respectively

(scale-free networks)
*: ours

Our implementations are always the fastest

46

Social and Web Graphs Road Graphs

OK LJ TW FT WB Ave. GE USA Ave.

-s
te

p
.

GAPBS 1.92 1.20 2.49 1.42 1.71 1.75 1.28 1.39 1.34

Julienne 2.14 1.63 1.88 1.32 1.82 1.76 38.48 42.55 40.51

Galois 1.42 1.39 1.26 1.50 2.00 1.51 1.27 1.22 1.25

*PQ-𝚫 1.24 1.14 1.55 1.77 1.24 1.39 1.00 1.00 1.00

B
F Ligra 1.98 1.34 1.60 2.47 1.90 1.86 - - -

*PQ-BF 1.39 1.27 1.80 2.25 1.55 1.65 1.76 1.66 1.71

-s
te

p
.

*PQ-𝝆-fix 1.05 1.18 1.00 1.01 1.01 1.05 1.38 1.33 1.35

*PQ-𝝆-best 1.00 1.00 1.00 1.00 1.00 1.00 1.38 1.33 1.35

(scale-free networks)

For all Δ-stepping we use the best Δ. PQ-𝜌-best uses best 𝜌, and PQ-𝜌-fix uses a fixed value of 𝜌
for scale-free networks, and road graphs, respectively

*: ours

Scale-free networks: 𝝆-stepping is faster than all
existing code by at least 20%

47

Social and Web Graphs Road Graphs

OK LJ TW FT WB Ave. GE USA Ave.

-s
te

p
.

GAPBS 1.92 1.20 2.49 1.42 1.71 1.75 1.28 1.39 1.34

Julienne 2.14 1.63 1.88 1.32 1.82 1.76 38.48 42.55 40.51

Galois 1.42 1.39 1.26 1.50 2.00 1.51 1.27 1.22 1.25

*PQ-𝚫 1.24 1.14 1.55 1.77 1.24 1.39 1.00 1.00 1.00

B
F Ligra 1.98 1.34 1.60 2.47 1.90 1.86 - - -

*PQ-BF 1.39 1.27 1.80 2.25 1.55 1.65 1.76 1.66 1.71

-s
te

p
.

*PQ-𝝆-fix 1.05 1.18 1.00 1.01 1.01 1.05 1.38 1.33 1.35

*PQ-𝝆-best 1.00 1.00 1.00 1.00 1.00 1.00 1.38 1.33 1.35

*: ours

Our 𝚫-stepping is fastest on road graphs, and our 𝝆-
stepping is competitive

48

Social and Web Graphs Road Graphs

OK LJ TW FT WB Ave. GE USA Ave.

-s
te

p
.

GAPBS 1.92 1.20 2.49 1.42 1.71 1.75 1.28 1.39 1.34

Julienne 2.14 1.63 1.88 1.32 1.82 1.76 38.48 42.55 40.51

Galois 1.42 1.39 1.26 1.50 2.00 1.51 1.27 1.22 1.25

*PQ-𝚫 1.24 1.14 1.55 1.77 1.24 1.39 1.00 1.00 1.00

B
F Ligra 1.98 1.34 1.60 2.47 1.90 1.86 - - -

*PQ-BF 1.39 1.27 1.80 2.25 1.55 1.65 1.76 1.66 1.71

-s
te

p
.

*PQ-𝝆-fix 1.05 1.18 1.00 1.01 1.01 1.05 1.38 1.33 1.35

*PQ-𝝆-best 1.00 1.00 1.00 1.00 1.00 1.00 1.38 1.33 1.35

*: ours

Number of visit (enqueue) per vertex

49

With careful coding, Bellman-Ford is already close to
optimal on scale-free networks (2.5 #enqueue per vertex)

50

𝝆-stepping is almost optimal (very close to 1)

51

Small graphs, act

like Bellman-Ford

Directed graph,

some vertices not

reachable

Room for improvement for road graphs
(but these graphs are relatively small)

52

Summary

53

Graph algorithms / processing

• One of the most fundamental component in computer science

• A promising topic and many interesting works are going on

• Good parallel algorithms for many classic problems remain unknown

• Areas remained to be explored:

• Extremely large graphs (do not fit in DRAM)

• Dynamic graphs

54

Results for Larger-than-DRAM Graphs

55

Lower
is

better

1.94x speedup on average over Galois, and

1.87x speedup over simply running GBBS codes using MemMode

