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ABSTRACT

This paper studies parallel algorithms for the longest increasing
subsequence (LIS) problem. Let 𝑛 be the input size and 𝑘 be the LIS
length of the input. Sequentially, LIS is a simple problem that can
be solved using dynamic programming (DP) in 𝑂 (𝑛 log𝑛) work.
However, parallelizing LIS is a long-standing challenge. We are
unaware of any parallel LIS algorithm that has optimal 𝑂 (𝑛 log𝑛)
work and non-trivial parallelism (i.e., �̃� (𝑘) or 𝑜 (𝑛) span).

This paper proposes a parallel LIS algorithm that costs𝑂 (𝑛 log𝑘)
work, �̃� (𝑘) span, and 𝑂 (𝑛) space, and is much simpler than the
previous parallel LIS algorithms. We also generalize the algorithm
to a weighted version of LIS, which maximizes the weighted sum
for all objects in an increasing subsequence. To achieve a better
work bound for the weighted LIS algorithm, we designed parallel
algorithms for the van Emde Boas (vEB) tree, which has the same
structure as the sequential vEB tree, and supports work-efficient
parallel batch insertion, deletion, and range queries.

We also implemented our parallel LIS algorithms. Our imple-
mentation is light-weighted, efficient, and scalable. On input size
109, our LIS algorithm outperforms a highly-optimized sequen-
tial algorithm (with 𝑂 (𝑛 log𝑘) cost) on inputs with 𝑘 ≤ 3 × 105.
Our algorithm is also much faster than the best existing parallel
implementation by Shen et al. (2022) on all input instances.
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1 INTRODUCTION

This paper studies parallel algorithms for classic and weighted
longest increasing subsequence problems (LIS and WLIS, see defini-
tions below). We propose a work-efficient parallel LIS algorithm
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with �̃� (𝑘) span, where 𝑘 is the LIS length of the input. Our WLIS
algorithm is based on a new data structure that parallelizes the
famous van Emde Boas (vEB) tree [75]. Our new algorithms
improve existing theoretical bounds on the parallel LIS and WLIS
problem, as well as enable simpler and more efficient implementa-
tions. Our parallel vEB tree supports work-efficient batch insertion,
deletion and range query with polylogarithmic span.

Given a sequence𝐴1..𝑛 and a comparison function on the objects
in 𝐴, the LIS of 𝐴 is the longest subsequence (not necessarily con-
tiguous) in 𝐴 that is strictly increasing (based on the comparison
function). In this paper, we use LIS to refer to both the longest
increasing subsequence of a sequence, and the problem of finding
such an LIS. LIS is a fundamental problem and has extensive ap-
plications (e.g., [5, 28, 30, 31, 44, 61, 63, 80]). In this paper, we use
𝑛 to denote the input size and 𝑘 to denote the LIS length of the
input. LIS can be solved by dynamic programming (DP) using the
following DP recurrence (more details in Sec. 2).

dp[𝑖] = max(1,max𝑗<𝑖,𝐴 𝑗<𝐴𝑖
dp[ 𝑗] + 1) (1)

Sequentially, LIS is a straightforward textbook problem [29, 39].
We can iteratively compute dp[𝑖] using a search structure to find
max𝑗<𝑖,𝐴 𝑗<𝐴𝑖

dp[ 𝑗], which gives𝑂 (𝑛 log𝑛) work. However, in par-
allel, LIS becomes challenging both in theory and in practice. In
theory, we are unaware of parallel LIS algorithms with 𝑂 (𝑛 log𝑛)
work and non-trivial parallelism (𝑜 (𝑛) or �̃� (𝑘) span). In practice,
we are unaware of parallel LIS implementations that outperform
the sequential algorithm on general input distributions.We propose

new LIS algorithms with improved work and span bounds in theory,

which also lead to a more practical parallel LIS implementation.

Our work follows some recent research [13–15, 17–19, 34, 42, 46,
62, 65, 66] that directly parallelizes sequential iterative algorithms.
Such algorithms are usually simple and practical, given their connec-
tions to sequential algorithms. To achieve parallelism in a “sequen-
tial” algorithm, the key is to identify the dependences [18, 19, 65, 66]
among the objects. In the DP recurrence of LIS, processing an object
𝑥 depends on all objects 𝑦 < 𝑥 before it, but does not need to wait
for objects before it with a larger or equal value.

An “ideal” parallel algorithm should process all objects in a
proper order based on the dependencies—it should 1) process as
many objects as possible in parallel (as long as they do not depend
on each other), and 2) process an object only when it is ready (all
objects it depends on are finished) to avoid redundant work. More
formally, we say an algorithm is round-efficient [65] if its span
is �̃� (𝐷) for a computation with the longest logical dependence
length 𝐷 . In LIS, the logical dependence length given by the DP re-
currence is the LIS length 𝑘 . We say an algorithm is work-efficient

if its work is asymptotically the same as the best sequential algo-
rithm. Work-efficiency is crucial in practice, since nowadays, the
number of processors on one machine (tens to hundreds) is much
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smaller than the problem size. A parallel algorithm is less practical
if it significantly blows up the work of a sequential algorithm.

Unfortunately, there exists no parallel LIS algorithm with both
work-efficiency and round-efficiency. Most existing parallel LIS
algorithms are not work-efficient [37, 53, 54, 58, 59, 64, 65, 71], or
have Θ̃(𝑛) span [4]. We review more related work in Sec. 7.

Our algorithm is based on the parallel LIS algorithm and the
phase-parallel framework by Shen et al. [65]. We refer to it as
the SWGS algorithm, and review it in Sec. 2. The phase-parallel
framework defines a rank for each input object as the length of
LIS ending at it (the dp value in Eq. (1)). Note that an object only
depends on lower-rank objects. Hence, the phase-parallel LIS algo-
rithm processes all objects based on the increasing order of ranks.
However, the SWGS algorithm takes 𝑂 (𝑛 log3 𝑛) work whp, �̃� (𝑘)
span, and 𝑂 (𝑛 log𝑛) space, and is quite complicated. In the experi-
ments, the overhead in work and space limits the performance. On
a 96-core machine and input size of 108, SWGS becomes slower
than a sequential algorithm when the LIS length 𝑘 > 100.

In this paper, we propose a parallel LIS algorithm that is work-
efficient (𝑂 (𝑛 log𝑘)work), round-efficient (�̃� (𝑘) span) and space-
efficient (𝑂 (𝑛) space), and ismuch simpler than previous paral-

lel LIS algorithms [54, 65]. Our result is summarized in Thm. 1.1.

Theorem 1.1 (LIS). Given a sequence 𝐴 of size 𝑛 and LIS length

𝑘 , the longest increasing subsequence (LIS) of 𝐴 can be computed in

parallel with 𝑂 (𝑛 log𝑘) work, 𝑂 (𝑘 log𝑛) span, and 𝑂 (𝑛) space.

We also extend our algorithm to the weighted LIS (WLIS) prob-
lem, which has a similar DP recurrence as LIS but maximizes the
weighted sum instead of the number of objects in an increasing
subsequence.

dp[𝑖] = 𝑤𝑖 +max(0,max𝑗<𝑖,𝐴 𝑗<𝐴𝑖
dp[ 𝑗]) (2)

where𝑤𝑖 is the weight of the 𝑖-th input object. We summarize our
result in Thm. 1.2.

Theorem 1.2 (WLIS). Given a sequence 𝐴 of size 𝑛 and LIS length

𝑘 , the weighted LIS of 𝐴 can be computed using 𝑂 (𝑛 log𝑛 log log𝑛)
work, 𝑂 (𝑘 log2 𝑛) span, and 𝑂 (𝑛 log𝑛) space.

Our primary techniques to support both LIS and WLIS rely on
better data structures for 1D or 2D prefix min/max queries in
the phase-parallel framework. For the LIS problem, our algorithm
efficiently identifies all objects with a certain rank using a parallel
tournament tree that supports 1D dynamic prefix-min queries,
i.e., given an array of values, find the minimum value for each
prefix of the array. For WLIS, we design efficient data structures for
2D dynamic “prefix-max” queries, which we refer to as dominant-
max queries (see more details in Sec. 4). Given a set of 2D points
associated with values, which we refer to as their scores, a dominant-
max query returns the largest score to the bottom-left of a query
point. Using dominant-max queries, given an object 𝑥 in WLIS, we
can find the maximum dp value among all objects that 𝑥 depends
on. We propose two solutions focusing on theoretical and practical
efficiency, respectively. In practice, we use a parallel range tree
similar to that in SWGS, which results in 𝑂 (𝑛 log2 𝑛) work and
�̃� (𝑘) span for WLIS. In theory, we parallelize the van Emde Boas

(vEB) tree [75] and integrate it into range trees to achieve a better
work bound for WLIS.

Phase Parallel + Tournament Tree
- Improved theoretical bounds
- Simple and Practical

Phase Parallel + Range Structure 
supporting DominantMax Query

Simple and practical
range tree (§4.1)

Improved theoretical bounds based 
on range-vEB tree (§4.2, Alg. 3)

Parallel batch-insertion, batch-deletion, 
range query; work-efficient with polylog 
span (Thm. 5.1, 5.2) More in full version

Parallel vEB Tree (§5, Alg. 4-5, Thm. 1.3) Implementation (§6)
Simple and practical 
implementation for 
LIS and WLIS

LIS (§3, Alg. 1, Thm. 1.1) WLIS (§4, Alg. 2, Thm. 1.2)

Figure 1: Outline and contributions of this paper.

The van Emde Boas (vEB) tree [75] is a famous data structure for
priority queues and ordered sets on integer keys, and is introduced
in many textbooks (e.g., [27]). To the best of our knowledge, our
algorithm is the first parallel version of vEB trees. We believe
our algorithm is of independent interest in addition to the appli-
cation in WLIS. We note that it is highly non-trivial to redesign
and parallelize vEB trees because the classic vEB tree interface and
algorithms are inherently sequential. Our parallel vEB tree supports
a general ordered set abstract data type on integer keys in [0,𝑈 )
with bounds stated below. We present more details in Sec. 5.

Theorem 1.3 (Parallel vEB Tree). LetU be a universe of all

integers in range [0,𝑈 ). Given a set of integer keys from U, there

exists a data structure that has the same organization as the sequential

vEB tree, and supports:

• single-point insertion, deletion, lookup, reporting the minimum

(maximum) key, and reporting the predecessor and successor of an

element, all in 𝑂 (log log𝑈 ) work, using the same algorithms for

sequential vEB trees;

• BatchInsert(𝐵) and BatchDelete(𝐵) that insert and delete a

sorted batch 𝐵 ⊆ U in the vEB tree with 𝑂 ( |𝐵 | log log𝑈 ) work
and 𝑂 (log𝑈 log log𝑈 ) span;
• Range(𝑘𝐿, 𝑘𝑅) that reports all keys in range [𝑘𝐿, 𝑘𝑅] in 𝑂 ((1 +
𝑚) log log𝑈 ) work and 𝑂 (log𝑈 log log𝑈 ) span, where 𝑚 is the

output size.

Our LIS algorithm and the WLIS algorithm based on range trees
are simple to program, and we expect them to be the algorithms
of choice in implementations in the parallel setting. We tested our
algorithms on a 96-core machine. Our implementation is light-
weighted, efficient and scalable. Our LIS algorithm outperforms
SWGS in all tests, and is faster than highly-optimized sequential
algorithms [51] on reasonable LIS lengths (e.g., up to 𝑘 = 3×105 for
𝑛 = 109). To the best of our knowledge, this is the first parallel LIS
implementation that can outperform the efficient sequential algorithm

in a large input parameter space. On WLIS, our algorithm is up to
2.5× faster than SWGS and 7× faster than the sequential algorithm
for small 𝑘 values. We believe the performance is enabled by the
simplicity and theoretical-efficiency of our new algorithms.

We note that there exist parallel LIS algorithms [22, 54] with bet-
ter worst-case span bounds than our results in theory. We highlight
the simplicity, practicality, and work-efficiency of our algorithms, as
well as the parallel vEB trees and the extension to the WLIS problem.
We summarize the contributions of this paper as follows.
Theory: 1) Our LIS and WLIS algorithms improve the existing
bounds. Our LIS algorithm is the first work- and space-efficient
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parallel algorithm with non-trivial parallelism (�̃� (𝑘) span). 2) We
design the first parallel version of vEB trees, which supports work-
efficient batch-insertion, batch-deletion and range queries with
polylogarithmic span.
Practice: Our LIS and WLIS algorithms are highly practical and
simple to program. Our implementations outperform the state-of-
the-art parallel implementation SWGS on all tests, due to better
work and span bounds. Our code is available on GitHub [43].

Due to the page limit, we provide the full version of this pa-
per [40] to present complete analysis and more experimental re-
sults.

2 PRELIMINARIES

Notation and Computational Model.We use𝑂 (𝑓 (𝑛)) with high

probability (whp) (in 𝑛) to mean 𝑂 (𝑐 𝑓 (𝑛)) with probability at least
1 − 𝑛−𝑐 for 𝑐 ≥ 1. �̃� (𝑓 (𝑛)) means 𝑂 (𝑓 (𝑛) · polylog(𝑛)). We use
log𝑛 as a short form for 1 + log2 (𝑛 + 1). For an array or sequence
𝐴, we use 𝐴𝑖 and 𝐴[𝑖] interchangeably as the 𝑖-th object in 𝐴, and
use 𝐴[𝑖 .. 𝑗] or 𝐴𝑖 .. 𝑗 to denote the 𝑖-th to the 𝑗-th objects 𝐴.

We use thework-spanmodel in the classic multithreaded model
with binary-forking [6, 14, 21]. We assume a set of threads that
share the memory. Each thread acts like a sequential RAM plus a
fork instruction that forks two child threads running in parallel.
When both child threads finish, the parent thread continues. A
parallel-for is simulated by fork for a logarithmic number of steps.
A computation can be viewed as a DAG (directed acyclic graph). The
work𝑾 of a parallel algorithm is the total number of operations in
this DAG, and the span (depth) 𝑺 is the longest path in the DAG. An
algorithm is work-efficient if its work is asymptotically the same
as the best sequential algorithm. The randomized work-stealing
scheduler can execute such a computation in𝑊 /𝑃 +𝑂 (𝑆) time whp
in𝑊 on 𝑃 processor cores [6, 21, 41]. Our algorithms can also be
analyzed on PRAM and have the same work and span bounds.
Longest Increasing Subsequence (LIS).Given a sequence𝐴1..𝑛 of
𝑛 input objects and a comparison function < on objects in𝐴,𝐴′1...𝑚
is a subsequence of 𝐴 if 𝐴′

𝑖
= 𝐴𝑠𝑖 , where 1 ≤ 𝑠1 < 𝑠2 < . . . 𝑠𝑚 ≤ 𝑛.

The longest increasing subsequence (LIS) of 𝐴 is the longest
subsequence 𝐴∗ of 𝐴 where ∀𝑖 < 𝑛,𝐴∗

𝑖
< 𝐴∗

𝑖+1. Throughout the
paper, we use 𝑛 to denote the input size, and 𝑘 to denote the LIS
length of the input.

LIS can be solved using dynamic programming (DP) with the DP
recurrence in Eq. (1). Here dp[𝑖] (called the dp value of object 𝑖) is
the LIS length of 𝐴1...𝑖 ending with 𝐴𝑖 .

The LIS problem generalizes to the weighted LIS (WLIS) prob-

lem with DP recurrence in Eq. (2). Sequentially, both LIS and
weighted LIS can be solved in𝑂 (𝑛 log𝑛) work. This is also the lower
bound [35] w.r.t. the number of comparisons. For (unweighted) LIS,
there exists an𝑂 (𝑛 log𝑘) sequential algorithm [51].When the input
sequence only contains integers in range [1, 𝑛], one can compute
the LIS in 𝑂 (𝑛 log log𝑛) work using a vEB tree. In our work, we
assume general input and only use comparisons between input
objects. Note that although we use vEB trees in WLIS, we will only
use it to organize the indexes of the input sequence (see details
in Sec. 5). Therefore, our algorithm is still comparison-based and
works on any input type.

4452 31 45 26 61 10 39
Dependence

Rank=dp[⋅]=2
Rank=dp[⋅]=1

Rank=dp[⋅]=3
input

1 2 3 4 5 6 7 8index

Figure 2: An input for LIS, the dependences and ranks. An object
depends on all objects before it and is smaller than it. The rank of an object
is the LIS length ending at it, which is also its dp value.

Dependence Graph [18, 19, 65, 66]. In a sequential iterative
algorithm, we can analyze the logical dependences between iter-
ations (objects) to achieve parallelism. Such dependences can be
represented in a DAG, called a dependence graph (DG). In a DG,
each vertex is an object in the algorithm. An edge from𝑢 to 𝑣 means
that 𝑣 can be processed only when 𝑢 has been finished. We say 𝑣

depends on 𝑢 in this case. Fig. 2 illustrates the dependences in LIS.
We say an object is ready when all its predecessors have finished.
When executing a DG with depth 𝐷 , we say an algorithm is round-
efficient if its span is �̃� (𝐷). In LIS, the dependence depth given by
the DP recurrence is the LIS length 𝑘 . We note that round-efficiency
does not guarantee optimal span, since round-efficiency is with
respect to a given DG. One can design a different algorithm with a
shallower DG and get a better span.
Phase-Parallel Algorithms and SWGS Algorithm [65]. The
high-level idea of the phase-parallel algorithm is to assign each
object 𝑥 a rank, denoted as rank(𝑥), indicating the earliest phase
when the object can be processed. In LIS, the rank of each object
is the length of the LIS ending with it (the dp value computed by
Eq. (1)). We also define the rank of a sequence 𝐴 as the LIS length
of 𝐴. An object only depends on other objects with lower ranks.
The phase-parallel LIS algorithm [65] processes all objects with
rank 𝑖 (in parallel) in round 𝑖 . We call the objects processed in round
𝑖 the frontier of this round. An LIS example is given in Fig. 2.

The SWGS algorithm uses a wake-up scheme, where each object
can be processed𝑂 (log𝑛) timeswhp. It also uses a range tree to find
the frontiers both in LIS and WLIS. In total, this gives 𝑂 (𝑛 log3 𝑛)
workwhp,𝑂 (𝑘 log2 𝑛) span, and𝑂 (𝑛 log𝑛) space. Our algorithm is
also based on the phase-parallel framework but avoids the wake-up
scheme to achieve better bounds and performance.

3 LONGEST INCREASING SUBSEQUENCE

We start with the (unweighted) LIS problem. Our algorithm is also
based on the phase-parallel framework [65] but uses a much simpler
idea to make it work-efficient. The work overhead in the SWGS
algorithm comes from two aspects: range queries on a range tree
and the wake-up scheme. The𝑂 (log𝑛) space overhead comes from
the range tree. Therefore, we want to 1) use a more efficient (and
simpler) data structure than the range tree to reduce both work and
space, and 2) wake up and process an object only when it is ready
to avoid waking up an object multiple times.

Our algorithm is based on a simple observation in Lemma 3.1
and the concept of prefix-min objects (Definition 3.1). Recall that
the rank of an object 𝐴𝑖 is exactly its dp value, which is the length
of LIS ending at 𝐴𝑖 .

Definition 3.1 (Prefix-min Objects). Given a sequence 𝐴1..𝑛 ,
we say 𝐴𝑖 is a prefix-min object if for all 𝑗 < 𝑖 , we have 𝐴𝑖 ≤ 𝐴 𝑗 ,

i.e., 𝐴𝑖 is (one of) the smallest object among 𝐴1..𝑖 .
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Algorithm 1: The parallel (unweighted) LIS algorithm
Input: A sequence 𝐴1..𝑛
Output: All dp values (ranks) of 𝐴1..𝑛

1 int rank[1..𝑛] // rank[𝑖 ]: the LIS length ending at 𝐴𝑖 .

2 int T[1..(2𝑛 − 1) ] // T : the (implicit) tournament tree.

3 𝑟 ← 0 // 𝑟 is the current round.

4 Initialize the tournament tree T
5 Function LIS(sequence 𝐴1..𝑛 )
6 while T[1] ≠ +∞ do // T is not empty.

7 𝑟 ← 𝑟 + 1
8 ProcessFrontier( ) // process the 𝑟 -th frontier

9 return rank[1..𝑛]
10 Function ProcessFrontier()
11 PrefixMin(1, +∞) // Process all prefix-min objects

// Deal with subtree rooted at T[𝑖 ]. Find objects 𝑥 s.t.: 1) 𝑥 ≤ any object

before it, and 2) 𝑥 ≤ LMin. Collect such objects in a binary tree.

12 Function PrefixMin(int 𝑖 , int LMin)
13 if T[𝑖 ] > LMin then return NIL
14 if 𝑖 ≥ 𝑛 then // Found a leaf node in the frontier.

15 rank[𝑖 ] ← 𝑟 // Set its rank as 𝑟 .

16 T[𝑖 ] ← +∞ // Remove the object.

17 else // An internal node. Process two children in parallel.

18 in parallel:

19 𝐿 ←PrefixMin(2𝑖 , LMin)
20 𝑅 ←PrefixMin(2𝑖 + 1, min(LMin, T[2𝑖 ] ))
21 T[𝑖 ] ← min(T [2𝑖 ], T[2𝑖 + 1] )

Lemma 3.1. In a sequence 𝐴, an object 𝐴𝑖 has rank 1 iff. 𝐴𝑖 is a

prefix-min object. An object𝐴𝑖 has rank 𝑟 iff.𝐴𝑖 is a prefix-min object

after removing all objects with ranks smaller than 𝑟 .

We use Fig. 3 to illustrate the intuition of Lemma 3.1, and prove
it in the full version of this paper [40]. Based on Lemma 3.1, we
can design an efficient yet simple phase-parallel algorithm for LIS
(Alg. 1). For simplicity, we first focus on computing the dp values
(ranks) of all input objects. We discuss the algorithm to output a
specific LIS for the input sequence in the full version of this paper.
The main loop of Alg. 1 is in Lines 6–8. In round 𝑟 , we identify the
frontier F𝑟 as all the prefix-min objects and set their dp values to 𝑟 .
We then remove the objects in F𝑟 and repeat. Fig. 3 illustrates Alg. 1
by showing the “prefix-min” value pre𝑖 for each object, which is
the smallest value up to each object. Note that this sequence pre𝑖
is not maintained in our algorithm but is just used for illustration.
In each round, we find and remove all objects 𝐴𝑖 with 𝐴𝑖 = pre𝑖 .
Then we update the prefix-min values pre𝑖 and repeat. In round 𝑟 ,
all identified prefix-min objects have rank 𝑟 .

To achieve work-efficiency, we cannot re-compute the prefix-
min values of the entire sequence after each round. Our approach
is to design a parallel tournament tree to help identify the frontiers.
Next, we briefly overview the tournament tree and then describe
how to use it to find the prefix-min objects efficiently.
Tournament tree. A tournament tree T on 𝑛 records is a complete
binary tree with 2𝑛 − 1 nodes (see Fig. 4). It can be represented
implicitly as an array T [1..(2𝑛 − 1)]. The last 𝑛 elements are the
leaves, where T [𝑖] stores the (𝑖−𝑛+1)-th record in the dataset. The
first 𝑛 − 1 elements are internal nodes, each storing the minimum
value of its two children. The left and right children of T [𝑖] are
T [2𝑖] andT [2𝑖+1], respectively.Wewill use the following theorem
about the tournament tree.

Theorem 3.1. (Parallel Tournament Trees [14, 32]) A tournament

tree can be constructed from 𝑛 elements in 𝑂 (𝑛) work and 𝑂 (log𝑛)

Input 52 31 45 26 61 10 39 44
Round 1 Objects 𝐴𝑖 52 31 45 26 61 10 39 44

Prefix-Min 𝑝𝑟𝑒𝑖 52 31 31 26 26 10 10 10
Round 2 Objects 𝐴𝑖 x x 45 x 61 x 39 44

Prefix-Min 𝑝𝑟𝑒𝑖 x x 45 x 45 x 39 39
Round 3 Objects 𝐴𝑖 x x x x 61 x x 44

Prefix Min 𝑝𝑟𝑒𝑖 x x x x 61 x x 44
DP values (LIS length) 1 1 2 1 3 1 2 3

Rank=1 (ℱ1)

Rank=2 (ℱ2)

Rank=3 (ℱ3)

𝑝𝑟𝑒𝑖: smallest 
value up to 
this object 
(inclusive)

Figure 3: An illustration of Alg. 1. The figure also shows pre𝑖 as the
smallest object up to this object (inclusive). If 𝐴𝑖 = pre𝑖 , it is a prefix-min
object. In round 𝑟 , Alg. 1 finds all prefix-min objects, sets their DP values as
𝑟 , removes them, and updates the pre𝑖 values.

span. Given a set 𝑆 of𝑚 leaves, in the tournament tree with size 𝑛,

the number of ancestors of all the nodes in 𝑆 is 𝑂 (𝑚 log(𝑛/𝑚)).
A tournament tree can be constructed by recursively construct-

ing the left and right trees in parallel, and updating the root value.
Using Tournament Tree for LIS. We use a tournament tree T
to efficiently identify the frontier and dynamically remove objects
(see Alg. 1). T stores all input objects in the leaves. We always
round up the number of leaves to a power of 2 to make it a full
binary tree. Each internal node stores the minimum value in its
subtree. When we traverse the tree at T [𝑖], if the smallest object to
its left is smaller than T [𝑖], we can skip the entire subtree. Using
the internal nodes, we can maintain the minimum value before any
subtree and skip irrelevant subtrees to save work.

In particular, the function ProcessFrontier finds all prefix-min
objects from T by calling PrefixMin starting at the root. Pre-
fixMin(𝑖, LMin) traverses the subtree at node 𝑖 , and finds all leaves
𝑣 in this subtree s.t. 1) 𝑣 is no more than any leaf before 𝑣 in this
subtree, and 2) 𝑣 is no more than LMin. The argument LMin records
the smallest value in T before the subtree at T [𝑖]. If the smallest
value in subtree T [𝑖] is larger than LMin, we can skip the entire
subtree (Line 13), because no object in this subtree can be a prefix-
min object (they are all larger than LMin). Otherwise, there are
two cases. The first case is when T [𝑖] is a leaf (Lines 14–16). Since
T [𝑖] ≤ LMin, it must be a prefix-min object. Therefore, we set
its dp value as the current round number 𝑟 (Line 15) and remove
it by setting its value as +∞ (Line 16). In the second case, when
T [𝑖] is an internal node (Lines 17–21), we can recurse on both
subtrees in parallel to find the desired objects (Line 18). For the
left subtree, we directly use the current LMin value. For the right
subtree, we need to further consider the minimum value in the left
subtree. Therefore, we take the minimum of the current LMin and
the smallest value in the left subtree (T [2𝑖]), and set it as the LMin

value of the right recursive call. After the recursive calls return, we
update T [𝑖] (Line 21) because some values in the subtree may have
been removed (set to +∞). We present an example in Fig. 4, which
illustrates finding the first frontier for the input in Fig. 3.

We now prove the cost of Alg. 1 in Thm. 3.2.
Theorem 3.2. Alg. 1 computes the LIS of the input sequence 𝐴

in 𝑂 (𝑛 log𝑘) work and 𝑂 (𝑘 log𝑛) span, where 𝑛 is the length of the

input sequence 𝐴, and 𝑘 is the LIS length of 𝐴.

Proof. Constructing T takes𝑂 (𝑛) work and𝑂 (log𝑛) span. We
then focus on the main loop (Lines 6–8) of the algorithm. The algo-
rithm runs in 𝑘 rounds. In each round, ProcessFrontier recurses
for 𝑂 (log𝑛) steps. Hence, the algorithm has 𝑂 (𝑘 log𝑛) span.
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52 31 45 26 61 10 39 44

31 26 10 39

26 10

10 ✓LMin=26✓LMin=+∞

✓LMin=+∞

✓LMin=+∞ ✓LMin=31 ✓LMin=26 LMin=10 

✓LMin=+∞ ✓LMin=52 LMin=31 ✓LMin=31 LMin=26 ✓LMin=26

Relevant nodes (part of its subtree is in the frontier), visited
and recurse on both children (if it is an internal node)

Other children of relevant nodes, visited but subtree skipped since 𝑇 𝑖 > 𝐿𝑀𝑖𝑛

Not visited

✓: subtree processed
 : subtree skipped

Figure 4: The parallel tournament tree for Alg. 1. The leaves store
the input 𝐴1..𝑛 . An internal node stores the minimum value in its subtree.
The figure illustrates finding the first frontier for Fig. 3. The algorithm
recursively traverses the tree from the root and maintains a LMin value for
each subtree as the smallest value before this subtree. If LMin is smaller
than the value at the subtree root, we skip the subtree. For example, the
smallest value before the green node 39○ is LMin = 10. Therefore, no leaves
in this subtree can be a prefix-min object, so this subtree is skipped.

Next, we show that the work of ProcessFrontier in round
𝑟 is 𝑂 (𝑚𝑟 log(𝑛/𝑚𝑟 )) work, where 𝑚𝑟 = |F𝑟 | is the number of
prefix-min objects identified in this round. First, note that visiting
a tournament tree node has a constant cost, so the work is asymp-
totically the number of nodes visited in the algorithm. We say a
node is relevant if at least one object in its subtree is in the frontier.
Based on Thm. 3.1, there are 𝑂 (𝑚𝑟 log(𝑛/𝑚𝑟 )) relevant nodes.

If Line 14 is executed (i.e., Line 13 does not return), the smallest
object in this subtree is no more than LMin and must be a prefix-
min object, and this node is relevant. Other nodes are also visited
but skipped by Line 13. Executing Line 13 for subtree 𝑖 means that
𝑖’s parent executed Line 17, so 𝑖’s parent is relevant. This indicates
that a node is visited either because it is relevant, or its parent is
relevant. Since every node has at most two children, the number of
visited nodes is asymptotically the same as all relevant nodes. which
is 𝑂 (𝑚𝑟 log(𝑛/𝑚𝑟 )). Hence, the total number of visited nodes is:

𝑘∑︁
𝑟=1

𝑚𝑟 log(𝑛/𝑚𝑟 ) ≤
𝑘∑︁
𝑖=1
(𝑛/𝑘) log(𝑛/(𝑛/𝑘)) = 𝑛 log𝑘

The last step uses the concavity of the function 𝑓 (𝑥) = 𝑥 log2 (1+
𝑛
𝑥 ). This proves the work bound of the algorithm. □

Note that the work bound of Thm. 3.2 is parameterized on the
LIS length 𝑘 . For small 𝑘 , the work can be 𝑜 (𝑛 log𝑛). For example,
if the input sequence is strictly decreasing, Alg. 1 only needs 𝑂 (𝑛)
work because the algorithm will find all objects in the first round
in 𝑂 (𝑛) work and finishes.

4 WEIGHTED LONGEST INCREASING

SUBSEQUENCE

A nice property of the unweighted LIS problem is that the dp value
is the same as its rank. In round 𝑟 , we simply set the dp values of
all objects in the frontier as 𝑟 . This is not true for the weighted
LIS (WLIS) problem, and we need additional techniques to handle
the weights. Inspired by SWGS, our WLIS algorithm is built on an
efficient data structure R supporting 2D dominant-max queries:
for a set of 2D points (𝑥𝑖 , 𝑦𝑖 ) each with a score 𝑠𝑖 , the dominant-max
query (𝑞𝑥 , 𝑞𝑦) asks for the maximum score among all points in its
lower-left corner (−∞, 𝑞𝑥 ) × (−∞, 𝑞𝑦). We will use such a data
structure to efficiently compute the dp values of all objects.

Algorithm 2: The parallel weighted LIS algorithm
Input: A sequence 𝐴1..𝑛 . Object 𝐴𝑖 has weight 𝑤𝑖

Output: The DP values dp[1..𝑛] for each object 𝐴𝑖 .
1 Struct Point

2 int 𝑥, 𝑦 // y = index, x = 𝐴𝑦 .

3 int dp // The DP value of 𝐴𝑦 , used as the score of the point.

4 Point 𝑝 [1..𝑛]
5 int dp[1..𝑛] // dp[𝑖 ]: the DP value of 𝐴𝑖 .

6 Struct RangeStruct⟨Point⟩
7 Stores points ⟨𝑥𝑖 , 𝑦𝑖 , dp𝑖 ⟩ with coordinate (𝑥𝑖 , 𝑦𝑖 ) and score dp𝑖
8 Supports DominantMax(𝑝,𝑞) : return the maximum score (the

dp[ · ] value) among all points (𝑥𝑖 , 𝑦𝑖 ) where 𝑥𝑖 < 𝑝 and 𝑦𝑖 < 𝑞

9 Supports Update(𝐵) , where 𝐵 = {⟨𝑥𝑖 , 𝑦𝑖 , dp𝑖 ⟩} is a batch of
points: update the score of each point (𝑥𝑖 , 𝑦𝑖 ) to dp𝑖

10 RangeStruct R // Any data structure that supports DominantMax

11 Run Alg. 1. Sort the rank array and get all the 𝑘 frontiers F1..𝑘 . F𝑖
contains the indexes of all objects with rank 𝑖 .

12 parallel-foreach 𝐴𝑖 ∈ 𝐴 do 𝑝 [𝑖 ] = ⟨𝐴𝑖 , 𝑖, 0⟩
13 Construct R from 𝑝 [ · ]
14 for 𝑖 ← 1 to 𝑘 do

15 parallel-foreach 𝑗 ∈ F𝑖 do // 𝐴𝑗 is an object with rank 𝑖
16 dp[ 𝑗 ] ← R .DominantMax(𝐴𝑗 , 𝑗 ) + 𝑤𝑗

17 𝐵 ← {⟨𝐴𝑗 , 𝑗, dp[ 𝑗 ] ⟩ : 𝑗 ∈ F𝑖 }
18 R .Update(𝐵)
19 return dp[ · ]

We present our WLIS algorithm in Alg. 2. We view each object
as a 2D point (𝐴𝑖 , 𝑖) with score dp[𝑖], and use a data structure R
that supports dominant-max queries to maintain all such points.
Initially dp[𝑖] = 0. We call 𝐴𝑖 and 𝑖 as the x- and y-coordinate of
the point, respectively. Given the input sequence, we first call Alg. 1
to compute the rank of each object and sort them by ranks to find
each frontier F𝑖 . This can be done by any deterministic parallel
sorting with𝑂 (𝑛) work and𝑂 (log2 𝑛) span. We then process all the
frontiers in order. When processing F𝑖 , we compute the dp values
for all 𝑗 ∈ F𝑖 in parallel, using dp[ 𝑗] = max𝑗 ′< 𝑗,𝐴 𝑗 ′<𝐴 𝑗

dp[ 𝑗 ′]. This
can be done by the dominant-max query on R (Line 16), which
reports the highest score (dp value) among all objects in the lower-
left corner of the object 𝑗 . Finally, we update the newly-computed
dp values to R (Line 18) as their scores.

The efficiency of this algorithm then relies on the data struc-
ture to support dominant-max. We will propose two approaches
to achieve practical and theoretical efficiency, respectively. The
first one is similar to SWGS and uses range trees, which leads to
𝑂 (𝑛 log2 𝑛) work and �̃� (𝑘) span for theWLIS problem. By plugging
in an existing range-tree implementation [69], we obtain a simple
parallel WLIS implementation that significantly outperforms the
existing implementation from SWGS. The details of the algorithm
are in Sec. 4.1, and the performance comparison is in Sec. 6. We
also propose a new data structure, called the Range-vEB, to enable
a better work bound (𝑂 (𝑛 log𝑛 log log𝑛) work) for WLIS. Our idea
is to redesign the inner tree in range trees as a parallel vEB tree. We
elaborate on our approach in Sec. 4.2 and 5.

4.1 Parallel WLIS based on Range Tree

We can use a parallel range tree [8, 68] to answer dominant-max
queries. A range tree [8] is a nested binary search tree (BST) where
the outer tree is an index of the 𝑥-coordinates of the points. Each
tree node maintains an inner tree storing the same set of points
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in its subtree but keyed on the 𝑦-coordinates (see Fig. 5). We can
let each inner tree node store the maximum score in its subtree,
which enables efficient dominant-max queries. In particular, for
the outer tree, we can search (−∞, 𝑞𝑥 ) on the 𝑥-coordinates. This
gives 𝑂 (log𝑛) relevant subtrees in this range (called the in-range
subtrees), and 𝑂 (log𝑛) relevant nodes connecting them (called the
connecting nodes). In Fig. 5, when 𝑞𝑥 = 6.5, the in-range inner
trees are the inner trees of points (2, 6) and (5, 1), since their entire
subtrees falls into range (−∞, 6.5). The connecting nodes are (4, 5)
and (6, 4), as their x-coordinates are in the range, but only part
of their subtrees are in the range. For each in-range subtree, we
further search (−∞, 𝑞𝑦) in the inner trees to get the maximum
score in this range, and consider it as a candidate for the maximum
score. For each connecting node, we check if its 𝑦-coordinates are
in the range (−∞, 𝑞𝑦), and if so, consider it a candidate. Finally, we
return the maximum score among the selected candidates (both
from the in-range subtrees and connecting nodes). Using the range
tree in [14, 68, 69], we have the following result for WLIS.

Theorem 4.1. Using a parallel range tree for the dominant-max

queries, Alg. 2 computes the weighted LIS of an input sequence 𝐴 in

𝑂 (𝑛 log2 𝑛) work and 𝑂 (𝑘 log2 𝑛) span, where 𝑛 is the length of the

input sequence 𝐴, and 𝑘 is the LIS length of 𝐴.

4.2 WLIS Using the Range-vEB Tree

We can achieve better bounds for WLIS using parallel van Emde
Boas (vEB) trees. Unlike the solution based on parallel range trees,
the vEB-tree-based solution is highly non-trivial. Given the sophis-
tication, we describe our solution in two parts. This section shows
how to solve parallel WLIS assuming we have a parallel vEB tree.
Later in Sec. 5, we will show how to parallelize vEB trees.

We first outline our data structure at a high level. We refer to our
data structure for the dominant-max query as the Range-vEB tree,
which is inspired by the classic range tree as mentioned in Sec. 4.1.
The main difference is that the inner trees are replaced byMono-

vEB trees (defined below). Recall that in Alg. 2, the RangeStruct
implements two functionsDominantMax and Update. We present
the pseudocode of Range-vEB for these two functions in Alg. 3,
assuming we have parallel functions on vEB trees.

Similar to range trees, our Range-vEB tree is a two-level nested
structure, where the outer tree is indexed by 𝑥-coordinates, and the
inner trees are indexed by 𝑦-coordinates. For an outer tree node 𝑣 ,
we will use 𝑆𝑣 to denote the set of points in 𝑣 ’s subtree and𝑇𝑣 as the
inner tree of 𝑣 . Like a range tree, the inner tree𝑇𝑣 also corresponds
to the set of points 𝑆𝑣 , but only the staircase of 𝑆𝑣 (defined below).
Since the y-coordinates are the indexes of the input, which are
integers within 𝑛, we can maintain this staircase in a vEB tree.
Recall that the inner tree stores the 𝑦-coordinates as the key and
uses the dp values as the scores. For two points 𝑝1 = ⟨𝑥1, 𝑦1, dp1⟩
and 𝑝2 = ⟨𝑥2, 𝑦2, dp2⟩, we say 𝑝1 covers 𝑝2 if𝑦1 < 𝑦2 and dp1 ≥ dp2.
For a set of points 𝑆 , the staircase of 𝑆 is the maximal subset 𝑆 ′ ⊆ 𝑆

such that for any 𝑝 ∈ 𝑆 ′, 𝑝 is not covered by any points in 𝑆 . In
other words, for two input objects 𝐴𝑖 and 𝐴 𝑗 in WLIS, we say 𝐴𝑖

covers 𝐴 𝑗 if 𝑖 comes before 𝑗 and has a larger or equal dp value.
This also means that no objects will use the dp value at 𝑗 since 𝐴𝑖

is strictly better than 𝐴 𝑗 . Therefore, we ignore such 𝐴 𝑗 in the inner
trees, and refer to such a vEB tree maintaining the staircase of a

Algorithm 3: The parallel RangeStruct using Range-vEB trees
1 Structures Point and RangeStruct are defined in Alg. 2
2 Function DominantMax (𝑞𝑥 , 𝑞𝑦 )
3 In the Range-vEB, find the range of (−∞, 𝑞𝑥 ) , and let 𝑆

node
be the

set of connecting nodes and 𝑆tree be the set of in-range inner
(Mono-vEB) trees

// For each in-range inner tree, find the max score up to coordinate 𝑞𝑦

4 parallel-foreach 𝑡𝑖 ∈ 𝑆tree do
5 ⟨·, ·, 𝜎𝑖 ⟩ ← Pred(𝑡𝑖 , 𝑞𝑦 ) // 𝜎𝑖 is the score of 𝑞𝑦 ’s predecessor

// For connecting nodes, check if the y-coordinates are smaller than 𝑞

and get the maximum score for such points

6 foreach ⟨𝑥, 𝑦, dp⟩ ∈ 𝑆
node

s.t. 𝑦 < 𝑞𝑦 do

7 𝜎 ′ = max(𝜎 ′, dp)
8 return max(𝜎 ′,max𝑖 {𝜎𝑖 })
9 Function Update(𝐵) // 𝐵 is a list of points {⟨𝑥𝑖 , 𝑦𝑖 , dp𝑖 ⟩}
10 Update ⟨𝑥𝑖 , 𝑦𝑖 , dp𝑖 ⟩ in the outer Range-vEB tree
11 For each relevant inner (Mono-vEB) tree 𝑡𝑖 , gather a list of points

𝐿𝑖 ⊆ 𝐵 to be added to 𝑡𝑖
12 Points in 𝐿𝑖 are sorted by the y-coordinates
13 Let 𝑆tree be the set of inner trees 𝑡𝑖 that need new insertions

// Refine 𝐿𝑖 : Remove 𝐿𝑖 [ 𝑗 ] if any other point covers it

14 For each list 𝐿𝑖 , remove 𝐿𝑖 [ 𝑗 ] if
15 • ∃ 𝑙 < 𝑗 , s.t. 𝐿𝑖 [ 𝑗 ] .dp < 𝐿𝑖 [𝑙 ] .dp, or
16 • 𝜋.dp ≥ 𝐿𝑖 [ 𝑗 ] .dp, where 𝜋 = Pred(𝑡𝑖 , 𝐿𝑖 [ 𝑗 ] .𝑦) is 𝐿𝑖 [ 𝑗 ]’s

predecessor in the correspondingMono-vEB tree 𝑡𝑖
17 parallel-foreach 𝑡𝑖 ∈ 𝑆tree do

// Find elements in 𝑡𝑖 that are covered by points in 𝐿𝑖

18 𝑅 ← 𝑡𝑖 .CoveredBy(𝐿𝑖 )
19 𝑡𝑖 .BatchDelete(𝑅) // Delete points in 𝑅

20 𝑡𝑖 .BatchInsert(𝐿𝑖 ) // Insert points in 𝐿𝑖

dataset as a Mono-vEB tree. In a Mono-vEB tree, with increasing
key (𝑦𝑖 ), the score (dp values) must also be increasing.

Due to monotonicity, the maximum dp value in a Mono-vEB
tree for all points with 𝑦𝑖 < 𝑞𝑦 is exactly the score (dp value)
of 𝑞𝑦 ’s predecessor. Combining this idea with the dominant-max
query in range trees, we have the dominant-max function in Alg. 3.
We will first search the range (−∞, 𝑞𝑥 ) in the outer tree for the
𝑥-coordinates and find all in-range subtrees and connecting nodes.
For each connecting node, we check if their 𝑦 coordinates are in the
queried range, and if so, take their dp values into consideration. For
each in-range inner tree 𝑡𝑖 , we call Pred query on the Mono-vEB
tree and obtain the score (dp value) 𝜎𝑖 of this predecessor (Line 5).
As mentioned, the value of 𝜎𝑖 is the highest score from this inner
tree among all points with an index smaller than𝑞𝑦 . Finally, we take
a max of all such results (all 𝜎𝑖 and those from connecting nodes),
and the maximum among them is the result of the dominant-max
query (Line 8). As the Pred function has cost 𝑂 (log log𝑛), a single
dominant-max query costs 𝑂 (log𝑛 log log𝑛) on a Range-vEB tree.

Querying dominant-max using a staircase is a known (sequential)
algorithmic trick. However, the challenge is how to update (in
parallel) the newly computed dp values in each round (the Update
function) to a Range-vEB tree. We first show how to implement
Update in Alg. 3 while assuming a parallel vEB tree. We later
explain how to parallelize a vEB tree in Sec. 5.
Step 1. Collecting insertions for inner trees. Each point 𝑝 ∈ 𝐵
may need to be added to 𝑂 (log𝑛) inner trees, so we first obtain a
list 𝐿𝑖 of points to be inserted for each inner tree 𝑡𝑖 . This can be
done by first marking all points in 𝐵 in the outer tree R, and (in
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parallel) merging them bottom-up so that each relevant inner tree
collects the relevant points in 𝐵. When merging the lists, we keep
them sorted by the y-coordinates, the same as the inner trees.
Step 2. Refining the lists. Because of the “staircase” property, we
have to first refine each list 𝐿𝑖 to remove points that are not on the
staircase. A point in 𝐿𝑖 [ 𝑗] should be removed if it is covered by its
previous point 𝐿𝑖 [ 𝑗 − 1], or if any point in the Mono-vEB tree 𝑡𝑖
covers it. The latter case can be verified by finding the predecessor
𝜋 of 𝐿𝑖 [ 𝑗] .𝑦, and check if 𝜋 has a larger or equal dp value than 𝐿𝑖 [ 𝑗].
If so, 𝐿𝑖 [ 𝑗] is covered by 𝜋 ∈ 𝑡𝑖 , so we ignore 𝐿𝑖 [ 𝑗]. After this step,
all points in 𝐿[𝑖] need to appear on the staircase in 𝑡𝑖 .
Step 3. Updating the inner trees. Finally, for all involved subtrees,
we will update the list 𝐿𝑖 to 𝑡𝑖 in parallel. Note that some points
in 𝐿𝑖 may cover (and thus replace) some existing points in 𝑡𝑖 . We
will first use a function CoveredBy to find all points (denoted as
set 𝑅) in 𝑡𝑖 that are covered by any point in 𝐿𝑖 . An illustration of
CoveredBy function is presented in the full version of this paper.
We will then use vEB batch-deletion to remove all points in 𝑅 from
𝑡𝑖 . Finally, we call vEB batch-insertion to insert all points in 𝐿𝑖 to 𝑡𝑖 .

In Sec. 5, we present the algorithms CoveredBy, BatchDelete
and BatchInsert needed by Alg. 2, and prove Thm. 1.3. Assuming
Thm. 1.3, we give the proof of Thm. 1.2.

Proof of Thm. 1.2. We first analyze the work. We first show
that the DominantMax algorithm in Alg. 3 takes𝑂 (log𝑛 log log𝑛)
work. In Alg. 3, Line 3 finds 𝑂 (log𝑛) connecting nodes and in-
range inner trees, which takes𝑂 (log𝑛) work. Then for all𝑂 (log𝑛)
in-range inner trees, we perform a Pred query in parallel, which
costs 𝑂 (log log𝑛). In total, this gives 𝑂 (log𝑛 log log𝑛) work for
DominantMax. This means that the total work to compute the dp
values in Line 16 in the entire Alg. 2 is 𝑂 (𝑛 log𝑛 log log𝑛).

We now analyze the total cost of Update. In one invocation of
Update, we first find all keys for each inner tree 𝑡𝑖 that appears
in 𝐵. Using the bottom-up merge-based algorithm mentioned in
Sec. 4.2, each merge costs linear work. Similarly, refining a list 𝐿𝑖
costs linear work. Since each key in 𝐵 appears in 𝑂 (log𝑛) inner
tree, the total work to find and refine all 𝐿𝑖 is 𝑂 ( |𝐵 | log𝑛) for each
batch, and is 𝑂 (𝑛 log𝑛) for the entire algorithm.

For each subtree, the cost of running CoveredBy is asymptoti-
cally bounded by BatchDelete. For BatchDelete and BatchIn-
sert, note that the bounds in Thm. 1.3 show that the amortized
work to insert or delete a key is 𝑂 (log log𝑛). In each inner tree, a
key can be inserted at most once and deleted at most once, which
gives 𝑂 (𝑛 log𝑛 log log𝑛) total work in the entire algorithm.

Finally, the span of each round is 𝑂 (log2 𝑛). In each round, we
need to perform the three steps in Sec. 4.2. The first step requires
finding the list of relevant subtrees for each element in the insertion
batch 𝐵. For each element 𝑏 ∈ 𝐵, this is performed by first searching
𝑏 in the outer tree, and then merging them bottom-up so that each
node in the outer tree will collect all elements in 𝐵 that belong to its
subtree. There are𝑂 (log𝑛) levels in the outer tree, and each merge
requires 𝑂 (log𝑛) span, so this first step requires 𝑂 (log2 𝑛) span.

Step 2 will process all relevant lists in parallel (at most 𝑛 of them).
For each list, it calls Pred for each element in each list, and a filter
algorithm at the end. The total span is bounded by 𝑂 (log2 𝑛).

Step 3 requires calling batch insertion and deletion to update all
relevant inner trees, and all inner trees can be processed in parallel.

𝑥 : A 𝑤-bit integer 𝑥 from universe U, where U = [0, 2𝑤 )
high(𝑥 ) : high-bit of 𝑥 , equals to ⌊𝑥/2⌈𝑤/2⌉ ⌋
low (𝑥 ) : low-bit of 𝑥 , equals to (𝑥 mod 2⌈𝑤/2⌉ )
index (ℎ, 𝑙 ) : The integer by concatenating high-bit ℎ and low-bit 𝑙
V : A vEB (sub-)tree / the set of keys in this vEB tree
V .min (V .max) : The min (max) value in vEB tree V
Pred(V, 𝑥 ) : Find the predecessor of 𝑥 in vEB tree V
Succ(V, 𝑥 ) : Find the successor of 𝑥 in vEB tree V
V .summary : The set of high-bits in vEB tree V
V .cluster [ℎ] : The subtree of V with high-bit ℎ
(∗ ) PV,𝐵 (𝑥 ) : The survival predecessor of 𝑥 ∈ 𝐵 in vEB tree V (used in

Alg. 5). P(𝑥 ) = max{𝑦 : 𝑦 ∈ V \ 𝐵, 𝑦 < 𝑥 }.
(∗ )SV,𝐵 (𝑥 ) : The survival successor of 𝑥 ∈ 𝐵 in vEB tree V (used in

Alg. 5). S(𝑥 ) = min{𝑦 : 𝑦 ∈ V \ 𝐵, 𝑦 > 𝑥 }.
Table 1: Notation for vEB trees. (∗ ) : We drop the subscript with clear
context.

Based on the analysis above, the span for each batch insertion and
deletion is 𝑂 (log𝑛 log log𝑛), which is also bounded by 𝑂 (log2 𝑛).

Thus, the entire algorithm has span𝑂 (𝑘 log2 𝑛). We present the
details of achieving the stated space bound in the full version of
this paper by relabeling all points in each inner tree. □

Making Range-vEB Tree Space-efficient. A straightforward
implementation of Range-vEB tree may require 𝑂 (𝑛2) space, as a
plain vEB tree requires 𝑂 (𝑈 ) space. There are many ways to make
vEB trees space-efficient (𝑂 (𝑛) space when storing 𝑛 keys); we
discuss how they can be integrated in Range-vEB tree to guarantee
𝑂 (𝑛 log𝑛) total space in the full version of this paper.

5 PARALLEL VAN EMDE BOAS TREES

The van Emde Boas (vEB) tree [75] is a famous data structure that
implements the ADTs of priority queues and ordered sets and maps
for integer keys. For integer keys in the range 0 to 𝑈 , single-point
updates and queries cost𝑂 (log log𝑈 ), better than the𝑂 (log𝑛) cost
for BSTs or binary heaps. We review vEB trees in Sec. 5.1.

However, unlike BSTs or binary heaps that have many paral-
lel versions [3, 10, 12, 14, 20, 32, 55, 69, 77, 78, 81], we are un-
aware of any parallel vEB trees. Even the sequential vEB tree is
complicated (compared to most BSTs and heaps) to guarantee the
doubly-logarithmic cost. Such complication adds to the difficulty of
parallelizing updates (insertions and deletions) on vEB trees. Mean-
while, for queries, we note that vEB trees do not directly support
range-related queries—when using vEB trees for ordered sets and
maps, many applications heavily rely on repeatedly calling succes-
sors and/or predecessors, which is inherently sequential. Hence,
we need to carefully redesign the vEB tree to achieve parallelism.
In this section, we first review the sequential vEB tree and then
present our parallel vEB tree to support the functions needed in
Alg. 3.

5.1 Review of the Sequential vEB Tree

A van Emde Boas (vEB) tree [75] is a search tree structure with keys
from a universeU, which are integers from 0 to𝑈 − 1. We usually
assume the keys are𝑤-bit integers (i.e.,𝑈 = 2𝑤 ). A classic vEB tree
supports insertion, deletion, lookup, reporting the min/max key in
the tree, reporting the predecessor (Pred) and successor (Succ) of
a key, all in 𝑂 (log log𝑈 ) work. Other queries can be implemented
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Figure 5: An illustration of a 2D range

tree. The outer tree is indexed by 𝑥 (blue),
and inner trees are indexed by 𝑦 (red).

Key: 13 (10) 00 00 11 01 (2)

00 00 11 01 (2)

00 00       11 01 (2)

high-bits 

𝒰 = 0,… , 255 min: 2 max: 61
summary cluster …10 15

𝒰 = 0,… , 15 min: 4 max: 15
summary cluster 0 21 3

𝒰 = 0,… , 15
min: 0 max: 1

𝒰 = 0,… , 15
min: 7 max: 12

𝒰 = 0,… , 15

min: +∞

𝒰 = 0,… , 3
min: 2 max: 3

𝒰 = 0,… , 3
min: +∞

𝒰 = 0,… , 3
min: +∞

𝒰 = 0,… , 3
min: 0 max: 2

𝒰 = 0,… , 3
min: 1 max: 1

integers in the vEB tree:

2 4 8 10 13 15 23 28 61

* Empty pointers and nodes can be omitted in this plot

(23) (28)

(8) (10) (13) the corresponding integer

low-bits

13 is stored in 
cluster[0], recurse

low-bits 1 is in 
cluster[3]

reaches a base case 
(min = max =1)

high-bits 0 is 
in the summary

high-bits 3 is
in the summary

max: -∞

max: -∞ max: -∞

Figure 6: An example vEB tree with 𝑼 = 256 and a demonstration on how 13 is stored. The vEB tree
contains the set of keys {2, 4, 8, 10, 13, 15, 23, 28, 61}.

using these functions. For instance, reporting all keys in a range
can be implemented by repeatedly calling Succ in 𝑂 (𝑚 log log𝑈 )
work, where𝑚 is the output size.

A vEB tree stores a key using its binary bits as its index. We
useV to denote a vEB tree, as well as the set of keys in this vEB
tree. We present the notation for vEB trees in Tab. 1, and show an
illustration of vEB trees in Fig. 6. We use 13 as an example to show
how a key is decomposed and stored in the tree nodes. A vEB tree
is a quadruple (summary, cluster [·],min,max).V .min andV .max

store the minimum and maximum keys in the tree. When V is
empty, we setV .min = +∞ andV .max = −∞. For the rest of the
keys (other than min/max), their high-bits (the first ⌈𝑤/2⌉ bits)
are maintained recursively in a vEB tree, noted asV .summary. In
Fig. 6, the high-bits are the first 4 bits, and there are two different
unique high-bits (0 and 1). They are maintained recursively in a
vEB (sub-)treeV .summary (the blue box). For each unique high-bit,
the relevant low-bits (the last ⌊𝑤/2⌋ bits) are also organized as a
vEB (sub-)tree recursively. In particular, the low-bits that belong
to high-bit ℎ are stored in a vEB tree V .cluster [ℎ]. In Fig. 6, five
keys inV have high-bit 0 (4, 8, 10, 13, and 15). They are maintained
in a vEB (sub-)tree asV .cluster [0] (the green box and everything
below). Each subtree (summary and all cluster [·]) has universe size
𝑂 (
√
𝑈 ) (about 𝑤/2 bits). This guarantees traversal from the root

to every leaf in 𝑂 (log log𝑈 ) hops. Note that the min/max values
of a vEB tree are not stored again in the summary or clusters. For
example, in Fig. 6, at the root,V .min = 2, and thus 2 is not stored
again inV .cluster [0]. Such design is crucial to guarantee doubly
logarithmic work for Insert, Delete, Pred, and Succ.

Note that although we use “low/high-bits” in the descriptions,
algorithms on vEB trees can use simple RAM operations to extract
the corresponding bits, without any bit manipulation, as long as
the universe size for each subtree is known. Due to the page limit,
we refer the audience to the textbook [27] for more details about
sequential vEB tree algorithms.

5.2 Our New Results

We summarize our results on parallel vEB tree in Thm. 1.3. Both
batch insertion/deletion and range reporting are work-efficient—
the work is the same as performing them on a sequential vEB
tree. In Alg. 2, the key range 𝑈 = 𝑛. Using the Range query, we
can implement CoveredBy in Alg. 3 in 𝑂 (𝑚′ log log𝑛) work and
polylogarithmic span, where𝑚′ is the number of objects returned.

Similar to the sequential vEB tree, batch-insertion is relatively
straightforward among the parallel operations. We present the algo-
rithm and analysis in Sec. 5.2.1. Batch-deletion is more challenging,
as onceV .min orV .max is deleted, we need to replace it with a

proper key𝑘′ stored in the subtree ofV . However, when finding the
replacement 𝑘′, we need to avoid the values in the deletion batch
𝐵 and take extra care to handle the case when 𝑘′ is the min/max

of a cluster. We propose a novel technique: Survivor Mapping

(see Definition 5.1) to resolve this challenge. The batch-deletion
algorithm is illustrated in Sec. 5.2.2, and analysis in the full version
of this paper. For range queries, we need to avoid the iterative so-
lution (repeatedly calling Succ) since it is inherently sequential.
Our high-level idea is to divide-and-conquer in parallel, but uses
delicate amortization techniques to bound the extra work. Due to
the page limit, we summarize the high-level idea of Range and
CoveredBy in Sec. 5.2.3 and provide the details in the full version.

5.2.1 Batch Insertion. We show our batch-insertion algorithm in
Alg. 4, which inserts a sorted batch 𝐵 ⊆ U intoV in parallel. Here
we assume the keys in 𝐵 are not inV; otherwise, we can simply
look up the keys inV and filter out those inV already. To achieve
parallelism, we need to appropriately handle the high-bits and low-
bits, both in parallel, as well as taking extra care to maintain the
min/max values.

We first set the min/max values at V (Line 2–5). If 𝐵.min <

V .min, we updateV .min by swapping it with 𝐵.min (Line 3); sim-
ilarly we updateV .max (Line 4). Since we need the batch 𝐵 sorted
when addingV .min and/orV .max back to 𝐵 (Line 5), we need to
insert them to the correct position, causing 𝑂 (𝑚) work. If 𝐵 is not
empty, we will insert the keys in 𝐵 toV .summary andV .cluster .
We first find the new high-bits (not yet inV .summary) from keys
in 𝐵, and denote them as𝐻 ′ (Line 7). This step can be done by a par-
allel filter. For each new high-bit ℎ′ ∈ 𝐻 ′, we select the smallest key
with high-bit ℎ′ and put them in an array 𝐵′ (Line 8). We will insert
them separately to initialize the new subtrees in cluster . In partic-
ular, we first insert the new high-bits 𝐻 ′ toV .summary (Line 9).
Then we process all 𝑥 ∈ 𝐵′ in parallel and use its low-bit to ini-
tialize the min/max values of the new clusterV .cluster [high(𝑥)]
(Line 10–12). When reaching Line 13, all the keys in 𝐵′ have been
inserted, and all relevant cluster [ℎ] for ℎ ∈ 𝐻 are non-empty.

We then insert the low-bits for the remaining keys in 𝐵 \ 𝐵′. We
will find all unique high-bits from 𝐵 \ 𝐵′ as 𝐻 . For each ℎ ∈ 𝐻 , we
gather all relevant low-bits into an array 𝐿[ℎ] (Line 14). We then
insert each 𝐿[ℎ] intoV .cluster [ℎ] (Line 16) in parallel.

The correctness of the algorithm can be shown by checking that
all min/max values for each node are set up correctly. Next, we
analyze the cost bounds of Alg. 4 in Thm. 5.1.

Theorem 5.1. Inserting a batch of sorted keys into a vEB tree can

be finished in 𝑂 (𝑚 log log𝑈 ) work and 𝑂 (log𝑈 ) span, where𝑚 is

batch size and𝑈 = |U| is the universe size.
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Algorithm 4: Batch Insertion Algorithm for vEB tree
Input: Batch of elements 𝐵 in sorted order, vEB tree V . 𝐵 ∩ V = ∅
Output: A veb Tree V with all keys 𝑥 ∈ 𝐵 inserted

1 Function BatchInsert(V, 𝐵)
2 𝑆 ← {V .min} ∪ {V .max} // Backup min and max

3 V .min← min{V .min, 𝐵.min}
4 V .max ← max{V .max, 𝐵.max}
5 𝐵 ← 𝐵 ∪ 𝑆 \ {V .min} \ {V .max}
6 if 𝐵 ≠ ∅ then // Deal with high-bits and low-bits of 𝐵

// 𝐻 ′ are the new high-bits

7 𝐻 ′ ← {high(𝑥 ) | 𝑥 ∈ 𝐵,V .cluster [high(𝑥 ) ] is empty}
// For each new high-bit ℎ′ , find the smallest key in 𝐵 to form 𝐵′

8 𝐵′ ← {𝑥ℎ′ | ∀ℎ′ ∈ 𝐻 ′,where 𝑥ℎ′ = min𝑦∈𝐵,high(𝑦)=ℎ′ 𝑦}
9 BatchInsert(V .summary, 𝐻 ′ ) // Insert 𝐻 ′ to summary

10 parallel-foreach 𝑥 ∈ 𝐵′ do // Initialize each new high-bit

11 V .cluster [high(𝑥 ) ] .min← low (𝑥 )
12 V .cluster [high(𝑥 ) ] .max ← low (𝑥 )
13 𝐻 ← {high(𝑥 ) | ∀𝑥 ∈ 𝐵 \ 𝐵′ } // exclude keys in 𝐵′

14 𝐿[ℎ] ← {low (𝑥 ) | ∀𝑥 ∈ 𝐵 \ 𝐵′, high(𝑥 ) = ℎ ∈ 𝐻 }
15 parallel-foreach ℎ ∈ 𝐻 do // Insert to each cluster

16 BatchInsert(V .cluster [ℎ], 𝐿[ℎ] )

Proof. Let𝑊 (𝑢,𝑚) and 𝑆 (𝑢,𝑚) be thework and span of BatchIn-
sert on a batch of size 𝑚 and vEB tree with universe size 𝑢. In
each invocation of BatchInsert, we need to restore the min/max

values, find the high-bits in 𝐻 ′ and 𝐻 , initialize the clusters for the
new high-bits, and gather the low-bits for each cluster.

All these operations cost 𝑂 (𝑚) work and 𝑂 (log𝑚) = 𝑂 (log𝑢)
span. Then the algorithm makes at most

√
𝑢 + 1 recursive calls,

each dealing with a universe size
√
𝑢. Hence, we have the following

recurrence for work and span:
𝑊 (𝑢,𝑚) = ∑√𝑢

𝑖=0𝑊 (
√
𝑢,𝑚𝑖 ) +𝑂 (𝑚) (3)

𝑆 (𝑢, ·) = 2𝑆 (
√
𝑢, ·) +𝑂 (log𝑢) (4)

Note that each key in 𝐵 falls into at most one of the recursions, and
thus

∑√𝑢
𝑖=0𝑚𝑖 = 𝑚 ≤ 𝑢. By solving them, we can get the claimed

bound in the theorem. We solve them in the full version of this
paper. Note that we assume an even total bits for 𝑢. If not, the
number of subproblems and their size become

√︁
𝑢/2 + 1 and

√
2𝑢,

respectively. One can check that the bounds still hold, the same as
the sequential analysis. □

5.2.2 Batch Deletion. The function BatchDelete(V, 𝐵) deletes
a batch of sorted keys 𝐵 ⊆ U from a vEB treeV . Let𝑚 = |𝐵 | be
the batch size. For simplicity, we assume 𝐵 ⊆ V . If not, we can
first look up all keys in 𝐵 and filter out those that are not inV in
𝑂 (𝑚 log log𝑈 ) work and 𝑂 (log𝑚 + log log𝑈 ) span. We show our
algorithm inAlg. 5. Themain challenge to performing𝑚 deletions in
parallel is to properly set themin andmax values for each subtree 𝑡 .
When the min/max value of a subtree 𝑡 is in 𝐵, we need to replace
it with another key in its subtree that 1) does not appear in 𝐵, and
2) needs to be further deleted from the corresponding cluster [·]
(recall that the min/max values of a subtree should not be stored
in its children). To resolve this challenge, we keep the survival
predecessor and survival successor for all 𝑥 ∈ 𝐵 wrt. a vEB tree,
defined as follows.

Definition 5.1 (Survivor Mapping). Given a vEB treeV and

a batch 𝐵 ⊆ V , the survival predecessor P(𝑥) for 𝑥 ∈ 𝐵 is the

maximum key inV \ 𝐵 that is smaller than 𝑥 . If no such key exists,

Algorithm 5: Batch Deletion Algorithm for vEB tree
Input: A vEB tree V and a batch of keys 𝐵 ⊆ V in sorted order
Output: Update V by deleting all keys 𝑥 ∈ 𝐵

1 Function BatchDelete(V, 𝐵)
2 Initialize survival mappings P and S with respect to 𝐵 and V
3 if 𝐵 ≠ ∅ then BatchDeleteRecursive(V, 𝐵, P, S)
4 Function BatchDeleteRecursive(V, 𝐵, P, S)

// Maintaining min/max of current tree

5 ⟨𝑣min, 𝑣max ⟩ ← ⟨V .min,V .max ⟩
6 if 𝑣min = 𝐵.min then // if V .min ∈ 𝐵, it must be 𝐵.min

7 𝑦 ← S(𝐵.min)
8 if 𝑦 ≠ V .max and 𝑦 ≠ +∞ then // if 𝑦 is in the clusters

9 Delete 𝑦 from V sequentially
10 ⟨P, S⟩ ← SurvivorRedirect(V, 𝐵, 𝑦, P, S)
11 V .min← 𝑦

12 if 𝑣max = 𝐵.max then ... // Mostly symmetric to Lines 7–11

13 𝐵 ← 𝐵 \ {𝑣min } \ {𝑣max }
14 if V .max = −∞ and V .min ≠ +∞ then V .max ← V .min

15 if 𝐵 ≠ ∅ then // Recursively deal with the batch

16 𝐻 ← {high(𝑥 ) |∀𝑥 ∈ 𝐵}
17 𝐿[ℎ] ← {low (𝑥 ) |high(𝑥 ) = ℎ ∈ 𝐻, ∀𝑥 ∈ 𝐵}
18 parallel-foreach ℎ ∈ 𝐻 do

19 ⟨Pℎ, Sℎ ⟩ ← SurvivorLow(ℎ, 𝐿[ℎ], P, S)
20 BatchDeleteRecursive(V .cluster [ℎ], 𝐿[ℎ], Pℎ, Sℎ)
21 𝐻 ′ ← {ℎ ∈ 𝐻 | V .cluster [ℎ] is empty}
22 ⟨P′, S′ ⟩ ← SurvivorHigh(𝐻 ′, 𝐿, P, S)
23 BatchDeleteRecursive(V .summary, 𝐻 ′, P𝐻 ′ , S𝐻 ′ )

// Redirect the survival mapping P and S concerning elements in batch 𝐵

after sequential deletion of 𝑦 from vEB tree V
24 Function SurvivorRedirect(V, 𝐵, 𝑦, P, S)
25 ⟨𝑝, 𝑠 ⟩ ← ⟨Pred(V, 𝑦), Succ(V, 𝑦) ⟩
26 if 𝑝 ∈ 𝐵 then 𝑝 ← P(𝑝 )
27 if 𝑠 ∈ 𝐵 then 𝑠 ← S(𝑠 )
28 parallel-foreach 𝑥 ∈ 𝐵 do

29 if P(𝑥 ) = 𝑦 then P(𝑥 ) ← 𝑝

30 if S(𝑥 ) = 𝑦 then S(𝑥 ) ← 𝑠

31 return ⟨P, S⟩
// Build survival predecessor Pℎ and successor Sℎ for elements in 𝐿[ℎ]

32 Function SurvivorLow(ℎ, 𝐿, P, S)
33 Pℎ ← ∅, Sℎ ← ∅
34 parallel-foreach 𝑙 ∈ 𝐿[ℎ] do
35 ⟨𝑝, 𝑠 ⟩ ← ⟨P (index (ℎ, 𝑙 ) ), S(index (ℎ, 𝑙 ) ) ⟩
36 if high(𝑝 ) = ℎ and 𝑝 ≠ V .min then Pℎ (𝑙 ) ← low (𝑝 )
37 else Pℎ (𝑙 ) ← −∞
38 if high(𝑠 ) = ℎ and 𝑠 ≠ V .max then Sℎ (𝑙 ) ← low (𝑠 )
39 else Sℎ (𝑙 ) ← +∞
40 return ⟨Pℎ, Sℎ ⟩

// Build survival predecessor P′ and successor S′ for elements in 𝐻

41 Function SurvivorHigh(𝐻, 𝐿, P, S)
42 P′ ← ∅, S′ ← ∅
43 parallel-foreach ℎ ∈ 𝐻 do

44 ⟨𝑝, 𝑠 ⟩ ← ⟨P (index (ℎ,min{𝐿[ℎ] } ), S(index (ℎ,max{𝐿[ℎ] } ) ) ⟩
45 if 𝑝 ≠ V .min then P′ (ℎ) ← high(𝑝 ) else P′ (ℎ) ← −∞
46 if 𝑠 ≠ V .max then S′ (ℎ) ← high(𝑠 ) else S′ (ℎ) ← +∞
47 return ⟨P′, S′ ⟩

P(𝑥) := −∞. Similarly, the survival successor S(𝑥) for 𝑥 ∈ 𝐵 is

the minimum key inV \𝐵 that is larger than 𝑥 , and is +∞ if no such

key exists. ⟨P,S⟩ are called the survival mappings.

P(·) and S(·) are used to efficiently identify the new keys to
replace a deleted key. For instance, ifV .max ∈ 𝐵 (then it must be
𝐵.max), we can update the value ofV .max to P(𝐵.max) directly.
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Alg. 5 first initializes the survival mappings (Line 2) as follows.
For each 𝑥 ∈ 𝐵, we set (in parallel) P(𝑥) as its predecessor inV if
this predecessor is not in 𝐵, and set P(𝑥) = −∞ otherwise. Then
we compute prefix-max of P, and replace the −∞ values by the
proper survival predecessor of 𝑥 inV .

The initial values of S can be computed similarly. We then use
the BatchDeleteRecursive function to delete batch 𝐵 from a vEB
(sub-)treeV using the survival mappings, starting from the root.
We use𝑚 as the batch size of the current recursive call, and 𝑢 as the
universe size of the current vEB subtree. The algorithm works in
two steps: we first set the min/max values of the treeV properly,
and then recursively deal with the summary and cluster ofV .
Restoringmin/max values.Wefirst discuss how to updateV .min

andV .max if they are deleted, in Line 5–13 of Alg. 5. We first dupli-
cateV .min andV .max as 𝑣min and 𝑣max (Line 5), and then check
whether 𝑣min ∈ 𝐵 (Line 6). If so, we replace it with its survival suc-
cessor (denoted as 𝑦 on Line 7). If 𝑦 is in the clusters (𝑦 ≠ V .max),
𝑦 will be extracted from the corresponding cluster and become
V .min. To do so, we first delete 𝑦 sequentially (Line 9), and the cost
is 𝑂 (log log𝑢). Then we redirect the survival mapping for keys
in 𝐵 using function SurvivorRedirect since their images may
have changed (Line 10)—if any of them have survival predeces-
sor/successor as 𝑦, they should be redirected to some other key in
V (Line 29–30). In particular, if P(𝑥) is 𝑦, it should be redirected to
𝑦’s survival predecessor (Line 26). Similarly, if S(𝑥) is 𝑦, it should
be redirected to 𝑦’s survival successor (Line 27). Regarding the cost
of SurvivorRedirect, Line 25 (finding 𝑦’s predecessor and succes-
sor) costs 𝑂 (log log𝑢), but we can charge this cost to the previous
sequential deletion on Line 9. The rest of this part costs𝑂 (𝑚) work
and 𝑂 (log𝑚) span. After that, we set the new V .min value as 𝑦.
The symmetric case applies to whenV .max ∈ 𝐵 (Line 12). We then
exclude 𝑣min and 𝑣max from 𝐵 on Line 13, since we have handled
them properly. Finally, on Line 14, we deal with the particular case
where only one key remains after deletion, in which case we have
to store it twice in bothV .min andV .max.
Recursively dealing with the low/high bits. After we update
V .min andV .max (as shown above), we will recursively update
V .summary (high-bits) and V .cluster (low-bits), which requires
the algorithm to construct the survival mappings for summary and
each cluster . We first consider the low-bits for cluster [ℎ] and con-
struct the survival mappings as Pℎ and Sℎ (Line 19). Given a key
𝑥 ∈ 𝐵, where high(𝑥) = ℎ, the survival predecessor for its low-bits
Pℎ (low(𝑥)) is the low-bits of its survival predecessor low(P(𝑥))
if 𝑥 and P(𝑥) have same high-bits ℎ (Line 36). Otherwise low(𝑥)
would become the smallest key inV .cluster [ℎ] after removing 𝐵,
therefore we map P(low(𝑥)) to −∞ (Line 37). We can construct
S(low(𝑥)) similarly (Line 38–39). Note that we have to exclude
V .min andV .max since they do not appear in the clusters. Then
we can recursively call BatchDeleteRecursive on the cluster [ℎ]
using the survival mappings Pℎ and Sℎ (Line 20). In total, con-
structing all survival mappings for low-bits costs 𝑂 (𝑚) work and
𝑂 (log𝑚) span.

We then construct the survival mapping P′ and S′ for high-
bits (Line 22). Recall that the clusters ofV contain all keys inV \
{V .min}\{V .max}. Therefore if P(𝑥) = V .min, then P(high(𝑥))
should be mapped to −∞. Otherwise let 𝑦 ∈ 𝐵 be the maximum

key exceptV .min andV .max with the same high-bits as 𝑥 , then
we have P(high(𝑥)) = high(P(𝑦)) by definition (Line 45). We can
construct S(ℎ) similarly (Line 46). The total cost of finding survival
mappings for high-bits is also 𝑂 (𝑚) work and 𝑂 (log𝑚) span.

Note that the high-bits cannot be processed in parallel with the
low-bits, and has to be after the deletion of low-bits is finished. This
is because only after deleting the low-bits, we know what high-bits
need to be deleted in summary. We now analyze the cost of Alg. 5
in Thm. 5.2.

Theorem 5.2. Given a vEB treeV , deleting a sorted batch 𝐵 ⊆ V
costs 𝑂 (𝑚 log log𝑈 ) work and 𝑂 (log𝑈 log log𝑈 ) span, where𝑚 =

|𝐵 | is the batch size and𝑈 = |U| is the universe size.

Due to the page limit, we show the (informal) high-level ideas
here and prove it in the full version of this paper. The span recur-
rence of the batch-deletion algorithm is similar to batch insertion,
which indicates the same span bound. The work-bound proof is
more involved. The challenge lies in that a key in 𝐵 can be involved
in both recursive calls on Line 23 and Line 20, which seemingly
costs work-inefficiency. However, for each high-bit ℎ to be deleted
on the recursive call on Line 23, it indicates that the corresponding
cluster [ℎ] will become empty after the deletion of low-bits. There-
fore, the smallest low-bit among them must be exceptional and will
be handled by the base cases on Lines 7–11. Therefore, for each
key in 𝐵, only one of the recursive calls will be “meaningful”. If
the audience is familiar with (sequential) vEB trees, this is very
similar to the sequential analysis—for the two recursive calls on
the low- and high-bits, only one of them will be invoked in any
single-point insertion/deletion, and the 𝑂 (log log𝑈 ) bound thus
holds. In the parallel version, we need to further analyze the cost
on Lines 7–11 to restore the min/max values. We show a formal
proof for Thm. 5.2 in the full version of this paper.

5.2.3 Range Query. Sequentially, the range query on vEB trees is
supported by repeatedly calling Succ from the start until the range’s
end. However, such a solution is inherently sequential. Although we
can find the start and end of the range directly in the tree, reporting
all keys in the range to an array in parallel is difficult—vEB trees
cannot maintain subtree sizes efficiently, so we cannot decide the
size of the output array to be assigned to each subtree. In this paper,
we design novel parallel algorithms for range queries on vEB trees
and use them to implement CoveredBy in Alg. 3.

To achieve parallelism, our high-level idea is to use divide-and-
conquer to split the range in the middle and search the two sub-
ranges in parallel. Even though the partition can be unbalanced,
we can still bound the recursion depth while amortizing the work
for partitioning to the operations in the sequential execution. We
collect results first in a binary tree and then flatten the tree into a
consecutive array. Putting all pieces together, our range query has
optimal work (same as a sequential algorithm) and polylogarithmic
span. On top of that, we show how to implementCoveredBy, which
also requires amortization techniques. The details are provided in
the full version of this paper.

6 EXPERIMENTS

In addition to the new theoretical bounds, we also show the practi-
cality of the proposed algorithms by implementing our LIS (Alg. 1)
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andWLIS algorithms (Alg. 2 using range trees). Our code is scalable
yet lightweight. We release our code on GitHub [43]. We use the
experimental results to show how theoretical efficiency enables
better performance in practice over the existing results. Our LIS
implementation is based on Alg. 1, with additional consideration
of a simple granularity control, which runs recursive calls sequen-
tially when the winning tree size is smaller than 216. Our WLIS
implementation is based on Alg. 2, and uses the same range tree
implementation in SWGS [65].
Experimental Setup.We run all experiments on a 96-core (192-
hyperthread) machine equipped with four-way Intel Xeon Gold
6252 CPUs and 1.5 TiB of main memory. Our implementation is in
C++ with ParlayLib [11]. All reported numbers are the averages of
the last ten runs among eleven repeated tests. The running time
is reasonably stable, and we observe that the standard deviations
are mostly within 10% (and always within 2% when running time
is more than 5 seconds) of the running time.
Input Generator.We run experiments of input size 𝑛 = 108 and
𝑛 = 109 with varying ranks (LIS length 𝑘). We use two generators
and refer to the results as the range pattern and the line pattern,
respectively. The range pattern is a sequence consisting of inte-
gers randomly chosen from a range [1, 𝑘′]. The values of 𝑘′ upper
bounds the LIS length. When 𝑘 is large, and the largest possible
rank of a sequence of size 𝑛 is expected to be 2

√
𝑛 [49]. To gener-

ate inputs with larger ranks, we use a line pattern generator that
draws𝐴𝑖 as 𝑡 ·𝑖 +𝑠𝑖 for a sequence𝐴1...𝑛 , where 𝑠𝑖 is an independent
random variable chosen from a uniform distribution. We vary 𝑡

and 𝑠𝑖 to achieve different ranks. For the weighted LIS problem, we
always use random weights from a uniform distribution.
Baseline Algorithms.We compare to standard sequential LIS algo-
rithms and the existing parallel LIS implementation from SWGS [65].
We also show the running time of our algorithm on one core to indi-
cate the work of the algorithm. SWGS works on both LIS and WLIS
problems with 𝑂 (𝑛 log3 𝑛) work and �̃� (𝑘) span, and we compare
both of our algorithms (Alg. 1 and 2) with it.

For the LIS problem, we also use a highly-optimized sequential
algorithm from [51] and call it Seq-BS. Seq-BSmaintains an array 𝐵,
where 𝐵 [𝑟 ] is the smallest value of 𝐴𝑖 with rank 𝑟 . Note that 𝐵 is
monotonically increasing. Iterating 𝑖 from 1 to 𝑛, we binary search
𝐴𝑖 in 𝐵, and if 𝐵 [𝑟 ] < 𝐴𝑖 ≤ 𝐵 [𝑟 + 1], we set 𝑑𝑝 [𝑖] as 𝑟 + 1. By the
definition of 𝐵 [·], we then update the value 𝐵 [𝑟 + 1] to 𝐴𝑖 if 𝐴𝑖 is
smaller than the current value in 𝐵 [𝑟 + 1]. The size of 𝐵 is at most 𝑘 ,
and thus this algorithm has work 𝑂 (𝑛 log𝑘). This algorithm only
works on the unweighted LIS problem.

For WLIS, we implement a sequential algorithm and call it Seq-
AVL. This algorithm maintains an augmented search tree, which
stores all input objects ordered by their values, and supports range-
max queries. Iterating 𝑖 from 1 to 𝑛, we simply query the maximum
dp value in the tree among all objects with values less than 𝐴𝑖 ,
and update dp[𝑖]. We then insert 𝐴𝑖 (with dp[𝑖]) into the tree and
continue to the next object. This algorithm takes 𝑂 (𝑛 log𝑛) work,
and we implement it with an AVL tree.

Due to better work and span bounds, our algorithms are always
faster than the existing parallel implementation SWGS. Our algo-
rithms also outperform highly-optimized sequential algorithms up
to reasonably large ranks (e.g., up to 𝑘 = 3 × 105 for 𝑛 = 109). For

our tests on 108 and 109 input sizes, our algorithm outperforms
the sequential algorithm on ranks from 1 to larger than 2

√
𝑛. We

believe this is the first parallel LIS implementation that can

outperform the efficient sequential algorithm in a large input

parameter space.
Longest Increasing Subsequence (LIS). Fig. 7(a) shows the results
on input size 𝑛 = 108 with ranks from 1 to 107 using the line
generator. For our algorithm and Seq-BS, the running time first
increases with 𝑘 getting larger because both algorithms have work
𝑂 (𝑛 log𝑘). When 𝑘 is sufficiently large, the time drops slightly—
larger ranks bring up better cache locality, as each object is likely
to extend its LIS from an object nearby. Our algorithm is faster than
the sequential algorithm for 𝑘 ≤ 3 × 104 and gets slower afterward.
The slowdown comes from the lack of parallelism (�̃� (𝑘) span). Our
algorithm running on one core is only 1.4–5.5× slower than Seq-BS
due to work-efficiency.With sufficient parallelism (e.g., on low-rank
inputs), our performance is better than Seq-BS by up to 16.8×.

We only test SWGS on ranks up to 104 because it costs too much
time for larger ranks. In the existing results, our algorithm is always
faster than SWGS (up to 188×) because of better work and span. We
believe the simplicity of code also contributes to the improvement.

We evaluate our algorithm on input size 𝑛 = 109 with varied
ranks from 1 to 108 using line the generator (see Fig. 7(b)) and with
varied ranks from 1 to 6×104 using the range generator (see Fig. 7(c)).
We exclude SWGS in the comparison due to the space-inefficiency,
as it ran out of memory to construct the range tree on 109 elements.
For 𝑘 ≤ 3 × 105, our algorithm is consistently faster than Seq-BS
(up to 9.1×). When the rank is large, the work in each round is not
sufficient to get good parallelism, and the algorithm behaves as if
it runs sequentially. Because of work-efficiency, even with large
ranks, our parallel algorithm introduces limited overheads, and its
performance is comparable to Seq-BS (at most 3.4× slower).

We also evaluate the self-relative speedup of our algorithm on
input size 𝑛 = 109 with rank 102 and rank 104 using both line and
range generators. In all settings from Fig. 8, our algorithm scales
well to 192 hyperthreads, reaching the self-speedup of up to 25.6×
for 𝑘 = 102 and up to 37.0× for 𝑘 = 104. With the same rank, our
algorithm has almost identical speedup for both patterns in all
scales. Our algorithm outperforms Seq-BS (denoted as dash lines
in Fig. 8) when using 8 or 16 cores, and is always better afterwards.

Overall, our LIS algorithm performs well with reasonable ranks,
achieving up to 41× self-speedup with 𝑛 = 108 and up to 70× self-
speedup with 𝑛 = 109. Due to work-efficiency, our algorithm is
scalable and performs especially well on large data because larger
input sizes result in more work to utilize parallelism better.
Weighted LIS. We compare our WLIS algorithm (Alg. 2) with
SWGS and Seq-AVL on input size 𝑛 = 108. We vary the rank from 1
to 3000, and show the results in Fig. 7(d). Our algorithm is always
faster than SWGS (up to 2.5×). Our improvement comes from better
work bound (a factor of 𝑂 (log𝑛) better, although in many cases
SWGS’s work bound is not tight). Our algorithm also outperforms
the sequential algorithm Seq-AVLwith ranks up to 100. The running
time of the sequential algorithm decreases with increasing ranks 𝑘
because of the better locality. In contrast, our algorithm performs
worse with increasing 𝑘 because of the larger span.
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Figure 7: Experimental results on the LIS and WLIS.We vary the output size for each test. “Ours”= our LIS algorithm in Alg. 1 using 96 cores. “Ours
(seq)”= our LIS algorithm in Alg. 1 using one core. “Ours-W”=our WLIS algorithm in Alg. 2 using 96 cores. “Seq-BS”= the sequential Seq-BS algorithm based
on binary search. “Seq-AVL”= the sequential Seq-AVL algorithm based on the AVL tree. “SWGS”= the parallel algorithm SWGS from [65].
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Figure 8: Experimental results of Self-relative Speedup. “Ours-Line”=
our LIS algorithm in Alg. 1 using a line pattern generator. “Ours-Range”=
our LIS algorithm in Alg. 1 using a range pattern generator. “Seq-BS-Line”=
Seq-BS algorithm using a line pattern generator. “Seq-BS-Range”= Seq-BS
algorithm using a range pattern generator. The data generators are described
at the beginning of Sec. 6.

The results also imply the importance of work-efficiency in prac-
tice. To get better performance, we believe an interesting direction
is to design a work-efficient parallel algorithm for WLIS.

7 RELATEDWORK

LIS is widely studied both sequentially and in parallel. Sequentially,
various algorithms have been proposed [9, 28, 35, 51, 63, 79]. and
the classic solution uses 𝑂 (𝑛 log𝑛) work. This is also the lower
bound [35] w.r.t. the number of comparisons. In the parallel setting,
LIS is studied both as general dynamic programming [16, 25, 37, 70]
or on its own [4, 53, 58, 59, 64, 71, 72]. However, we are unaware
of any work-efficient LIS algorithm with non-trivial parallelism
(𝑜 (𝑛) or �̃� (𝑘) span). Most existing parallel LIS algorithms intro-
duced a polynomial overhead in work [37, 53, 58, 59, 64, 71], and/or
have Θ̃(𝑛) span [4, 16, 25, 70] (many of them [16, 25, 70] focused
on improving the I/O bounds). The algorithm in [54] translates to
𝑂 (𝑛 log2 𝑛) work and �̃� (𝑛2/3) span, but it relies on complicated
techniques for Monge Matrices [72]. Most of the parallel LIS al-
gorithms are complicated and have no implementations. We are
unaware of any parallel LIS implementation with competitive per-
formance to the sequential 𝑂 (𝑛 log𝑘) or 𝑂 (𝑛 log𝑛) algorithm.

Many previous papers propose general frameworks to study
dependencies in sequential iterative algorithms to achieve paral-
lelism [13, 14, 18, 65]. Their common idea is to (implicitly or ex-
plicitly) traverse the DG. There are two major approaches, and
both have led to many efficient algorithms. The first one is edge-
centric [14, 15, 17–19, 34, 46, 50, 65], which identifies the ready

objects by processing the successors of the newly-finished objects.
The second approach is vertex-centric [13, 62, 65, 66, 73], which
checks all unfinished objects in each round to process the ready
ones. However, none of these frameworks directly enables work-
efficiency for parallel LIS. The edge-centric algorithms evaluate all
edges in the dependence graph, giving Θ(𝑛2) worst-case work for
LIS. The vertex-centric algorithms check the readiness of all remain-
ing objects in each round and require 𝑘 rounds, meaning Ω(𝑛𝑘)
work for LIS. The SWGS algorithm [65] combines the ideas in edge-
centric and vertex-centric algorithms. SWGS has 𝑂 (𝑛 log3 𝑛) work
whp and is round-efficient (�̃� (𝑘) span) using 𝑂 (𝑛 log𝑛) space. It is
sub-optimal in work and space. Our algorithm improves the work
and space bounds of SWGS in both LIS and WLIS. Our algorithm is
also simpler and performs much better than SWGS in practice.

The vEB tree was proposed by van Emde Boas in 1977 [75], and
has been widely used in sequential algorithms, such as dynamic
programming [23, 33, 36, 47, 48, 60], computational geometry [1,
24, 26, 67], data layout [7, 45, 74, 76], and others [2, 38, 52, 56, 57].
However, to the best of our knowledge, there was no prior work
on supporting parallelism on vEB trees.

8 CONCLUSION

In this paper, we present the first work-efficient parallel algo-
rithm for the longest-increasing subsequence (LIS) problem that
has non-trivial parallelism (�̃� (𝑘) span for an input sequence with
LIS length 𝑘). Theoretical efficiency also enables a practical im-
plementation with good performance. We also present algorithms
for parallel vEB trees and show how to use them to improve the
bounds for the weight LIS problem. As a widely-used data structure,
we believe our parallel vEB tree is of independent interest, and we
plan to explore other applications as future work. Other interest-
ing future directions include achieving work-efficiency and good
performance for WLIS in parallel and designing a work-efficient
parallel LIS algorithm with 𝑜 (𝑛) or even a polylogarithmic span.
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