
Geometry processing

Yan Gu

CS142: Algorithm Engineering

What is geometry processing?

• Graph studies the relationship of objects

• Geometry studies the locations of the objects themselves

Lots of real-world applications

3

4

Database /

Data warehouses

Data mining /

Data science Machine learning /

Artificial intelligence

Every area requires geometry processing

Computational

biology

Computer graphicsGeometric Information

Systems (GIS)

Computational Geometry

• Started in mid 70’s

• Focused on abstracting the geometric problems, and design and analysis
of algorithms for these problems

• Most problems well-solved in the sequential setting, but many problems
in other settings remain open

• UCR CS 133 - Computational Geometry

• MIT 6.838 - Geometric Computation

5

https://people.csail.mit.edu/indyk/6.838/

Good references for sequential geometric algorithms

6

“Four Dutchmen” “The elephant book” Har-Peled’s book

Why “computation” geometry?

7

Ways to represent a line

8

• What you did in high school:

𝒚 = 𝒌𝒙 + 𝒃

Floating-point error

• float a = 0.65f;
• float b = 0.6f;
• float c = a - b;

• What is c?
• 0.0499999523!

• Need to avoid division because we cannot divide a number by
0, but it is hard to check if a floating-point number is 0

9

Ways to represent a line

10

• What we use in

computation geometry:

Pick two points:

𝒙𝟏, 𝒚𝟏 , (𝒙𝟐, 𝒚𝟐)

• Use two endpoints:

𝒙𝟏, 𝒚𝟏 , (𝒙𝟐, 𝒚𝟐)

To represent a segment

11

Inner (dot, scalar) product

• 𝒙𝟏, 𝒚𝟏 ⋅ 𝒙𝟐, 𝒚𝟐 = 𝒙𝟏𝒙𝟐 + 𝒚𝟏𝒚𝟐

• 𝒙𝟏, 𝒚𝟏 ⋅ 𝒙𝟐, 𝒚𝟐 = 𝒙𝟏, 𝒚𝟏 𝒙𝟐, 𝒚𝟐 ⋅ cos 𝜽

• Digit sign indicates “front” or “back”

12

𝒙𝟏, 𝒚𝟏

𝒙𝟐, 𝒚𝟐

𝒙𝟏, 𝒚𝟏

𝒙𝟐, 𝒚𝟐

(−)

https://en.wikipedia.org/wiki/Dot_product

Outer (cross, vector) product

• 𝒙𝟏, 𝒚𝟏 ⋅ 𝒙𝟐, 𝒚𝟐 = 𝒙𝟏𝒚𝟐 − 𝒚𝟏𝒙𝟐

• 𝒙𝟏, 𝒚𝟏 ⋅ 𝒙𝟐, 𝒚𝟐 = 𝒙𝟏, 𝒚𝟏 𝒙𝟐, 𝒚𝟐 ⋅ sin 𝜽

• Digit sign indicates “right” or “left”

13

𝒙𝟏, 𝒚𝟏

𝒙𝟐, 𝒚𝟐

𝒙𝟏, 𝒚𝟏

𝒙𝟐, 𝒚𝟐

(−)

https://en.wikipedia.org/wiki/Cross_product

An example: checking if two segments intersect

𝑨𝑩 × 𝑨𝑫 ⋅ 𝑨𝑩 × 𝑨𝑪 < 𝟎

• And
𝑪𝑫 × 𝑪𝑨 ⋅ 𝑪𝑫 × 𝑪𝑩 < 𝟎

14

𝑨 = 𝒙𝟏, 𝒚𝟏

𝑩 = 𝒙𝟐, 𝒚𝟐

𝑪 = 𝒙𝟑, 𝒚𝟑

𝑫 = 𝒙𝟒, 𝒚𝟒

An example: finding the intersection of two segments

𝑨𝑩 × 𝑨𝑫 ⋅ 𝑪 − 𝑨𝑩 × 𝑨𝑪 ⋅ 𝑫

𝑨𝑩 × 𝑨𝑫 − 𝑨𝑩 × 𝑨𝑪

15

𝑨 = 𝒙𝟏, 𝒚𝟏

𝑩 = 𝒙𝟐, 𝒚𝟐

𝑪 = 𝒙𝟑, 𝒚𝟑

𝑫 = 𝒙𝟒, 𝒚𝟒

Another useful component: polar angle

• theta=atan2(y1,x1)

16

𝜽

𝒙𝟏, 𝒚𝟏

polar angle

Convex Hull, Triangulation, and others

17

Convex hull

• A set is convex if every line segment connecting two points in
the set is fully contained in the set

• Example applications: nearest/farthest point to a line, point

18

How to construct a convex hull

• Dozens of algorithms sequentially, a few parallel ones for 2D

• Randomized incremental construction

• Only requires 𝑶(log 𝒏) rounds if adding all possible points
[BGSS SPAA 2020]

19

1

2

4

3

11
7

5

9

10

8

6

What’s triangulation for?

What’s a good triangulation?

• No points are in the circumcircle of each triangle

• Getting practical parallel algorithms for DT is notoriously hard

Delaunay triangulation (DT)

Delaunay triangulation (DT)

• Again, consider the incremental construction

• Again, consider the incremental construction

Delaunay triangulation (DT)

• Again, consider the incremental construction

• 2D parallel version is given in [BGSS SPAA 2016 / JACM 2020]

• Higher-D version is in [BGSS SPAA 2020], since 𝒌-D DT can be
subsumed by (𝒌 + 𝟏)-D convex hull

Delaunay triangulation (DT)

Point location

• In a 2D plane, decide which polygon a query point belongs to

• Example solution: trapezoidal decomposition (open)

26

Range Searches

27

Example range searches

• Nearest neighbor search

• 𝒌-nearest neighbor (𝒌NN)
search

• Near neighbor counting

• Rectangular range search

• Rectangle queries

• Three-sided queries

• Segment (stabbing)
queries 28

• Ray-scene intersection

queries

• Collision detection

• etc.

Building blocks in other

algorithms / systems

Classic (sequential) data structures

• Quad/octree

• 𝒌-d tree

• Interval tree

• Segment tree

• Range tree

• Priority tree

• Other augmented trees

• R-tree, bounding volume hierarchy (BVH)

29

Why trees?

30

1

2 3

A

B

C

D

E

F

3

2

1

A B E FD

C

Each interior tree node acts as a fast-pass check for
the subtree nodes

• No need to traverse the subtree if the traversal can be pruned

31

1

2 3C

A B E FD A

B

C

D

E

F

3

2

1
1

2 C 3

NNS

Each interior tree node acts as a fast-pass check for
the subtree nodes

• No need to traverse the subtree if the query misses the bounding
box

32

1

2 3C

A B E FD A

B

C

D

E

F

3

2

1
1

2

A B

C 3

Example range searches

• Nearest neighbor search

• 𝒌-nearest neighbor (𝒌NN)
search

• Near neighbor counting

• Rectangular range search

• Rectangle queries

• Three-sided queries

• Segment (stabbing)
queries 33

• Ray-scene intersection

queries

• Collision detection

• etc.

Classic (sequential) data structures

• Quad/octree

• 𝒌-d tree

• Interval tree

• Segment tree

• Range tree

• Priority tree

• Other augmented trees

• R-tree, bounding volume hierarchy (BVH)

34

“Modern” Geometry Problems

35

Problems that are less “classic” (from MIT 6.838)

• Clustering

• Range searches in “high” (>5) dimensions

• Low-distortion embeddings

• Geometric algorithms for modern architecture

• Geometric algorithms for streaming data

36

Course announcement

37

38

Score distribution for 142

• Four problem-solving assignments (20%)

• Three performance-engineering assignments (30%)

• Final project (20%)

• Quiz (5%)

• Final exam (25%)

• Class participation (10%, bonus)

Tentative score-to-grade mapping

• A+: very top performance in the class

• A: 85%

• A-: 80%

• B+: 75%

• B: 70%

• C: 65%

• D: 60%

40

Performance so far

• More than 50% of you are doing very well

• Many of you are heading toward an A+

• However, a few of you have not done much

• You need to submit reports
• This is the fifth time I mentioned it in the class?

• If you missed some before, you can send it to me via email (with 20% penalty)

• The rule is the rule

• This is an elective course
• For any reason you don’t like it, you can drop it

• If you fail, it’s unlikely that you can make up (not sure about your next offering)

41

Project

42

Project

• Implement an algorithm that you like

• Can be sequential or parallel

• You should optimize the performance

• You will write a report and give a short class presentation

43

Examples

• Parallel algorithms:
• Parallel mergesort, parallel BFS, parallel hashtable, parallel median-finding, parallel

LCS, and other challenging problems

• Sequential algorithms:
• BSTs (AVL tree, red-black tree, treap), Prim and Dijkstra with efficient priority queue,

I/O-efficient dynamic programming, convex hull, nearest point, Rabin-Karp / KMP,
other non-trivial graph algorithms

• Don’t make it too hard or too easy

44

Rules

• Up to two in a group, but less recommended
• Unless you have a clear plan on how to distribute the work evenly

• Before next Wednesday (2/24), submit a brief proposal about:
• What you want to do, what algorithm you want to implement, how you are going to

evaluate it

• I will review it and give you optional feedback (like too easy or too hard for you)

• You will give an 8-min class presentation on March 8 and 10 (25%)
• Others can attend optionally

• Final report due March 12 (75%)
45

Training problems analysis

46

47

What is that?

• There are in total 11 problems (A in Training 1, A and C in Training 3 are
not included)

• One of you will give a 10-minute presentation about one problem
• What the problem is

• What your solution is and why it is correct

• How to program and what optimization you use

• If there are other interesting solutions

• (You need to have solved that problem already)

• You will get 3-5 bonus candies
• 3 candies by default

• Up to 2 bonus candies for good presentations (talk quality and problem difficulty)

48

The process

• Reservation link

• Then, I will run a bipartite-
graph matching and assign
you to a problem

• Q&As are welcome, and I
will also be part of that

49

https://docs.google.com/spreadsheets/d/1adac_bL7G3fWWyO9EeaEzmYV7I7IPwDEvMHtByWd7tk/edit?usp=sharing

