CS142: Algorithm Engineering

Graph Algorithms

Yan Gu

- A good abstraction for a wide range of applications
- Consists mainly of <u>Vertices</u> (nodes) and <u>Edges</u> (arcs)
- Vertices model (a set of) objects
- Edges model relationships between objects

Social Network

Social networks

Knowledge

Мар

Delta's route map for USA and Canada

Other transportation networks

Collaboration networks

Erdős number: Number of hops to Erdős via collaboration

Graph of protein-protein interactions (PPI)

The graph for code analysis and security

Other Applications

- Biological networks
- Financial transaction networks
- Economic trade networks
- Food web
- Various types of biological networks
- Image segmentation in computer vision
- Scientific simulations
- Many more...

What is a graph G

- A Graph G = (V, E), where V is a vertex set, and E is the edge set
- Usually we say n = |V|, the number of vertices; m = |E|, the number of edges

•
$$V = \{v_1, v_2, \dots, v_n\}$$

• $E = \{e_1, e_2, ..., e_m\}$

What is a graph?

Edges can be directed / undirected

• Relationship can go one way or both ways

Assignment1 SocialSensing.html

http://farrall.org/papers/webgraph as content.html

What is a graph?

- Edges can be weighted / unweighted (unit weighted)
 - Denotes "strength", distance, etc.

https://msdn.microsoft.com/en-us/library/aa289152(v=vs.71).aspx

What is a graph?

Vertices and edges can have types and metadata <u>Google Knowledge Graph</u>

http://searchengineland.com/laymans-visual-guide-googles-knowledge-graph-search-api-241935

Social network queries

http://www.facebookfever.com/introducing-facebook-new-graph-api-explorer-features/

http://allthingsgraphed.com/2014/10/16/your-linkedin-network/

• Examples:

- Finding all your friends who went to the same high school as you
- Finding common friends with someone
- Social networks recommending people whom you might know
- Advertisement recommentations

Transportation network queries

• Examples:

- Find the cheapest way traveling from one city to the other
- Decide where to build a hub/add a flight to make more profit
- Find the shortest way to visit a set of locations (e.g., postman)

Biological network queries

• Example:

- Find patterns in biological networks
- Find similarity between different species

Source: UCR CS 260 (214) by Yihan Sun

Graph Problems

	Reachability based	Distance based	Other
Undirected			
Directed			

Graph Problems

	Reachability based	Distance based	Other
Undirected	Breadth-first search (BFS) Connectivity Biconnectivity Spanning forest Low-diameter decomposition (LDD)	Minimum spanning forest / tree (undirected) Single-source shortest-paths (SSSP) All-pair shortest-paths (APSP) Betweenness centrality (BC)	Maximal independent set (MIS) Matching Graph coloring Coreness Isomorphism
Directed	Strongly Connected Components (SCC)	Spanner / Hopset	Page rank

- Planar graphs (graphs that can be drawn on a plain)
- Dynamic graphs (can change over time)

Real-world graph sizes in 2019

Graph	Num. Vertices	Num. Undirected Edges
soc-LiveJournal	4.8M	85M
com-Orkut	3M	234M
Twitter	41M	2.4B
Facebook (2011) [1]	721M	68.4B
Hyperlink2014 [2]	1.7B	124B
Hyperlink2012 [2]	3.5B	225B
Facebook (2018)	> 2B	> 300B
Yahoo!	272B	5.9T
Google (2018)	> 100B	6Т
Brain Connectome	100B (neurons)	100T (connections)

Publicly available graphs

•: Private graph datasets

Source: CMU 15-853 by Laxman Dhulipala

[1] The Anatomy of the Facebook Social Graph, Ugander et al. 2011[2] http://webdatacommons.org/hyperlinkgraph/

Graph Representation

Adjacency Matrix

Adjacency Matrix

- Problem: takes too much space $O(n^2)$

Adjacency List

 $\begin{array}{c}
1 \\
2 \\
3 \\
5 \\
4
\end{array}$

Adjacency List

• What do scientists use in practice?

Compressed sparse row (CSR)

- Two arrays: Offsets and Edges
- Offsets[i] stores the offset of where vertex i's edges start in Edges

• Total space: O(n+m)

Graph Processing Systems

Graph Processing Frameworks

- Provides high level primitives for graph algorithms
- Reduce programming effort of writing efficient parallel graph programs

Graph processing frameworks/libraries

Pregel, Giraph, GPS, GraphLab, PowerGraph, PRISM, Pegasus, Knowledge Discovery Toolbox, CombBLAS, GraphChi, GraphX, Galois, X-Stream, Gunrock, GraphMat, Ringo, TurboGraph, TurboGraph++, FlashGraph, Grace, PathGraph, Polymer, GPSA, GoFFish, Blogel, LightGraph, MapGraph, PowerLyra, PowerSwitch, Imitator, XDGP, Signal/Collect, PrefEdge, EmptyHeaded, Gemini, Wukong, Parallel BGL, KLA, Grappa, Chronos, Green-Marl, GraphHP, P++, LLAMA, Venus, Cyclops, Medusa, NScale, Neo4J, Trinity, GBase, HyperGraphDB, Horton, GSPARQL, Titan, ZipG, Cagra, Milk, Ligra, Ligra+, Julienne, GraphPad, Mosaic, BigSparse, Graphene, Mizan, Green-Marl, PGX, PGX.D, Wukong+S, Stinger, cuStinger, Distinger, Hornet, GraphIn, Tornado, Bagel, KickStarter, Naiad, Kineograph, GraphMap, Presto, Cube, Giraph++, Photon, TuX2, GRAPE, GraM, Congra, MTGL, GridGraph, NXgraph, Chaos, Mmap, Clip, Floe, GraphGrind, DualSim, ScaleMine, Arabesque, GraMi, SAHAD, Facebook TAO, Weaver, G-SQL, G-SPARQL, gStore, Horton+, S2RDF, Quegel, EAGRE, Shape, RDF-3X, CuSha, Garaph, Totem, GTS, Frog, GBTL-CUDA, Graphulo, Zorro, Coral, GraphTau, Wonderland, GraphP, GraphIt, GraPu, GraphJet, ImmortalGraph, LA3, CellIQ, AsyncStripe, Cgraph, GraphD, GraphH, ASAP, RStream, and many others...

GBBS: Graph Based Benchmark Suite

Connectivity Problems

- Low-Diameter Decomposition
- Connectivity
- Spanning Forest
- Biconnectivity
- Minimum Spanning Tree (MST)
- Strongly Connected Components

Covering Problems

- Coloring
- Maximal Matching
- Maximal Independent Set
- Approximate Set Cover

Eigenvector Problems

• PageRank

Substructure Problems

- Triangle Counting
- Approximate Densest Subgraph
- k-Core (coreness)

Shortest Path Problems

- Unweighted SSSP (Breadth-First Search)
- General Weight SSSP (Bellman-Ford)
- Integer Weight SSSP (Weighted BFS)
- Single-Source Betweenness Centrality
- Single-Source Widest Path
- k-Spanner

Engineering Parallel BFS

Parallel BFS Algorithm

Can process each frontier in parallel

• Parallelize over both the vertices and their outgoing edges

Forward search

Work: O(|U| + sum of outgoing edges from U)

Span: polylogarithmic

Visiting every edge on frontier can be wasteful

• Each step of BFS, every edge on frontier is visited

- Frontier can grow quickly for social graphs (few steps to visit all nodes)
- Most edge visits are wasteful! (they don't lead to a successful "update")

Visiting every edge on frontier can be wasteful

• Each step of BFS, every edge on frontier is visited

- Frontier can grow quickly for social graphs (few steps to visit all nodes)
- Most edge visits are wasteful! (they don't lead to a successful "update")

Source: Stanford CS 149 by Kayvon Fatahalian

[Credit: Beamer et al. SC12]

Dual-direction search

• Assume the frontier is large

```
procedure BFS_FORWARD(G, U, F, C):
    result = {}
    parallel foreach v in U do:
        foreach v2 in out_neighbors(v) do:
            if (v2 is visited) then
              add v2 to result
    remove duplicates from result
    return result
```

Work for a round: Still can be as large as O(|E|), but usually less than that since once the loop can quit once one of the in-neighbors is visited

```
procedure BFS_BACKWARD(G, U, F, C):
  result = {}
  parallel foreach v in V do:
    if (v is not visited)
    foreach v2 in in_neighbors(v) do:
        if (v2∈U) then
            add v to result and break
  pack the result and return
```


Parallel SSSP

Parallel SSSP

- On graph G = (V, E, w), with edge weight function $w: e \mapsto \mathbb{R}^+$ and a source $s \in V$, compute the shortest distances (paths) of all other vertices to s. Let n = |V|, m = |E|.
- Dijkstra's algorithm + priority queue
 - Work efficient: process each vertex/edge once
 - But hard to parallelize?
- Bellman-Ford
 - Redundant work: process multiple times
 - But parallelism is straightforward

SSSP is notoriously hard in parallel

Theoretical algorithms: [BGST16], [Cohen97], [Cohen00], [KS97], [Meyer01], [Meyer02], [SS99], [Spencer97], [UY91] Approximate: [ASZ20], [CFR20], [EN19], [Li20], [MPVX15]

No implementations

Practical implementations are based on Δ-stepping [Meyer-Sanders 03]: Julienne [DBS17], GAPBS [BAP15], Galois [NLP13], Graphlt [ZBC+20] Other platforms: [BPG+17], [DBG + 14], [MAB+10], [ZCZM16], [WDY+16]

No worstcase bounds

Needs tunning Parallel / concurrent priority queues: PRAM [BDM*96], [CH94], [CDP96], [DPS96], [RCP*94] Concurrent: [AKLS15], [CMH14], [HKP*13], [LJ13], [LS12], [SL20], [ST05], [ZMS19] Others: [BKS15], [Sanders98]

No good span (based on Dijkstra) Not as fast as Δ stepping

ρ -stepping

```
Initial distance d[] to infinity
d[s]=0
F={s}, nextF={}
While (|F|>0)
    let F' be the \rho smallest element from F, add other to nextF
    parallel-for (v in F')
        parallel-for (u in v' neighbor)
            If (d[u] < d[v] + w(v, u))
                d[u]=d[v]+w(v,u), add u to nextF
    F=nextF, nextF={}
```

Δ^* -stepping

```
Initial distance d[] to infinity
d[s]=0
F={s}, nextF={}
While (|F|>0)
    add v in F with d[v]<i*Delta to F', add other to nextF
    parallel-for (v in F')
        parallel-for (u in v' neighbor)
            If (d[u] < d[v] + w(v, u))
                d[u]=d[v]+w(v,u), add u to nextF
    F=nextF, nextF={}
```

Set up

• A 96-core machine (192 hyperthreads)

- 1.5TB main memory and 36MB*4 L3 cache
- C++ codes compiled with g++ 7.5.0 using CilkPlus with -O3 flag

Set up

• 7 graphs tested:

- 5 social and web graphs (scale-free networks): com-orkut (OK), Livejournal (LJ), Twitter (TW), Friendster (FT), and Webgraph (WB)
- 2 road graphs: RoadUSA (USA), Germany (GE)
- 3 to 89 million vertices, 32 million to 3.6 billion edges
- Scale-free networks use uniformly distributed edge weight [1, 2¹⁸]
- Road network has edge weight provided in the dataset

• 7 implementations tested:

- Δ-stepping: GAPBS [BAP15, ZYB⁺20], Galois [NLP13], Julienne [DBS17], ours (PQ-Δ)
- Bellman-Ford: Ligra [SB13], ours (PQ-BF)
- ρ -stepping: ours (PQ- ρ)

Heatmap: parallel running time relative to fastest on each graph

*: ours

(scale-free networks)

Social and Web Graphs Road Graphs OK TW FT **USA** LJ WB GE Ave. Ave. **GAPBS** 1.92 1.20 2.49 1.42 1.71 1.75 1.28 1.39 1.34 Δ-step. Julienne 2.14 1.63 1.88 1.32 1.82 1.76 38.48 42.55 40.51 Galois 1.39 1.26 1.51 1.22 1.42 1.50 2.00 1.27 1.25 1.55 1.39 1.00 ***PO-Δ** 1.24 1.14 1.77 1.24 1.00 1.00 Ligra 1.98 1.34 1.60 2.47 1.90 1.86 -BF -*PO-BF 1.39 1.27 1.80 2.25 1.55 1.65 1.76 1.66 1.71 $PQ-\rho$ -fix 1.05 1.18 1.00 1.01 1.01 1.05 1.38 1.33 1.35 1.00 1.00 1.38 1.33 $\sim *PQ-\rho$ -best 1.00 1.00 1.00 1.00 1.35

For all Δ -stepping we use the best Δ . PQ- ρ -best uses best ρ , and PQ- ρ -fix uses a fixed value of ρ for scale-free networks, and road graphs, respectively

Our implementations are always the fastest

(acala free networks)

ırs	(Stale-free fretworks)							Deed Creeks		
		Social and web Graphs						koaa Graphs		
	OK	LJ	TW	FT	WB	Ave.	GE	USA	Ave.	
GAPBS	1.92	1.20	2.49	1.42	1.71	1.75	1.28	1.39	1.34	
Julienne	2.14	1.63	1.88	1.32	1.82	1.76	38.48	42.55	40.51	
Galois	1.42	1.39	1.26	1.50	2.00	1.51	1.27	1.22	1.25	
*PQ-Δ	1.24	1.14	1.55	1.77	1.24	1.39	1.00	1.00	1.00	
Ligra	1.98	1.34	1.60	2.47	1.90	1.86	-	-	-	
*PQ-BF	1.39	1.27	1.80	2.25	1.55	1.65	1.76	1.66	1.71	
*PQ- <i>p</i> -fix	1.05	1.18	1.00	1.01	1.01	1.05	1.38	1.33	1.35	
*PQ- <i>p</i> -best	1.00	1.00	1.00	1.00	1.00	1.00	1.38	1.33	1.35	
	GAPBS Julienne Galois *PQ-Δ Ligra *PQ-BF *PQ-ρ-fix *PQ-ρ-best	Ins OK GAPBS 1.92 Julienne 2.14 Galois 1.42 *PQ-Δ 1.24 Ligra 1.98 *PQ-BF 1.39 *PQ-ρ-fix 1.05 *PQ-ρ-best 1.00	Irs Social OK LJ GAPBS 1.92 1.20 Julienne 2.14 1.63 Galois 1.42 1.39 *PQ-Δ 1.24 1.14 Ligra 1.98 1.34 *PQ-BF 1.39 1.27 *PQ-p-fix 1.05 1.18 *PQ-p-best 1.00 1.00	Irs Social and V OK LJ TW GAPBS 1.92 1.20 2.49 Julienne 2.14 1.63 1.88 Galois 1.42 1.39 1.26 *PQ-Δ 1.24 1.14 1.55 Ligra 1.98 1.34 1.60 *PQ-BF 1.39 1.27 1.80 *PQ-ρ-fix 1.05 1.18 1.00 *PQ-ρ-best 1.00 1.00 1.00	Irs Social and Web Gr OK LJ TW FT GAPBS 1.92 1.20 2.49 1.42 Julienne 2.14 1.63 1.88 1.32 Galois 1.42 1.39 1.26 1.50 *PQ-Δ 1.24 1.14 1.55 1.77 Ligra 1.98 1.34 1.60 2.47 *PQ-BF 1.39 1.27 1.80 2.25 *PQ-ρ-fix 1.05 1.18 1.00 1.01 *PQ-ρ-best 1.00 1.00 1.00 1.00	Social and Web Graphs OK LJ TW FT WB GAPBS 1.92 1.20 2.49 1.42 1.71 Julienne 2.14 1.63 1.88 1.32 1.82 Galois 1.42 1.39 1.26 1.50 2.00 *PQ-Δ 1.24 1.14 1.55 1.77 1.24 Ligra 1.98 1.34 1.60 2.47 1.90 *PQ-BF 1.39 1.27 1.80 2.25 1.55 *PQ-p-fix 1.05 1.18 1.00 1.01 1.01 *PQ-ρ-best 1.00 1.00 1.00 1.00 1.00 1.00	Social and Web GraphsOKLJTWFTWBAve.GAPBS1.921.202.491.421.711.75Julienne2.141.631.881.321.821.76Galois1.421.391.261.502.001.51*PQ-Δ1.241.141.551.771.241.39Ligra1.981.341.602.471.901.86*PQ-Pfix1.051.181.001.011.05*PQ-ρ-fix1.001.001.001.001.00	Social and Web GraphsRotOKLJTWFTWBAve.GEGAPBS 1.92 1.20 2.49 1.42 1.71 1.75 1.28 Julienne 2.14 1.63 1.88 1.32 1.82 1.76 38.48 Galois 1.42 1.39 1.26 1.50 2.00 1.51 1.27 *PQ- Δ 1.24 1.14 1.55 1.77 1.24 1.39 1.00 Ligra 1.98 1.34 1.60 2.47 1.90 1.86 $-$ *PQ-BF 1.39 1.27 1.80 2.25 1.55 1.65 1.76 *PQ- ρ -fix 1.05 1.18 1.00 1.01 1.05 1.38 *PQ- ρ -best 1.00 1.00 1.00 1.00 1.00 1.00	Social and Web GraphsRoad GraphOKLJTWFTWBAve.GEUSAGAPBS 1.92 1.20 2.49 1.42 1.71 1.75 1.28 1.39 Julienne 2.14 1.63 1.88 1.32 1.82 1.76 38.48 42.55 Galois 1.42 1.39 1.26 1.50 2.00 1.51 1.27 1.22 *PQ- Δ 1.24 1.14 1.55 1.77 1.24 1.39 1.00 1.00 Ligra 1.98 1.34 1.60 2.47 1.90 1.86 $ -$ *PQ-BF 1.39 1.27 1.80 2.25 1.55 1.65 1.76 1.66 *PQ- ρ -fix 1.05 1.18 1.00 1.01 1.05 1.38 1.33 *PQ- ρ -best 1.00 1.00 1.00 1.00 1.00 1.38 1.33	

For all Δ -stepping we use the best Δ . PQ- ρ -best uses best ρ , and PQ- ρ -fix uses a fixed value of ρ for scale-free networks, and road graphs, respectively

Scale-free networks: ρ -stepping is faster than all existing code by at least 20%

*: ours		Social and Web Graphs							Road Graphs		
		OK	LJ	TW	FT	WB	Ave.	GE	USA	Ave.	
	GAPBS	1.92	1.20	2.49	1.42	1.71	1.75	1.28	1.39	1.34	
tep.	Julienne	2.14	1.63	1.88	1.32	1.82	1.76	38.48	42.55	40.51	
Δ-S	Galois	1.42	1.39	1.26	1.50	2.00	1.51	1.27	1.22	1.25	
	*PQ-Δ	1.24	1.14	1.55	1.77	1.24	1.39	1.00	1.00	1.00	
[Ligra	1.98	1.34	1.60	2.47	1.90	1.86	-	-	-	
B	*PQ-BF	1.39	1.27	1.80	2.25	1.55	1.65	1.76	1.66	1.71	
tep.	*PQ- <i>ρ</i> -fix	1.05	1.18	1.00	1.01	1.01	1.05	1.38	1.33	1.35	
ρ-st	*PQ- <i>ρ</i> -best	1.00	1.00	1.00	1.00	1.00	1.00	1.38	1.33	1.35	

Our Δ -stepping is fastest on road graphs, and our ρ stepping is competitive

*- ----

. 0015		Social and Web Graphs							Road Graphs		
		OK	LJ	TW	FT	WB	Ave.	GE	USA	Ave.	
	GAPBS	1.92	1.20	2.49	1.42	1.71	1.75	1.28	1.39	1.34	
tep.	Julienne	2.14	1.63	1.88	1.32	1.82	1.76	38.48	42.55	40.51	
Δ-S	Galois	1.42	1.39	1.26	1.50	2.00	1.51	1.27	1.22	1.25	
	*PQ-Δ	1.24	1.14	1.55	1.77	1.24	1.39	1.00	1.00	1.00	
tep. BF	Ligra	1.98	1.34	1.60	2.47	1.90	1.86	-	-	-	
	*PQ-BF	1.39	1.27	1.80	2.25	1.55	1.65	1.76	1.66	1.71	
	*PQ- <i>p</i> -fix	1.05	1.18	1.00	1.01	1.01	1.05	1.38	1.33	1.35	
p-SI	*PQ- <i>p</i> -best	1.00	1.00	1.00	1.00	1.00	1.00	1.38	1.33	1.35	

Number of visit (enqueue) per vertex

With careful coding, Bellman-Ford is already close to optimal on scale-free networks (2.5 #enqueue per vertex)

ρ -stepping is almost optimal (very close to 1)

Room for improvement for road graphs (but these graphs are relatively small)

Graph algorithms / processing

- One of the most fundamental component in computer science
- A promising topic and many interesting works are going on
- Good parallel algorithms for many classic problems remain unknown
- Areas remained to be explored:
 - Extremely large graphs (do not fit in DRAM)
 - Dynamic graphs

Results for Larger-than-DRAM Graphs

