
Dynamic
Programming

Yan Gu

CS 141: Design And Analysis Of Algorithms

So easy!

• Conversation between a mon and her four-year-old kid:

• - What is 1+1+1+1+1+1+1+1?

• - (Thought for a while) 8!

• - What is 1+1+1+1+1+1+1+1+1?

• - (Immediately) 9!

• - How can you do that so fast?

• - Because I know 1+1+1+1+1+1+1+1 is 8!

• - Congratulations, you understand dynamic programming now!

2

So easy!

int ans[i] = {0, … , 0};

for j = 1 to k do

for i = n downto weight[j] do

ans[i] = max(ans[i], ans[i-weight[j]] + value[j]);

return ans[n][k];

• We only need to store a 1D array

3

Not so easy?

• Hard to get the idea by yourself
• I personally solved over 100 DP problems before I figured out what DP was

• However, with appropriate training, most of you can understand it
• You need to solve about 20-30 high-quality problems

• In my 141, we gave out about 12-15 problems, which is not quite sufficient, but
about 1/4 of the students end up with having a good understanding

• We have 4 problems so far (P2 in training 1, P1 in training 2, P1 and P2 in training 3)

• I attached our 141 homework for DP, which contains 3 more problems

• Read CLRS and the competition programming handbook for more details

• Come to talk to us for any questions

• I have trained about 1000 students so far

4

A motivating example: unbounded knapsack

• New quarter starts! You need to bring your luggage back to Riverside

• You need to take a flight, so you can only take one suitcase with limited
weight

5

$50, 1lb

$70, 5lb

$1500, 8lb

$80, 2lb

A naïve algorithm

//best solution using curWeight capacity

int suitcase(int curWeight) {

int best = 0;

foreach item (weight, value)

if (curWeight >= weight) { // if we have enough space, try to choose this item

newVal = suitcase(curWeight - weight) + value

best = max(best, newVal); //update best value if we get a better solution

}

return best;

}

answer = suitcase(5);
6

Exponential time!!

Knapsack problem: native solution

• Essentially, we are
searching all possibilities

• Too expensive!

• Some sub-problems are
calculated multiple times?

7

𝑠5

𝑠4 𝑠3 𝑠2 𝑠1

𝑠3 𝑠2 𝑠1 𝑠2 𝑠1 𝑠1

𝑠1𝑠2 𝑠1

𝑠1

𝑠1

Knapsack problem: native solution

• Essentially, we are
searching all possibilities

• Too expensive!

• Some sub-problems are
calculated multiple times?

• But for each possibility, we
can just compute it once!

8

𝑠5

𝑠4 𝑠3 𝑠2 𝑠1

𝑠3 𝑠2 𝑠1 𝑠2 𝑠1 𝑠1

𝑠1𝑠2 𝑠1

𝑠1

𝑠1
There are indeed only five different values that can

be computed from this enormous recurrence tree

A naïve algorithm

int suitcase(int curWeight) {

int best = 0;

foreach item (weight, value)

if (curWeight >= weight) {

newVal = suitcase(curWeight - weight) + value

best = max(best, newVal);

}

return best;

}

answer = suitcase(5);

9

A DP algorithm

int suitcase(int curWeight) {
// if already computed, directly return
if (ans[curWeight] != -1) return ans[curWeight];
int best = 0;
foreach item (weight, value)

if (curWeight >= weight) {
newVal = suitcase(curWeight - weight) + value
best = max(best, newVal);

}
return ans[curWeight] = best; // memorize the current return value

}

int ans[5] = {-1, … , -1};
answer = suitcase(5);

10

𝑠5

𝑠4 𝑠3 𝑠2 𝑠1

𝑠3 𝑠2 𝑠1

𝑠2 𝑠1

𝑠1

Done! Done! Done!

Done!

Done!Done!

• Each capacity value

needs to be

computed

• 𝑂(𝑛) of them

• For each of them,

enumerate 𝑘
possible elements

• 𝑶 𝒏𝒌 cost

For 𝑘 items and capacity 𝑛

Execution Recurrence Tree

𝑠5

𝑠4

𝑠2

𝑠1

𝑠3
Θ 𝑛𝑘 cost
𝑛 is total weight,

𝑘 is #items

Try 𝑘 items

Try 𝑘 items

Try 𝑘 items

Try 𝑘 items

Try 𝑘 items

Recursive Solution

• Define 𝑠[𝑖] as the maximum value you can get for a total weight of 𝑖

• We can express 𝑠[𝑖] as the following recurrence:

𝑠[𝑖] = max ൝
0

max
𝑤[𝑗],𝑣[𝑗] is an item

𝑠[𝑖 − 𝑤 𝑗] + 𝑣[𝑗] ∶ 𝑖 ≥ 𝑤[𝑗]

• 𝒔 𝟎 = 𝟎, Final answer is 𝑠[𝑛]

The best value with
𝒊 − 𝒘𝒋 weight

Trying all
possible items

What is dynamic programming?

• The key components in a DP algorithm

• Optimal substructure (states)

• The decisions

• Boundary

• All can be presented in a recurrence 𝑆

𝑆𝑎

𝑆𝑐

𝑆𝑏
𝑠𝑖 = maxቐ

0

max
𝑤𝑗, 𝑣𝑗 is an item

𝑠𝑖−𝑤𝑗
+ 𝑣𝑗 | 𝑖 > 𝑤𝑗

Is the previous solution perfect?

int suitcase(int leftWeight) {

if (ans[leftWeight] != -1) return ans[leftWeight];

int curBest = 0;

foreach item (weight, value)

if (leftWeight >= weight)

curBest = max(curBest, suitcase(leftWeight -

Weight) + value);

return ans[leftWeight] = curBest;

}

int ans[50] = {-1, … , -1};

answer = suitcase(50);

15

$50, 1lb

$70, 5lb

$1500, 12lb

$80, 2lb

$50, 1lb

Is this solution still correct if we
only allow to use an item once?

int suitcase(int leftWeight) {
if (ans[leftWeight] != -1) return ans[leftWeight];
int curBest = 0;
foreach item (weight, value)

if (leftWeight >= weight)
curBest = max(curBest, suitcase(leftWeight -
Weight) + value);

return ans[leftWeight] = curBest;
}
int ans[50] = {-1, … , -1};
answer = suitcase(50);

16

$70, 5lb

$1500, 12lb

$80, 2lb

$50, 1lb

$50, 1lb

What is the optimal substructure for the new problem?

• Is 𝒔𝒊 sufficient for the new problem?
• No!! We do not know if the optimal arrangement for weight 𝑖 use item 𝑗 or not

• What can we do?

• Add another dimension!

17

Is the previous algorithm perfect?
What if each item can be used only once?

• Let 𝒔[𝒊, 𝒋] be the optimal value for total weight 𝒊 using only the first 𝒋 items

How to calculate 𝒔[𝒊, 𝒋]? There are two options:

• Use the item 𝒋, so the best solution is 𝒔 𝒊 − 𝒘 𝒋 , 𝒋 − 𝟏 + 𝒗[𝒋]
• Add value of 𝑣[𝑗], the rest must be “best solution using the first 𝑗 − 1 items for weight
𝑖 − 𝑤[𝑗]”

• Do not use item 𝑗, so the best solution is 𝒔[𝒊, 𝒋 − 𝟏]
• Not using 𝑗, then we just “use the first 𝑗 − 1 items for weight 𝑖”, and we want the best

result

18

Another way to state the relationship of 𝒔 𝒊 [𝒋]

19

• The recurrence:

𝑠[𝑖, 𝑗] = max ൝
𝑠[𝑖, 𝑗 − 1]

𝑠 𝑖 − 𝑤 𝑗 , 𝑗 − 1 + 𝑣[𝑗] 𝑖 ≥ 𝑤𝑗

• The boundary: 𝑠[𝑖, 0] = 0, 𝑠 0, 𝑗 = 0

• The recurrence cannot be circular
• You can not have states a, b, and c that computing a relies on b, b on c,

and c on a

The DP implementation

int suitcase(int i, int j) {

if (ans[i][j] != -1) return ans[i][j];

if (i==0 or j == 0) return 0;

int best = suitcase(i, j-1);

if (i >= weight[j]) best = max(best, suitcase(i-weight[j], j-1)+value[j]);

return ans[i][j] = best;

}

int ans[n][k] = {-1, … , -1};

answer = suitcase(n, k);

20

A non-recursive implementation

int ans[i][0] = {0, … , 0};

for j = 1 to k do

for i = 0 to n do {

ans[i][j] = ans[i][j-1];

if (i >= weight[j])

ans[i][j] = max(ans[i][j], ans[i-weight[j]][j-1]+value[j]);

}

return ans[n][k];

• Generally, you need to be careful when using the non-recursive
implementation — when computing a state, all the other states it depends
on must be ready

21

An even simpler implementation

int ans[i] = {0, … , 0};

for j = 1 to k do

for i = n downto weight[j] do

ans[i] = max(ans[i], ans[i-weight[j]] + value[j]);

return ans[n][k];

• We only need to store a 1D array

22

The simpler implementation for the first problem

int ans[i] = {0, … , 0};

for j = 1 to k do

for i = weight[j] to n do

ans[i] = max(ans[i], ans[i-weight[j]] + value[j]);

return ans[n][k];

• We only need to store a 1D array

• You can try to figure out why these simpler versions work.

23

The famous knapsack problem

• The first problem is referred to as the unbounded knapsack problem (UKP)

• The second problem is referred to as the 0-1 knapsack problem

• Other variants:

• Multiple knapsack problem: item 𝒋 can be used 𝒙𝒋 times

• Some of them cannot be added together

• Each item has more than one dimension (e.g., both weight and volume)

• Dependencies between items (Problem C)

24

https://en.wikipedia.org/wiki/Knapsack_problem

DP recurrence

• A DP recurrence of the states, with boundary cases

• State: represent a unique subproblem

• Recurrence (decision): how to compute the current state from other states
(subproblems)?

• Usually enumerate all possible subproblems, compare them, use the best one

• Boundary: what are the initial values?

25

Longest Common Subsequence

Definitions

Sequence A C C G G T C G A G

Subsequence A C G A A

Sequence G T C G T C G G A A T G C

Subsequence G C T A A T

Definitions

Sequence A C C G G T C G A G

Sequence G T C G T C G G A A T G C

Common subsequence G G T C

Definitions

Sequence A C C G G T C G A G

Sequence G T C G T C G G A A T G C

Common subsequence G G T C

Longer Common subsequence G G T C A G

Definitions

Sequence A C C G G T C G A G

Sequence G T C G T C G G A A T G C

Common subsequence G G T C

Longer Common subsequence G G T C A G

Longest Common subsequence G G T C G A G

Problem Definition

• Input: two sequences 𝑋 and 𝑌

• We say that a sequence 𝑍 is a common subsequence of 𝑋 and 𝑌 if it is a
subsequence of both 𝑋 and 𝑌

• For example, if 𝑋 = 𝐴, 𝐵, 𝐶, 𝐵, 𝐷, 𝐴, 𝐵 and 𝑌 = 𝐵,𝐷, 𝐶, 𝐴, 𝐵, 𝐴 , the
sequence 𝐵, 𝐶, 𝐴 is a common subsequence of 𝑋 and 𝑌; not a longest
one though

• The problem is to find a longest common subsequence of 𝑋 and 𝑌

LCS

• If we look at 𝑿[𝟏. . 𝒊] and 𝒀[𝟏. . 𝒋], what is their LCS?
• First 𝑖 characters in 𝑋 and first 𝑗 characters in 𝑌

• Let’s compare the last character 𝑿[𝒊] and 𝒀[𝒋]

• Let 𝒔[𝒊, 𝒋] be the length of LCS of 𝑿[𝟏. . 𝒊] and 𝒀[𝟏. . 𝒋]

• What if 𝑿 𝒊 = 𝒀[𝒋]?

• What if 𝑿 𝒊 ≠ 𝒀[𝒋]?

LCS

• if 𝑿[𝒊] = 𝒀[𝒋] = 𝒄
• Let’s keep the last character 𝑐 in LCS

• Then we just need to find the LCS of X[1..i-1] and Y[1..j-1] and add 𝑐 at the end

• s[i, j] = s[i-1, j-1] + 1

Index : 1 2 3 4 5 6 7

X = A B C B D A B

Y = B D C A B A

LCS of “ABCB” and “BDCAB” must be:

(the LCS of “ABC” and “BDCA”) + “B” s[4, 5] = s[3, 4] + 1

Recursive Algorithm

• if 𝑿 𝒊 ≠ 𝒀[𝒋]
• Three choices: keep 𝑋[𝑖] as the last one, 𝑌[𝑖] as the last one, or discard both 𝑋[𝑖]

and 𝑌[𝑗]

• return MAX(s[i-1, j], s[i, j-1])

Index : 1 2 3 4 5 6 7

X = A B C B D A B

Y = B D C A B A

LCS of “ABC” and “BDCAB” can be:

the LCS of “AB” and “BDCAB”

the LCS of “ABC” and “BDCA”

the LCS of “AB” and “BDCA” (included above)

s[3, 5] = max(s[2, 5], s[3,4])

LCS

• Let 𝒔[𝒊, 𝒋] be the LCS of 𝑿[𝟏. . 𝒊] and 𝒀[𝟏. . 𝒋]

• 𝒔 𝒊, 𝒋 = ቊ
𝒔 𝒊 − 𝟏, 𝒋 − 𝟏 + 𝟏 ∶ 𝑿 𝒊 = 𝒀[𝒋]

𝒎𝒂𝒙 𝒔 𝒊 − 𝟏, 𝒋 , 𝒔 𝒊, 𝒋 − 𝟏 ∶ 𝑿 𝒊 ≠ 𝒀[𝒋]

• 𝒔 𝒊, 𝟎 = 𝟎, 𝒔 𝟎, 𝒋 = 𝟎

35

Recursive Algorithm

• LCS(i, j)

• if computed then directly return

• if X[i] == Y[j]

• return LCS(i-1, j-1) + 1

• if X[i] != Y[j]

• return max(LCS(i, j-1), LCS(i-1, j))

Non-Recursive Algorithm

• ans[i][0] = ans[0][j] = 0

• for i = 1 to m do

• for j = 1 to n do

• if X[i] == Y[j]

• ans[i][j] = ans[i-1][j-1] + 1

• else

• ans[i][j] = max(ans[i][j-1], ans[i-1][j])

Bottom-up Algorithm
j

i 0
B
1

D
2

C
3

A
4

B
5

A
6

0 0 0 0 0 0 0 0

A 1 0 0 0

B 2 0

C 3 0

B 4 0

D 5 0

A 6 0

B 7 0

𝒔[𝒊, 𝒋] = ൝
𝒔[𝒊 − 𝟏, 𝒋 − 𝟏] + 𝟏 𝒙𝒊 = 𝒚𝒋

𝒎𝒂𝒙 𝒔[𝒊 − 𝟏, 𝒋], 𝒔[𝒊, 𝒋 − 𝟏], 𝒔[𝒊 − 𝟏, 𝒋 − 𝟏] 𝒙𝒊 ≠ 𝒚𝒋

Bottom-up Algorithm
j

i 0
B
1

D
2

C
3

A
4

B
5

A
6

0 0 0 0 0 0 0 0

A 1 0 0 0 0 1 1 1

B 2 0 1 1 1 1 2 2

C 3 0 1 1 2 2 2 2

B 4 0 1 1 2 2 3 3

D 5 0 1 2 2 2 3 3

A 6 0 1 2 2 3 3 4

B 7 0 1 2 2 3 4 4

𝒔[𝒊, 𝒋] = ൝
𝒔[𝒊 − 𝟏, 𝒋 − 𝟏] + 𝟏 𝒙𝒊 = 𝒚𝒋

𝒎𝒂𝒙 𝒔[𝒊 − 𝟏, 𝒋], 𝒔[𝒊, 𝒋 − 𝟏], 𝒔[𝒊 − 𝟏, 𝒋 − 𝟏] 𝒙𝒊 ≠ 𝒚𝒋

Bottom-up Algorithm
j

i 0
B
1

D
2

C
3

A
4

B
5

A
6

0 0 0 0 0 0 0 0

A 1 0  0  0  0  1  1  1

B 2 0  1  1  1  1  2 2

C 3 0  1  1  2  2  2  2

B 4 0  1  1  2  2  3  3

D 5 0  1  2  2  2  3  3

A 6 0  1  2  2  3  3  4

B 7 0  1  2  2  3  4  4

𝒔[𝒊, 𝒋] = ൝
𝒔[𝒊 − 𝟏, 𝒋 − 𝟏] + 𝟏 𝒙𝒊 = 𝒚𝒋

𝒎𝒂𝒙 𝒔[𝒊 − 𝟏, 𝒋], 𝒔[𝒊, 𝒋 − 𝟏], 𝒔[𝒊 − 𝟏, 𝒋 − 𝟏] 𝒙𝒊 ≠ 𝒚𝒋

Bottom-up Algorithm
j

i 0
B
1

D
2

C
3

A
4

B
5

A
6

0 0 0 0 0 0 0 0

A 1 0  0  0  0  1  1  1

B 2 0  1  1  1  1  2 2

C 3 0  1  1  2  2  2  2

B 4 0  1  1  2  2  3  3

D 5 0  1  2  2  2  3  3

A 6 0  1  2  2  3  3  4

B 7 0  1  2  2  3  4  4

𝒔[𝒊, 𝒋] = ൝
𝒔[𝒊 − 𝟏, 𝒋 − 𝟏] + 𝟏 𝒙𝒊 = 𝒚𝒋

𝒎𝒂𝒙 𝒔[𝒊 − 𝟏, 𝒋], 𝒔[𝒊, 𝒋 − 𝟏], 𝒔[𝒊 − 𝟏, 𝒋 − 𝟏] 𝒙𝒊 ≠ 𝒚𝒋

Edit Distance

Minimum Edit Distance

• How to measure the similarity of words or strings?

• Auto corrections: “rationg” -> {“rating”, “ration”}

• Alignment of DNA sequences

• How many edits we need (at least) to transform a sequence X to Y?
• Insertion

• Deletion

• rationg -> rating
• Delete o, edit distance 1

• rationg -> action
• Delete r, add c, delete g

• Edit distance 3

Recurrence Relation
• 𝐷𝑖,𝑗: The cost of transforming 𝑋[1. . 𝑖] to 𝑌[1. . 𝑗]

𝐷𝑖,𝑗 =

max 𝑖, 𝑗 ; 𝑖 = 0 ∨ 𝑗 = 0
𝐷𝑖−1,𝑗−1 ; 𝑖 > 0 ∧ 𝑗 > 0 ∧ 𝑥𝑖 = 𝑦𝑗

min
𝐷𝑖,𝑗−1 + 1

𝐷𝑖−1,𝑗 + 1
; 𝑖 > 0 ∧ 𝑗 > 0 ∧ 𝑥𝑖 ≠ 𝑥𝑗

Summary for Dynamic Programming

Dynamic Programming (DP)

• Looks hard  it usually takes a few practice for you to understand it

• But once you understand it, you suddenly know how to solve a huge class
of problems!

• E.g., LCS and edit distance are very similar, all knapsack problems are very
similar, …

• And you’ll find out they are easy: usually correctness is straightforward
• For all states, we compute the solution based on enumerating all possibilities

46

Dynamic Programming (DP)

• DP is not an algorithm, but an algorithm design idea (methodology)

• A DP recurrence of the states, decisions, with boundary cases

• We can convert a DP recurrence to a DP algorithm
• Recursive implementation: straightforward

• Non-recursive implementation: faster, and easy to be optimized

47

Longest Increasing Subsequence
(LIS)

and Other Similar Problems

What is an increasing subsequence?

49

• Increasing subsequence:

• Longest increasing subsequence (LIS):

4 2 7 0 1 6 1 8 5 9

2 6 8 9

0 1 6 8 9

Why studying LIS?

50

• The length of LIS reflect some intrinsic properties of the sequence
• Consider it as the “eigenvalue” of a sequence (LIS as the “eigenvector”)

• Applications in many algorithms and quantum computing

• Many similar DP algorithms are similar to the DP algorithm for LIS
• More examples are given later in this lecture

4 2 7 0 1 6 1 8 5 9

https://www.cs.utexas.edu/~wright/papers/tomography-survey.pdf

What are the states for LIS?

• Let 𝒍𝒊 be the LIS for the first 𝒊 element with i selected (as the last in LIS)

• What is the recurrence of LIS?

𝒍𝒊 = max ቐ
𝟏

max
𝟎<𝒋<𝒊,𝒂𝒋<𝒂𝒊

𝒍𝒋 + 𝟏

51

4 2 7 0 1 6 1 8 5 9

Running the example input

𝒍𝒊 = max ቐ
𝟏

max
𝟎<𝒋<𝒊,𝒂𝒋<𝒂𝒊

𝒍𝒋 + 𝟏

𝒍𝒊:

52

4 2 7 0 1 6 1 8 5 9

1 1 2 1 2 3 2 4 3 5

Running the example input

𝒍𝒊 = max ቐ
𝟏

max
𝟎<𝒋<𝒊,𝒂𝒋<𝒂𝒊

𝒍𝒋 + 𝟏

𝒍𝒊:

53

0 1 6 8 9

1 2 3 4 5

What is the time complexity of LIS?

𝒍𝒊 = max ቐ
𝟏

max
𝟎<𝒋<𝒊,𝒂𝒋<𝒂𝒊

𝒍𝒋 + 𝟏

• 𝒏 element, each takes 𝑶 𝒏 time to compute, so 𝑶 𝒏𝟐 cost in total

54

Revisit: activity selection

A3 [0, 7)

0 5 10 15

A10 [2, 14)

A1 [1, 4)

A5 [3, 9)

A9 [8, 12)

A4 [5, 7)

A8 [8, 11)

A2 [3, 5)

A7 [6, 10)

A6 [12, 16)

A11 [5, 9)

Let 𝐴𝑆𝑖 be the maximum number of activities

and the last one is the 𝑖-th activity, then

𝐴𝑆𝑖 = maxቐ
1

max
𝑗<𝑖,𝑒𝑗≤𝑠𝑖

{𝐴𝑆𝑗 + 1}

Additional questions:

• What about related questions? Like

maximize total length, smallest waiting time

• Can you solve it faster than 𝑂 𝑁2 ?

Other similar problem: the famous “post-office problem”

• First proposed by Donald Knuth in vol. 3 of TAOCP (1973)

• Let’s consider the 1d case

• Installing each mailbox has certain cost (installation and maintenance)

• But we also want to minimize the residents’ walking distances

56

https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming

Formalize the problem

• Installing each mailbox has certain cost 𝒎

• The residents’ unhappiness is the sum of the longest walking distances
for each mailbox

57

Formalize the problem

• Installing each mailbox has certain cost 𝒎

• The residents’ unhappiness is the sum of the longest walking distances
for each mailbox

58

Solving the problem

• Installing each mailbox has certain cost 𝒎

• The residents’ unhappiness is the sum of the longest walking distances
for each mailbox

• Let 𝒑𝒊 be the optimal solution of the first 𝒊 residents:
𝒑𝒊 = min

𝒋<𝒊
𝒑𝒋 +𝒎+ 𝒄𝒊 − 𝒄𝒋+𝟏 /𝟐

• Boundary: 𝒑𝟎 = 𝟎

• Answer: 𝒑𝒏

59

The line-breaking problem in LaTeX

60

The line-breaking problem in LaTeX

• You have 𝒏 words in a paragraph with lengths 𝒍𝟏, … , 𝒍𝒏

• You want to break them into lines so each line should contain 50 characters

• The penalty for each line is the 𝒙 − 𝟓𝟎 when 𝒙 is the number of
characters in that line

• You want to find an optimal line-breaking result

61

The line-breaking problem in LaTeX

• Let 𝒃𝒊 be the optimal penalty for the first 𝒊 words

𝒃𝒊 = min
𝒋<𝒊

𝒃𝒋 + 𝒊 − 𝒋 − 𝟏 + ෍

𝒌=𝒋+𝟏

𝒊

𝒍𝒌 − 𝟓𝟎

• Boundary: 𝒃𝟎 = 𝟎

• Answer: min
𝒊<𝒏

{𝒃𝒊 +𝒘(𝒊)}

• 𝑤 𝑖 is the penalty for the last line, which is 0 if the last line has no more than 50
letters, or 𝑛 − 𝑖 − 1 + σ𝑘=𝑖+1

𝑛 𝑙𝑘 − 50 otherwise

• Can add additional penalty to break the words (states changed to letters)

• How to implement it in 𝑶 𝒏𝟐 time?

62

Can we do better?

𝒍𝒊 = max ቐ
𝟏

max
𝟎<𝒋<𝒊,𝒂𝒋<𝒂𝒊

𝒍𝒋 + 𝟏

• 𝒏 element, each takes 𝑶 𝒏 time to compute, so 𝑶 𝒏𝟐 cost in total

63

Optimize LIS algorithm to O(nlogn)

LIS DP formula

𝒍𝒊 = max ቐ
𝟏

max
𝟎<𝒋<𝒊,𝒂𝒋<𝒂𝒊

𝒍𝒋 + 𝟏

• 𝒏 element, each takes 𝑶 𝒏 time to compute, so 𝑶 𝒏𝟐 cost in total

𝒍𝒊 = max ቐ
𝟏

max
𝟎<𝒋<𝒊,𝒂𝒋<𝒂𝒊

𝒍𝒋 + 𝟏

• We need to find, for all 𝒍𝒋 before 𝒍𝒊, with 𝒂𝒋 < 𝒂𝒊, which is the largest

value

65

66

4 2 7 0 1 6 1 8 5 9

1 1 2 1 2 ?𝒍𝒊:

𝒂𝒊:

67

4 2 7 0 1 6 1 8 5 9

1 1 2 1 2 3𝒍𝒊:

𝒂𝒊:

?

68

4 2 7 0 1 6 1 8 5 9

1 1 2 1 2 3 2 ?𝒍𝒊:

𝒂𝒊:

69

4 2 7 0 1 6 1 8 5 9

1 1 2 1 2 3 2 4𝒍𝒊:

𝒂𝒊:

?

70

4 2 7 0 1 6 1 8 5 9

1 1 2 1 2 3 2 4𝒍𝒊:

𝒂𝒊:

3

LIS – DP formula

• 𝒍𝒊 = max ቐ
𝟏

max
𝟎<𝒋<𝒊,𝒂𝒋<𝒂𝒊

𝒍𝒋 + 𝟏

• When processing 𝒊
• For all other elements that have been processed (all 𝑗 < 𝑖)

• We only consider when 𝑎𝑗 < 𝑎𝑖
• Find the largest 𝑙𝑗

• A range-max query?

71

LIS + range query

• Assume we have an ADT 𝑫 that can deal with range-max query
• Store key-value pairs

• insert(k,v): add a new key-value pair

• range_max(k): for all key < k, find the maximum value

72

Key 4 7 8 9 10 12 13 15 16 20 25

value 4 7 9 2 2 11 9 17 10 3 2

range_max(18) = 17

LIS + range query

• When processing 𝒊
• We need to look at all 𝒋 before 𝒊 (processed 𝒋) and 𝒂𝒋 < 𝒂𝒊
• Find the largest 𝒍𝒋

• Assume we have an ADT 𝑫 that can deal with range-max query
• Store key-value pairs

• insert(k,v): add a new key-value pair

• range_max(k): for all key < k, find the maximum value

• Key: 𝑎𝑗, value: 𝑙𝑗

• When processing 𝒊
• Call range_max(𝑎𝑖) on 𝐷, get 𝑣∗, let 𝑙𝑖 = 𝑣∗ + 1

• Insert (𝑎𝑖 , 𝑙𝑖) to 𝐷

• Go to 𝑖 + 1

73

𝒍𝒊 = max ቐ
𝟏

max
𝟎<𝒋<𝒊,𝒂𝒋<𝒂𝒊

𝒍𝒋 + 𝟏

LIS + range query

• Assume we have an ADT 𝑫 that can deal with range-max query
• Store key-value pairs

• insert(k,v): add a new key-value pair

• range_max(k): for all key<k, find the maximum value

• Key: 𝑎𝑖, value: 𝑙𝑖

• We can use an augmented tree to implement 𝑫

• To compute each value in 𝒍[⋅], we need:
• A range_max query: log n time

• An insert operation: log n time

• Total running time O(n log n)

74

Dynamic Programming (DP)

• Looks hard  it usually takes a few practice for you to understand it

• But once you understand it, you suddenly know how to solve a huge class
of problems!

• E.g., LCS and edit distance are very similar, all knapsack problems are very similar,
a huge class of LIS-style problems

• And you’ll find out they are easy: usually correctness is straightforward
• For all states, we compute the solution based on enumerating all possibilities

75

Dynamic Programming (DP)

• DP is not an algorithm, but an algorithm design idea (methodology)

• A DP recurrence of the states, decisions, with boundary cases

• We can convert a DP recurrence to a DP algorithm
• Recursive implementation: straightforward

• Non-recursive implementation: faster, and easy to be optimized

• But you need to practice 20-30 problems on finding out the recurrence for
seemingly very unrelated problems

76

