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Mixed-Domain Edge-Aware Image Manipulation

Xian-Ying Li, Yan Gu, Shi-Min Hu, Member, IEEE, and Ralph R. Martin, Member, IEEE

Abstract—This paper gives a novel approach to edge-aware
image manipulation. Our method processes a Gaussian pyramid
from coarse to fine, and at each level, applies a nonlinear
filter bank to the neighborhood of each pixel. Outputs of these
spatially-varying filters are merged using global optimization.
The optimization problem is solved using an explicit mixed-
domain (real space and DCT transform space) solution, which
is efficient, accurate, and easy-to-implement. We demonstrate
applications of our method to a set of problems including detail
and contrast manipulation, HDR compression, non-photorealistic
rendering, and haze removal.

Index Terms—mixed-domain, edge-aware image processing,
optimization-based image processing, multi-scale method.

I. INTRODUCTION

DGE-AWARE image processing is an important tech-

nique that has received much attention in the computer
graphics community. The goal is to process or filter images
in some way without destroying fine scale image edges.
Anisotropic diffusion [1] and bilateral filtering [2] are well-
known examples of such techniques, originally devised for im-
age smoothing, but later extended to many other applications.
More recently, many other edge-aware techniques have been
proposed, e.g. [3], [4], [5], [6], [7], [8]. The particular goal of
this paper is to provide a simple interface for independently
adjusting the overall appearance and details of input images
(in a similar way to [5]), doing so in a way which both
keeps fine edges, and avoids introducing unsightly artifacts.
Examples of manipulations carried out using our approach are
shown in Fig. 1. Unlike previous work, we use a novel mixed-
domain (real space and DCT transform space) processing
framework, which is fast and simple, and is readily accelerated
on the GPU.

A challenging problem in edge-aware image processing,
especially for algorithms which process overall appearance
and detail separately, is reducing, or if possible avoiding,
artifacts at image edges. The problem is illustrated using a
simple 1D signal in Fig. 2 (left). Suppose we wish to amplify
the detail, without losing the edge. The grey line represents
an input signal. The blue line represents the ‘overall’ signal,
produced by averaging of the input signal, while the red signal
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(b) Color contrast enhancement

(c) Detail enhancement

(d) Detail smoothing

Fig. 1.  An input image, and three output images produced by our method.
Edges are preserved well at different scales, without unsightly artifacts such
as halos, gradient reversals, or aliasing.

represents the ‘detail’, the difference between the input and
overall signals. If an enhanced version of the detail is added
directly back to the overall signal to give the output (the black
signal), the result will overshoot at the step, causing what
is often referred to in image processing as a ‘halo’ effect.
Conversely, if averaging is done in such a way as to sharpen
the input step, the result can even be a ‘gradient reversal’,
as shown in Fig. 2 (center). Although weak halos can make
image edges stand out, and indeed are deliberately introduced
in unsharp masking, stronger halos are perceived as unwanted
artifacts. Many previous works have thus carefully considered
how to reduce or avoid halos [3], [5], [9].

In this paper, we advocate a new method for halo-free edge-
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Fig. 2. A simple 1D example. Left, center: poor base-detail decomposition
may cause halos or gradient reversals. Right: our artifact-free result (using
a = 2.0, 8 = 1.0; see later).

Halo Gradient Reversal

aware image manipulation. Our method processes a Gaussian
pyramid level-by-level, from coarse to fine, in order to reduce
halos at each scale. At each level, we consider a set of local
filters defined on overlapping windows, and use optimization
to merge their outputs with those of the previous level: the
result at the current level has a detailed appearance in accor-
dance with the local filters’ output, and overall appearance in
accordance with the coarser result from the next higher level.
Controlling the detailed behavior of our result in this way
helps to reduce halos. An enhancement result produced by
our method for the same 1D signal is shown in Fig. 2 (right).

Contributions of this paper include:

o A new, rotationally invariant optimization-based formu-
lation for edge-aware image manipulation, which avoids
unsightly artifacts such as halos, gradient reversals, and
aliasing.

e A direct mixed-domain solution to the resulting opti-
mization problem, which is exact, efficient, and easy-to-
implement.

II. RELATED WORK
A. Edge-aware image processing

Edge-aware image processing for computer graphics is a
challenging problem that has received much recent attention.
Here we briefly review the techniques most closely related to
our work.

Anisotropic diffusion [1] uses a non-linear PDE that depends
on local image variation to iteratively smooth an image without
blurring important features. However, being based on iteration,
anisotropic diffusion and related PDE-based methods are slow,
and furthermore, parameters are difficult to set [10]. Tumblin
and Turk [11] show how anisotropic diffusion can be used as
a basis for high dynamic range (HDR) compression, but as
pointed out in [3], [9], it tends to over-sharpen image edges.

Bilateral filtering (BLF) [2] provides an alternative approach
to edge-aware image smoothing. It uses a local, non-iterative,
explicit, data dependent filter, whose simplicity, efficiency,
and effectiveness [12], [13], [14], [15], [16] have led to its
widespread use [17], [18], [19]. The survey in [20] gives an
in-depth treatment. However, as discussed in [3], BLF involves
a trade off between edge preservation and data smoothing.
Methods relying on BLF to separate a mean surface from detail

may lead to halos at image edges if too much smoothing is
applied.

Weighted least squares (WLS) and related methods attempt
to avoid such halos by use of more careful edge-aware decom-
position. WLS [3] computes the smooth (overall) component
of the input image by optimizing a quadratic energy based on
squared gradients with spatially-varying weights; the weights
are made small at sharp image edges, to preserve them. As
an alternative, Subr et al. [21] follow the ideas of empirical
mode decomposition (EMD) [22]: they smoothly connect
the local extrema of the input image to form a maximal
envelope and a minimal envelope, and then average these
two envelopes to obtain the smooth component. Subr et al.’s
approach behaves better than classical EMD at sharp image
edges. However, both of these methods involve solution of
large sparse linear systems. Although fast numerical solvers
like multi-grid methods can potentially be used, these complex
methods are not easy to implement. Our algorithm avoids
having to solve large linear equations.

Pyramid based methods provide a further approach to edge-
aware image processing, using a multi-scale representation
such as a Gaussian or Laplacian pyramid, or a wavelet decom-
position. Li et al. [23] perform HDR compression by directly
manipulating the wavelet coefficients with a careful correction
scheme, but as noted by [5], this method can also produce
halos with poor choice of parameter values. Later, Fattal [4]
developed two novel data-dependent wavelets more suitable
for edge-aware image applications than traditional wavelets.
Most recently, Paris et al. [5] introduced the local Laplacian
filter (LLF), which uses a set of simple local filters to directly
and ingeniously manipulate the Laplacian pyramid. However,
the LLF is computationally costly because sub-pyramids must
be constructed for each element of the Laplacian pyramid.
Aubry et al’s unpublished work [24] reveals that LLF is
closely related to anisotropic diffusion and BLF, and provides
an approximate sampling-based algorithm to accelerate LLF.
However, for a desired accuracy, its ability to accelerate the
method depends on the parameter settings used. Our method
in this paper uses Paris et al.’s local filters, but merges them
in a different, multi-scale optimization-based scheme. Unlike
the above techniques, we do not directly manipulate either
pyramid or wavelet coefficients.

The domain transform is a recent technique proposed by
Gastal and Oliveira [6] for real-time edge-aware image pro-
cessing. It is based on a data-dependent transform from the
5D image manifold to 2D real space that preserves geodesic
distance. However, like many other fast filtering techniques,
the domain transform is not rotationally invariant (i.e. filtering
a rotated image and rotating a filtered image produce different
results). Our approach is rotationally invariant.

B. Optimization-based image processing

Optimization is widely used in image processing, with a
variety of objective functions.

Gradient domain image processing [9], [25], [26], [27],
[28], [29], [30], [31] solves problems by manipulating image
gradients via optimization instead of directly changing pixel



ACCEPTED TO IEEE TIP

values, taking advantage of the fact that the human visual
system (HVS) is more sensitive to local contrast than absolute
intensities. Fattal et al. [9] utilize a Gaussian pyramid to
compute a gradient attenuation function for gradient domain
HDR compression without halos. Similarly, we use a multi-
scale scheme to produce halo-free results. Recently, Bhat et
al. [32] provided a uniform quadratic optimization framework,
Gradient Shop, supporting a number of applications, such
as saliency sharpening, pseudo re-lighting, non-photorealistic
rendering, de-blocking, and colorization. However, its ability
to obtain various effects relies on carefully designed spatially-
varying weights acting as constraints on gradients, and as a
result, the algorithm can not be accelerated using frequency-
domain approaches like those in [33]. We further explore the
relation of our work to gradient domain techniques later in the
paper.

Quadratic energies defined on image sub-windows have
also been utilized for image matting [34] and haze re-
moval [35]. However, these methods again require the solution
of large linear systems.

Other techniques such as total variation optimization [36]
and Ly smoothing [37] have considered non-quadratic en-
ergies in order to obtain outputs with ‘sparse gradients’.
However, these require elaborate iterative algorithms, which
are generally slow and may lack mathematical guarantees of
convergence and stability [38].

We give a novel multi-scale optimization-based approach to
edge-aware image manipulation. At each scale, we optimize
a quadratic objective function over sub-windows to merge
the outputs of a set of local edge-aware filters. Unlike WLS,
coefficients of our objective function have a spatially-invariant
structure, which permits a fast frequency-domain solution
to the resulting optimization problem. Use of a multi-scale
scheme helps to reduce halos.

III. ALGORITHM

In this section, we explain our algorithm for single-channel
images only. For color images, we decompose the input image
into channels (in e.g. RGB space or CIELAB space), and
process each channel independently. This is a common strategy
for processing color images [32], [39].

A. Overview

We express the input image as a real-valued 2D signal I.

Our algorithm allows the user to freely manipulate the
detailed appearance and the overall appearance of I separately,
without having to precisely specify how to decompose the
image into these components. Following LLF, we use three
parameters to control the output: « controls detail (o > 1
causes detail enhancement and o« < 1 causes detail smooth-
ing), 5 controls the overall appearance (3 > 1 causes intensity
range expansion and 8 < 1 causes range compression), and o
provides a threshold to determine what comprises detail.

To achieve the desired effects, we first create a Gaussian
pyramid for I with [ levels from bottom to top: Ig, I3, ..., [;_1,
where I = Iy. We then compute the output O gradually from
top to bottom: O;_1,0;_3, ..., Oy, where O = O.

In the following, we suppose that I and O share a
rectangular definition domain Dy. The pixel values for Ij, and
Oy, are denoted by I}, ,, and Oy, for each pixel p € Dy.

For the top level, we simply scale the signal, relative to its
average, to obtain the output:

Or1p = Avg(l11) + B(L-1p — Avg(Li-1)), (1)

where Avg(I;_;) is the average pixel value over I;_;. Note
that the top level output has the desired properties for overall
appearance, but lacks detail. We gradually correct the detail
in the output as we proceed through the levels, as we now
explain.

For each k < | — 1, we compute Oj while taking two
concerns into account.

On one hand, we would like Oy, to be like the up-sampled
signal of the output from the level above: Upsample(Og1).
However, because of the blurring effects of borh the down-
sampling and up-sampling, they should differ by a Gaussian
convolution. Thus, we would like the following to be satisfied:

G * Oy, = Upsample(Og41), ()

where G is a Gaussian kernel and x is the convolution operator.
In the discrete setting, we replace the Gaussian kernel by a
standard 5 x 5 binomial kernel for both down-sampling and
up-sampling [40], so G here is a 9 x 9 binomial kernel.

On the other hand, we would like our result Oy to have
the desired detail. Consider a sub-window (not necessarily
rectangular) w, of neighbours for each pixel p € Dy; in
practice we choose w), to comprise those pixels inside the disk
centered at p of some radius N. Within this sub-window, we
use a carefully designed local filter that takes the parameters
«, 3,0 to provide an ideal output. The goal is that:

Okq = LocalFiltera,g,g,wp(Ik,q) + Crp 3)

for every p € Dy, and for each pixel ¢ € w,. At first, it might
seem that we should set Oy, , = LocalFilterq, g ¢,w, (Ix,q) for
each ¢ € w,. However, this term is meant to control the
detail, which is essentially determined by local differences in
values, or gradients, to which human perception is particularly
sensitive [32]. Thus, we may add a constant for each sub-
window w),, as doing so does not affect the gradient; the C}, ,,
above are these constants.

Our local filter design follows the ideas in [5] but with cer-
tain changes to better fit our algorithm, as explained in Section
II-B. Our main algorithmic contribution is an optimization
framework to trade-off the two requirements in Egs. (2) and (3)
(see Section III-C), via a frequency-domain solution that is
efficient and exact (see Section III-D).

B. Local filtering

For each pixel p, LocalFilter,, g o, is actually a filter bank:
it leaves the center pixel value I, ;, unchanged, but generates a
new value for each of the other pixels in the window centered
on p. It treats each other pixel in a two-scale manner using
threshold o. Specifically, LocalFiltery g 5w, (Ix,q) generates
the following output for each pixel ¢ € wy:

Illc,p,q = Ik,p + Sign(-[k‘,q - Ik,p)Ma,B,cr(|Ik,q - Ik‘,p

), @)
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where M, 3 ,(d) is a non-linear map:
o(dfo)'/

Ta0(d/o)/ > +
(0.2 —‘rBQ(dQ _ 0.2

ifd<o,a<l1
ifd<o,a>1
ifd>o

M(X’g’ﬂ(d) = (1 - Td)d
))1/2
&)
Here, 74 = max(0, min(1,100 x (d — 0.01))) to avoid noise
amplification while enhancing detail. Examples of M, 5 ,(d)
are shown graphically in Fig. 3. The multiple values produced
for each output pixel are harmonized to a single value by our

optimization step.

o>1
B>1
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Fig. 3. Mapping function M, g (d) for different o and 3.

The only difference between our local filter in Eq. (4) and
the one in [5] is that we take a hyperbolic curve instead of a
straight line when d > o. This ensures that, if the difference
d is large, the mapping function M, g . (d) produces a result
very close to Sd (and does not differ from Sd by a constant
like the approach in [5]). As a result, our local filter better
follows the overall appearance inherited from the top level,
via Eq. (1).

C. Global optimization

We now formulate a global optimization scheme to trade-
off Egs. (2) and (3); it also reconciles the multiple outputs of
Eq. (4). Our objective function has two terms.

The first measures directly the extent to which Eq. (2) is
not satisfied. Its role is to control the overall appearance of
the target Oy:

Ey(Oy) = ||G % O — Upsample(Op41)|*. (6)

For the second, we use “averaged squared differences” to
express the requirement in Eq. (3):

Ea(Op,Cr) = > Y (Okg—1Itpq—Cip)?/W, (1)
pED gEwy
where I k.p,q COMES from Eq. (4), and C},, are the constants

explained earher W is the number of pixels in wy,.
These two terms are combined to give an overall energy to
be optimized:

E(O,Ck)

We simultaneously determine Oj and C}, by minimizing this
energy. \ is a positive parameter; simply setting A = 1 works
well in practice (for further discussion, see later).

Note that Eq. (8) is a quadratic function, with a unique
minimum, so optimizing it is equivalent to solving a linear
equation. However, the coefficients of Eq. (8) have a spatially-
invariant structure, unlike those of an arbitrary quadratic func-
tion. This observation permits an efficient and exact frequency-
domain method to optimize Eq. (8).

= Ed(0k7 Ck) + )\Eb(Ok). ®)

D. Frequency-domain solution

Suppose that Oy and Cj minimize the energy in Eq. (8).

_ Therefore 0E/0CY , = 0, which implies, for each p € Dy:

Ck,p = Z (Ok,q - Il/c,p,q)/W (9)

IS T

By expanding the signals to cover the whole plane, we can
rewrite Eq. (9) in the following form involving a convolution:

Ok»ZL*Ok-—Sk, (10)

where L is the kernel for unweighted averaging within a cen-

tered sub-window, and S satisfies Skp =3 c,, I} o/ W-
Also, we have that 9E /00Oy, = 0, which yields.
Or — T — LxCr + AG * (G* O —O}) =0, (11)
where O}, = Upsample(Oy11), and Ty = >, I oo/ W.

Note that the signals S, and T} are different. Intuitively,
Sk,p denotes “the average of values that pixel p hopes its
neighbors have”, while T} , denotes “the average of values
that pixel p’s neighbors hope pixel p has”.

Taking a Discrete Cosine Transform (DCT), the convolu-
tions in Egs. (10) and (11) become multiplications in the
frequency-domain. Substituting Eq. (10) into Eq. (11) to
eliminate Cy, and denoting the DCT transform by D(:), we
obtain a direct and exact solution:

. (AD(G)D(0}) + D(T}) — D(L)D(Sy)
Or =D ( m(kG)2 +1 . D(L)2 . ) '

(12)

To extend the image signals to the whole plane as needed by
DCT, we reflect signals about the image boundaries. In princi-
ple, other Fourier-related transforms could be used instead—
we use DCT as it is the simplest and most common Fourier-
related transform that can prevent artifacts at the boundaries
(e.g., if we used DFT with cyclic extension, signal values
would wrap around from one side to the opposite image edge,
causing unwanted artifacts).

Use of Fourier-related transforms to speed up optimization
is a standard technique (e.g. see [33] and [41]). However,
unlike previous work, we have extra variables (the C}) in our
problem: we carefully eliminate these variables to obtain an
explicit solution. Another feature of our solution is that we
have intermediate variables (Sy and T}), which must be cal-
culated in real space, resulting in a mixed-domain computation,
done partly in real space and partly in DCT transform space.

In detail, using Eq. (12), Oy can be calculated with just
one 2-dimensional DCT and one 2-dimensional inverse DCT,
using the observations that:

e The DCTs of G and L can be efficiently calculated.
Gcan be written as G = Gz * Gy, where Gz and Gy
are 1-dimensional 9-tap binomial kernels in the z and
y directions, giving D(G),, = D(Gz),D(Gy),. For
L, we calculate each element of D(L) according to the
formal definition of DCT; this is efficient because L
has few identical non-zero elements. (These DCTs must
actually be computed—although G and L are local, and
the same for all images, their DCTs depend on the size
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(@) N=2

Fig. 4.
are with parameters o = 1.0, 8 = 0.1, o = In(2.5).

o We can first calculate an intermediate signal: Uy, = AG
Upsample(Og.y1) + T — L * Sg. This is again efficient
because a convolution with G or L can be calculated via
1-dimensional convolutions. The numerator in Eq. (12)
equals D(Uy) and thus can be calculated via a single
2-dimensional DCT.

Pseudocode for our entire mixed-domain edge-aware image
manipulation is summarized in Algorithm 1.

Algorithm 1 Mixed-Domain Edge-Aware Image Manipulation
Input : I, o, 3,0, A
Output: O.
Construct the Gaussian pyramid of I (with [ levels).
Compute O;_1 using Eq. (1).
for k from [ — 1 to 0 do
Compute I} , . = LocalFiltera g,5,u, (Ik,q) for g € wy.
Compute Sy and T}.
DG + DCT(G), DL + DCT(L).
Uy < MG x Upsample(Ogy1) + T — L % Sk.
DUy, + DCT(Uk).
for all frequencies f do
'DOk’f — Z)Uk,f/()\('DGf)2 +1-— ('DLf)z).
end for
Oy, < InverseDCT(DOy,).
end for
O« O().

IV. DISCUSSION

Since we use a quadratic objective function, our approach
is closely related to gradient-domain image processing tech-
niques. To see this, consider a 1 x 2 (or 2 x 1) window w with
pixels qi, g2. The energy term used to preserve details in this
w would be:

Ed7w(0qv0qz’0) = (Oq1 - Icln - C>2 + (Oqz - I(IZQ - 0)2’
13)
whose minimum given an arbitrary constant C' is achieved

when C = (Og, — I, +Og, — I;,)/2. The minimum value is:

HgnEd,w(Oqquva) = ((Oq1 - I:h) - (Oqz - 11/12))2/2
= ((0g, = 0g,) = (I, = I1,))?/2.
(14)

by N=4

(¢) N =4, lowest level only

HDR compression results. (a,b): N = 2 and N = 4, processing the whole pyramid. (c): N = 4, processing the lowest level only. All the results

This corresponds to requiring the gradient of the output,
Og, —Oy,, to be like the desired gradient, ] (’11 —I ;2, which is the
basic principle used in gradient-domain image processing [32].
However, in our approach, we choose a set of larger sub-
windows providing more extensive overlap, so that our output
is ‘more consistent’. Bigger windows also provide more infor-
mation allowing us to produce better local detail. Fig. 4(a,b)
demonstrate use of our method for HDR compression, using
different sub-window sizes of N = 2 and N = 4. The smaller
N produces a dull result, while the larger N better provides
extra detail.

The use of a pyramid is important in our method to reduce
halos. Fig. 4(c) shows the result for N = 4 if we only
process the bottom level using our method (i.e. we simply
scale I; following Eq. (1) to obtain O, and then solve
a single optimization on the bottom level to obtain Op).
Unsightly halos can be seen near the edges of the desk, as
well as around the open book’s pages. These halos result
from the combination of the constraints on both detailed and
overall appearance. The output near an edge may be enhanced
or reduced due to the detail constraint, but the output far
from edges tends to be quite close to the ‘target base’, i.e.
Upsample(O; ). Incompatibility of the detail constraint and
target base causes halos. Similar problems arise in WLS [3].
WLS simply uses the input signal as the target base, and
reduces halos by applying data-dependent weights to the
terms for detail constraint. Our approach does not need such
weights; halos are reduced due to use of a series of carefully
estimated target bases that better suit the detail constraint;
these target bases are computed via a multi-scale process.
The computational cost of our algorithm decreases rapidly
at higher levels; processing the whole pyramid costs about
4/3 the time of processing just the bottom level. For the
remaining examples in this paper, we set N = 4, constructing
the Gaussian pyramid such that the width and height of the
top level image I;_; are at least 8.

In our objective function in (8), A is a positive parameter
to trade-off the detail constraint and the overall constraint.
Using a small A produces better detailed appearance and worse
overall appearance; an extremely small A causes color tone de-
viation of the output (see Fig. 5(b)). Using a large A produces
better overall appearance and worse detailed appearance, and
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(a) Input (b) Output for A = 0.01

Fig. 5.

(c) Output for A = 100 (d) Output for A =1

Detail enhancement results with different settings of A. Extremely small A leads to color tone deviation (b), while extremely large A causes ringing

artifacts (c). Setting A = 1 works well in practice (d). Other parameters are « = 4.0, 8 = 1.0,0 = 0.2.

an extremely large A causes ringing artifacts (Fig. 5(c)). We
set A = 1 for all examples in this paper, which works well.
Our method and Aubry et al.’s work [24] are two different
approaches to speed up local Laplacian filters. In some ways,
they are complimentary—Aubry et al. use sampling to effi-
ciently estimate coefficients of the Laplacian pyramid, while
we use an optimization-based framework to merge the local
filters’ outputs level by level based on a Gaussian pyramid.
However, the ability of Aubry et al.’s approximation algorithm
to achieve a speed up for a desired accuracy depends on
the upper cutoff frequency of the mapping function M, g,
(see [24]). It is faster than our method for e.g. HDR compres-
sion (where the parameter « is typically small and therefore
the upper cutoff frequency of M, g, is low), but for detail
enhancement, where the parameter « is large, it would become
much slower. The performance and accuracy of our method
do not depend on the choice of mapping function M, g ;.
Our algorithm also has the benefit of rotational invariance
(i.e. filtering a rotated image and rotating a filtered image
produce identical results), because we used disk-shaped sub-
windows. This makes our method different from many other
fast filtering techniques that are not rotationally invariant (e.g.
the domain transform [6]). An example is shown in Fig. 6.

V. APPLICATIONS

We now showcase several applications to demonstrate the
effectiveness of our method. Further results can be found in
the supplementary material.

A. Detail and contrast manipulation

Our method can be directly applied for purposes of image
detail and contrast manipulation. Fig. 7 shows the results of
processing a single input image (in RGB color space) with
different parameter settings. In each case, edges are preserved
well without halos resulting (see, for example, the edges of the
flower, and the stigma of the flower). The parameter o con-
trols the detail in the output; o < 1 causes detail smoothing
and « > 1 causes detail enhancement. The parameter 8 con-
trols the color contrast of the output; 5 < 1 causes contrast

(b) Our method

(a) Input images

(c) Domain transform [6]

Fig. 6. Image smoothing using our method (o« = 0.0, 8 = 1.0, o = 0.15)
and domain transfer [6] (o5 = 30, o, = 0.4). st row: rotating a filtered
image. 2nd row: filtering a rotated image. 3rd row: close-ups of the results.
Our method produces identical results as it is rotationally invariant.

reduction, while 5 > 1 leads to contrast enhancement. The
parameter o allows a tradeoff between detail and contrast
manipulation: a larger o increases the effects of o and de-
creases the effects of 5. Thus, Fig. 7(c,d) show stronger detail
smoothing and enhancement than Fig. 7(a,b); however, the
contrast manipulation effects in Fig. 7(c,d) are weaker than
in Fig. 7(a,b). o is an important parameter which must be
carefully chosen since it distinguishes details from edges. If
we use a < 1 to smooth an image with a large o, e.g. as on
the top-right of Fig. 7, some red color ‘leaks’ from the flower
onto the green leaf. We suggest o should lie within [0.1,0.2]
for typical detail and contrast manipulation tasks.

In Fig. 8 we compare detail enhancement results using L
smoothing [37] with those from our method. Note that L
smoothing tends to produce smooth base components with
sharp edges. Boosting from those components causes gradient
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(@) 8=0.5,0=0.1 (b) 8=1.5,0=0.1

Fig. 7.

(©) 8=05,0=03 (d) B=150=03

Detail and contrast manipulation (in RGB color space). Top to Bottom: o = 0.3, 0.6, 1.5, 4.0. (a,b): contrast reduction and enhancement with a

normal threshold o = 0.1. (c,d): contrast reduction and enhancement with an extreme threshold o = 0.3.

reversals as discussed in Section I. Our method does not
produce such artifacts.

B. HDR compression

HDR compression, or tone mapping, is concerned with
compressing the intensity range of an HDR image while
keeping details. Our implementation follows previous work,
i.e. we first compute the luminance channel using a linear
combination of RGB values: L; = (20r; +40g; + b;)/61 [17],
and then process the logarithm of the luminance In(L;) [9],
[11] using our method to compress the range without re-
ducing detail, setting # < 1 and o > 1. Given the output
In(L,), we offset and scale In(L,) to make its maximum
0 and its minimum —In(100/(max(L}) — min(L}))), where

L, is the sub-signal of L; obtained by throwing away the
top and bottom 0.5% values [5]. Finally, we convert In(L,)
back to L,, and compute the output RGB values. We set
(roy90,b0) = (r;Lo/L;, 9iLo/Li, b; Lo/ L;), then gamma cor-
rect each channel with an exponent of 1/2.2 [5], and finally
clamp values to [0, 1] for display.

In our experiments, we set 3 = 0.1, ¢ = In(2.5) with a = 1
to give ‘photorealistic’ output and o = 4 to give ‘exaggerated’
output. It would also be possible to post-process our results
using interactive techniques like those in [42] but doing so is
beyond the scope of this paper.

We compared our method with several previous methods (a
BLF-based method [17], WLS [3], and LLF [5]) in Fig. 9,
by setting parameters for ‘exaggerated’ effects. Observe that
the BLF-based method causes edge halos (e.g. see close-ups
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execkyeh vyipray

(a) BLF-based method (b) WLS

Fig. 9.
[5]. (d): our method; o = 4.0, 8 = 0.1, 0 = In(2.5).

(b) Our result

(a) Lo smoothing

Fig. 8. Detail enhancement. (a): using Lo smoothing; A = 0.015; 3 detail
boosting. (b): our result; « = 4.0, 8 = 1.0, 0 = 0.3.

of the edges of the book’s pages, the corner of the shadow
on the desk, and the white square on the blue book). WLS
largely reduces halos, but some remain visible. In contrast,
our method produces halo-free output like the state-of-the-art
LLF method. This is unsurprising, since both methods use very
similar local filters. However, our approach merges those local
filters’ multiple outputs via a novel optimization framework,
with an exact and efficient mixed-domain solution, unlike LLF.

Further ‘photorealistic’ and ‘exaggerated’ results using our

method are shown in Fig. 10.

(d) Our method

(c) LLF

Comparison of our method with previous HDR compression methods. (a): BLF [17]. (b): Weighted Least Squares [3]. (c): Local Laplacian Filter

C. Non-photorealistic abstraction

The edge-aware smoothing ability of our method is well
suited to the needs of image abstraction [39], [43]. In Fig. 11,
we process an input image (in RGB color space) with param-
eters « = 0, 8 = 1, 0 = 0.15 to obtain a highly smoothed
image, and then overlay this smoothed image with its DoG
(Difference of Gaussian) edges to give a non-photorealistic

abstraction effect.

(b) Our abstraction results

(a) Input images

Fig. 11.  Image Abstraction (use RGB color space). (a): input images. (b):
our abstraction results; « = 0.0, 8 = 1.0, o = 0.15.
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D. Haze removal

Our method can also be applied to joint image filtering, i.e.
to process an image with the edge information provided by
another reference image, denoted R. We simply replace the
local filters in Eq. (4) by:
Ma,ﬁ,aﬂRk,q — Rk,p|)

|Rk,q - Rk,pl

We demonstrate haze removal as an application of this idea,
in Fig. 12. Following [35], we first use the dark channel prior
to roughly estimate a haze transmission map. We then use our
method with the joint local filters in Eq. (15) to smooth the
transmission map, taking the input hazy image as the reference
image. As the reference is a color image, we use Euclidean
distance in CIELAB color space for the term |Ry 4 — Ry p| in
Eq. (15).

Lipg = Trp + kg — I p) (15)

VI. IMPLEMENTATION

We have implemented our method on both CPU and GPU.
In the CPU case, we used the FFTW 3.3 library [44] to com-
pute DCTs. Our implementation takes less than 3.2 seconds
to process each channel of the 800 x 1200 image in Fig. 1,
using a single thread on an Intel Core 750, 2.66GHz, with sub-
window size N = 4. Our GPU implementation used NVIDIA
CUFFT [45] for DCTs on an NVIDIA GeForce 560 GTX.
The processing time was reduced to under 280 milliseconds.

Our algorithm is easy to program, since it involves only
DCTs (widely supported by libraries) and a few pixel-wise
operations, rather than complex solvers for large sparse lin-
ear systems (e.g. multi-grid methods) or complicated signal
decomposition.

(b) Our haze-free results

(a) Input images

Fig. 12. Haze removal (use CIELAB color space for reference images). (a):
input hazy images. (b): our haze-free results; & = 0.0, 5 = 1.0, o = 20.

VII. SUMMARY AND FUTURE WORK

This paper has presented a novel approach to edge-aware
image manipulation, controlled by several intuitive parameters
directly affecting the detailed and overall appearance of the
output. Our method processes a Gaussian image pyramid level-
by-level from coarse to fine. At each level, a set of local
filters operates on overlapping sub-windows, and a spatial-
domain optimization problem is solved in the frequency-
domain to merge the local filters’ outputs. This frequency-
domain solution is exact, fast, and easy-to-implement. The
results are halo-free, and can match the state-of-art results in
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several applications.

Our mixed-domain method is best suited to rectangular
images; others can be padded to a rectangle at a slightly in-
creased computational cost. A minor drawback of our method
is that we can currently only support two-scale manipulation
(detail versus overall appearance), as we have to process the
whole pyramid to reduce halos. Currently we simply set the
parameter A = 1; if A is too small or too large artifacts result.
It would be interesting in future to study how to adaptively
choose A based on the values of o, «a, 3, to obtain the best
trade-off between detail and overall appearance.

We believe that the idea of mixing spatial-domain and
frequency-domain processing will have other useful applica-
tions in image processing. In particular, it would be interesting
to adapt our frequency-domain solver to other more general
optimization problems (e.g. we could use a linear transform
instead of the offsetting model in Eq. (7), like in [34]). We
also hope to generalize our optimization approach to other
spatially-varying local filters for further applications such as
up-sampling and deblurring. Finally, extending our approach to
video by taking temporal consistency into account is a further
problem of interest.

ACKNOWLEDGEMENTS

We thank the reviewers for helpful comments. Many source
images here come from other researchers and we thank them
for making their data available. In particular, we thank Shan-
shan Lu for sharing the input image in Fig. 1(a) and Sylvain
Paris for sharing the results in [5] to enable a comparison to
be made.

REFERENCES

[1] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Transactions on Patern Analysis and Ma-
chine Intelligence, vol. 12, no. 7, pp. 629-639, Jul. 1990.

[2] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in ICCV ’98: Proceedings of the Sixth International Conference
on Computer Vision. Washington, DC. USA: IEEE Computer Society,
1998, pp. 839-846.

[3] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-preserving
decompositions for multi-scale tone and detail manipulation,” ACM
Transactions on Graphics, vol. 27, no. 3, pp. 67:1-10, 2008.

[4] R. Fattal, “Edge-avoiding wavelets and their applications,” ACM Trans-
actions on Graphics, vol. 28, no. 3, pp. 22:1-10, 2009.

[5] S. Paris, S. W. Hasinoff, and J. Kautz, “Local laplacian filters: edge-
aware image processing with a laplacian pyramid,” ACM Transactions
on Graphics, vol. 30, no. 4, pp. 68:1-12, 2011.

[6] E.S. L. Gastal and M. M. Oliveira, “Domain transform for edge-aware
image and video processing,” ACM Transactions on Graphics, vol. 30,
no. 4, pp. 69:1-11, 2011.

[71 Z. Su, X. Luo, and A. Artusi, “A novel image decomposition approach
and its applications,” The Visual Computer, 2012, to appear.

[8] P. Thevenaz, D. Sage, and M. Unser, “Bi-exponential edge-preserving
smoother,” IEEE Transactions on Image Processing, vol. 21, no. 9, pp.
3924-3936, Sep. 2012.

[9]1 R. Fattal, D. Lischinski, and M. Werman, “Gradient domain high
dynamic range compression,” ACM Transactions on Graphics, vol. 21,
no. 3, pp. 249-256, 2002.

[10] G. Aubert and P. Kornprobst, Mathematical Problems in Image Pro-
cessing: Partial Differential Equations and the Calculus of Variations.
Springer-Verlag, 2006.

[11] J. Tumblin and G. Turk, “LCIS: A boundary hierarchy for detail-
preserving contrast reduction,” in SIGGRAPH ’99: Proc. 24th annual
conference on Computer graphics and interactive techniques. New
York, NY. USA: ACM, 1999, pp. 83-90.

[12] B. Weiss, “Fast median and bilateral filtering,” ACM Transactions on
Graphics, vol. 25, no. 3, pp. 519-526, 2006.

[13] J. Chen, S. Paris, and F. Durand, “Real-time edge-aware image process-
ing with the bilateral grid,” ACM Transactions on Graphics, vol. 26,
no. 3, pp. 103:1-9, 2007.

[14] S. Paris and F. Durand, “A fast approximation of the bilateral filter using
a signal processing approach,” Int. J. Computer Vision, vol. 81, no. 1,
pp- 24-52, 20009.

[15] Q. Yang, K.-H. Tan, and N. Ahuja, “Real-time O(1) bilateral filtering,”
in IEEE CVPR, 2009, pp. 557-564.

[16] J. Baek and D. E. Jacobs, “Accelerating spatially varying gaussian
filters,” ACM Transactions on Graphics, vol. 29, no. 6, pp. 169:1-10,
2010.

[17] F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high-
dynamic-range images,” ACM Transactions on Graphics, vol. 21, no. 3,
pp. 257-266, 2002.

[18] P. Choudhury and J. Tumblin, “The trilateral filter for high contrast
images and meshes,” in ACM SIGGRAPH 2005 Courses. New York,
NY, USA: ACM, 2005.

[19] R. Fattal, M. Agrawala, and S. Rusinkiewicz, “Multiscale shape and de-
tail enhancement from multi-light image collections,” ACM Transactions
on Graphics, vol. 26, no. 3, pp. 51:1-9, 2007.

[20] S. Paris, P. Kornprobst, J. Tumblin, and F. Durand, “Bilateral filtering:
Theory and applications,” Foundations and Trends in Computer Graph-
ics and Vision, vol. 4, no. 1, pp. 1-73, 2009.

[21] K. Subr, C. Soler, and F. Durand, “Edge-preserving multiscale image
decomposition based on local extrema,” ACM Transactions on Graphics,
vol. 28, no. 5, pp. 147:1-9, 2009.

[22] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-
C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition
and the Hilbert spectrum for nonlinear and non-stationary time series
analysis,” Proc. the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 454, no. 1971, pp. 903-995, 1998.

[23] Y. Li, L. Sharan, and E. H. Adelson, “Compressing and companding high
dynamic range images with subband architectures,” ACM Transactions
on Graphics, vol. 24, no. 3, pp. 836-844, 2005.

[24] M. Aubry, S. Paris, S. W. Hasinoff, J. Kautz, and F. Durand, “Fast and
robust pyramid-based image processing,” Technical Report, pp. 1-11,
2011.

[25] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” ACM
Transactions on Graphics, vol. 22, no. 3, pp. 313-318, 2003.

[26] A.Levin, A. Zomet, S. Peleg, and Y. Weiss, “Seamless image stitching in
the gradient domain,” in ECCV ’04: Proceedings of the Eighth European
Conference on Computer Vision. Springer-Verlag, 2004, pp. 377-389.

[27] A. Agarwala, M. Dontcheva, M. Agrawala, S. Drucker, A. Colburn,
B. Curless, D. Salesin, and M. Cohen, “Interactive digital photomon-
tage,” ACM Transactions on Graphics, vol. 23, no. 3, pp. 294-302,
2004.

[28] A. Agarwala, “Efficient gradient-domain compositing using quadtrees,”
ACM Transactions on Graphics, vol. 26, no. 3, pp. 94:1-10, 2007.

[29] A. Agrawal and R. Raskar, “Gradient domain manipulation techniques
in vision and graphics,” in ICCV 2007 Courses. Washington, DC. USA:
IEEE Computer Society, 2007.

[30] J. McCann and N. S. Pollard, “Real-time gradient-domain painting,”
ACM Transactions on Graphics, vol. 27, no. 3, pp. 93:1-7, 2008.

[31] Z.-F. Xie, R. Lau, Y. Gui, M.-G. Chen, and L.-Z. Ma, “A gradient-
domain-based edge-preserving sharpen filter,” The Visual Computer,
vol. 28, no. 12, pp. 1195-1207, 2012.

[32] P. Bhat, C. L. Zitnick, M. Cohen, and B. Curless, “Gradientshop: A
gradient-domain optimization framework for image and video filtering,”
ACM Transactions on Graphics, vol. 29, no. 2, pp. 10:1-14, 2010.

[33] P. Bhat, B. Curless, M. Cohen, and C. L. Zitnick, “Fourier analysis of the
2d screened poisson equation for gradient domain problems,” in ECCV
’08: Proceedings of the Eighth European Conference on Computer
Vision. Springer-Verlag, 2008, pp. 114-128.

[34] A. Levin, D. Lischinski, and Y. Weiss, “A closed-form solution to natural
image matting,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 30, no. 2, pp. 228-242, Feb. 2008.

[35] K. He, J. Sun, and X. Tang, “Single image haze removal using dark
channel prior,” in JEEE CVPR, 2009, pp. 1956-1963.

[36] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60,
no. 1-4, pp. 259-268, 1992.

[37] L. Xu, C. Lu, Y. Xu, and J. Jia, “Image smoothing via Lo gradient
minimization,” ACM Transactions on Graphics, vol. 30, no. 6, pp.
174:1-12, 2011.



ACCEPTED TO IEEE TIP

(38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

S. J. Wright, “Sparse optimization methods,” in Conference on Advanced
Methods and Perspectives in Nonlinear Optimization and Control, 2010.
H. Winnemoller, S. C. Olsen, and B. Gooch, “Real-time video abstrac-
tion,” ACM Transactions on Graphics, vol. 25, no. 3, pp. 1221-1226,
2006.

P. J. Burt and E. H. Adelson, “The laplacian pyramid as a compact
image code,” IEEE Transactions on Communication, vol. 31, no. 4, pp.
532-540, Apr. 1983.

S. Cho and S. Lee, “Fast motion deblurring,” ACM Transactions on
Graphics, vol. 28, no. 5, pp. 145:1-7, 2009.

D. Lischinski, Z. Farbman, M. Uyttendaele, and R. Szeliski, “Interactive
local adjustment of tonal values,” ACM Transactions on Graphics,
vol. 25, no. 3, pp. 646-653, 2006.

D. DeCarlo and A. Santella, “Stylization and abstraction of pho-
tographs,” ACM Transactions on Graphics, vol. 21, no. 3, pp. 769-776,
2002.

FFTW, “http://www.fftw.org/.”

CUFFT, “http://developer.nvidia.com/cufft.”

Xian-Ying Li received his bachelor’s degree in
computer science in 2008 from Tsinghua Univer-
sity, Beijing. He is currently a PhD candidate at
Tsinghua University. He received a gold medal at
the International Mathematical Olympiad in 2004.
His research interests include computer graphics,
geometric modeling, image processing, interpolation
and approximation, and computational origami.

Yan Gu is an undergraduate student in the De-
partment of Computer Science and Technology of
Tsinghua University, Beijing. His research interests
include computer graphics, geometric modeling, and
rendering.

Shi-Min Hu received the PhD degree from Zhejiang
University in 1996. He is currently a professor in the
Department of Computer Science and Technology at
Tsinghua University, Beijing. His research interests
include digital geometry processing, video process-

-~ ing, rendering, computer animation, and computer-
> aided geometric design. He is associate Editor-in-
N’ Chief of The Visual Computer (Springer), and on
\. 4 the editorial boards of Computer-Aided Design and
Vi Computer & Graphics (Elsevier). He is a member of

the IEEE and ACM.

Ralph R. Martin obtained his PhD in 1983 from
Cambridge University. Since then he has been at
Cardiff University, as Professor since 2000, where
he leads the Visual Computing research group. He
is also a Guest Professor at Tsinghua and other
universities in China, and Director of Scientific
Programmes of the One Wales Research Institute of
Visual Computing. His publications include over 200
papers and 12 books covering such topics as solid
modelling, surface modelling, reverse engineering,
intelligent sketch input, mesh processing, video pro-
cessing, computer graphics, vision based geometric inspection, and geometric
reasoning. He is a Fellow of the Learned Society of Wales, the Institute of
Mathematics and its Applications, and the British Computer Society. He is
on the editorial boards of several journals, including Computer Aided Design,
Computer Aided Geometric Design, and Geometric Models.


http://www.fftw.org/
http://developer.nvidia.com/cufft

	Introduction
	Related work
	Edge-aware image processing
	Optimization-based image processing

	Algorithm
	Overview
	Local filtering
	Global optimization
	Frequency-domain solution

	Discussion
	Applications
	Detail and contrast manipulation
	HDR compression
	Non-photorealistic abstraction
	Haze removal

	Implementation
	Summary and future work
	References
	Biographies
	Xian-Ying Li
	Yan Gu
	Shi-Min Hu
	Ralph R. Martin


