
CS142: Algorithm Engineering

Yan Gu

Outline for today’s lecture

• 1. Motivation (what is algorithm engineering, and why?)

• 2. Course Logistics

• 3. Covered Topics

The original welcome page

The real situation for AY 2020-2021

The challenges in online learning

•Disadvantages:

• Harder communication (compared to classroom version)

• Lack of chances for discussions and office hours

• Fairness in evaluation

•Advantages:

• Better scalability (class size, discussion size)

• All lectures and discussions could be recorded — better for later
review, especially when working on your assignments

Class information

• Classes: Monday & Wednesday 5:00–6:20 PM

• Instructor: Yan Gu

• Email: ygu@cs.ucr.edu

• Website: https://www.cs.ucr.edu/~ygu/teaching/142/W21/web/index.html

• TAs: Xiaojun Dong

• Email: xdong038@ucr.edu

• Discussion: Tuesday 11:00-11:50 AM, the same Zoom link as the lectures

• Office hours: TBA, check the calendar on course webpage

mailto:ygu@cs.ucr.edu
https://www.cs.ucr.edu/~ygu/teaching/142/W21/web/index.html
mailto:xdong038@ucr.edu

Class information

• Piazza: piazza.com/ucr/winter2021/cs142, offline Q&A

• GradeScope: submitting your homework assignments (entry code is sent to
you privately)

• Posting your questions on Piazza is highly encouraged: let your questions help
others!

• Training programming assignments: via codeforces.com

• Performance engineering assignments: via lab machines

7

piazza.com/ucr/winter2021/cs142
codeforces.com

Bonus Candies and Chocolate!

• If you answer questions in class or do a good job in homework assignments,
I usually give candies or chocolate.

• Now that the school is closed … We will give you COUPONS!

• You could use it for:
• Get candies from me once the campus is open

• Get some gifts at the end of the quarter

• Earn class participation bonus points (up to 5pts)

8

CS142- Algorithm Engineering

COUPON

9

Motivation:
Why algorithm engineering?

What is a typical interview process? (Google’s software
developer as an example, link)

• Round 1: online assessment (90 minutes)
• Two data structures and algorithms questions that you have to complete in less than

90 minutes in total

• You'll need to write your own test cases as you won't be provided with any

• Round 2: Technical phone interview (1 or 2)
• You will solve data structure and algorithm questions

• You'll share a Google Doc with your interviewer, write your solution directly in the
document and won't have access to syntax highlighting or auto-completion like you
would in a regular IDE

• Finally, in addition to coding questions, you should also be ready to answer a few
typical behavioral questions

https://igotanoffer.com/blogs/tech/google-software-engineer-interview
https://igotanoffer.com/blogs/product-manager/behavioral-interview-questions-tech-companies

What is a typical interview process? (Google’s software
developer as an example)

• Round 3: Onsite interviews
• Onsite interviews are the real test. You'll typically spend a full day at a Google office

and do usually four interviews in total

• You'll typically get three coding interviews with data structure and algorithm questions,
and one system design interviews

• All candidates are expected to do extremely well in coding interviews. If you're
relatively junior (L4 or below) then the bar will be lower in your system design
interviews than for mid-level or senior engineers (e.g. L5 or above)

• You'll use a whiteboard to write your code in most onsite interviews at Google

What are the typical problems? (link)

13

https://igotanoffer.com/blogs/tech/google-software-engineer-interview

What are the typical problems?

• Graphs / Trees (39% of questions, most frequent)
• Given a binary tree, find the maximum path sum. The path may start and end at any

node in the tree.

• Given two words (beginWord and endWord), and a dictionary's word list, find the length
of shortest transformation sequence from beginWord to endWord, such that: 1) Only one
letter can be changed at a time and, 2) Each transformed word must exist in the word
list.

• Given a matrix of N rows and M columns. From m[i][j], we can move to m[i+1][j], if
m[i+1][j] > m[i][j], or can move to m[i][j+1] if m[i][j+1] > m[i][j]. The task is print longest path
length if we start from (0, 0).

14

15

Database /

Data warehouses
Data mining /

Data science Machine learning /

Artificial intelligence

Why are algorithms important?

Computational biology Computer graphics /

computational geometry

What are the typical problems?

• Graphs / Trees (39% of questions, most frequent)
• Given a binary tree, find the maximum path sum. The path may start and end at any

node in the tree.

• Given two words (beginWord and endWord), and a dictionary's word list, find the length
of shortest transformation sequence from beginWord to endWord, such that: 1) Only one
letter can be changed at a time and, 2) Each transformed word must exist in the word
list.

• Given a matrix of N rows and M columns. From m[i][j], we can move to m[i+1][j], if
m[i+1][j] > m[i][j], or can move to m[i][j+1] if m[i][j+1] > m[i][j]. The task is print longest path
length if we start from (0, 0).

16

Knowledge

17

Data
structures

Methodo-
logies

Certain widely-
used algorithms

Analysis (time
complexity, work-span)

Problem-Solving

Problem
formalization

Mapping to initial solutions,
and further optimizations

Implementation

Reasoning and
debugging

FAQ

• I don’t use algorithm knowledge much as an SDE. Why interview us algorithms?

• It’s a valuable expertise.

• Does that mean that other courses are useless?

• Of course not.

• However, courses are different. If you get an A in OS, that means a lot. It’s not the
case for algorithm courses.

• Do other universities have courses for training problem-solving abilities?

• Yes, many, if not most, do.

• Can I practice by myself on LeetCode?

• Yes, of course. However, it is inefficient.

• Problem quality on Leetcode is very low.

• Guided training is much more efficient.
18

What we do in CS 142

19

More practice for “problem-solving”

High-level concepts to design algorithms
with better practical performance

Practice for “problem-solving” abilities

• We will give you four sets each with three problems (5 pts * 4)
• 1 easy, 1 median, 1 hard (approximately)

• Each problem worth 50 points (2.5 pts for your final grade)

• There can be partial credits for each problem

• Submission is via codeforces.com

• We try to cover as many algorithmic ideas in these problems as possible

• You need to submit a brief report on how you solved these problems, including
• Your name, SID, and your codeforces ID

• Specify which submission is yours (there is a unique id)

• Describe the algorithm you designed

• Show cost analysis if necessary

• You will not get the point if you don’t provide the report to explain how your algorithm
works

20

https://codeforces.com/

Additional info for problem-solving training

• We provide you a brief guidance on how to use codeforces.com, but you are all
CS students and you also should be able to figure it out easily

• We have a deadline for each assignment
• If you solve the problems and submit the report on time, you get the full points

• If you finish later and before March 1, you get half of the points

• If you solve two problems include the hard problems, you get a bonus candy

• If you solve all three problems, you get two bonus candies

• If your solution is the fastest among all submissions, you are honored to:
• Write a short report and share to the class after deadline

• Explain your solution in a special lecture later this quarter

• Receive a candy (for each problem)

• But you can only use “valid” optimizations

21

https://www.cs.ucr.edu/~ygu/teaching/142/W21/web/OJ.pdf

What we do in CS 142

22

More practice for “problem-solving”

High-level concepts to design algorithms
with better practical performance

Technology Scaling Until 2004

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

“Moore’s Law”

Stanford’s CPU DB [DKM12]Year

Normalized
transistor count

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Technology Scaling Until 2004

Normalized
transistor count

Clock speed (MHz)

“Dennard scaling”

Stanford’s CPU DB [DKM12]Year

Advances in Hardware

Apple computers with similar prices from 1977 to 2004

Apple II

Launched: 1977

Clock rate: 1 MHz

Data path: 8 bits

Memory: 48 KB

Cost: $1,395

Power Macintosh G4

Launched: 2000

Clock rate: 400 MHz

Data path: 32 bits

Memory: 64 MB

Cost: $1,599

Power Macintosh G5

Launched: 2004

Clock rate: 1.8 GHz

Data path: 64 bits

Memory: 256 MB

Cost: $1,499

Early Suggestions by the Pioneers

Premature optimization is the
root of all evil. [K79]

Donald Knuth

The First Rule of Program
Optimization: Don’t do it.

The Second Rule of Program
Optimization — For experts

only: Don’t do it yet. [J88]

Michael Jackson

More computing sins are committed in the
name of efficiency (without necessarily achieving
it) than for any other single reason — including

blind stupidity. [W79]

William Wulf

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Technology Scaling Until 2004

Normalized
transistor count

Clock speed (MHz)

“Dennard scaling”

Stanford’s CPU DB [DKM12]Year

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Technology Scaling After 2004

Clock speed (MHz)

Normalized
transistor count

Stanford’s CPU DB [DKM12]Year

Power Density

Image credit “Idontcare” from
forums.anadtech.com

• Dynamic power ∝
capacitive load × voltage2

× frequency

• Static power: maintain
when inactive (leakage)

• Maximum allowed
frequency determined by
processor’s core voltage

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Technology Scaling After 2004

Clock speed (MHz)

Normalized
transistor count

Stanford’s CPU DB [DKM12]Year

Vendor Solution: Multicore

∙To scale performance, processor

manufacturers put many processing

cores on the microprocessor chip

∙Each generation of Moore’s Law

potentially doubles the number of

cores

Intel Core i7 3960X (Sandy Bridge E), 2011

• 6 cores / 3.3 GHz / 15-MB L3 cache

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Technology Scaling

Processor cores

Normalized
transistor count

Clock speed (MHz)

Stanford’s CPU DB [DKM12]Year

Powerful machines

• 96 cores, 192 hyperthreads,

1.5 TB main memory

• No one in this world can make Dijkstra or Bellman-Ford 100x faster
sequentially, but it is not too hard when we have this many of cores

• Every key component in a system or software is or will be run in parallel

• Learning parallel programming ≠ writing fast parallel code

33

Performance Is No Longer Free

2011 Intel
Skylake

processor

2008
NVIDIA
GT200
GPU

∙Moore’s Law continues to

increase computing ability

∙But now that performance looks

like big multicore processors

with complex cache hierarchies,

wide vector units, GPUs, FPGAs,

etc.

∙Generally, algorithms must be

adapted to utilize this hardware

efficiently!

The data size can easily reach hundreds GB to TB level

Data

35

36

Database /

Data warehouses

Data mining /

Data science Machine learning /

Artificial intelligence

Everyone wants performance!%aa

Many, many

others

Computational

biology

Computer graphics /

computational geometry

Get Faster!

Algorithm Engineering Is Still Hard

2017 Intel 7th-generation
desktop processor

∙A modern multicore desktop processor

contains parallel-processing cores,

vector units, caches, prefetchers,

GPU’s, hyperthreading, dynamic

frequency scaling, etc.

∙How can we write algorithms and

software to utilize modern

hardware efficiently?

Outline for this course

• Parallelism

• I/O efficiency

• Brief overview of architecture
• What you should consider when designing algorithms, and what you shouldn’t

• Assorted lectures on case study
• Matrix multiplication, sorting, graph processing, dynamic processing

38

Total work for this course

• Four problem-solving assignments (20%)

• Three performance-engineering assignments (30%)
• 10% each, including written and programming problems

• 2 grace days for the *entire* quarter

• Quiz (5%)

• Final exam (25%)

• Final project (20%)

• Class participation (10%, bonus)

• There will be bonus points for both assignments and exams

• You can get >100% for each assignment/exam, and you do not have to answer every
question correctly to get an A

Final project

• Implement an algorithm that you like

• Can be sequential or parallel

• You should optimize the performance

• You will write a report and give a short class presentation

40

Total work for this course

• Four problem-solving assignments (20%)

• Three performance-engineering assignments (30%)
• 10% each, including written and programming problems

• 2 grace days for the *entire* quarter

• Quiz (5%)

• Final exam (25%)

• Final project (20%)

• Class participation (10%, bonus)

• There will be bonus points for both assignments and exams

• You can get >100% for each assignment/exam, and you do not have to answer every
question correctly to get an A

Tentative score-to-grade mapping

•A+: very top performance in the class
•Most likely to be decided by bonus points

•A: 85%

•A-: 80%

•B+: 75%

•B: 70%

42

Coupons (candies)

• An additional system that you can compete and strive for excellence

• Ways to collect coupons:

• Finish the hard problems or even all problems in problem-solving training

• Write the fastest code for either training problems or homework problems

• Solve bonus problems in homework assignments

• Solve bonus problems in exams, or get cutoff credits

• Do extraordinary final project

• Participate in class and offline discussions

43

Total work for this course

• Four problem-solving assignments (20%)

• Three performance-engineering assignments (30%)
• 10% each, including written and programming problems

• 2 grace days for the *entire* quarter

• Quiz (5%)

• Final exam (25%)

• Final project (20%)

• Class participation (10%, bonus)

• There will be bonus points for both assignments and exams

• You can get >100% for each assignment/exam, and you do not have to answer every
question correctly to get an A

Grace Days

• You have in total 2 grace days for the three performance-engineering
assignments and the final project

• The grace days are for emergency issues, not for reasons like you
underestimate the time you need to solve the problems

• No additional late days will be granted
• Don’t use excuses like your grandma is sick

• Expect for really unfortunate issues (e.g., a car crash): we really don’t want it to
happen to any of you; if it happens, just let me know

• Also, you’ll need to provide “proof” for that

45

PLAGIARISM WARNING

• “Clean Board Policy”
• it okay to talk to other students, but when you work together, you come with nothing

(your code, your written solutions, etc.) and discuss at a whiteboard on which you
collaborate.

• Once your discussion is over, wipe the board clean. Each student must walk away with
the results of the discussion only in his/her head; do not copy anything down. When you
are writing down your homework answers, do so alone and individually, reproducing
your own understanding on paper.
You can get help from the instructors, TAs, textbooks (or relevant books), the Internet,
but when you write down your solution, it MUST be close-book.

• Cheating or plagiarism will NOT be tolerated!!!

• See UCR academic integrity for additional information:
• https://conduct.ucr.edu/policies/academic-integrity-policies-and-procedures

46

https://conduct.ucr.edu/policies/academic-integrity-policies-and-procedures

Let’s have fun!

