Fast and Space-Efficient Parallel Algorithms for Influence Maximization

Letong Wang
UC Riverside
lwang323@ucr.edu

Xiangyun Ding
UC Riverside
xding047@ucr.edu

Yan Gu
UC Riverside
ygu@cs.ucr.edu

Yihan Sun
UC Riverside
yihans@cs.ucr.edu

ABSTRACT
Influence Maximization (IM) is a crucial problem in data science. The goal is to find a fixed-size set of highly influential seed vertices on a network to maximize the influence spread along the edges. While IM is NP-hard on commonly used diffusion models, a greedy algorithm can achieve \((1 - 1/e)\)-approximation by repeatedly selecting the vertex with the highest marginal gain in influence as the seed. However, we observe two performance issues in the existing work that prevent them from scaling to today’s large-scale graphs: space-inefficient memorization to estimate marginal gain, and time-inefficient seed selection process due to a lack of parallelism.

This paper significantly improves the scalability of IM using two key techniques. The first is a sketch-compression technique for the independent cascading model on undirected graphs. It allows combining the simulation and sketching approaches to achieve a time-space tradeoff. The second technique includes new data structures for parallel seed selection. Using our new approaches, we implemented PaC-IM: Parallel and Compressed IM.

We compare PaC-IM with state-of-the-art parallel IM systems on a 96-core machine with 1.5TB memory. PaC-IM can process the ClueWeb graph with 978M vertices and 75B edges in about 2 hours. On average, across all tested graphs, our uncompressed version is 5–18× faster and about 1.4× more space-efficient than existing parallel IM systems. Using compression further saves 3.8× space with only 70% overhead in time on average.

PVLDB Reference Format:
doi:10.14778/3632093.3632104

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at https://github.com/ucrparlay/Influence-Maximization.

1 INTRODUCTION
Influence Maximization (IM) is a crucial problem in data science. The goal is to find a fixed-size set of highly influential seed vertices on a network to maximize the spread of influence along the edges. For example, in viral marketing, the company may choose to send free samples to a small set of users in the hope of triggering a large cascade of further adoptions through the “word-of-mouth” effects.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of this license. For any use beyond those covered by this license, obtain permission by emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 3 ISSN 2150-8097.
doi:10.14778/3632093.3632104

Given a graph \(G = (V, E) \) and a stochastic diffusion model to specify how influence spreads along edges, we use \(n = |V|, m = |E|, \) and \(\sigma(S) \) to denote the expected influence spread on \(G \) using the seed set \(S \subseteq V \). The IM problem aims to find a seed set \(S \) with size \(k \) to maximize \(\sigma(S) \). Given its importance, IM is widely studied, and we refer the audience to a list of surveys [4, 6, 88] that reviews the numerous applications and a few hundred papers on this topic.

Among various diffusion models, Independent Cascade (IC) [32] (defined in Sec. 2) is one of the earliest and most widely used. In IC, only seeds are active initially. In each timestamp, each vertex \(v \) that is newly activated in the last timestamp will activate its neighbors with a probability \(p_{ov} \). Although IM is NP-hard on IC [42], the monotone and submodular properties of IC allow for a greedy algorithm with \((1 - 1/e)\)-approximation [42]. Given the current seed set \(S \), the greedy algorithm selects the next seed as the vertex with the highest marginal gain, i.e., \(\arg \max_\nu p_{ov}(\sigma(S \cup \{\nu\}) - \sigma(S)) \).

Due to the theoretical guarantee, this greedy strategy generally gives better solution quality than other heuristics [51]. However, the challenge lies in estimating the influence \(\sigma(S) \) of a seed set \(S \). Early work uses Monte-Carlo (MC) experiments by averaging \(R \) rounds of influence diffusion simulation [42, 49], but the solution quality relies on a high value of \(R \) (usually around \(10^6 \)). Later work uses sketch-based approaches [16, 20–22, 59, 74, 75] to avoid MC experiments. Such algorithms pre-store \(R \) sketches. Each sketch is a sampled path—an edge \((v, u)\) is chosen with probability \(p_{ov} \). When estimating \(\sigma(S) \), the sampled graphs are used as the results of the MC experiments of influence diffusion. In an existing study [21], using \(R = 200 \) sketches achieves a similar solution quality to \(R = 10^6 \) MC experiments, greatly improving efficiency. The sketches can either be the sampled graphs and/or memoizing more information from the sampled graphs to accelerate influence computation, such as connectivity [20, 31] or strong connectivity [59].

While numerous sketch-based solutions have been developed, we observed great challenges in scaling them to today’s large-scale graphs. In a benchmark paper [2] on nine state-of-the-art (SOTA) sequential IM solutions, none of them can process the Friendster (FT) graph [47] with 65M vertices and 3.6B edges due to timeout (more than 40 hours) or out-of-memory. Even the recent parallel algorithms [31, 55, 56, 63] need more than half an hour to process FT on a 96-core machine (See Table 4). Two major challenges exist to scale sketch-based approaches to billion-scale graphs. The first is the space. Storing each sketch usually needs per-vertex information. This indicates \(O(Rn) \) space, which is expensive on large graphs (empirically, \(R \) is a few hundred). The second is insufficient parallelism. Many SOTA IM solutions use the CELF [49] optimization for seed selection (see details below), which is inherently sequential.

This paper takes a significant step to improve the scalability of sketch-based IM solutions and tests the algorithms on real-world billion-scale graphs. We propose two techniques to improve both
space and time. The first is a sketch compression technique for the IC model on undirected graphs, which limits the auxiliary space by a user-defined capacity to reduce space usage. Our second technique is parallel data structures for seed selection to reduce running time, which works on general graphs and any diffusion model with submodularity. Combining the new ideas, we implemented PaC-IM: Parallel and Compressed IM. We show a heatmap in Fig. 1 to overview our results. On the aforementioned FT graph, PaC-IM only uses 128 seconds without compression (using 2.5× auxiliary space on top of the input graph), or 609 seconds when limiting auxiliary space in 0.45x input size, using a 96-core machine. PaC-IM is at least 15× faster than existing parallel solutions while using much less space and achieving the same solution quality (see Tab. 4). Below, we overview the key contributions of this paper.

Our first contribution is a compression scheme for sketches on undirected graphs and the IC model, which allows for user-defined compression ratios (details in Sec. 3). Similar to existing work [20, 31], PaC-IM memoizes connected components (CC) of the sketches but avoids the O(\(R^n\)) space to store per-vertex information. Our idea is a combination (and thus a tradeoff) of memoization and simulation. The idea is to memoize the CC information only for centers \(C \subseteq V\), where \(|C| = \alpha n\), and \(\alpha \in [0, 1]\) is a user-defined parameter. A local simulation will retrieve the influence information of a non-center vertex. Theoretically, we show that we can limit the auxiliary space by a factor of 2 by increasing the time by a factor of O(1/\(\alpha\)). Experimentally, such tradeoff is studied in Fig. 7.

Our second contribution is two new parallel data structures for seed selection. Recall that many SOTA IM solutions [20, 21, 31, 43, 56] use the CELF optimization [49] (details in Sec. 2) for seed selection. In a nutshell, CELF is an iterative approach that lazily evaluates the marginal gain of vertices in seed selection, one at a time. While laziness reduces the number of vertices to evaluate, CELF is inherently sequential. We proposed two novel solutions that achieve high parallelism for CELF. The challenge is evaluating more vertices in parallel while avoiding "unpromising" vertices as in CELF. Our first solution is a binary search tree (BST) called P-tree [10, 12, 73] (Sec. 4.1). We highlight its theoretical efficiency (Thm. 4.1 to 4.3). Our second solution is referred to as Win-Tree (Sec. 4.2), which has lower space usage, leading to slightly better overall performance. The two solutions work on both directed and undirected graphs and any diffusion model with submodularity. They are potentially extendable to other optimization problems with submodular objective functions (see discussions in Sec. 7).

We experimentally study the performance of PaC-IM and compare it with SOTA parallel IM systems. We tested 17 graphs, five of which have over a billion edges. Besides social networks, we also tested other real-world graphs, including web graphs, road graphs, and k-NN graphs. One can consider IM on such graphs as studying the influence diffusion among webpages and geologically or geometrically close objects. On all tested graphs, PaC-IM achieves the best running time and space usage while guaranteeing comparable or better solution quality to all baselines. Compared to the best baseline, PaC-IM with no compression is 5.6× faster and is 1.5× more space-efficient on average (geometric mean across tested graphs), and is 3.2× faster and uses 6× less space using compression with \(\alpha = 0.1\). Due to space- and time-efficiency, PaC-IM is the only system to process the largest graph ClueWeb [54] with 978M vertices and 75B edges. We believe PaC-IM is the first IM solution that scales to tens of billions of edges and close to a billion vertices. For page limit, we provide the full version of this paper [77] with full proofs and more experimental evaluations.

2 PRELIMINARIES

For graph \(G = (V, E)\), we use \(n = |V|\) and \(m = |E|\). Since our sketch compression is designed for undirected graphs and IC model, throughout the paper, we assume \(G\) is undirected and consider the IC model unless otherwise specified. A connected component (CC) is a maximal subset in \(V\) s.t. every two vertices in it are connected by a path. In a max-priority-queue, we use top to refer to the element with the largest key, and use function pop to find and remove the top element. \(\hat{O}(f(n))\) denotes \(O(f(n) \cdot \text{polylog}(n))\).

Computational Model. We use the fork-join parallelism [13, 23], and the work-span analysis [15, 36, 38]. We assume a set of threads that access a shared memory. A thread can fork two child software threads to work in parallel. When both children complete, the parent process continues. A parallel for-loop can be simulated by recursive forks in logarithmic levels. The work of an algorithm is the total number of instructions, and the span is the length of the longest sequence of dependent instructions. We can execute the computation using a randomized work-stealing scheduler [3, 15] in practice. We use atomic operation WRITE_MAX\(\(t, v_{\text{new}}\)\) to write value \(v_{\text{new}}\) at the memory location \(t\) if \(v_{\text{new}}\) is larger than the current value in \(t\). We use compare-and-swap to implement WRITE_MAX.

The Influence Maximization (IM) Problem

Given a graph \(G = (V, E)\), an influence diffusion model \(M\) specifies how influence spreads from a set of current active vertices to activate more vertices in \(V\). Given a seed set \(S \subseteq V\), we use \(\sigma_{G,M}(S)\)
Algorithm 1: Sketch-based IM algorithm

Notations: \(G = (V, E) \): the input graph, \(k \): the number of seed vertices, \(R \): the number of sampled graphs

Output: \(S \): a set of \(K \) seeds that maximizes influence on \(G \)

Notes: \(\Phi_{1..R} \): \(R \) sketches computed from \(R \) sampled graphs

// Step 1: Sketch construction

1 ParalleloForEach \(r \leftarrow 1 \ldots R \) do
 2 \(\Phi_r \leftarrow \text{Sketch}(r) \) \quad // Compute the \(r \)-th sketch

// Step 2: Selection using CELF

3 \(S \leftarrow \emptyset \)
4 while \(|S| < k \) do
 5 \(s^* \leftarrow \text{NextSeed}(S, \Phi_{1..R}) \) \quad // Find max \(\sigma(M) \)-value for current seed set \(S \)
 6 MarkSeed(s*, \(\Phi_{1..R} \), S) \quad // Mark \(s^* \) as a seed in the sketches
 7 \(S \leftarrow S \cup \{ s^* \} \)
5 return \(S \)

Algorithm 2: Sequential Seed Selection using CELF

Notes: \(Q \): max-priority queue on all vertices \(v \) in \(V \) with key \(\Delta[v] \)

Initially \(\Delta[v] = \text{MARGINAL}(0, v, \Phi_{1..R}) \)

Function NextSeed(S, \(\Phi_{1..R} \)) \quad // S: current seed set; \(\Phi_{1..R} \): \(R \) sketches

1 Repeat
2 \(s^* \leftarrow Q.	ext{Pop}() \) \quad // Pop: find and remove the top
3 \(\Delta[s^*] \leftarrow \text{MARGINAL}(S, s^*, \Phi_{1..R}) \)
4 if \(\Delta[s^*] > \Delta[Q.	ext{Top}()] \) then return \(s^* \)
5 else \(Q.	ext{Insert}(s^*) \) \quad // Insert \(s^* \) back with new score

Table 1: Notations in the paper.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G = (V, E))</td>
<td>The input graph.</td>
</tr>
<tr>
<td>(k)</td>
<td>The number of seeds.</td>
</tr>
<tr>
<td>(\sigma(S))</td>
<td>The true score (marginal gain) of seed set (S) on graph (G).</td>
</tr>
<tr>
<td>(\sigma_G(M))</td>
<td>The influence spread on graph (G) and diffusion model (M).</td>
</tr>
<tr>
<td>(\Delta[S])</td>
<td>The true score (marginal gain) of seed set (S) on graph (G).</td>
</tr>
<tr>
<td>(\Delta[{ v }])</td>
<td>The lazy-evaluated marginal gain of vertex (v).</td>
</tr>
<tr>
<td>(\Phi_{1..R})</td>
<td>The sketches.</td>
</tr>
<tr>
<td>(\rho)</td>
<td>The number of centers.</td>
</tr>
</tbody>
</table>

Function names:

SKETCH \((G, r)\) \quad // Compute the \(r \)-th sketch from graph \(G \)

MARGINAL(S, \(\sigma \), \(\Phi_{1..R} \)) \quad // The marginal gain of vertex \(v \) given the current seed set \(S \). |

NEXTSEED(S, \(\Phi_{1..R} \)) \quad // Greedily determine the next vertex based on sketches \(\Phi_{1..R} \) and the current seed set \(S \).

to denote the expected number of vertices that \(S \) can activate (including \(S \)) under diffusion model \(M \) on graph \(G \). The IM problem is to find \(S^* \subseteq V \) with size \(k \), s.t. \(S^* \) maximizes the influence spread function \(\sigma_{G,M} \). With clear context, we omit \(M \) and \(G \), and use \(\sigma(\cdot) \). Several propagation models have been proposed, including the Independent Cascade (IC) model \[32\], Linear Threshold (LT) model \[34, 67\], and more \[18, 42, 52, 65\]. Since our sketch compression focuses on the IC model, we briefly introduce it here. In the IC model, influence spreads in rounds. Initially, only the seed vertices are active. In round \(i \), each vertex \(v \) that was newly activated in round \(i - 1 \) attempts to spread the influence via all incident edges \(e \), and activate the other endpoint \(u \) with probability \(p_e \).

Kempe et al. \[42\] proved that IM under the IC model is NP-hard, and that the influence spread function has the following properties: for every \(X, Y \subseteq V \) where \(X \subseteq Y \), and \(v \in V \setminus Y \), we have:

- **Monotonicity:** \(\sigma(Y \cup \{ v \}) \geq \sigma(Y) \)
- **Submodularity:** \(\sigma(X \cup \{ v \}) - \sigma(X) \geq \sigma(Y \cup \{ v \}) - \sigma(Y) \)

These two properties allow the following greedy algorithm (later referred to as GeneralGreedy) to give a \((1 - 1/e)\)-approximation. The algorithm starts with \(S = \emptyset \) and repeatedly adds the vertex with the highest marginal gain to \(S \), until \(|S| = k \). The marginal gain \(\Delta(v | S) \) of a vertex \(v \) given the current seed set \(S \) is defined as:

\[
\Delta(v | S) = \sigma(S \cup \{ v \}) - \sigma(S)
\]

With clear context, we omit \(S \) and use \(\Delta(v) \), and also call it the score or the true score of \(v \). We call the process to compute the true score of a vertex an evaluation. To estimate \(\Delta(v) \), early solutions average \(R' \) rounds of Monte Carlo (MC) experiments of influence diffusion simulation. However, on real-world graphs, this approach requires a large value of \(R' \) to converge, which can be expensive.

Sketch-Based Algorithms. Sketch-based algorithms are proposed to accelerate \(\Delta(v) \) evaluations. Instead of running independent MC experiments for each evaluation, sketch-based algorithms statically sample \(R \) graphs to reflect MC experiments and consistently simulate the results on them. Using sketches allows for much faster convergence, making the number of needed simulations (i.e., sketches) \(R \) smaller than that in MC experiments. Hence, sketch-based algorithms are widely studied \[16, 20–22, 59, 74, 75\]. We summarize sketch-based algorithms in two steps (see Alg. 1): sketch construction and seed selection. Next, we introduce both steps with optimizations in previous work. We summarize some related work in Tab. 2, and review more in Sec. 6. Some notations are given in Tab. 1.

Sketch Construction. In the earliest sketch-based algorithm StaticGreedy, \(R \) sampled graphs are explicitly stored as sketches. In the IC model, the \(r \)-th sketch corresponds to a sampled graph \(G_r' = (V, E_r') \), where \(E_r' \subseteq E \), such that each edge \(e \in E \) is sampled with probability \(p_e \), meaning a successful activation. An evaluation will average the number of reachable vertices on all sampled graphs from the seed set \(S \). A later paper Infuser \[31\] proposed the fusion optimization, which uses hash functions to avoid explicitly storing the sampled graphs \(G_r' \). They sample an edge \(e \) in a sketch \(G_r' \) with a random number generated from seed \((e, r) \), such that whether an edge is selected in a certain sketch is always deterministic, and a sampled graph \(G_r' \) can be fully reconstructed from the sketch id \(r \). We also use this idea in our sketch compression algorithm.

Many existing algorithms also use memoization to avoid influence spread simulation on sketches. On undirected graphs and the IC model, the MixGreedy paper \[20\] first observed that a vertex \(v \)’s influence on a sketch is all vertices in the same connected component (CC) as \(v \), but they only used this idea to select the first seed. Later, InfuserMG adopts this idea to select all seeds and memoizes the CC information of each sampled graph as the sketch. A vertex \(v \)’s score is then the average of the (inactivated) CC sizes on all \(R \) sketches, which can be obtained in \(O(R) \) cost. This approach avoids simulation but leads to \(O(Rn) \) space that is expensive for large graphs. Sec. 3 presents how our sketch compression approach reduces this high space usage.
Table 2: Existing approaches and our new one. MixGreedy uses different approaches to select the first seed and the other seeds, so we list them separately. "#vertices per seed": number of vertices to visit in all re-evaluations involved to find a seed. For StaticGreedy, we assume the fusion optimization in [31] to avoid explicitly storing sampled graphs. \(n \): number of vertices. \(n_c \): number of re-evaluations needed in CELF. \(T \): the average number of reachable vertices in a simulation (or a sketch). Empirically, \(T \) is large, and \(n_c \ll n \). To achieve similar quality, \(R \ll R' \).

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Randomization</th>
<th>Compute Influence</th>
<th>Select Seed</th>
<th>#vertices per seed</th>
<th>Space</th>
<th>Parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeneralGreedy</td>
<td>(R') Monte Carlo experiments</td>
<td>Simulation</td>
<td>Evaluate all</td>
<td>(O(nR'T))</td>
<td>(O(n))</td>
<td>no</td>
</tr>
<tr>
<td>MixGreedy [20] 1st Seed</td>
<td>Fixed (R) sampled graphs</td>
<td>Memoization</td>
<td>Evaluate all</td>
<td>(O(nR))</td>
<td>(O(n))</td>
<td>no</td>
</tr>
<tr>
<td>MixGreedy [20] Others</td>
<td>(R') Monte Carlo experiments</td>
<td>Simulation</td>
<td>CELF</td>
<td>(O(n_cR'T))</td>
<td>(O(n))</td>
<td>no</td>
</tr>
<tr>
<td>StaticGreedy [21]</td>
<td>Fixed (R) sampled graphs</td>
<td>Simulation</td>
<td>CELF</td>
<td>(O(n_cR))</td>
<td>(O(nR))</td>
<td>yes</td>
</tr>
<tr>
<td>InfuserMG [31]</td>
<td>Fixed (R) sampled graphs</td>
<td>Memoization</td>
<td>CELF</td>
<td>(O(n_cR))</td>
<td>(O(nR))</td>
<td>yes</td>
</tr>
<tr>
<td>PaC-IM (this work)</td>
<td>Fixed (R) sampled graphs</td>
<td>Simulation + Memoization</td>
<td>CELF</td>
<td>(O(n_cR \cdot \min(T, 1/\alpha)))</td>
<td>(O((1+\alpha R)n))</td>
<td>yes</td>
</tr>
</tbody>
</table>

Algorithm 3: Our sketch algorithm with compression

Global Variables: \(G = (V, E) \): input graph; \(R \): number of sketches \(C = \{c_1, c_2, \ldots, c_p\} \) \(V \): randomly selected centers. \(\rho = |C| \)

Notes: A sketch \(\Phi \) is a triple \((r, \text{size}[1..\rho], \text{label}[1..\rho]) \), defined at the beginning of Sec. 3.

1: Function \text{Sketch}(r) // \(r \): sketch id
2: Compute the connected components of graph \(G' = (V, E') \), where \(E = \{(u, v) \mid (u, v) \in E, \text{Sample}(u, v, r) = true\} \)
3: \text{ParallelForEach} \(c_i \in C \) do
4: \text{label}()[i] \leftarrow \text{min}_{j \in \{c \in \text{same CC as } c_i\}} \text{label}()[j]
5: \text{ParallelForEach} \(c_i \in C \) do
6: if \text{label}()[i] = \(i \) then \text{size}[i] \leftarrow \text{CC size of center } c_i
7: \text{return} \((r, \text{label}[1..\rho], \text{size}[1..\rho])\)

// sample an edge \(e \) with probability \(p_e \) for sketch \(r \)
8: Function \text{Sample}(e, r) // \(e \): edge identifier; \(r \): sketch identifier
9: \(p \leftarrow \text{random}(e, r) \) // Generate \(p \in [0, 1] \) from random seed \(e, r \)
10: \text{return} \(p \leq p_e \)

// \(S \): marginal influence of \(o \) on sketch \(\Phi_r \): label of \(o \)'s CC in sketch \(\Phi_r \) if \(o \) is connected to any center; otherwise \(l = -1 \) \(S \): the current seed set.
11: Function \((\delta, l) = \text{GetCenter}(\Phi_r, o, S)\)
12: Start BFS from \(o \) on a sampled subgraph of \(G \), where an edge \(e \in E \) exists if \(\text{Sample}(e, r) = true \). Count the reached-vertices as \(n' \)
13: if a center \(c_i \in C \) is encountered during BFS then
14: \(l \leftarrow \Phi_r.\text{label}[i] \) // Find the label of the center
15: \text{return} \((\Phi_r.\text{size}[i], l)\) // the CC size and label of the center
16: if any \(u' \in S \) has been visited by BFS \text{then return} \((0, -1)\)
17: \text{else return} \((n', -1)\) // influence is #visited vertices in BFS

// Marginal gain of \(o \) given seed set \(S \) on sketches \(\Phi_{1..R} \)
18: Function \text{Marginal}(S, o, \Phi_{1..R})
19: \text{ParallelForEach} \(r \leftarrow 1..R \) do
20: \(\langle \delta_r, \cdot \rangle \leftarrow \text{GetCenter}(\Phi_r, o, S) \)
21: \text{return} \((\sum_{r} R \delta_r) / R \) // the sum can be computed in parallel

// MarkSeed \((o, \Phi_r, S)\)
22: Function \text{MarkSeed}(o, \Phi_r, S)
23: \(\langle \delta, l \rangle \leftarrow \text{GetCenter}(\Phi_r, o, S) \)
24: \text{ParallelForEach} \(r \leftarrow 1..R \) do // For each sketch \(\Phi_r \)
25: \(\langle \delta, l \rangle \leftarrow \text{GetCenter}(\Phi_r, o, S) \)
26: if \(l > 0 \) then \(\Phi_r.\text{size}[i] \leftarrow 0 \) // Clear the corresponding CC size

Seed Selection with CELF. A useful optimization for the greedy algorithm is CELF [49], which avoids evaluating all vertices in NextSeed. CELF uses lazy evaluation for submodular functions and evaluates a vertex only if it becomes a "promising" candidate for the next seed. We show the CELF seed selection algorithm in Alg. 2. CELF uses a priority queue \(Q \) to maintain all vertices with their scores as the key. Due to submodularity, \(\Delta(o) \) is non-increasing with the expansion of the seed set \(S \). With lazy evaluation, the scores in \(Q \) may be stale but are always upper bounds of the true scores. We call this lazily-evaluated score the stale score of \(o \) and denote it as \(\bar{\Delta}(o) \) stored in an array. To select the next seed, CELF keeps popping the top element \(v \) from \(Q \), re-evaluating its true score \(\Delta(o) \), storing \(\Delta(o) \) to \(\bar{\Delta}(v) \), and inserting it back unless \(\bar{\Delta}(o) \) is greater than the current largest value in \(Q \) (Line 3-6). In this case, we can set \(v \) as the next seed without more evaluations, as the true scores of other vertices can not exceed their values in \(Q \). Although CELF can reduce the number of evaluations, it is essentially sequential and evaluates vertices one by one. In Sec. 4, we present our new data structures that allow for parallel evaluations in CELF.

3 SPACE-EFFICIENT SKETCHES

This section presents our new technique to construct compressed sketches in parallel for the IC model on undirected graphs. In this section, as discussed in Sec. 2, a vertex \(v \) can activate all vertices in the same CC on a certain sketch. Thus, memoizing per-vertex CC information in sketches [31] can accelerate the influence evaluation but requires \(O(Rn) \) space, which does not scale to large input graphs. Alternatively, one can avoid memoization and run a simulation by traversing the sampled graph to find the CC when needed. This requires no auxiliary space but can take significant time.

Our approach combines the benefit of both, using bounded-size auxiliary space while allowing for efficiency. Our key idea is to only partially memoize CC information in each sketch, and retrieve this information by partial simulations. In PaC-IM, we only store the CC information for \(\rho = \alpha \cdot n \) center vertices \(C \subseteq V \), where \(\alpha \in [0, 1] \) is a user-defined parameter. Each sketch \(\Phi_r \) is a triple \((r, \text{label}[-], \text{size}[-]) \) corresponding to an implicit sampled graph \(G' \) from \(G \), where each edge \(e = (u, v) \) is retained with probability \(p_e \).

- \(r \): the sketch id. Similar to the fusion idea mentioned in Sec. 2, the sketch id fully represents the sampled graph.
- \text{label}[1..\rho]: the CC label of center \(c_i \) on this sketch, which is the smallest center id \(j \) where \(c_j \) is in the same CC as \(c_i \).
- \text{size}[i]: if \(\text{label}[i] = i \) (i.e., \(i \) represents the label of its CC), \text{size}[i] is the influence of center \(c_i \) on this sketch. It is initially the CC size of \(c_i \) and becomes 0 when any vertex in this CC is selected as a seed.

Algorithm Overview. We first present the high-level idea of our sketch compression algorithm. We present our algorithm in Alg. 3 and an illustration in Fig. 2. As mentioned, we select \(\rho = \alpha n \) center vertices uniformly at random. We only store the CC information (label and size) for the centers in sketches. We use a global flag array to indicate if a vertex is a center, and thus the total space is \(O((1 + \alpha R)n) \). To retrieve the CC size of a vertex \(o \) on sketch
Figure 2: An example of our sketch compression on a graph with 8 vertices (B and F as centers) and R = 2 sampled graphs.

Φ_r, we start a breadth-first search (BFS) from v. If any center c_i is encountered, v should activate the same set of vertices as c_i on this sketch. As such, we can stop searching and use c_i’s influence (CC size) as the influence for v. If v is not connected to any center, the CC containing v is likely small, and the BFS can visit all of them quickly. In either case, the number of visited vertices in BFS can be bounded. In Thm. 3.1, we show that compressing the auxiliary space by a factor of α roughly increases the evaluation time by a factor of O(1/α). By controlling the number of centers, we can achieve a tradeoff between the evaluation time and space usage.

Next, we elaborate on the three functions in Alg. 1: Sketch(G, r), which constructs the r-th sketch from G, Marginal(S, v, Φ_1, r), which computes the score (marginal gain) of a vertex v on top of S using sketches Φ_1, r, and MarkSeed(s’, Φ_1, r), which adjusts the sketches Φ_1, r when s’ is selected as a seed.

Sketch Construction (Sketch(G, r)). Recall that we maintain CC information for ρ = an centers C = {c_1, c_2, ..., c_ρ} in sketches. To construct a sketch Φ_r, we first compute the CC information of the sampled graph G_r, which can be performed by any parallel connectivity algorithm [26]. We store the CC information for all centers in two arrays. Φ_r.label[i] records the label of CC of the i-th center. For multiple centers in the same CC, we simply use the smallest CC id as the label for all of them to represent this CC, so all centers find the CC information by referring to their label. For a center c_i, if i is the label of its CC, we use Φ_r.size[i] to record the size of this CC. An example of these arrays is given in Fig. 2.

Computing the Marginal Gain (Marginal(S, v, Φ_1, r)). Given the sketches Φ_1, r and the current seed set S, the function Marginal(S, v, Φ_1, r) computes the marginal gain of a vertex v by averaging the marginal gains of v on all sketches. We use a helper function δ = GetCenter(Φ_r, v, S), which returns δ as the marginal gain of v on sketch Φ_r, and l as the label of centers connected to v (l = -1 if no center is connected to v). This function will run a breadth-first search (BFS) from v on G_r (i.e., only using edges e ∈ E s.t. SAMPLE(e, r) is true). If any center is encountered during this BFS (Examples 1 and 3 in Fig. 2), then the influence of v is the same as c_i on this sketch. The information of c_i is retrieved by its label l = Φ_r.label[l], and thus δ = Φ_r.size[l]. The influence δ is either the size of the CC containing v when no vertices in this CC are seeds (Example 1 in Fig. 2), or 0 otherwise, as is updated in MarkSeed (Example 3 in Fig. 2). Otherwise, if the BFS terminates without visiting any centers, it will return -1 for the label l. The influence δ is either the number of vertices n' visited during the BFS, which is also the size of CC containing v (Example 2 in Fig. 2), or δ = 0 (Line 16) if any seed is visited during BFS (Example 4).

Using the GetCenter function, the marginal influence of v on sketch Φ_r can be obtained as the first return value δ of GetCenter(Φ_r, v, S).

Marking a Seed (MarkSeed(s’, Φ_1, r)). The function updates the sketches when s' ∈ V is selected as a seed. For each sketch Φ_r, the CC label of s' is the second return value of GetCenter(Φ_r, s’, S). If the label is not −1, we set Φ_r.size[l] as 0—since s’ is selected, all other vertices in this CC will get no marginal gain on this sketch.

Our approach allows for a tradeoff between space and query time in Marginal(): a smaller ρ (fewer centers) means less space but a higher evaluation cost, as it may take longer to find a center. PaC-IM unifies and is a hybrid of StaticGreedy and InfuserMG. Theoretically, using α = 1, our sketch is equivalent to InfuserMG where the CC information for all vertices on all sketches are memoized; using α = 0, our sketch is equivalent to StaticGreedy with no memoization, and evaluations are done by traversing the sampled graph. In practice, PaC-IM is much faster than StaticGreedy and InfuserMG even when with no compression due to better parallelism. We summarize the theoretical guarantees in Tab. 2, and state them in Thm. 3.1. We give the proof in the full version of this paper.

Theorem 3.1. PaC-IM with parameter α requires $O((1 + αR)n)$ space to maintain R sketches, and visits $O(R \cdot \min(1/α, T))$ vertices to re-evaluate the marginal gain of one vertex v, where T is the average CC size of v on all sketches.

4 PARALLEL SEED SELECTION

We now present the parallel seed selection process in PaC-IM. We call each iteration in seed selection (selecting one seed) a round. Recall that prior solutions use the CELF optimization (see Tab. 2 and Sec. 2), which maintains (possibly stale) scores of all vertices in a priority queue Q and updates them lazily. In each round, CELF pops the vertex with the highest (stale) score from Q and re-evaluates it. The process terminates when a newly evaluated score is higher than all scores in Q; otherwise, the new score will be inserted back into Q. For simplicity, we assume no tie between scores. In
the cases when ties exist, we break the tie by vertex id. Let \(F_i = \{v | \Lambda_{i-1}[v] \geq \Delta^*\} \) be the set of vertices re-evaluated by CELF in round \(i \), where \(\Lambda_{i-1}[v] \) is the stale score of \(v \) after round \(i - 1 \), and \(\Delta^* \) is the maximum true score in round \(i \) (i.e., the score of the chosen seed in round \(i \)). We experimentally study the distribution of \(|F_i| \) on all graphs and show three representative graphs in Fig. 3. Except for road networks (e.g., GER in Fig. 3), most graphs may require a large number of re-evaluations in certain rounds. However, CELF is inherently sequential. Some existing parallel implementations (e.g., [31, 56]) only parallelize the evaluation function \textsc{Marginal} (Line 4 in Alg. 2), but leave the CELF process sequential, and perform all \(|F_i| \) evaluations one by one. When \(F_i \) is large (as in social and web networks), the sequential CELF results in low parallelism.

Prior Work on Parallel Priority Queue. As a fundamental data type, parallel priority queues are widely studied [9, 12, 27, 66, 72, 73, 82]. However, as far as we know, all these algorithms/interfaces require knowing the batch of operations (e.g., the threshold to extract keys or the number of keys to extract) ahead of time. This is not true in CELF—the set \(F_i \) is only known during the execution. Thus, we need different approaches to tackle this challenge.

Overview of Our Approaches. We first formalize the interface of the parallel priority queue needed in Alg. 1. The data structure maintains an array \(\Lambda[l] \) of (stale) scores for all vertices. It is allowed to call \textsc{Marginal} function to re-evaluate and obtain the true score of any vertex. The interface needs to support \textsc{NextSeed} function, which returns the vertex id with the highest true score.

We present two parallel data structures to maintain the scores. The first one is based on a parallel binary search tree (BST) called \(P\text{-tree} \) [10, 12, 24, 73]. We prove that using \(P\text{-trees} \), our approach has work (number of evaluations) asymptotically the same as CELF, while is highly parallel: the selection of the \(i \)-th seed finishes in \(\log |F_i| \) iterations of evaluations (each iteration evaluates multiple vertices in parallel), instead of \(|F_i| \) iterations (one vertex per iteration) in CELF. We also propose a new data structure \(\textbf{Win-Tree} \), based on parallel winning trees. \(\textbf{Win-Tree} \) does not maintain the total order of scores, and is simpler and potentially more practical than \(P\text{-trees} \). We introduce the \(P\text{-tree}\)-based approach in Sec. 4.1 and \(\textbf{Win-Tree}\)-based approach in Sec. 4.2, and compare their performance in Sec. 5.3. These two approaches are independent of the sketching algorithm and apply to seed selection on all submodular diffusion models (not necessarily the IC model and/or on undirected graphs). Note that most IM diffusion models are submodular (e.g., IC, Linear Threshold (LT), Triggering [TR [42]), and more [42, 76, 85]).

4.1 Parallel Priority Queue Based on \(P\text{-tree} \)

Our first approach to parallelizing CELF is to maintain the total (decreasing) order of the scores of all vertices, using a parallel binary search tree (BST) called \(P\text{-tree} \) [10, 12]. We will use two functions on a \(P\text{-tree} \textbf{T} \): 1) \textsc{SplitAndRemove}(\(k \)), which extracts (removes and outputs to an array) the first \(k \) tree nodes (\(k \) largest scores) from \(T \), and 2) \textsc{BatchInsert}(\(B \)), which inserts a set of keys \(B \) to \(T \). Both algorithms are parallel with a polylogarithmic span.

Since \(P\text{-tree} \) maintains the total order of all vertices, we can extract a batch of vertices with top (stale) scores and evaluate them in parallel. The key challenge is a similar stop condition as CELF to avoid evaluating too many vertices, since we are unaware of the number of "useful" vertices, i.e., \(|F_i| \), ahead of time. Our idea is to use prefix doubling [14, 25, 35, 37, 68, 69, 78] to achieve work efficiency and high parallelism. The pseudocode is given in Alg. 4 with an illustration in Fig. 4. To find the next seed, the \(P\text{-tree} \textbf{T} \) starts with the stale scores \(\Lambda[l] \) from the previous round. We then extract the top (largest stale score) nodes in batches of size 1, 2, 4, 8, ... from \(T \) (Line 5). Within each batch \(B_j \), we re-evaluate all vertices in parallel (Line 7). These new scores are used to update the current best seed \(s^* \). The loop terminates when the score of \(s^* \) is better than the best score in \(T \) (Line 11). Finally, we select \(s^* \) as the seed and insert the rest of the new true scores \(\{B_j \backslash \{s^*\}\} \) back to \(T \).

Due to prefix doubling, each seed selection finishes in at most \(O(\log n) \) rounds. Note that our approach evaluates more vertices than CELF, but due to the stop condition (Line 11), the extra work is bounded by a constant factor (proved in Thm. 4.2).

\textbf{Theorem 4.1 (\textit{P-tree Correctness})}. Alg. 4 always selects the next seed with the largest marginal gain, i.e., \(\Lambda(s^*) = \max_{v \in V} \{\Lambda(v)\} \).

Due to the space limit, we defer the proof to the full version.

\textbf{Theorem 4.2 (\textit{P-tree Efficiency})}. Alg. 4 has the total number of evaluations at most twice that of CELF.

\textbf{Proof}. Recall that \(F_i \) is the set of evaluated vertices by CELF when selecting the \(i \)-th seed. Let \(F'_i \) be the set of evaluated vertices by \(P\text{-trees} \) in Alg. 4. We first show a simple case—if both CELF and Alg. 4 start with the same stale scores \(\Lambda_{i-1}[\cdot] \), then \(|F'_i| \leq 2|F_i| \). Let us reorder vertices in \(V \) as \(v_1, v_2, \ldots, v_N \) by the decreasing order of their stale score \(\Lambda_{i-1}[\cdot] \). Assume \(v_l \) is the last vertex evaluated by CELF, so \(|F_i| = l \). \(v_l \) must be in the last batch in \(P\text{-tree} \). Assume...
the last batch is batch j with 2^j vertices. This indicates that all $2^j - 1$ vertices in the previous $j - 1$ batches are before y_j. Therefore $2^j - 1 < |F_j|$, and $|F^{∗}_j| = 2^{j+1} - 1$, which proves $|F^{∗}_j| \leq 2|F_j|$. We now consider the general case. We first focus on a specific seed selection round i. Due to different sets of vertices evaluated in each round, at the beginning of round i, CELF and P-tree may not see exactly the same stale scores. We denote the stale score at the beginning of round i in CELF as $\Delta_{CELFF} [\cdot]$ and that for P-tree as $\Delta_{BST} [\cdot]$. We reorder vertices by the decreasing order of $\Delta_{CELFF} [\cdot]$ as v_1, v_2, \ldots, v_n, and similarly for $\Delta_{BST} [\cdot]$ as u_1, u_2, \ldots, u_n. Denote Δ^* as the highest true score in set I. Let v_{x_j} be the last vertex in $v_{1..n}$ such that $\Delta_{CELFF} [v_{x_j}] \geq \Delta^*$, and u_{y_j} the last vertex in $u_{1..n}$ such that $\Delta_{BST} [u_{y_j}] \geq \Delta^*$. Namely, v_j is the rank of Δ^* in $v_{1..n}$, and y_j is the rank of Δ^* in $u_{1..n}$. By definition, F_i is exactly the first x_i vertices in sequence v, and thus $x_i = |F_i|$. F^*_i contains all vertices smaller than u_{y_j} and possibly some more in the same batch with u_{y_j}, so $|F^*_i| \leq 2y_j$. In the simple case discussed above, where we assume $\Delta_{CELFF} [\cdot] = \Delta_{BST} [\cdot]$, we always have $x_i = y_i$.

We will use amortized analysis to show that $\sum y_j \leq \sum x_i$, which further indicates $\sum |F^*_j| \leq 2 \cdot \sum |F_j|$. We can partition $u_{1..n}$ into two categories: U_1 as the intersection of $u_{1..n}$ and $v_{1..x_i}$, and U_2 as the rest. Note that for $t \in U_2, \Delta_{BST} [t] \geq \Delta^* > \Delta_{CELFF} [t]$. This happens iff. t is evaluated by CELF in a previous round but not by P-tree. Namely, there exists a round j, s.t. $t \in F_j$, but $t \notin \bigcup_{j' < j} F^*_{j'}$. Let $v_{1..n}^u$ and $u_{1..n}^v$ be the u and v sequences in round j, respectively. Note that $F_j = v_{1..x_j}^u$ and $u_{1..y_j}^v \subseteq F^*_j$. Since $t \in F_j$, then vertex t was counted in x_j. Since $t \notin F^*_j$, t is not counted in any y_j. Therefore, we can save a token for such t when it is evaluated by CELF in round j but not by P-tree, such that when later t is counted in $u_{1..y_j}$ in round i, we will use the token to count t for free. Note that $t \notin (F^*_j \cup F^*_j \cup \ldots \cup F^*_j)$, for the same reason, t is not counted in any y_j for $j' < j$, so the token must still be available in round i. In summary, all vertices in U_1 are counted in x_i, and all vertices in U_2 can be counted by the saved tokens (charged to some previous s_j). Therefore, using amortized analysis, we have $\sum y_j \leq \sum x_i$.

Recall that $x_i = |F_i|$, and $|F^*_i| \leq 2y_j$. Since $\sum y_j \leq \sum x_i$, we proved that $\sum |F^*_j| \leq 2 \sum y_j \leq 2 \sum x_i = 2 \sum |F_i|$. □

Theorem 4.3 (P-Tree Cost Bound). Given the same sketches $\Phi_{1,R}$, our seed selection based on P-tree will select the same seed set as CELF with $O(n \log n + W_{CELFF})$ work and $O(kD_{\lambda})$ span, where k is the number of seeds, W_{CELFF} is the work (time complexity) by CELF, and D_{λ} is the span to evaluate one vertex.

Thm. 4.3 can be proved by Thm. 4.2 and the cost bound of P-trees. For the page limit, we present the proof in the full version.

4.2 Parallel Priority Queue: Win-Tree

While P-tree provides theoretical efficiency for seed selection, it maintains the total order of all vertices, which is not needed in priority queues and may cause performance overhead. Also, P-tree explicitly maintains the parent-child pointers, which causes additional space usage. We now propose a more practical data structure based on a winning tree that overcomes these two challenges, although it does not have the same bounds as in Thm. 4.3.

A classic winning tree (aka. tournament tree) is a complete binary tree with n leaf nodes and $n-1$ interior nodes. The data are stored in the leaves. Each interior node records the larger key of its two children. Since a winning tree is a complete binary tree, it can be stored *implicitly* in an array $T[1..2n-1]$, which consumes smaller space. In our case, each tree node stores a vertex id (noted as $t.id$). The key of a node t is the (state) score of this vertex, i.e., $\Delta(t.id)$. Each interior node stores the id of its children with a larger score. As a result, the vertex at the root has the highest (state) score.

To support CELF efficiently, we use the internal nodes of Win-Tree to prune the search process. Suppose the best true score evaluated so far is Δ^*, then if we see a subtree root t with a state score smaller than Δ^*, we can skip the entire subtree. This is because all nodes in this subtree must have smaller state scores than $t.id$, which indicates even smaller true scores. Although this idea is simple, we must also carefully maintain the Win-Tree structure, with the newly evaluated true scores. We presented our algorithm in Alg. 5 with an illustration in Fig. 5, and elaborate on more details below.

For NextSeed, we keep a global variable Δ^* as the largest true score obtained so far, initialized to 0. The algorithm calls the FindMax(t, \ldots) routine starting from the root, which explores the subtree rooted at t. We first check if the score at t is stale: if t’s id is the same as its parent, the true score has been re-evaluated at its parent (Line 2). Based on the node’s status, we discuss three cases. First, if the score is stale and is lower than Δ^*, as discussed above,
we can skip the entire subtree and terminate the function (Line 4). Second, if the score is stale but is higher than \(\Delta^* \), we have to re-evaluate the vertex \(t.id \), since it may be a candidate for the seed (Line 6). We then use the atomic operation \(\text{WriteMax} \) to update \(\Delta^* \) by this true score if it is better. The third case is when the score is not stale. Although no evaluation is needed on \(t.id \), we should still explore the subtrees, since with the newly evaluated score, the subtree structure (i.e., the ids of the internal nodes) may change. Hence, in cases 2 and 3, we recursively explore the two subtrees in parallel (Lines 9 to 11). After the recursive calls, we set the vertex id as one of its two children with a higher score (Lines 12 to 13).

Algorithm 5: Seed Selection based on Win-Tree

Maintains: Global variable \(\Delta^* \): the highest true score evaluated so far.

A winning tree \(T \) with \(n \) leaf nodes storing a record.

For a tree node \(t \) in \(T \), we use the following notations:

- \(t.id \): the id of the vertex stored in this node.
- \(t.parent/t.left/t.right \): the parent/leaf child/right child of node \(t \).

The Win-Tree is a max-priority-queue based on (stale) score \(\Delta[t.id] \) for each vertex.

1. **Function** `FindMax(\(t \) node \(t \), current seed set \(S \), sketches \(\Phi_{1..R} \))`
 2. **if** \(t.id = t.parent.id \) **then** stale \(\leftarrow \) false // evaluated by parent
 3. else stale \(\leftarrow \) true // Skip a subtree if the max is stale and is smaller than the current best score; no re-evaluation needed for the entire subtree
 4. **if** stale \(= \) true and \(\Delta[t.id] < \Delta^* \) then return
 5. **if** stale \(= \) true then // Current value is stale, re-evaluation needed
 \(\Delta[t.id] \leftarrow \text{MarginalGain}(S, t.id, \Phi_{1..R}) \) // Re-evaluate
 6. \(\text{WriteMax}(\Delta^*, \Delta[t.id]) \) // update the best score so far
 7. **if** \(t \) is a leaf then return
 8. **In Parallel:**
 9. \(\text{FindMax}(t.left, S, \Phi_{1..R}) \)
 10. \(\text{FindMax}(t.right, S, \Phi_{1..R}) \) // compare two branches and reset max
 11. **if** \(\Delta[t.left.id] > \Delta[t.right.id] \) **then** \(t.id \leftarrow t.left.id \)
 12. else \(t.id \leftarrow t.right.id \)
 13. **Function** `NextSeed(\(S \), \(\Phi_{1..R} \))`
 14. \(\Delta^* \leftarrow 0 \)
 15. \(\text{FindMax}(T.root, S, \Phi_{1..R}) \)
 16. **return** \(T.root.id \)

We tested 17 graphs with information shown in Tab. 3. We include real-world graphs with a wide range of sizes and distributions, including five billion-scale or larger graphs. In addition to the commonly used benchmarks of social networks, we also include web graphs, road networks, and k-NN graphs (each vertex is a multi-dimensional data point connecting to its \(k \)-nearest neighbors [81]).

5 EXPERIMENTS

Setup

We implemented PaC-IM in C++. We run our experiments on a 96-core (192 hyperthreads) machine with four Intel Xeon Gold 6252 CPUs and 1.5 TB of main memory. We use numactl -i all in experiments with more than one thread to spread the memory pages across CPUs in a round-robin fashion. We run each test four times and report the average of the last three runs.

We present the proof in the full version of this paper. Unlike \(P \)-trees, we cannot prove strong bounds for the number of re-evaluations in Win-Tree—since the parallel threads are highly asynchronous, the progress of updating \(\Delta^* \) and pruning the search cannot be guaranteed. However, we expect Win-Tree to be more practical than \(P \)-tree for a few reasons. First, Win-Tree is a complete binary and can be maintained in an array, which requires smaller space (no need to store metadata such as pointers in \(P \)-trees). Second, the \(P \)-tree algorithm requires \(O(\log n) \) batches and synchronizing all threads between batches. Such synchronization may result in scheduling overhead, while the Win-Tree algorithm is highly asynchronous. Most importantly, Win-Tree does not maintain the total order, and the construction time is \(O(n) \) instead of \(O(n \log n) \). In Sec. 5.3, we experimentally verify that although Win-Tree incurs more re-evaluations than \(P \)-trees, it is faster in most tests.
We select $k = 100$ seeds in all tests. We use the IC model with constant propagation probability p in the same graph. For scale-free networks, we use $p = 0.02$, similar to previous work [20, 22, 31, 43]. For sparse graphs, we set $p = 0.2$ since the average vertex degrees are mostly within 5. We also tested two other edge probability distributions similar to previous papers [31, 56]. Among different distributions, we observed similar relative performance among the tested algorithms. Thus, we provide the result using fixed $p = 0.02$ or 0.2 here. Full results on other distributions can be found in the full version [77]. When comparing the average numbers across multiple graphs, we use the geometric mean.

Software Libraries. We use ParlayLib [11] for fork-join parallelism and some parallel primitives (e.g., sorting). We use the P-tree implementation from the PAM library [71, 73], and the UniteRemCAS implementation from ConneCT [26] for parallel connectivity.

Tested Algorithms. We tested both P-tree and Win-Tree for seed selection. In most cases, Win-Tree is more efficient in both time and space, so we use Win-Tree as the default option in PaC-IM. We present more results comparing the two options in Sec. 5.3.

We compare with three existing parallel IM systems: InfuserMG [31], No-Singles [63] and Ripples [55, 56], and call them baselines. As introduced in Sec. 2, InfuserMG uses a similar sketch-based approach as PaC-IM but does not support compression or parallel CELF. No-Singles and Ripples both use Reverse Influence Sampling [16]. In our tests, Ripples is always better than No-Singles in time and space, so we only report the results of Ripples. We have also tested some sequential algorithms, such as PMC [59] and IMM [74], but their running times are not competitive to the parallel implementations. We observe that InfuserMG and Ripples have scalability issues when the number of threads increases (see examples in Fig. 6). Hence, we report their shortest time among all the tested numbers of threads.

Each algorithm has a parameter that controls the solution quality: R for InfuserMG and PaC-IM and $\epsilon \in (0, 0.5]$ for Ripples. The solution quality increases with larger R or smaller ϵ. When comparing running time, we guarantee that PaC-IM always gives a better solution than the baselines. For InfuserMG and PaC-IM, we set the number of sketches $R = 256$. PaC-IM with $R = 256$ is on average more than 99% of the quality when using $R = 215$, which is consistent with the observation in the StaticGreedy paper [21] (see our full version for quality analysis). For Ripples, smaller ϵ means better accuracy but more time. We tested ϵ in $[0.13, 0.5]$ as in their paper. PaC-IM under $R = 256$ yields about the same solution quality as $\epsilon = 0.13$ (the best tested setting in their paper). When reporting time, we use $\epsilon = 0.5$, which gives the fastest running time, and the quality is still reasonably high (at least 93% of our best influence).

We observe that on sparse graphs, the influence spread of InfuserMG is only 38–92% of the best achieved by PaC-IM and Ripples. Although theoretically, PaC-IM and InfuserMG should give the same output, InfuserMG uses many optimizations that sacrifice solution quality. We tried to increase R and various other attempts in InfuserMG, but they did not improve the solution quality. Therefore, we keep the same value $R = 256$ for PaC-IM and InfuserMG.

5.1 Overall Time and Space

Tab. 4 shows the running time, memory usage, and normalized influence spread of all systems. Ours$_1$ and Ours$_{0.0}$ are PaC-IM with $\alpha = 1$ (no compression) and $\alpha = 0.1$ (10× sketch compression), respectively. To illustrate the relative performance, we present a heatmap in Fig. 1, where all the numbers (time and space) are normalized to Ours$_1$. Ours$_{0.5}$ is the only algorithm that can process the largest graph CW [54]. With similar quality, Ours$_1$ is faster than all baselines on all graphs, and Ours$_{0.5}$ is just slower than InfuserMG on the two smallest graphs. Ours$_{0.5}$ has the smallest space usage on all graphs. The advantage of PaC-IM is more significant on larger graphs, both in time and space.

Running Time. PaC-IM is significantly faster than the baselines on almost all graphs. On average, Ours$_1$ is 5.7× faster than InfuserMG and 18× faster than Ripples. Ours$_{0.5}$ is slightly slower than Ours$_1$, but is still 3.2× faster than InfuserMG and 10× faster than Ripples.

In general, the compression in PaC-IM saves space by trading off more time. When $\alpha = 1$, the CC sizes for all vertices are stored in the sketches, and a re-evaluation only needs a constant time per sketch. When $\alpha = 0.1$, each query involves a search to either find a center, or visit all connected vertices, which roughly costs $O(1/\alpha)$ on each sketch. Indeed, on all scale-free graphs, Ours$_{0.5}$ takes a longer time than Ours$_1$. Interestingly, on most sparse graphs, Ours$_{0.5}$ can be faster than Ours$_1$. This is because seed selection only takes a small fraction of the total running time (except for CH5), so the slow-down in seed selection is negligible for the overall performance. Meanwhile, avoiding storing $O(Rn)$ connectivity sizes reduces memory footprint and makes the sketching step slightly faster, which overall speeds up the running time.

Memory Usage. We show space usage of PaC-IM and baselines in Fig. 1 and 7 and Tab. 4. We also show the size of representing the graph in standard Compressed Sparse Row (CSR) format as a reference in Tab. 4 and Fig. 7, which roughly indicates the space to store the input graph. CSR uses 8 bytes for each vertex and each edge. Using $\alpha = 0.1$, PaC-IM uses the least memory on all
graphs. Even without compression, our algorithm uses less memory than the baselines on 10 out of 16 graphs. Note that although the compression rate for sketches is 10× in Ours_{0.1}, the total space also includes the input graph and the data structure for seed selection. Therefore, we cannot directly achieve a 10x improvement in space. In most cases, the total memory usage is about 5× smaller.

Summary. Overall, PaC-IM has better performance than the baselines in both time and space. We note that the space usage of Ripples can be (up to 3.4×) better than Ours_{1} on certain graphs (but still worse than Ours_{0.1}), but in these cases the running time is also much longer (by 2× to 583×). On scale-free graphs, Ours_{0.1} is 2.5× slower than Ours_{1} on average, but uses 3× less space. On sparse graphs, Ours_{0.1} is almost always better in both time and space.

5.2 Scalability

We study the scalability of all systems. We present the performance on six representative graphs in Fig. 6 with varying core counts \(P \). We separate the time for sketch construction (the “sketch time”) and seed selection (the “selection time”) to study the two components independently. For PaC-IM, both sketch and selection time decrease with more cores and achieve almost linear speedup. In contrast, InfuserMG and Ripples get the best speedup with 8–16 cores on many graphs, and perform worse with more cores. For both InfuserMG and Ripples, the sketch time scales better than the selection time. This is because both algorithms use well-parallelized algorithms to construct sketches. For example, InfuserMG uses a standard coloring [60, 70] idea for parallel connectivity. However, in seed selection, the baseline algorithms can have longer running times with more threads used. This is because they only use parallelism within one evaluation, and perform all evaluations one by one. For both baselines, a single evaluation does not cause much computation. In this case, the overhead of scheduling the parallel threads can be more expensive than the computation (and can even dominate the cost), which increases with the number of threads.

The scalability curves indicate a major performance gain of PaC-IM over baselines is from better scalability. On SLDT, Lj, and SD, although the sequential running time of InfuserMG is better than PaC-IM, PaC-IM achieves better performance when more than 8 cores are used. The advantage is more significant with more cores.

The scalability curves also indicate the necessity of our parallel CELF. For Ours_{0.1}, the sequential selection time takes a large portion of the total running time, so parallelizing seed selection is crucial for improving the overall performance. Even for Ours_{1}, the selection time on 1 core is still much longer than the total parallel running time. This means that if this step was not well-parallelized, it would become the performance bottleneck when \(P \) is large. Using our new techniques from Sec. 3 and 4, both steps scale well.

5.3 Analysis of the Proposed Techniques

Compression. We evaluate the time and space usage of different compression ratios by controlling the parameter \(\alpha \), and present the results in Fig. 7. The gray dashed line represents the CSR size of each graph, which is the space to store the input. Compression always reduces memory usage, but may affect running time differently. Memory usage always decreases with the value \(\alpha \) decreases. As mentioned previously, the actual compression rate can be lower than \(1/\alpha \), since our compression only controls the memory for storing sketches, and there are other space usage in the algorithm.
Figure 6: Running time using different core counts for different IM algorithms. In each plot, the x-axis shows core counts (96h means 96 cores with hyperthreading) and the y-axis is running time in seconds.

Figure 7: Running time and memory with different values of α. The x-axis represents the compression rate. The growing up y-axis represents the running time (in seconds) of the sketching and selecting process. The growing down y-axis represents the total memory usage (in GB). The gray horizontal line represents the CSR size of each graph, which is the basic memory we need to load the graph.

Roughly speaking, using $\alpha = 0.05$ can save space on graphs by up to 8x and shrink the space very close to the input graph size.

Compression affects the running time differently for sketch construction and seed selection. Smaller α indicates longer running time in seed selection, but may improve the sketch time slightly due to the reduced memory footprint. The effect of compression on total running time depends on the ratio of sketching and selection time, where scale-free and sparse graphs exhibit different patterns. Scale-free graphs usually have one or several large CCs in the sampled graphs since they are dense, while sparse graphs usually have many small CCs. This can also be seen by the overall influence in Tab. 3: even though we use a smaller p on scale-free networks, the total influence is still much larger than the sparse graphs. On scale-free graphs, due to large CCs on sampled graphs, selecting any seed in a large CC may significantly lower the score of other vertices, leading to much more total evaluations than sparse graphs. As a result, a smaller α causes a clear time increase for seed selection on scale-free networks because each evaluation becomes slower while only having a small impact on most sparse graphs.

We provide the total number of evaluations on each graph as a reference in the full version [77].

P-tree vs. Win-Tree. We now study both data structures for seed selection. Our goal is to achieve high parallelism without causing much overhead in work. P-tree has the theoretical guarantee that the total number of evaluations is no more than twice that in CELF. To evaluate the work overhead, we compare the number of evaluations for both data structures to CELF in Fig. 8(a). For each graph, we count the number of evaluations done by CELF as x and that by P-tree and Win-Tree as y_1 and y_2, respectively. We plot all $(x, y_1/x)$ as blue dots and all $(x, y_2/x)$ as orange triangles. The number of evaluations done by P-trees is very close to that by CELF (1.03x on average), while Win-Trees require slightly more (1.7x on average). The result is consistent with our theoretical analysis.

As mentioned in Sec. 4.2, we expect Win-Trees to perform better in practice due to various reasons. To study this, we plotted Fig. 8(b) as a comparison for selection time between P-tree and Win-Tree under different compression ratios. Each data point represents a graph, and the value is the ratio of selection time between P-tree and Win-Tree. The average ratios are always larger than 1, indicating
better performance for \textit{Win-Tree}, but the advantage decreases as \(\alpha \) becomes smaller (higher compression). This is because when \(\alpha \) is large, the evaluation is fast, and the major time is on the tree operations, where \textit{Win-Tree}s is more advantageous due to the reasons mentioned in Sec. 4.2. With higher compression (small \(\alpha \)), the evaluation becomes more expensive. Since the \textit{P-tree} evaluates fewer vertices, the overall selection time is more likely to be better. To further understand this, we focus on the five topmost points (circled in Fig. 8(b)): those data points are from COS5, where \(\textit{P-tree} \) is 8–12x slower than \textit{Win-Tree}. For COS5, the number of vertices \(n \) is large, but only hundreds of vertices are evaluated in total. Thus, the seed selection time is dominated by constructing the data structures, i.e., \(O(n \log n) \) work for \textit{P-tree} to maintain total ordering, and \(O(n) \) for \textit{Win-Tree} that is a lot faster. Since the number of evaluations is small, most of the vertices in the tree are never touched, and thus, maintaining their order wastes the work.

In Fig. 7, we also compare the time and space between \textit{P-tree} and \textit{Win-Tree}. Similar to the discussions above, when \(\alpha \) is small, \textit{Win-Tree} is almost always faster than \textit{P-tree}, but \textit{P-tree} may perform better when \(\alpha \) is large. However, the advantage is quite small since the number of evaluations of \textit{Win-Tree} is still close to \textit{P-tree} (see Fig. 8(a)). \textit{Win-Tree} also uses smaller memory than \textit{P-tree}. As discussed in Sec. 4.2, this is because \textit{P-tree} needs to explicitly maintain tree pointers and balancing criteria, while each \textit{Win-Tree} node only needs to store the vertex id (2n integers in total).

Based on these observations, \textit{PaC-IM} always uses \textit{Win-Tree} by default, but also provides the interface for users to choose \textit{P-trees}.

6 RELATED WORK

\textbf{Influence Maximization (IM).} IM has been widely studied for decades with a list of excellent surveys [4, 6, 51, 62, 88] that review the applications and papers on this topic. IM is also of high relevance of the data management community, and many excellent papers published recently regarding benchmarking [2, 58], new algorithms [39], new propagation models and applications [8, 40, 76, 83], and interdisciplinary extensions [85, 89].

A survey paper [51] roughly categorizes IM algorithms into three methodologies: simulation-based, proxy-based, and sketch-based. Among them, (Monte Carlo) simulation-based approaches (e.g., [33, 42, 49, 80, 87, 90]) are the most general and apply to most settings (i.e., graph types and diffusion models); however, they do not take advantage of the specific settings, so generally, their performance is limited. Proxy-based approaches (e.g., [19, 41, 43, 44, 53, 61]) use simpler algorithms/problems (e.g., PageRank or shortest-paths) to solve IM. While they can be fast in practice, their solution quality has no theoretical guarantees. Sketch-based solutions, as mentioned in Sec. 1 and 2, generally have good performance and theoretical guarantees, but only apply to specific diffusion models. Our sketch compression focuses on the IC model. We note that the parallel data structures in Sec. 4 are general to submodular diffusion models such as linear threshold [42], and more [76, 85].

Sketch-based algorithms can further be categorized into forward (influence) sketches and reverse (reachable) sketches [51]. As the names suggest, forward sketches record the influence that each vertex can propagate to in sampled graphs. Most algorithms [20–22, 31, 42, 59] mentioned in this paper, including \textit{PaC-IM}, use forward sketches. Reverse sketches find a sample of vertices \(T \) and keep the sets of vertices that can reach them. Many IM algorithms (e.g., [16, 74, 75, 79]), including \textit{No-Singles} [63] and \textit{Ripples} [55, 56] that we compared to, use reverse sketches. These algorithms can trade off (lower) solution quality for (better) performance/space, by adjusting the size of \(T \). This paper focuses on forward sketches because our compression technique is designed for them. However, the parallel data structures we proposed for seed selection, \textit{P-tree} and \textit{Win-Tree}, are independent of forward sketches. Applying \textit{P-tree} and \textit{Win-Tree} to reverse-reachable sketches can be interesting for future work.

\textbf{Space-Efficient Connectivity.} We are aware of a few algorithms that can compute graph connectivity using \(o(n) \) space [7, 17, 29, 45], which share a similar motivation with \textit{PaC-IM}. However, \textit{PaC-IM} does not require computing connectivity in \(o(n) \) space, but only requires storing it in \(O(n) \) space. Hence, the goal here is essentially different, although these approaches are inspiring.

7 CONCLUSION AND DISCUSSIONS

This paper addresses the scalability issues in existing IM systems by novel techniques including sketch compression and parallel CELF. Our sketch compression (Sec. 3) applies to the IC model and undirected graphs, and avoids the \(O(Rn) \) space usage in SOTA systems, which allows \textit{PaC-IM} to run on much larger graphs without sacrificing much performance. To the best of our knowledge, our new data structures (Sec. 4) are the first parallel version of CELF seed selection, which is general to any submodular diffusion models.

In addition to new algorithms, our techniques are carefully analyzed (Thm. 3.1 and 4.3) and have good theoretical guarantees regarding work, parallelism, and space. These analyses not only lead to good practical performance but also help to understand how the techniques interplay. The techniques are also experimentally verified in Fig. 6 to 8. The theory and our careful implementation also lead to stable speedup with increasing core counts (see Fig. 6).

\textbf{Limitations, Generalizations, and Future Work.} Our paper discussed two techniques: sketch compression and parallel CELF. Sketch compression uses the idea of memoization. As in previous work [20, 31], this approach only applies to IC models on undirected graphs, so that each edge can be sampled in advance regardless of the actual influence propagation direction. One future direction is to study similar approaches for sketch compression on directed graphs, but it may require a different technique, such as a compressed representation for strongly connected components.

For parallel CELF, we believe that our approaches based on \textit{P-tree} and \textit{Win-Tree} can be generalized to other settings. Within the scope of IM, this technique can also be combined with reverse (reachable) sketches, as long as the diffusion models are submodular. Moreover, CELF is a general greedy approach to accelerate optimization problems with submodular objective functions [46, 49, 57]. Therefore, our approaches can potentially provide parallelism for these problems. We leave these extensions as future work.

One limitation of \textit{Win-Tree} is that it does not have strong bounds as \textit{P-trees}. An interesting future work is to derive a strong bound regarding the number of evaluations. In the worst case, \textit{Win-Tree} may require \(O(n) \) evaluations due to the asynchrony of the threads. However, such a bad case is very unlikely in practice, and \textit{Win-Tree} has demonstrated good performance in our experiments. Giving a tighter bound under some practical assumptions may be interesting.