CS 141: Design And Analysis Of Algorithms

Dynamic
Programming

Yan Gu

S0 easy!

 Conversation between a mon and her four-year-old kid:

» - What is 1+1+1+1+1+1+1+1?

e - (Thought for a while) 8!

* - What is 1+1+1+1+1+1+1+1+17?

* - (Immediately) 9!

- How can you do that so fast?

- Because | know 1+1+1+1+1+1+1+1 is 8!

« - Congratulations, you understand dynamic programming now!

S0 easy!

int ans[i] ={0, ..., 0};
forj=1tok do
for i = n downto weight[j] do
ans[i] = max(ans[i], ans[i-weight[j]] + value[j]);
return ans[n][k];

* We only need to store a 1D array

Not so easy?

 Hard to get the idea by yourself
* | personally solved over 100 DP problems before | figured out what DP was

* However, with appropriate training, most of you can understand it

* You need to solve about 20-30 high-quality problems

 In my 141, we gave out about 12-15 problems, which is not quite sufficient, but
about 1/4 of the students end up with having a good understanding

« We have 4 problems so far (P2 in training 1, P1 in training 2, P1 and P2 in training 3)
« | attached our 141 homework for DP, which contains 3 more problems

« Read CLRS and the competition programming handbook for more details

« Come to talk to us for any questions

* | have trained about 1000 students so far

A motivating example: unbounded knapsack

* New quarter starts! You need to bring your luggage back to Riverside

* You need to take a flight, so you can only take one suitcase with limited
weight

$70, 5lb

A naive algorithm

//best solution using curWeight capacity
int suitcase(int curWeight) {
int best =0;
foreach item (weight, value)
if (curWeight >= weight) { // if we have enough space, try to choose this item
newVal = suitcase(curWeight - weight) + value
best = max(best, newVal); //update best value if we get a better solution

}

return best;

} Exponential time!!

answer = suitcase(5);

Knapsack problem: native solution

 Essentially, we are
searching all possibilities

 Too expensive!

* Some sub-problems are
calculated multiple times?

Knapsack problem: native solution

 Essentially, we are
searching all possibilities

 Too expensive!

* Some sub-problems are
calculated multiple times?

* But for each possibility, we
can just compute it once!

(@

There are indeed only five different values that can
be computed from this enormous recurrence tree

A naive algorithm

int suitcase(int curWeight) {
int best = 0;
foreach item (weight, value)
if (curWeight >= weight) {
newVal = suitcase(curWeight - weight) + value
best = max(best, newVal);

}

return best;

}

answer = suitcase(9);

A DP algorithm

int suitcase(int curWeight) {
/I if already computed, directly return
if (ans[curWeight] !=-1) return ans[curWeight];
int best =0;
foreach item (weight, value)
if (curWeight >= weight) {
newVal = suitcase(curWeight - weight) + value
best = max(best, newVal);

}

return ans[curWeight] = best; // memorize the current return value

)

int ans[5] = {-1, ..., -1};
answer = suitcase(5);

10

For k items and capacity n

 Each capacity value
needs to be
computed S4
* O(n) of them
* For each of them,
enumerate k 53 So
possible elements Done! Done!
 O(nk) cost

Donel Donel

52

Donel

Execution Recurrence Tree

Try k items

®(nk) cost

n Is total weight,
k 1S #items

Try k items

Recursive Solution

* Define s[i] as the maximum value you can get for a total weight of i
» We can express s[i] as the following recurrence:

The best value with

i —w; weight

™~

s[i] = max{ max sli=wlill + v} @ =2 wij]

(w[jl,v[j]) is an item
\ Trying all
possible items

 s|0] = 0, Final answer is s[n]

What is dynamic programming?

* The key components in a DP algorithm
 Optimal substructure (states)
* The decisions
* Boundary

* All can be presented in a recurrence

0
Si = max{ max {Si_wj + vj} | i > w;

(wj,vj)is an item

Is the previous solution perfect?

|

int suitcase(int leftWeight) { D
if (ans[leftWeight] != -1) return ans[leftWeight]; $50, 1lb
int curBest = 0;
foreach item (weight, value)

if (leftWeight >= weight)
curBest = max(curBest, suitcase(leftWeight - 470 s

// /

© $80, 2lb

Weight) + value);
return ans[leftWeight] = curBest;

}
int ans[50] ={-1, ..., -1};
answer = suitcase(50);

15

Is this solution still correct if we
only allow to use an item once? <

$50, 1lb

int suitcase(int leftWeight) {
if (ans[leftWeight] != -1) return ans[leftWeight];
int curBest = 0;
foreach item (weight, value)
if (leftWeight >= weight)
curBest = max(curBest, suitcase(leftWeight -
Weight) + value);
return ans[leftWeight] = curBest;
)
int ans[50] ={-1, ..., -1};
answer = suitcase(50);

$70, 5lb

What is the optimal substructure for the new problem?

* |s s; sufficient for the new problem?
* No!! We do not know if the optimal arrangement for weight i use item j or not

 What can we do?

 Add another dimension!

17

Is the previous algorithm perfect?
What if each item can be used only once?

* Let s[i, j] be the optimal value for total weight i using only the first j items

How to calculate s[i, j]? There are two options:

* Use the item j, so the best solution is s[i — w[j]|,j — 1] + v[j]
 Add value of v[j], the rest must be “best solution using the first j — 1 items for weight

i —wlj]

* Do not use item j, so the best solution is s[i,j — 1]

 Not using j, then we just “use the first j — 1 items for weight i”, and we want the best
result

18

Another way to state the relationship of s|i]|[;]

* The recurrence:

sli,j —1]

TG = M3 — 1]+ vl 2w,

* The boundary: s[i,0] = 0, s[0,j] =0

* The recurrence cannot be circular

* You can not have states a, b, and ¢ that computing a relies on b, b on c,
and c on a

19

The DP implementation

int suitcase(int i, int j) {
if (ans[i][j] = -1) return ans[i][j];
if (i==0 or j ==0) return 0;
int best = suitcase(i, j-1);
if (i >= weight[j]) best = max(best, suitcase(i-weight[j], j-1)+value[j]);
return ans[i][j] = best;

}

int ans[n][k] ={-1, ..., -1};
answer = suitcase(n, k);

20

A non-recursive implementation

int ans[i][0] =0, ..., 0};
forj=1tok do
fori=0tondo{
ans[i][j] = ans[i][j-1];
if (i >= weight[j])
ans[i][j] = max(ans[i][j], ans[i-weight[j]1]1[j-1]+value][j]);
}

return ans[n][k];

 Generally, you need to be careful when using the non-recursive

implementation — when computing a state, all the other states it depends
on must be ready

21

An even simpler implementation

int ans[i] ={0, ..., 0};
forj=1tok do
for i = n downto weight[j] do
ans[i] = max(ans[i], ans[i-weight[j]] + value[j]);
return ans[n][k];

* We only need to store a 1D array

22

The simpler implementation for the first problem

int ans[i] ={0, ..., 0};
forj=1tok do
for i = weight[j] to n do
ans[i] = max(ans[i], ans[i-weight[j]] + value[j]);
return ans[n][k];

* We only need to store a 1D array

* You can try to figure out why these simpler versions work.

23

The famous knapsack problem

* The first problem is referred to as the unbounded knapsack problem (UKP)
* The second problem is referred to as the 0-1 knapsack problem
* Other variants:

* Multiple knapsack problem: item j can be used x; times

« Some of them cannot be added together
 Each item has more than one dimension (e.g., both weight and volume)

» Dependencies between items (Problem C)

24

https://en.wikipedia.org/wiki/Knapsack_problem

DP recurrence

* A DP recurrence of the states, with boundary cases

« State: represent a unique subproblem

* Recurrence (decision): how to compute the current state from other states

(subproblems)?
 Usually enumerate all possible subproblems, compare them, use the best one

* Boundary: what are the initial values?

25

Longest Common Subsequence

Definitions

Sequence C C G C e‘o G

Subsequence A C G A A

Subsequence G C T A A T

Sequence éé % C G G G‘B‘b G C

Definitions

e 0 SCIBTD

Common subsequence

Sequence%/ G G&

Definitions

Sequence A C C e.ee.a G @}26)

Common subsequence G G T C

A\

<

Longer Common subsequence

/4

Definitions
s 5 ¢ (ST
Common subsequence G G T C

Longer Common subsequence G G T C A\ G

Longest Common subsequence G G T C G A G

Sequence T C G‘B T C

Problem Definition

* Input: two sequences X and Y

* We say that a sequence Z is a common subsequence of X and Y if itis a
subsequence of both X and Y

* For example, if X = (A,B,C,B,D,A,B)and Y = (B,D,C,A, B, A), the
sequence (B, C, A) is a common subsequence of X and Y; not a longest
one though

* The problem is to find a longest common subsequence of X and Y

LCS

* If we look at X[1..i] and Y[1..j], what is their LCS?
* First i characters in X and first j characters in Y

* Let’s compare the last character X|[i] and Y|j]

* Let s[i, j] be the length of LCS of X[1..i] and Y[1..]]
* What if X|i] = Y[j]?

» What if X|i] + Y[j]?

LCS

if X[i] = Y[j] =
* Let’s keep the last character ¢ in LCS
* Then we just need to find the LCS of X[1..i-1] and Y[1..]-1] and add c at the end
* s[i, j] = s[i-1, j-1] + 1

Index : 1 2 3 4 5 6 7
X = A B C B D A B
Y = B D C A B A

LCS of “ABCB” and “BDCAB” must be: 1

(the LCS of “ABC” and “BDCA”) + “B” s[4,5]=95[3,4]+1

Recursive Algorithm

o if X]i] # Y[j]
 Three choices: keep X|i] as the last one, Y[i] as the last one, or discard both X|i]

and Y[j]
e return MAX(s[i-1, j], s[i, j-1])
Index : 1 2 3 4 5 6 7
X= A B C B D A B
t
Y = B D C A B A
LCS of “ABC” and “BDCAB” can be: 1

the LCS of “AB” and “BDCAB” B
the LCS of “ABC” and “BDCA” 8[3’ 5] - max(s[2, 5]’ 5[3’4])

the LCS of “AB” and “BDCA” (included above)

LCS

* Let s[i, j]| be the LCS of X[1..i] and Y[1..j]

L sli—1,j— 1]+ 1 : X[i] = Y[j]
sli.jl = max(s|li—1,j],sli,j — 1]) : X|i] # Y[j]

- s[i,0] = 0, s[0,j] = 0

35

Recursive Algorithm

 LCS(j, j)
* if computed then directly return
* It X[I] == Y]]
 return LCS(i-1, J-1) + 1
« if X[i] 1= Y[j]
* return max(LCS(i, j-1), LCS(i-1, }))

Non-Recursive Algorithm

* ans[i][0] = ans[0][j] =0
*fori=1tomdo
*forj=1tondo

* if X[i] == Y[J]
 ans[i][j] = ans[i-1][J-1] + 1
* else

* ans[i][j] = max(ansJi][j-1], ans[i-1][j])

s[i—1,j—1]+1 Xi =Yj

Bottom-up Algorithm U= maxtsii - 1j1.s1i.j - 1.sli- 1j- 11} x =,
| B c A B A

3 4 5 6

o | 0| o | 0

0

O | O |IN U

1
0
Al 0

B2

C3

B4

D5

A ©

o | o ol o | o)l o | o | o o

B 7

Xi =Yj

max{s[i—1,j],s[i,j—1],s[i—1,j—1]} x; #y;

v={

-

_

=

‘ﬂ << | © i ~— @\ @\ Q\| 4D) o
@

N e’

Al
B2
C3
B4
D5
A ©
B 7

Bottom-up Algorithm <t/

J
|

0
Al
B2
C3
B4
D5
A ©
B 7

Bottom-up Algorithm -ti=

s[i—1,j—1] +1
max{s[i—1,j],s[i,j—1],s[i—1,j—1]} x; #y;

B D C A B A
o 1 2 3 4 5 6
0 0 0 0 0 0 0
0 to | TO0 | 10 | "1 | «<1 | 11
0 "1 <1 <1 | T1 | N2 2
0 T1 T1) — 2 t 9 19
0 | ~1 | 11| t2]| 12| ~3]| <3
0 L N2 T2 T2 13 t 3
0 T1 12 12 | N3 t3 | 41
0 N1 T2 | T2 | 13 | N4 | 14

Xi =Yj

J
|

0
Al
B2
C3
B4
D5
A ©
B 7

Bottom-up Algorithm -ti=

s[i—1,j—1] +1
max{s[i—1,j],s[i,j—1],s[i—1,j—1]} x; #y;

B D C A B A
o 1 2 3 4 5 6
0 0 0 0 0 0 0
0 to | TO0 | 10 | "1 | «<1 | 11
0 N1 | <1 | <1 | T1 | N2 2
0 T1 T1 N 2 — t 9 19
0 | ~1 | 11| 12| 12| ~3]| <3
0 L N2 T2 T2 13 t 3
0 T1 12 12 | N3 t3 | x4
0 N1 T2 | T2 | 13 | N4 | 14

Xi =Yj

Edit Distance

Minimum Edit Distance

* How to measure the similarity of words or strings?
* Auto corrections: “rationg” -> {“rating”, “ration”}

* Alignment of DNA sequences

 How many edits we need (at least) to transform a sequence X to Y?

* Insertion
* Deletion
e rationg -> rating
 Delete o, edit distance 1
* rationg -> action
 Delete r, add c, delete g
 Edit distance 3

An Example of DNA sequence
alignment

Human LEP gene
GTCACCAGGATCAATGACATTTCACACACG- - -TCAGTCTCCTCCAAACAGAAAGTCACC

TRRERRERRERR e et PO L Ber reer reet rl
GTCACCAGGATCAATGACATTTCACACACGCAGTCGGTATCCGCCAAGCAGAGGGTCACT
Mouse ob gene

GGTTTGGACTTCATTCCTGGGCTCCACCCCATCCTGACCT TATCCAAGATGGACCAGACA

TELRreeeneenenneeenne veneeeer et beererinnennnnnl
GGCTTGGACTTCATTCCTGGGCTTCACCCCATTCTGAGTT TGTCCAAGATGGACCAGACT

CTGGCAGTCTACCAACAGATCCTCACCAGTATGCCTTCCAGAAACGTGATCCAAATATCC

EENCERNEED BOrnl POrEnenn) GUerrees an vpe 0 el e e
CTGGCAGTCTATCAACAGGTCCTCACCAGCCTGCCTTCCCAAAATGTGCTGCAGATAGCC

10 Pearson Education, Inc.

Adapted from Klug p. 384 Determine the matchingscore.

Recurrence Relation
* D; ;: The cost of transforming X[1..i] to Y[1../]

[i _<
min{
\

[max{i,)
Di_qj-1

D1 -

-1

Di—y,j -

-1

;i=0vj=0
,l>O/\]>O/\xl=y]

} ;i>O/\j>O/\xi;txj

Summary for Dynamic Programming

Dynamic Programming (DP)

* Looks hard ® it usually takes a few practice for you to understand it

 But once you understand it, you suddenly know how to solve a huge class

of problems!
 E.g., LCS and edit distance are very similar, all knapsack problems are very
similar, ...

* And you’ll find out they are easy: usually correctness is straightforward
* For all states, we compute the solution based on enumerating all possibilities

46

Dynamic Programming (DP)

* DP is not an algorithm, but an algorithm design idea (methodology)
* A DP recurrence of the states, decisions, with boundary cases

* We can convert a DP recurrence to a DP algorithm

 Recursive implementation: straightforward
» Non-recursive implementation: faster, and easy to be optimized

47

Longest Increasing Subsequence
(LIS)
and Other Similar Problems

What is an increasing subsequence?

4 2 |7 0| 1 6
* Increasing subsequence:
2 6
 Longest increasing subsequence (LIS):
0 1 6

49

Why studying LIS?

 The length of LIS reflect some intrinsic properties of the sequence
 Consider it as the “eigenvalue” of a sequence (LIS as the “eigenvector”)
 Applications in many algorithms and quantum computing

« Many similar DP algorithms are similar to the DP algorithm for LIS
« More examples are given later in this lecture

50

https://www.cs.utexas.edu/~wright/papers/tomography-survey.pdf

What are the states for LIS?

 Let [; be the LIS for the first i element with i selected (as the last in LIS)

 What is the recurrence of LIS?

1

l; = max max {l]- + 1}
O<j<i,a]-<ai

ol

Running the example input

1
l; = max { max {l]- + 1}

O<j<i,a]-<ai

il

52

Running the example input

1
l; = max { max {lj + 1}

O<j<i,a]-<ai

53

What is the time complexity of LIS?

(1

li =max { max {l]- + 1}
\O<]<l,a]-<a,-

- n element, each takes O (n) time to compute, so 0(n?) cost in total

o4

Revisit: activity selection

Let AS; be the maximum number of activities

and the last one is the i-th activity, then
(g
AS; = max- jgp{gj)éSi{ASj + 1}

:

Additional questions:

« \What about related questions? Like
maximize total length, smallest waiting time

« Can you solve it faster than O(N?)?

A10 [2, 14)
A6 [12, 16)

—
0 5 10 15

Other similar problem: the famous “post-office problem”

* First proposed by Donald Knuth in vol. 3 of TAOCP (1973)
e Let’s consider the 1d case

* Installing each mailbox has certain cost (installation and maintenance)
* But we also want to minimize the residents’ walking distances

56

https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming

Formalize the problem

* Installing each mailbox has certain cost m

* The residents’ unhappiness is the sum of the longest walking distances
for each mailbox

héh A oM
- - N-

¥

Formalize the problem

* Installing each mailbox has certain cost m

* The residents’ unhappiness is the sum of the longest walking distances
for each mailbox

héh hhh oM
kB

58

Solving the problem

* Installing each mailbox has certain cost m

* The residents’ unhappiness is the sum of the longest walking distances
for each mailbox
* Let p; be the optimal solution of the first i residents:
Pi = r]n<1{1 {pi+m+(c; —cj41)/2}
* Boundary: po = 0
* Answer: p,,

héh A oM
- - N-

59

The line-breaking problem in LaTeX

Randomized Incremental Convex Hull is Highly Parallel

Guy E. Blelloch Yan Gu
Carnegie Mellon University UC Riverside
guyb@cs.cmu.edu ygu@cs.ucr.edu
ABSTRACT

The randomized incremental convex hull algorithm is one of the
most practical and important geometric algorithms in the litera-
ture. Due to its simplicity, and the fact that many points or facets
can be added independently, it is also widely used in parallel con-
vex hull implementations. However, to date there have been no
non-trivial theoretical bounds on the parallelism available in these
implementations. In this paper, we provide a strong theoretical anal-
ysis showing that the standard incremental algorithm is inherently
parallel. In particular, we show that for n points in any constant
dimension, the algorithm has O(log n) dependence depth with high
probability. This leads to a simple work-optimal parallel algorithm
with polylogarithmic span with high probability.

Our key technical contribution is a new definition and analysis
of the configuration dependence graph extending the traditional
configuration space, which allows for asynchrony in adding config-
urations. To capture the “true” dependence between configurations,

Yihan Sun
UC Riverside
yihans@cs.ucr.edu

Julian Shun
MIT CSAIL

jshun@mit.edu

the convex hull. A newly-added point either falls into the current
convex hull and thus no further action is needed, or it removes
existing faces (henceforth facets) that it is visible from, while adding
new facets. For example, in Figure 1, adding c to the existing hull
u-v-w-x-y-z-t would replace edges v-w, w-x, x-y, and y-z with v-c
and c-z. Clarkson and Shor, in their seminal work over 30 years
ago [28], showed that the incremental convex hull algorithm on n
points in d-dimensions has optimal Ol.fnl-""szj + nlog n) expected
runtime when points are added in random order. Their results are
based on a more general setting, which they also used to solve sev-
eral other geometry problems, and the work led to over a hundred
papers and survey articles on the topic of random incremental algo-
rithms. Their proof has been significantly simplified over the years,
and is now described in several textbooks [21, 32, 35, 50]. Analysis
techniques, such as backwards analysis [54], were developed in
this context and are now studied in many intermediate algorithms
courses.

60

The line-breaking problem in LaTeX

* You have n words in a paragraph with lengths 14, ..., [,
* You want to break them into lines so each line should contain 50 characters

 The penalty for each line is the |x — 50| when x is the number of
characters in that line

 You want to find an optimal line-breaking result

61

The line-breaking problem in LaTeX

* Let b; be the optimal penalty for the first i words
(\

b—m1n<b]-+ l—]—1+ lk 50| ;
j<i 2
\ k=j+1 J

* Boundary: by = 0
* Answer: 131<11£1 {b; + w(i)}
* w(i) is the penalty for the last Ime, which is 0 if the last line has no more than 50
letters, orn —i — 14+ X1, 1 [y — 50 otherwise
 Can add additional penalty to break the words (states changed to letters)

- How to implement it in O(n?) time?

62

Can we do hetter?

(1

li =max { max {l]- + 1}
\O<]<l,a]-<a,-

- n element, each takes O (n) time to compute, so 0(n?) cost in total

63

Optimize LIS algorithm to O(nlogn)

LIS DP formula

(1

li =max { max {l]- + 1}
\O<]<l,a]-<a,-

- n element, each takes O (n) time to compute, so 0(n?) cost in total

(

1
li =max { max {l]-} +1
\O<]<l,aj<ai

* We need to find, for all /; before [;, with a; < a;, which is the largest
value

65

8959

1

6

1

4 | 2| 7| 0

(@)
©

8959

1

6

1

4 | 2| 7| 0

N~
O

68

69

70

LIS — DP formula

(

1
*l; =max { max {l]-} +1
\0<]<l,aj<a,-

* When processing i
* For all other elements that have been processed (all j < i)
* We only consider when a; < a;
* Find the largest [;

A range-max query?

71

LIS + range query

* Assume we have an ADT D that can deal with range-max query
« Store key-value pairs
* insert(k,v): add a new key-value pair
 range_max(k): for all key < k, find the maximum value

Key 4 7 8 9 10 12 13 15 16 20 25
value 4 7 9 2 2 11 9 17 10 3 2

range_max(18) = 17

72

1

l; = max max {l]-} +1
O<j<i,aj<ai

LIS + range query

* When processing i
* We need to look at all j before i (processed j) and a; < a;

* Find the largest [;

* Assume we have an ADT D that can deal with range-max query
« Store key-value pairs
* insert(k,v): add a new key-value pair
 range_max(k): for all key < k, find the maximum value
* Key: a;, value: [;
* When processing i
e Call range_max(a;) on D, getv*, letl; =v* + 1
* Insert (a;, ;) to D
*Gotoi+1

73

LIS + range query

* Assume we have an ADT D that can deal with range-max query
« Store key-value pairs
* insert(k,v): add a new key-value pair
 range_max(k): for all key<k, find the maximum value
* Key: a;, value: [;

* We can use an augmented tree to implement D

* To compute each value in [[-|, we need.:
* A range_max query: log n time
* An insert operation: log n time
* Total running time O(n log n)

74

Dynamic Programming (DP)

* Looks hard ® it usually takes a few practice for you to understand it

 But once you understand it, you suddenly know how to solve a huge class

of problems!
 E.g., LCS and edit distance are very similar, all knapsack problems are very similar,
a huge class of LIS-style problems

* And you’ll find out they are easy: usually correctness is straightforward
* For all states, we compute the solution based on enumerating all possibilities

75

Dynamic Programming (DP)

* DP is not an algorithm, but an algorithm design idea (methodology)
* A DP recurrence of the states, decisions, with boundary cases

* We can convert a DP recurrence to a DP algorithm

 Recursive implementation: straightforward
« Non-recursive implementation: faster, and easy to be optimized

 But you need to practice 20-30 problems on finding out the recurrence for
seemingly very unrelated problems

76

