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ABSTRACT
Some recent papers showed that many sequential iterative algo-

rithms can be directly parallelized, by identifying the dependences
between the input objects. This approach yields many simple and

practical parallel algorithms, but there are still challenges in achiev-

ing work-efficiency and high-parallelism. Work-efficiency means

that the number of operations is asymptotically the same as the best

sequential solution. This can be hard for certain problems where

the number of dependences between objects is asymptotically more

than optimal sequential work, and we cannot even afford to gener-

ate them. To achieve high-parallelism, we want to process as many

objects as possible in parallel. The goal is to achieve 𝑂̃ (𝐷) span
for a problem with the deepest dependence length 𝐷 . We refer to

this property as round-efficiency. This paper presents work-efficient

and round-efficient algorithms for a variety of classic problems and

propose general approaches to do so.

To efficiently parallelize many sequential iterative algorithms,

we propose the phase-parallel framework. The framework assigns a

rank to each object and processes the objects based on the order

of their ranks. All objects with the same rank can be processed in

parallel. To enable work-efficiency and high parallelism, we use two

types of general techniques. Type 1 algorithms aim to use range

queries to extract all objects with the same rank to avoid evaluating

all the dependences. We discuss activity selection, and Dijkstra’s

algorithm using Type 1 framework. Type 2 algorithms aim to wake
up an object when the last object it depends on is finished. We

discuss activity selection, longest increasing subsequence (LIS),

greedy maximal independent set (MIS), and many other algorithms

using Type 2 framework.

All of our algorithms are (nearly) work-efficient and round-

efficient. Many of them improve previous best bounds, and some of

them (e.g., LIS) are the first to achieve work-efficiency with round-

efficiency. We also implement many of them. On inputs with rea-

sonable dependence depth, our algorithms are highly parallelized

and significantly outperform their sequential counterparts.
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1 INTRODUCTION
There are two goals in designing efficient parallel algorithms: to

reduce work, and to improve parallelism. Work-efficiency, meaning

that the work (total number of operations) is asymptotically the

same as the best sequential solution, is crucial for practical parallel

algorithms. This is because nowadays and for the foreseeable future,

the number of processors in a machine (up to thousands) is roughly

polylogarithmic to input sizes. Hence, a parallel algorithm is less

practical if it blows up the work of the best sequential algorithm by

a polynomial factor. In this paper, we show (nearly) work-efficient

parallel algorithms for a list of classic problems.

Our work is motivated by a list of recent papers that directly

parallelize some sequential iterative algorithms (i.e., sequential

algorithms that iteratively process input objects) [10, 12, 13, 16–

18, 42, 47, 60, 64]. Their work-efficiency analysis usually directly

follows the original sequential algorithm. To achieve high paral-

lelism from a sequential iterative algorithm, the key is to identify

the dependences among “objects” (e.g., iterations, instructions, or

input objects), and process them in the proper order [10, 12, 13, 16–

18, 42, 45, 47, 49, 60, 64]. In particular, we want to avoid waiting

for “false dependences” and to process as many objects as possible

in parallel. Such relationships can be modeled as a directed acyclic

graph (DAG), referred to as the dependence graph (DG). Each

object corresponds to a vertex in the DG, and a directed edge from

vertex 𝑢 to 𝑣 means 𝑣 can be executed only after 𝑢 is finished, and

we say 𝑣 relies on (or depends on) 𝑢.

There are two existing general frameworks to design parallel al-

gorithms using DGs, but they both have limitations. The first frame-

work is deterministic reservations [10] (also used in [64]). These

algorithms run in rounds, and in each round, check the unfinished

objects, execute the “ready” objects in parallel, and postpone the

rest to later rounds. This framework provides good parallelism—for

a DG of depth 𝐷 , we only need 𝑂 (𝐷) rounds. In this paper, we

define a computation as round-efficient if it executes a DG with

depth 𝐷 in 𝑂̃ (𝐷) span (longest dependence of instructions in the

algorithm, formally defined in Sec. 2)
1
. Despite the round-efficiency,

deterministic reservations do not guarantee work-efficiency—the

work in the worst case is 𝑂 (𝐷𝑚), where𝑚 is the number of edges

of the DG (using a topological sort sequentially only takes 𝑂 (𝑚)
work). The second approach was proposed by Blelloch et al. [12] to

prove work-efficiency of DG-based algorithms, but it only applies

to when each vertex in the DG has a constant in-degree. As a result,

most of the existing algorithms do not fit in these two frameworks,

and each [12, 16–18] uses specific design and analysis to get the

work and span bounds (if any). Moreover, previous approaches

are edge-centric—all edges in the DGs are examined to find ready

1
We note that round-efficiency does not guarantee optimal span, since round-efficiency

is with respect to a given DG. One can re-design a completely different algorithm that

has a shallower DG and a better span.
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Figure 1: Examples of Longest Increasing Subsequence (LIS). (a) An
example where we have𝑂 (𝑛2 ) dependences between objects for input size

𝑛. (b) An example of how our algorithm processes LIS. Each object 𝑥 chooses

a pivot among its predecessors (red arrows). We check the readiness of 𝑥

only when its pivot finishes. If 𝑥 is still not ready, we update the pivot to

another unfinished object. This avoids checking all edges in the DG.

vertices/objects. We observed that in many cases, even generating

all edges in the DG is work-inefficient. Consider the classic longest

increasing subsequence (LIS) problem that can be solved sequen-

tially in 𝑂 (𝑛 log𝑛) work. In the worst case, the DG can contain

𝑂 (𝑛2) edges (see an example in Fig. 1). It remains open whether

we can design work-efficient parallel algorithms with non-trivial

parallelism for many classic problems such as LIS, and even general

approaches to achieve so.

Contributions in this paper. We propose a general framework
and algorithms in this framework to parallelize sequential iterative
algorithms, many of them textbook greedy and dynamic programming
(DP) algorithms, that are (nearly) work-efficient and round-efficient.
Our approaches are vertex-centric, which avoid examining all edges

in the dependence graph. We define the rank for each vertex in the

DG (an input object or a subproblem), and we prove that rank fully

captures the earliest “phase” that an object can be processed in a

parallel algorithm. We believe that defining rank simplifies parallel

algorithm design for many problems. Based on rank, we propose

the phase-parallel algorithm framework, which processes all

objects based on the ordering of ranks, and round 𝑖 processes all

objects with rank 𝑖 in parallel. For example, the rank of an object in

the LIS problem is the LIS length ending at this object. The phase-

parallel algorithm will then process all objects with LIS size 𝑖 in

round 𝑖 , which finish in 𝑘 rounds for an input sequence with LIS

length 𝑘 . We present the list of problems discussed in the paper,

their ranks, and the cost bounds of our solutions in Tab. 1.

To achieve work-efficiency and round-efficiency, we propose two

types of general ideas, referred to as Type 1 and Type 2 algorithms.

Type 1 algorithms aim to identify objects to be processed in

round 𝑖 efficiently. To do this, we use range queries based on parallel

augmented trees [66] (see Sec. 2), which take polylogarithmic work,

instead of work proportional to the number of relevant edges in

the DG. This idea applies to many greedy or DP algorithms, and

our algorithms use range queries to find the maximal set of paral-

lelizable objects. Type 1 algorithms include activity selection, and

Dijkstra’s algorithm (we discuss more in the full version [62] of this

paper). We note that some of these ideas may have been known.

We do not claim them as the main contribution, but use them to

exemplify our framework.

Our Type 2 algorithms aim at waking up the ready objects at the

right time. Instead of checking the readiness of all objects in each

round (as is done in previous work), we hope to touch an object

only when it is (almost surely) ready. One of our approaches is to

assign a pivot 𝑝𝑥 to each object 𝑥 , which is an object 𝑥 relies on.

Only when 𝑝𝑥 finishes, we check if 𝑥 is ready. If 𝑥 is ready, we

process it in the next round. If not, we update 𝑥 ’s pivot to another

unfinished object it relies on. Fig. 1(b) shows an example of LIS.

Although there are many dependences (all edges) in the DG, each

object only picks one pivot (the red edges). When the pivot is ready,

the object itself is likely to be ready, but if not (e.g., 6○ first picks

1○), it selects a new pivot (the yellow edge from 5○). Therefore,

only a small fraction of edges in the DG (the red and yellow ones)

are evaluated, which saves work. Another approach is based on a

new structure to identify a ready object when its last predecessor

in DG finishes, which we apply to the greedy maximal independent

set (MIS) algorithm and other similar algorithms. Our approach is

based on a new data structure called TAS tree, which makes use of

the atomic test-and-set operation (formally defined in Sec. 2). For

MIS, our algorithm is work-efficient, and improves existing span

bound [13] from 𝑂 (log3 𝑛) to 𝑂 (log2 𝑛).
We believe that our framework applies to a broad set of problems.

We picked the examples by reviewing the problems in Cormen,

Leiserson, Rivest, and Stein [30]. All algorithms in this paper are

(nearly) work-efficient (only the LIS algorithm has an 𝑂 (log2 𝑛)
factor of overhead), and round-efficient.

Our framework applies to many existing algorithms in [10, 12, 13,

16–18, 42, 47, 60, 64], improves the bounds for many of them (e.g.,

the greedy MIS algorithm), and provides a much simpler way to

understand these algorithms. As another example, our LIS algorithm

(Algorithm 3) has 𝑂̃ (𝑛) work and 𝑂̃ (𝑘) span for LIS length𝑘 . Parallel
LIS is widely studied [5, 43, 52, 53, 58, 59, 61, 67]. Our algorithm

is the first to achieve near-work-efficiency and round-efficiency,

which is advantageous especially for small output size. We review

the literature of parallel LIS in Sec. 5. Our algorithm is also simpler

and more practical. We are unaware of any implementations of

these previous algorithms with competitive performance to the

standard sequential LIS algorithm with 𝑂 (𝑛 log𝑛) work.
We implement many of these algorithms, and test them as a

proof-of-concept to show how work- and round-efficiency affect

practical performance. Although there is parallel overhead and

our worst-case span is 𝑂̃ (𝑛), our work-efficient algorithms achieve

significant speedup over the sequential algorithm in a reasonably

large input parameter space. Our contributions include:

• The phase-parallel framework to parallelize sequential iterative

algorithms based on the concept of rank defined in this paper.

• Two general techniques for phase-parallel algorithms to achieve

work-efficiency and round-efficiency, based on range queries and a

wake-up strategy to identify ready objects, respectively.

• The first nearly work-efficient (𝑂̃ (𝑛) work) LIS algorithm with

round-efficiency (𝑂̃ (𝑘) for LIS length 𝑘) and its implementation.

• A work-efficient greedy maximal independent set (MIS) al-

gorithm with 𝑶 (log 𝒏 log 𝒅max) span whp in the binary-forking

model (defined in Sec. 2), where𝑛 is the number of vertices and𝑑max
is the maximum degree in the graph. This improves the previous

best span bound of 𝑂 (log3 𝑛).
• Two algorithms for the activity selection problem. This is the

first parallel algorithm for this problem we know of. Although

not complicated, they reveal the connections of the two types of

algorithms in this paper. They arework-efficient and round-efficient.



For the unweighted version, we also provide an algorithm with

𝑂 (log𝑛) span whp.
• Many other simple and interesting algorithms using our frame-

work, including Huffman tree, SSSP, unlimited knapsack, etc.

• Implementations and experimental studies of these algorithms.

2 PRELIMINARIES
Notations. For a sequence 𝑠 , 𝑠𝑖 or 𝑠 [𝑖] denotes the 𝑖-th element,

and 𝑠𝑖 ... 𝑗 or 𝑠 [𝑖 . . . 𝑗] denotes the 𝑖-th to the 𝑗-th elements in 𝑠 . We

use the term𝑂 (𝑓 (𝑛)) with high probability (whp) in 𝑛 to indicate
the bound𝑂 (𝑘 𝑓 (𝑛)) holds with probability at least 1−1/𝑛𝑘 for any

𝑘 ≥ 1. With clear context we drop “in 𝑛”.

Longest Increasing Subsequence (LIS). Given a sequence 𝑠1...𝑛 ,

𝑠′
1...𝑚

is a subsequence of 𝑠 if 𝑠′
𝑖
= 𝑠𝑘𝑖 , where 𝑘1 < 𝑘2 < . . . 𝑘𝑚 .

Given a sequence 𝑠 , the longest increasing subsequence (LIS)

problem finds the longest subsequence 𝑠∗ of 𝑠 where ∀𝑖, 𝑠∗
𝑖
< 𝑠∗

𝑖+1.

Dependence Graph. A sequential iterative algorithm processes

each input object in a given order. The dependence graph (DG)

represents the processing dependence of input objects. Each vertex

in the DG denotes an input object. An edge from 𝑥 to 𝑦 means

that object 𝑦 can be processed only when 𝑥 has been finished, and

we say 𝑦 relies on 𝑥 . We say an object is finished if it has been

processed, and unfinished otherwise. We say an object is ready if

all its predecessors in the DG have been finished. For two objects 𝑥

and 𝑦, where 𝑦 relies on 𝑥 and 𝑥 is unfinished, we say 𝑥 blocks 𝑦.
Parallel Computational Model.We use the work-span model on

the binary-forking model (with test_and_set) to analyze parallel

algorithms [12, 30] as is used inmany recent papers [2, 4, 6–8, 11, 14–

16, 18–21, 25–27, 36, 38, 46]. We assume a set of threads that share

a memory. Each thread supports standard RAM instructions and a

fork instruction that forks two new child threads. When a thread

performs a fork, the two child threads both start by running the

next instruction, and the original thread is suspended until both

children terminate. A computation starts with a single root thread

and finisheswhen that root thread finishes.We use atomic operation

test_and_set (TAS), which checks whether a memory location is

of zero, sets it to one if so, and return its old value. We say a TAS is

successful if it changes zero to one and unsuccessful otherwise.
One can use TAS to implement a join operation in the standard

fork-join model [12]. An algorithm’s work is the total number

of instructions, and the span (depth) is the length of the longest

sequence of dependent instructions in the computation. Note that

a parallel for-loop incurs 𝑂 (log𝑛) span because of binary-forking.

We can execute the computation efficiently using a randomized

work-stealing scheduler both in theory and in practice [12, 22, 30].

Parallel Data Structures. We now present useful theorems of

data structures for range-sum queries used in this paper. More

details are given in the full version of this paper [62]. The data

structures maintain a map of entries (key-values) sorted by the keys,
where keys can be either one or two dimensions. A range sum

query is defined by a key range (an interval in 1D or a rectangle

in 2D) and augmentation, which defines how the “sum”, called the

augmented value, should be computed. One example is to report

the sum (or min/max) of values in the given key range. Formally,

suppose the map maintains key-value pairs of type 𝐾 × 𝑉 , we

define the augmented value of type 𝐴 by an augmented structure

consisting of two functions and the identity of 𝐴.

• Base function 𝑔 : 𝐾 ×𝑉 ↦→ 𝐴, which maps an entry (key-value)

to an augmented value.

• (Associative) Combine function 𝑓 : 𝐴 ×𝐴 ↦→ 𝐴, which combines

(adds) two augmented values into a new augmented value.

• The identity 𝐼𝐴 ∈ 𝐴 of 𝑓 on 𝐴. (𝐴, 𝑓 , 𝐼𝐴) is a monoid.

In the value-sum example above, the base function 𝑔 = (𝑘, 𝑣) ↦→ 𝑣 ,

the combine function 𝑓 = (𝑎1, 𝑎2) ↦→ 𝑎1 + 𝑎2, and 𝐼𝐴 = 0. We first

present a useful theorem about range sum queries.

Theorem 2.1. For 𝑘 ∈ {1, 2}, there exist data structures that can
answer 𝑘-D range sum query in 𝑂 (log𝑘 𝑛) time, can be constructed
by (or be flattened into) a sorted sequence of entries in 𝑂 (𝑛 log𝑘−1 𝑛)
work and 𝑂 (log𝑘 𝑛) span, and allow for batch update (e.g., insertion,
deletion and value updates) in𝑂 (𝑚 log

𝑘 𝑛) work and𝑂 (log𝑘 𝑛) span,
where 𝑛 is the number of input entries, and𝑚 ≤ 𝑛 is the batch size.
We assume constant cost for the base and combine functions.

This can be achieved using parallel augmented balanced binary

search trees (PA-BST) [66] with algorithms in [9, 12, 34, 66]. For 2D

range sum queries, we use a 2D range tree using PA-BSTs [65, 66].

We also use multi-map, where multiple entries can have the same

key, and a search on a key will return all values with this key (Note

that this query is different from the 1D or 2D range query defined

above, so this uses a different data structure from range trees stated

above). By using PA-BST, we have the following theorem [9].

Theorem 2.2. For 𝑛 key-values, there exists a data structure that
can search or update (insert or delete) a batch of entries in𝑂 (𝑚 log𝑛)
work and 𝑂 (log𝑚 log𝑛) span, where𝑚 ≤ 𝑛 is the total number of
elements found or updated in the batch.

3 PHASE-PARALLEL ALGORITHMS
In this section, we introduce our key concept: phase-parallel al-
gorithms, and show a general approach to design phase-parallel

algorithms to maximize parallelism based on the rank function.

Since our idea is sophisticated, we first show the pseudocode in

Algorithm 1 and describe the high-level idea.

To seek parallelism in many sequential iterative algorithms, we

define the rank(·) of each object to capture the dependences among

them, which indicates the earliest phase an object can be ready.

With a properly defined rank function, Algorithm 1 processes all

objects (in parallel) of rank 𝑖 in round 𝑖 . We call the set of objects

processed in round 𝑖 (𝑇𝑖 in Algorithm 1) the frontier of round 𝑖 .

Table 1 shows how rank is defined for the problems in this paper.

For example, in the LIS problem, an object’s rank is the size of the

LIS ending at this object. Therefore, Algorithm 1 finds and processes

all objects with LIS size 1 in parallel, then those with LIS size 2,

etc. Throughout the section, we use the LIS problem as an example

to help understand the abstract concepts. Next, we formalize the

phase-parallel algorithms. We note that all of our algorithms are

reasonably simple. The goal of the formalization is to extend our

idea to general independence systems, which generalizes to more

DP and greedy algorithms.

An independence system is a pair (𝑆, F ), where 𝑆 is a finite set

and F is a collection of subsets of 𝑆 (called the independent sets
or feasible sets) with the following properties:



Feasible Condition for objects 𝑥 and 𝑦 rank(𝒙 ) Type Work Span
Activity Selection

𝑥 and 𝑦 do not overlap

The maximum number of non-

1&2 𝑂 (𝑛 log𝑛) 𝑂 (rank (𝑆 ) log𝑛)
(general) overlapping activities ending at 𝑥

Unlimited Solution to weight 𝑦 can contain 𝑥/𝑤∗, where 𝑤∗ is the minimum

1 𝑂 (𝑊𝑛) 𝑂 (rank (𝑆 ) log(𝑤∗𝑛) )
Knapsack solution to the subproblem of weight 𝑥 weight

Huffman Tree 𝑦’s Huffman code is a prefix of 𝑥 Subtree height of 𝑥 1 𝑂 (𝑛 log𝑛) 𝑂 (rank (𝑆 ) log𝑛)

Dijkstra’s
𝑥 is on the shortest path to 𝑦

Hop distance from 𝑥 to the source

1 𝑂 (𝑚 log𝑛) 𝑂

(
max𝑣∈𝑉 𝑑 (𝑣)
min𝑒∈𝐸 𝑤 (𝑒 ) log𝑛

)
Algorithm

on shortest path tree

rank (𝑥 ) = 𝑑 (𝑥 )/min𝑒∈𝐸 𝑤 (𝑒 )
LIS 𝑦 > 𝑥 The length of LIS ending at 𝑥 2 𝑂 (𝑛 log

3 𝑛)† 𝑂 (rank (𝑆 ) log2 𝑛)†

Activity Selection
𝑥 and 𝑦 do not overlap

The maximum number of non-

2 𝑂 (𝑛 log𝑛) 𝑂 (log𝑛)†
(unweighted) overlapping activities ending at 𝑥

MIS
∃ a path from 𝑥 to 𝑦 s.t. the priorities on The the longest chain size ending at

2 𝑂 (𝑛 +𝑚) 𝑂 (log2 𝑛)†
the path are monotonically increasing vertex 𝑥 with increasing priorities

Table 1: The problems, their definitions of rank, the work and span of our solutions for the given problems. In feasible conditions, we assume 𝑦

is later than 𝑥 . 𝑛 = |𝑆 | is the input size. For graphs, 𝑛 is the number of vertices and𝑚 is the number of edges. 𝑑 (𝑣) in SSSP is the shortest distance of 𝑣 from

the source and 𝑤 (𝑒 ) is the weight of edge 𝑒 .𝑊 in the knapsack problem is the weight limit. rank means a relaxed rank (see Sec. 4.2). †: with high probability.

Algorithm 1: The phase-parallel algorithm
Input: 𝑆 , and rank (𝑥 ) that implies F

1 𝑖 ← 1

2 while 𝑆 ≠ ∅ do
3 Find the set𝑇𝑖 that contains all objects with rank 𝑖

4 Process all objects in𝑇𝑖 in parallel

5 𝑆 ← 𝑆 \𝑇𝑖
6 Update the status of objects in 𝑆 if necessary

7 𝑖 ← 𝑖 + 1

(1) The empty set is feasible, i.e., ∅ ∈ F .
(2) (Hereditary property) A subset of a feasible set is feasible,

i.e., for each 𝑌 ⊆ 𝑋 , we have 𝑋 ∈ F =⇒ 𝑌 ∈ F .
A feasible set for the LIS problem is any increasing subsequence.

Given an independence system (𝑆, F ), a sequential order of it is
a permutation of all objects in 𝑆 , usually specified by the input. For

an object 𝑥 ∈ 𝑆 , let I𝑺 (𝒙) be the index of 𝑥 w.r.t. its sequential order.
We say an object 𝑥 is earlier than 𝑦 if I𝑆 (𝑥) < I𝑆 (𝑦), and later
otherwise. Let 𝒙↓𝑺 = {𝑦 ∈ 𝑆 : I𝑆 (𝑦) ≤ I𝑆 (𝑥)} be the downward
closure of 𝑥 , i.e., all objects no later than 𝑥 . With clear context, we

drop the superscripts and use I(𝒙) and 𝒙↓. We use 𝑆𝑖 as the object

in 𝑆 with index 𝑖 . In LIS, the index I(𝑥) of an object 𝑥 is its position

in the input sequence 𝑆 , and 𝑥↓ is the prefix of 𝑆 up to 𝑥 .

We say two objects 𝑥 and 𝑦 are incompatible if ∄𝐸 ∈ F , s.t.
𝑥 ∈ 𝐸 and 𝑦 ∈ 𝐸, and compatible otherwise. We say an object 𝑥 is

compatible with a set 𝐸 ⊆ 𝑆 if 𝐸 ∪ {𝑥} ∈ F . Mapping this to LIS,

two objects 𝑥 and 𝑦 (later than 𝑥 ) are compatible iff 𝑥 < 𝑦.

Given an object 𝑥 , we use F (𝑥) = {𝐸 ∈ F : 𝐸 ⊆ 𝑥↓, 𝑥 ∈ 𝐸} to
denote all feasible sets with the last object as 𝑥 , and the Maximum
Feasible Set (MFS)2 MFS(𝑥) = argmax𝐸∈F(𝑥 ) |𝐸 | as the largest

set among F (𝑥). For many DP problems, MFS is usually related

to the DP value of the object. For example, in LIS, the MFS(𝑥) is
the LIS ending at 𝑥 ∈ 𝑆 . For a set 𝑆 , we also define the MFS as

the largest feasible subset of 𝑆 . We define the rank of a set or an

object as rank(·) = |MFS(·) |. In LIS, F (𝑥) refers to all increasing

subsequences ending at object 𝑥 . The MFS of an input sequence is

the LIS of the sequence. rank(𝑥) is the size of LIS ending with 𝑥 .

2
This is also known as the maximum independent set (MIS). In this paper, to avoid

confusion with the greedy MIS algorithm in Sec. 5.3, we use the term MFS.

Given an independence system (𝑆, F ), a sequential iterative
algorithm A on 𝑆 processes each object 𝑆𝑖 in 𝑆 iteratively based

on the sequential order, with the goal to optimize some value of all

(or some) feasible sets. Since a processed object usually corresponds

to a subproblem on 𝑆
↓
𝑖
, they are sometimes called the states in

dynamic programming problems. For example, in LIS, processing

object 𝑆𝑖 is to compute the LIS up to (and including) object 𝑆𝑖 .

To parallelize a sequential iterative algorithm, note that an object

does not need to wait for all earlier objects to finish, but only

a subset of them. Let P(𝑥) be all objects that 𝑥 rely on, i.e., all

predecessors of 𝑥 in the DG. For LIS, P(𝑥) = {𝑦 : I(𝑦) < I(𝑥), 𝑦 <

𝑥}. When all objects in P(𝑥) finish, 𝑥 is ready. Also, if two objects

do not rely on each other in the DG, they can be processed in

parallel. These two simple observations have been used in existing

parallel algorithms and frameworks (e.g., [13, 16, 16–18, 47, 64]).

In this paper, we formalize the problem for a class of algorithms

based on an independence system and point out that identifying

the ready objects can be captured by the ranks of the objects. We

define phase-parallel as follows.

Definition 3.1. Given an independence system (𝑆, F ), a sequen-
tial iterative algorithm on 𝑆 is phase-parallel if it has the following
property: an object 𝑥 ∈ 𝑆 relies on 𝑦 ∈ 𝑆 in the parallel dependence

graph if and only if:

(1). (Ordering) I(𝑦) < I(𝑥).
(2). (Compatibility) ∀𝐸 ⊆ F (𝑦), we have 𝐸 ∪ {𝑥} ∈ F , i.e., any

feasible set containing 𝑦 and only objects up to 𝑦 are also

compatible with 𝑥 .

This means computing the state (processing an object) 𝑥 only

relies on previous states in 𝑥↓ compatible with 𝑥 . This indicates

optimal substructure property [30], where the best solution at 𝑥 can

be obtained by optimal solutions before 𝑥 .

To achieve maximum parallelism, our goal is to find the largest

possible set of objects to process in parallel. We first show that all

objects with the same rank (MFS size) can be processed in parallel.

Theorem 3.2. Given a phase-parallel algorithm A on the inde-
pendence system (𝑆, F ), if rank(𝑥) = rank(𝑦), then 𝑥 and 𝑦 cannot
rely on each other in the parallel dependence graph.



Proof. Assume to the contrary that 𝑦 relies on 𝑥 (the other case

is symmetric). Consider the MFS of 𝑦. By definition MFS(𝑦) ∪ {𝑥}
is also feasible, which means rank(𝑥) ≥ rank(𝑦) + 1. □

Thm. 3.2 leads to the following conclusion, based on which we

propose Algorithm 1.

Corollary 3.3. In a dependence graph, if 𝑥 relies on𝑦, rank(𝑥) >
rank(𝑦). All objects with the same rank can be processed in parallel.

Theorem 3.4. The rank of an object in a phase-parallel algorithm
is its depth in the DG.

Proof. (Sketch) From the compatibility property of the phase-

parallel algorithm, we know the rank (MFS size) of an object must

be 1 plus the maximum MFS size of its predecessors. By induction,

we can prove the given theorem. □

Theorem 3.4 verifies the strategy of Algorithm 1, which means

we are just processing the objects based on their depth in the DG.

In this paper, we propose novel and efficient ways to process

phase-parallel algorithms. The challenges lie in achieving work-

efficiency with non-trivial parallelism. As mentioned, although the

high-level idea of processing all ready objects (thus achieving round-

efficiency) in a round has been used in existing work, most of them

need to check all edges in the DG. In many cases, the number of

edges can be asymptotically more than efficient work. We propose

two general ideas to reduce work in phase-parallel algorithms. Type

1 algorithms (Sec. 4) find the frontier in each round efficiently using

a range query in polylogarithmic cost. Type 2 algorithms (Sec. 5)

wake up all ready objects by the finished ones at the right time.

Both cases avoid checking all edges in the DG.

4 TYPE 1 ALGORITHMS USING EFFICIENT
FRONTIER IDENTIFYING

Type 1 algorithms exhibit the property where each object maintains

a value, and all objects with the same rank have their values in a

contiguous range. We will use PA-BST to maintain these values

and use a range search to efficiently find the frontier. We show

activity selection and Dijkstra’s algorithm in this paper, and more

(unlimited knapsack and Huffman tree) in the full version [62].

Many of them are straightforward. We do not claim all of them

as the main contributions, but use them as simple examples to

understand our framework.

4.1 Activity Selection
Activity selection is a textbook example of greedy or dynamic

programming algorithms [30]. Given a set of activities 𝑆 = {𝐴𝑖 } de-
fined by their start time 𝑠𝑖 , end time 𝑒𝑖 and weight𝑤𝑖 , the problem

is to find a feasible subset of non-overlapping activities to max-

imize the total weight. When all activities have a unit weight, a

simple earliest-end greedy strategy can solve the problem [30], i.e.,

repeatedly selecting the earliest ending activity and removing all

incompatible (overlapping) activities. The general version (arbitrary

weight) can be solved by the dynamic programming recurrence:

dp[𝑖] = max

𝑒 𝑗 ≤𝑠𝑖
dp[ 𝑗] +𝑤𝑖 (1)

The sequential order (and the index) is defined by the end time.

We assume all activities are pre-sorted by their end time. A feasible

Algorithm 2: Type-1 activity selection algorithm

Input: All activities’ start time 𝑠𝑖 , end time 𝑒𝑖 and weight 𝑤𝑖

1 Build PA-BSTs𝑇time on key-values (𝑠𝑖 , 𝑒𝑖 ) , augmented on the

minimum end time, and𝑇DP on key-values (𝑒𝑖 , 𝑑𝑝 [𝑖 ] ) ,
augmented on the maximum DP value

2 while𝑇time ≠ ∅ do
3 Find the earliest-end activity 𝑥 by the augmented value of𝑇time

4 ⟨𝑇,𝑇 ′ ⟩ ← split (𝑇time, 𝑒𝑥 ) // All activities starting

before 𝑒𝑥 form the current frontier T

5 parallel_for_each activity 𝑖 ∈ 𝑇 do
6 𝑑𝑝 [𝑖 ] = 𝑤𝑖 +𝑇DP .range (−∞, 𝑠𝑖 )
7 Update all DP values of activities in𝑇 in𝑇DP in parallel

8 𝑇time ← 𝑇 ′// remove finished objects

set is a set of non-overlapping activities. dp[𝑖], or the DP value
of activity 𝑖 , means the highest possible weight by using the first 𝑖

activities, which must include 𝐴𝑖 . Naively computing Eq. (1) needs

𝑂 (𝑛2) work. Since the condition in Eq. (1) is a range of end time, se-

quentially, the work can be reduced to𝑂 (𝑛 log𝑛) using augmented

range queries. In parallel, an activity 𝐴𝑖 depends on all activities

ending before 𝐴𝑖 starts (see an illustration in Fig. 2), which leads

to 𝑂 (𝑛2) dependences in the worst case. Note that the rank of 𝐴𝑖
by definition is the maximum size of the feasible set containing 𝐴𝑖
and only the first 𝑖 activities. We first present the following lemma.

Lemma 4.1. All activities overlapping the earliest-end activity 𝐴1

has rank 1. After removing all activities with rank no more than 𝑘 ,
suppose the earliest-end activity is 𝐴 𝑗 , then all remaining activities
that overlaps with 𝐴 𝑗 has rank 𝑘 + 1.

Proof. We first prove all activities overlapping the earliest-end

activity 𝐴1 must have rank 1. Recall the rank of an activity 𝑥 is the

maximum number of compatible activities we can select from 𝑥 and

earlier activities, which must include 𝑥 . For an activity overlapping

𝐴1, if its rank is larger than 1, theremust exist another activity𝑦 that

is earlier than 𝑥 and compatible with 𝑥 . This means 𝑦 ends before

𝑥 starts, which contradicts the assumption that the earliest-end

activity overlaps with 𝑥 .

We next prove that after removing all activities of rank no more

than 𝑘 , if the current earliest-end activity is 𝐴 𝑗 , all activities over-

lapping 𝐴 𝑗 should have rank 𝑘 + 1. Let 𝑆 ′ be the set of activities
removed, which have rank no more than 𝑘 . Assume to the contrary

that one of such activity 𝐴𝑖 has rank 𝑟 > 𝑘 + 1. Then there must

be an activity 𝐴𝑖′ finishing earlier than 𝐴𝑖 , and have rank 𝑟 ′ > 𝑘 .

Therefore, 𝐴𝑖′ ∉ 𝑆
′
since we only remove activities with rank no

more than 𝑘 . However, this contradicts the assumption that 𝐴 𝑗 is

the earliest-end activity in 𝑆\𝑆 ′, and 𝐴 𝑗 already overlaps 𝐴𝑖 . □

Based on the lemma and the phase-parallel framework, we can

design an algorithm (Algorithm 2). To enable work-efficiency, we

use a range query to find the largest parallelizable frontier. The

algorithm uses two PA-BSTs 𝑇time and 𝑇DP . 𝑇time maintains all un-

processed activities sorted by their start time and augmented on

the minimum end time, which is used to identify the frontiers. 𝑇DP
maintains all activities sorted by their end time and augmented on

the largest DP value, which is used to determine max𝑒 𝑗 ≤𝑠𝑖 𝑑𝑝 [ 𝑗] in
the DP recurrence. In each round, we find the earliest-end activity 𝑥

by reading the augmented value of 𝑇time . Then we split 𝑇time based

on 𝑒𝑥 . Those starting no later than 𝑒𝑥 will be split out as the frontier



and will be processed in parallel. Since 𝑇time is indexed on start

time, Split takes 𝑂 (log𝑛) work. When processing activity 𝑖 , we

use 𝑇DP to extract the highest DP value among all activities with

end time in range (−∞, 𝑠𝑖 ], and use it to update the DP value of 𝑖 in

𝑇DP . The work for processing𝑚 objects in the frontier is𝑂 (𝑚 log𝑛)
for the augmented range query, and 𝑂 (𝑚 log𝑛) for updating the

DP values in 𝑇DP . This leads to the following theorem.

Theorem 4.2. Type 1 activity selection algorithm takes𝑂 (𝑛 log𝑛)
work and𝑂 (rank(𝑆) log𝑛) span, where 𝑆 is the input set and 𝑛 = |𝑆 |.

4.2 Algorithms with Relaxed Rank
In some problems, it is hard to find (or use) the exact rank of the

objects, in which case we use a relaxed rank, defined as follows.

Definition 4.3. Given a phase-parallel algorithm A on the inde-

pendence system (𝑆, F ), a function rank(𝑥) on 𝑥 ∈ 𝑆 is a relaxed
rank on object 𝑥 if

• ∀𝑥 ∈ 𝑆, rank(𝑥) ≤ rank(𝑥).
• For 𝑥,𝑦 ∈ 𝑆 where 𝑥 relies on 𝑦 in the dependence graph,

rank(𝑥) > rank(𝑦).

Then Algorithm 1 can process all objects with the same relaxed

rank in each round. Note that the trivial relaxed rank is the index

of each object I(𝑥), which gives no parallelism in Algorithm 1.

Therefore, when we use the relaxed rank, we need careful analysis

to show non-trivial parallelism.

Dijkstra’s Algorithm. Dijkstra’s algorithm [37] solves the single-

source shortest paths (SSSP) problem on a weighted graph. As a

sequential iterative algorithm, Dijkstra processes the vertices in the

order of their distances to the source and relaxes their neighbors.

SSSP is very challenging in the parallel setting. Dijkstra is work-

efficient and relaxes each edge exactly once. However, it is hard to

parallelize because each round only processes one vertex. Bellman-

Ford has better parallelism but significantly more work. Almost all

state-of-the-art parallel SSSP algorithms (e.g., Δ-stepping [57] and

𝜌-stepping [39]) achieve high parallelism by using more work.

The DG of the SSSP problem is conceptually the shortest path

tree. The rank of a vertex 𝑣 is the hop distance from 𝑣 to 𝑠 in the

shortest path tree. However, the algorithm itself is unaware of the

explicit structure of DG before the shortest paths are computed.

Hence, the exact rank of each object is hard to acquire. Let𝑤∗ be the
smallest edge weight in the graph, and 𝑑 (𝑣) the actual distance of
𝑣 . We define a relaxed rank for a vertex rank(𝑣) = ⌈𝑑 (𝑣)/𝑤∗⌉. This
is because distances within a window of 𝑤∗ cannot rely on each

other (relaxation increases the distance by at least𝑤∗). Therefore,
each frontier can be extracted using a range query. Interestingly,

we observe that this is (conceptually) similar to using Δ = 𝑤∗ in
Δ-stepping [57]. Using PA-BST to maintain the distances of all

vertices, we have the following result.

Theorem 4.4. There exists a parallel algorithm that solves SSSP
problem on a graph 𝐺 = (𝑉 , 𝐸) using 𝑂 ( |𝐸 | log |𝑉 |) work and
𝑂 (rank(𝑉 ) log |𝑉 |) span, where rank(𝑉 ) is the ratio of the maximum
shortest path in the graph and the smallest edge weight.

We note that there can be other ways to define the relaxed rank

of the Dijkstra’s algorithm [31, 50], which enable different bounds

to the phase-parallel algorithms. In the paper we simply discuss

the version based on the smallest edge weight, since it can be easily

tested using a Δ-stepping-based implementation.

In our experiments in Sec. 6, we use the Δ-stepping implementa-

tion in [39] with Δ = 𝑤∗ to test the performance of this idea. On

low-diameter graphswith reasonably large𝑤∗, settingΔ = 𝑤∗ gives
the best performance among all choices of parameter Δ because of

the work-efficiency.

5 TYPE 2 ALGORITHMSWITHWAKE-UP
STRATEGIES

In phase-parallel algorithms, an object is readywhen all its predeces-

sors P(𝑥) finish. Previous approaches require explicitly generating

P(𝑥) for each 𝑥 ∈ 𝑆 [12, 16–18, 64] (achieving work-efficiency only

when |P(𝑥) | = 𝑂 (1)), checking the readiness of all objects every

round [10] (not necessarily work-efficient), or based on dual-binary

search [13, 47] (incurs overhead in span). To avoid exhaustedly

checking the readiness of every object, Type 2 algorithms aim to

wake up an object 𝑥 when the last object in P(𝑥) finishes.
We propose two wake-up strategies. Our first approach, which

we believe is very interesting, is to avoid explicitly generating P(𝑥),
and check the readiness of an object 𝑥 when 𝑥 is likely to be ready.

To do so, we attach each object 𝑥 to an unfinished object 𝑝𝑥 ∈ P(𝑥),
called the pivot, which blocks 𝑥 . We redo the check only when 𝑝𝑥 is

ready, which bounds the number of total checks to be𝑂 (log |P(𝑥) |)
whp. We show activity selection and longest increasing sequence

(LIS) as examples, and more applications in the full version.

The second approach applies to algorithms that can afford to

generate P(𝑥) for each 𝑥 ∈ 𝑆 . Our idea is to build an asynchronous

structure using test_and_set to precisely identify when the last

object in P(𝑥) is ready, and achieve better span. We present the

greedy MIS algorithm as an example in Sec. 5.3, and more discus-

sions in the full version of the paper.

5.1 Activity Selection
We now revisit the activity selection problem and present an algo-

rithm using Type 2 framework. Recall the DP recurrence dp[𝑖] =
max𝑒 𝑗 ≤𝑠𝑖 dp[ 𝑗] +𝑤𝑖 . Therefore,𝐴𝑖 is ready when all other activities

with end time before 𝑠𝑖 have been processed. Our idea is to let each

activity 𝑥 find a pivot 𝑝𝑥 , where finishing processing 𝑝𝑥 indicates

the readiness of 𝑥 . We prove the following lemma.

Lemma 5.1. Given activity𝐴𝑥 , let activity𝐴𝑝𝑥 = argmax𝐴𝑖 :𝑒𝑖≤𝑠𝑥 𝑠𝑖
be the latest-start activity among all activities ending before𝐴𝑥 starts
(i.e., those earlier than 𝐴𝑥 and compatible with 𝐴𝑥 ), and call 𝐴𝑝𝑥 the
pivot activity of 𝐴𝑥 . Then rank(𝐴𝑥 ) = rank(𝐴𝑝𝑥 ) + 1.

Proof. By definition, 𝐴𝑥 depends on 𝐴𝑝𝑥 because 𝐴𝑥 is com-

patible with all MFS ending with 𝐴𝑝𝑥 . This indicates |MFS(𝐴𝑝𝑥 ) | =
rank(𝐴𝑝𝑥 ) < rank(𝐴𝑥 ) = |MFS(𝐴𝑥 ) |. We then show MFS(𝐴𝑝𝑥 ) ∪
{𝐴𝑥 } is anMFS of𝐴𝑥 . Assume to the contrary that 𝑡 = |MFS(𝐴𝑥 ) | >
|MFS(𝐴𝑝𝑥 ) | + 1. Consider such an MFS𝑇 = MFS(𝐴𝑥 ) where |𝑇 | = 𝑡 .
Let activity 𝐴𝑘 be the activity with the latest starting time in

𝑇 − {𝐴𝑥 }. We first prove 𝐴𝑝𝑥 ∉ 𝑇 − {𝐴𝑥 , 𝐴𝑘 }. This is because
if 𝐴𝑝𝑥 ∈ 𝑇 − {𝐴𝑥 , 𝐴𝑘 }, 𝐴𝑝𝑥 should have an earlier starting time

than 𝐴𝑘 (by definition of 𝐴𝑘 ), which contradicts the definition of

𝐴𝑝𝑥 . Similarly, all other activities in𝑇 − {𝐴𝑥 } have earlier end time
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Figure 2: Illustration of the activity selection problem.
Left: The start and end time of 7 activities (ordered by end time).

Right: The dependences between activities. Rank 1 activities

start before 𝑥 (shown in blue). Rank 2 activities start before

𝑦 (shown in green). Rank 3 activities start before 𝑧 (shown in

purple). Red dependences are the pivots chosen in the Type

2 algorithm. The pivot of an object is the compatible activity

before it with the latest start time. A rank-𝑟 object has a pivot

with rank 𝑟 − 1.
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Figure 3: Illustration of the LIS algorithm. (a). Objects, their dependences, and the

random pivot chosen. (b). Ranks of the objects represented as 2D points (𝑖, 𝑎𝑖 ) . (c). Objects
(points) and their bottom-left area. A point with rank 𝑖 only has points with rank < 𝑖 in its

bottom-left area. (d). Points processed ( 1○, 2○, 4○, 6○) and waking-up attempts in round 1.

2○ wakes up 3○. 4○ wakes up 7○. 6○ attempts to wake up 8○ and 9○, but 9○ is not ready.

(e). Points processed ( 3○, 7○, 8○) and waking-up attempts in round 2.

than 𝑠𝑘 . By the definition of𝐴𝑝𝑥 ,𝐴𝑘 starts no later than𝐴𝑝𝑥 (𝐴𝑝𝑥 is

the latest starting activity before 𝐴𝑥 and compatible with 𝐴𝑥 ). This

means that𝐴𝑝𝑥 is also compatible with (and later than)𝑇−{𝐴𝑥 , 𝐴𝑘 }.
MFS(𝐴𝑝𝑥 ) ≥ |(𝑇 − {𝐴𝑥 , 𝐴𝑘 }) ∪ {𝐴𝑝𝑥 }| = 𝑡 − 1, contradicting the

assumption of 𝑡 = |MFS(𝐴𝑥 ) | > |MFS(𝐴𝑝𝑥 ) | + 1. □

We show an example of pivot activities in Fig. 2. Lem. 5.1 implies

that the pivot activity 𝑝𝑥 of any activity 𝑥 must be processed in

the previous round of when 𝑥 is processed. In other words, once

𝑝𝑥 is finished, we can wake up 𝑥 and process it in the next round.

In this case, we can first let all activities find their pivot via binary

searches, which is 𝑂 (log𝑛) work per activity. We use a tree 𝑇pivot
as a multi-map to store all pairs (𝑝𝑥 , 𝑥). We start with processing

all activities with rank 1. For each activity 𝑦 in the current frontier,

after processing them, we find all pairs (𝑦, 𝑧) ∈ 𝑇pivot and put all

such 𝑧 in the next frontier (they will be wakened up). An activity

can be processed (computing its DP value) similarly as in Type 1

by using a PA-BST 𝑇DP . We have the following theorem.

Theorem 5.2. Type 2 activity selection algorithm takes𝑂 (𝑛 log𝑛)
work and𝑂 (rank(𝑆) log𝑛) span, where 𝑆 is the input set and 𝑛 = |𝑆 |.

An𝑂 (log𝑛) span algorithm for unweighted activity selection.
Based on Lem. 5.1, we can further design a parallel algorithm with

better span for the unweighted activity selection problem, where

each activity has a unit weight (𝑤𝑖 = 1). Note that this is equivalent

to computing the rank of each activity. Based on Lem. 5.1, we can

rewrite the DP recurrence for the unweighted version as:

dp[𝑖] = dp[ 𝑗] + 1 : 𝐴 𝑗 is the pivot activity of 𝐴𝑖

This simplifies the dependence graph to a tree structure, where

each activity only relies on its pivot. The rank of each activity is

also its depth in this tree, which can be computed using a standard

tree contraction [18] in 𝑂 (𝑛) work and 𝑂 (log𝑛) span whp.

Theorem 5.3. The unweighted activity selection problem can be
solved in 𝑂 (𝑛 log𝑛) work and 𝑂 (log𝑛) span whp.

5.2 Longest Increasing Subsequence (LIS)
We propose a parallel algorithm for the longest increasing subse-

quence (LIS) problem using our phase-parallel framework. Given a

sequence 𝑎, LIS asks for the longest subsequence in 𝑎 that is strictly

increasing. LIS is widely studied, and its parallel solutions have

been studied in [5, 43, 48, 52, 53, 58, 59, 61, 67]. Most of these al-

gorithms [43, 52, 58, 59, 61, 67] introduced polynomial overhead

in work, and Alem and Rahman’s algorithm [5] has Θ̃(𝑛) span.
Krusche and Tiskin’s BSP algorithm [53] translates to 𝑂̃ (𝑛) work
and 𝑂̃ (𝑛2/3) span, which is the only nearly-work-efficient algo-

rithm with sublinear span. This algorithm relies on complicated

techniques from [68], and has no implementation. In fact, we are un-

aware of any previous parallel LIS implementation with competitive

performance to the standard sequential 𝑂 (𝑛 log𝑛) LIS algorithm.

Sequentially, LIS can be computed using the dynamic program-

ming (DP) recurrence as follows. Let dp[𝑖], called the DP value, be

the LIS length of 𝑎1..𝑖 ending with 𝑎𝑖 . Then

dp[𝑖] = max(1, max

𝑗<𝑖,𝑎 𝑗<𝑎𝑖
dp[ 𝑗] + 1) (2)

We can iteratively compute dp[𝑖] and maintain any search struc-

ture to find max𝑗<𝑖,𝑎 𝑗<𝑎𝑖 dp[ 𝑗] in 𝑂 (log𝑛) work. Our new phase-

parallel LIS algorithm parallelizes this sequential algorithm and

achieves near work-efficiency (𝑂̃ (𝑛) expected work) and round-

efficiency. Moreover, our algorithm is implementable, and we show

experimental study in Sec. 6.3. Here we maximize LIS length, but

our algorithm can be generalized to the weighted case where objects

have different weights.

An object 𝑎𝑖 is ready once all objects 𝑎 𝑗 with 𝑗 < 𝑖, 𝑎 𝑗 < 𝑎𝑖 are

ready. In our phase-parallel framework, the rank of an object 𝑎𝑖 is

the size of the LIS ending with 𝑎𝑖 (its DP value). An object 𝑎𝑖 only

depends on objects with a smaller rank. After all objects with rank 𝑟

have finished, all objects with rank 𝑟 + 1 must be ready. The main

challenge is to avoid processing all dependencies since there can be

Θ(𝑛2) of them. Interestingly, the problem exhibits a nice geometric

property. If we draw each object as a 2D coordinate (𝑖, 𝑎𝑖 ), all the
objects that 𝑎𝑖 relies on are the points to its lower-left area (see

Fig. 3). Therefore we can determine if an object 𝑥 is ready using a

2D range query on the number of unfinished objects to its lower-left

area. Similarly, the DP value of 𝑥 can be obtained by querying the

maximum DP value among all objects in its lower-left area (and

plus one). Both queries can be done by a augmented 2D range tree

(see Sec. 2). This gives a simple algorithm, where in each round, we

can run a 2D range query to every unfinished object to identify the



ready ones, and then compute their DP values. However, this can

still incur Ω(𝑛2) work in the worst case.

To achieve work-efficiency, we would like to wake up an object

only when it is (almost) ready. Unlike activity selection, we found it

hard to find an exact pivot for each object 𝑥 that has rank rank(𝑥) −
1. Instead, our strategy is to randomly pick an unfinished object

in P(𝑥) as 𝑥 ’s pivot, which can be efficiently supported by an

augmented 2D range tree. When the pivot of 𝑥 is processed, we

attempt to wake up 𝑥 by checking whether all objects in P(𝑥)
(those in its lower-left corner) are finished. If so, 𝑥 is ready, and we

query the maximum DP value in P(𝑥) to compute 𝑥 ’s DP value.

Otherwise, 𝑥 is not waked up successfully, and selects another

random unfinished object in its lower-left corner as the new pivot.

In each round, all ready objects will attempt to wake up all objects

using 𝑥 as the pivot. This inductively guarantees that objects with

rank 𝑖 (LIS length 𝑖) are waked up and processed in round 𝑖 .

Our algorithm is in Algorithm 3. Each object corresponds to a

point, defined on its 𝑥-coordinate (its index 𝑖), and 𝑦-coordinate (𝑎𝑖 ).

We also maintain its DP value dp (initialized to +∞). We create a

virtual point 𝑝 [0] as a starting point with index 0 and value −∞.
We use a range tree 𝑇range to maintain all the points in the 2D

planar, augmenting on a triple ⟨𝑛∞, dp∗, 𝑥∗⟩, which records for the

current subtree, the number of unfinished points 𝑛∞, the maximum

DP value dp∗, and an 𝑥-coordinate 𝑥∗ (an index). If themaximumDP

value dp∗ is∞, which means that there exist unfinished elements

in this subtree, then the index 𝑥∗ is selected uniformly at random

from the unfinished objects. Otherwise, 𝑥∗ is used to record the

index to achieve the maximum DP value, which can be used to

reconstruct the LIS if needed. To maintain such augmented values,

the combine function simply adds up 𝑛∞ (Lines 18 and 19), and

takes a maximum on dp∗ (Line 15) on the two augmented values 𝑎1
and 𝑎2. If dp∗ is not +∞, 𝑥∗ can be simply set to be the argument

to achieve the highest DP value (Line 19). Otherwise, 𝑥∗ is selected
from the 𝑥∗ value of either 𝑎1 or 𝑎2, and the probability is decided

by 𝑡1 : 𝑡2, where 𝑡1 and 𝑡2 are the number of unfinished objects (the

𝑛∞ values) in 𝑎1 and 𝑎2, respectively (Line 17). By doing this, 𝑥∗ is
selected uniformly at random from both 𝑎1 and 𝑎2. We also use a

multi-map 𝑇pivot to maintain the pivot-object pairs.

The algorithm starts from a frontier of the virtual point 𝑝 [0].
Initially, 𝑇pivot stores pairs (0, 𝑖) for all 𝑖 , since 𝑝 [0] is the initial
pivot of all objects. In each round, the algorithm processes each

object 𝑥 in the frontier in parallel. We first find all objects 𝑞 such

that ⟨𝑥, 𝑞⟩ ∈ 𝑇pivot , which are all objects with pivots in the frontier

(Line 27). We attempt to wake up each such object 𝑞 by searching

in𝑇range the half-open rectangle with top-right point as 𝑞 (Line 29),

getting triple ⟨_, 𝑘, 𝑖⟩, where 𝑘 is maximum dp∗ in the query range

and 𝑖 is the 𝑥∗ value. If 𝑘 ≠ +∞ (Line 30), meaning that there is no

unfinished object in 𝑞’s lower-left area, then 𝑞 is ready and we set

the DP value of 𝑞 as 1 + 𝑘 (Line 31). Otherwise (𝑛∞ ≠ 0), there are

still unfinished objects in 𝑞’s lower-left area, and we reset 𝑞’s pivot

as 𝑖 , which is selected uniformly at random from all unfinished

objects in the queried range.

At the end of a round, all newly-generated pivot-object pairs

are inserted into 𝑇pivot in parallel (Line 35–36). All newly finished

objects are packed into next frontier (Line 34). The DP values of

the newly finished objects are updated in 𝑇range (Line 37). We use

Algorithm 3: The parallel LIS algorithm
Input: A sequence 𝑎[1..𝑛] with comparison function <

Output: The LIS length of 𝑎[ · ]
1 Struct Point contains
2 int 𝑥, 𝑦 // x = index, y = a[x]

3 int dp // The DP value

4 Point 𝑝 [1..𝑛]
5 𝑝 [0] ← ⟨0, −∞, 0⟩ // insert virtual point 0

6 parallel_for_each 𝑎[𝑖 ] ∈ 𝑎 do 𝑝 [𝑖 ] = ⟨𝑖, 𝑎[𝑖 ], +∞⟩
7 RangeTree<Point>𝑇range with
8 <𝑥 (𝑝1, 𝑝2 ) : return 𝑝1 .𝑥 < 𝑝2 .𝑥

9 <𝑦 (𝑝1, 𝑝2 ) : return 𝑝1 .𝑦 < 𝑝2 .𝑦

// 𝑛∞: # of unfinished points (dp value ∞)
// dp∗: max dp value in subtree

// 𝑥∗: index (x) of max dp value

10 augmented value: ⟨𝑛∞, dp∗, 𝑥∗ ⟩
11 base(𝑝):
12 if 𝑝.dp = +∞ then return ⟨1, 𝑝.𝑥, 𝑝.dp⟩
13 else return ⟨0, 𝑝.𝑥, 𝑝.dp⟩
14 combine(𝑎1, 𝑎2): // combine two aug values
15 𝑚 ← argmax𝑖∈{1,2} 𝑎𝑖 .dp∗

/* When max dp value is +∞, choose a uniformly

random one as the potential pivot */

16 if 𝑎𝑚 .dp∗ = +∞ then
17 𝑡 ←random(1, 2) with probability 𝑎1 .𝑛∞ : 𝑎2 .𝑛∞
18 return ⟨𝑎1 .𝑛∞ + 𝑎2 .𝑛∞, +∞, 𝑎𝑡 .𝑥∗ ⟩
19 return ⟨0, 𝑎𝑚 .dp∗, 𝑎𝑚 .𝑥 ⟩
20 Construct𝑇range from 𝑝 [ · ]
21 Multi-map𝑇pivot = { (0, 𝑖 ) : 𝑖 = 1..𝑛} // pivot pairs (𝑝𝑥 , 𝑥 )
22 frontier = {0}

23 while frontier ≠ ∅ do
24 frontier = WakeUp(frontier)
25 return max𝑖 (𝑝 [𝑖 ] .dp)

26 FunctionWakeUp(frontier)

27 todo← 𝑇pivot .multi_find(frontier)
28 parallel_for_each 𝑞 ∈ todo do
29 ⟨_, 𝑘, 𝑖 ⟩ ← 𝑇range .range(𝑞.𝑥,𝑞.𝑦)
30 if 𝑘 ≠ +∞ then
31 𝑞.dp← 𝑘 + 1
32 mark 𝑞 as next_frontier

33 else mark ⟨𝑖, 𝑞⟩ as new_pivot_pair // not ready yet

34 Pack points marked as next_frontier into frontier
∗

35 Pack points marked as new_pivot_pair into pivot
∗

36 𝑇pivot .multi_insert(pivot
∗
)

37 Update dp values for 𝑞 ∈ frontier∗ in𝑇range
38 return frontier

∗

the following lemma to prove the work of the algorithm and prove

it in the full version of this paper [62].

Lemma 5.4. Construct a sequence 𝑥𝑖 as follows. Let 𝑥0 = 1, and 𝑥𝑖
be a uniformly random number selected from 𝑥𝑖−1 to 𝑛. Let 𝑘 be the
first element s.t. 𝑥𝑘 = 𝑛. Then 𝑘 = 𝑂 (log𝑛) whp.

Lemma 5.5. For each object 𝑥 in the input sequence of size 𝑛, Al-
gorithm 3 will attempt to wake up 𝑥 for 𝑂 (log𝑛) times whp.

Proof. For an object 𝑥 , let 𝑆 be the sequence of objects before 𝑥

and smaller than 𝑥 sorted by rank. Let the first pivot of 𝑥 be the 𝑝-th



object in 𝑆 , which is selected uniformly at random from 𝑆 . When

𝑆𝑝 finishes, all objects in 𝑆 with rank smaller than 𝑆𝑝 must have

finished, and the next pivot is selected uniformly at random from

𝑆𝑝′ ..𝑛 , where 𝑝
′ > 𝑝 . Similar process applies to later pivot selections.

Therefore, the number of pivots selected for 𝑥 is no more than the

length of sequence in Lemma 5.4, which is 𝑂 (log𝑛) whp. □

Theorem 5.6. Algorithm 3 computes the LIS of a sequence of size
𝑛 in𝑂 (𝑛 log3 𝑛) work and𝑂 (𝑟 log2 𝑛) span whp, where 𝑟 is the rank
(LIS length) of the input sequence.

Proof. First, all initialization including constructing the range

tree has work 𝑂 (𝑛 log𝑛) and span 𝑂 (log2 𝑛). Assume in round 𝑖

there are 𝑛𝑖 objects in the todo list, which are the objects that we

attempt to wake up. Line 27 finds at most 𝑛𝑖 objects from𝑇pivot with

𝑂 (𝑛𝑖 log2 𝑛) work. Each range query costs 𝑂 (log2 𝑛), and thus the

total cost in the parallel for-loop in Line 28 is 𝑂 (𝑛𝑖 log2 𝑛). Line 34
packs at most 𝑛𝑖 objects with work 𝑂 (𝑛𝑖 ). Line 35 and 36 pack and

insert at most𝑛𝑖 elements to𝑇pivot , and thus costs𝑂 (𝑛𝑖 log2 𝑛). Line
37 updates at most 𝑛𝑖 objects to 𝑇range , and thus costs 𝑂 (𝑛𝑖 log2 𝑛).
In summary, each round of function wakeup has work𝑂 (𝑛𝑖 log2 𝑛).
From Lemma 5.5, we know that

∑
𝑛𝑖 = 𝑂 (𝑛 log𝑛). This proves that

the total work of Algorithm 3 is 𝑂 (𝑛 log3 𝑛) whp.
By definition of rank, the number of rounds in Algorithm 3 is

𝑟 . In each round, the span bounds of range queries (Line 29), pack

(Lines 34–35), and update 𝑇pivot and 𝑇range (Lines 36 and 37) are all

𝑂 (log2 𝑛). Therefore, the total span is 𝑂 (𝑟 log2 𝑛). □

5.3 Greedy MIS and Related Applications
In this section, we propose a new parallel MIS (maximal indepen-

dent set) algorithm. Parallel MIS is widely-studied [3, 13, 23, 24,

28, 29, 32, 33, 41, 42, 56]. Given a graph 𝐺 = (𝑉 , 𝐸), an indepen-

dent set 𝐴 ⊆ 𝑉 is a subset of vertices where ∀𝑢, 𝑣 ∈ 𝐴, (𝑢, 𝑣) ∉ 𝐸.
An MIS is an independent set 𝐴 where ∀𝑣 ∈ 𝑉 , 𝑣 ∉ 𝐴, 𝐴 ∪ {𝑣}
is not an independent set. The widely-adopted greedy MIS algo-

rithm [13, 23, 28, 29, 42, 56] starts with assigning each vertex a

random priority and greedily selecting the vertices based on the

priority (highest to lowest). The MIS is initialized as an empty set.

When processing vertex 𝑣 , we add 𝑣 to the MIS if none of 𝑣 ’s neigh-

bor is selected in the MIS, and skip 𝑣 otherwise. We say a vertex

is available if none of its neighbors are selected in the current

MIS, and unavailable otherwise. Blelloch et al. parallelized the

algorithm [13]. Note that a vertex is ready when it has a higher

priority than all its available neighbors. We say a neighbor of 𝑣 is a

blocking neighbor if it has a higher priority than 𝑣 . When all 𝑣 ’s

blocking neighbors become unavailable, 𝑣 is ready. In each round,

the parallel algorithm processes all ready vertices in parallel by

adding them to the MIS, and removing their neighbors (marking as

unavailable). An illustration is shown in Fig. 4(a).

The main challenge in the algorithm is to find ready vertices effi-

ciently. A previous approach [13] hooks each unfinished vertex 𝑣 to

an unfinished neighbor with the highest priority as the pivot. Only

when 𝑣 ’s pivot is finished, it applies a dual binary search, which

either finds the next pivot or decides that 𝑣 is ready. Combining the

results in [13] and [42], the work is𝑂 (𝑚) and the span is𝑂 (log3 𝑛)
whp. The high span comes from the 𝑂 (log2 𝑛) dual binary search

Algorithm 4: The parallel MIS algorithm.

Input: A graph𝐺 = (𝑉 , 𝐸 ) with priority 𝑝 : 𝑉 ↦→ Z.
Output:Maximal Independent Set of𝐺

1 parallel_for_each 𝑣 ∈ 𝑉 do
2 𝑇𝑣 ← the TAS tree for 𝑣

3 Maintain the list of TAS trees that contains each vertex

4 status[𝑣]← undecided

5 parallel_for_each 𝑣 ∈ 𝑉 do
6 if 𝑇𝑣 is empty thenWakeUp(𝑣) // no blocking neighbor

7 return all 𝑣 ∈ 𝑉 marked as selected

8 FuncWakeUp(𝑣)

9 status[𝑣]← selected

10 parallel_for_each 𝑢 ∈ N(𝑣) do
11 status[𝑢]← removed

12 parallel_for_each TAS tree𝑇𝑣 contains 𝑢 do
13 if status[𝑣] ≠ removed then
14 𝑥 ← the leaf of 𝑢 in𝑇𝑣

15 𝑥.flag ← true
16 𝑝 ← parent (𝑥 )
17 while test_and_set(𝑝.flag) successful do
18 if 𝑝 is the root of𝑇𝑢 then
19 WakeUp(𝑣)

20 Break
21 𝑝 ← parent (𝑝 )

that can apply in each round (𝑂 (log𝑛) steps each requiring an

𝑂 (log𝑛)-span min-reduce). There exist other algorithms such as

Prism [51] which is work-efficient with 𝑂 (log2 𝑛) span. However,
it assumes to know the number of processors in the algorithm, and

a strong constant-time atomic operation fetch-and-decrease.
In this paper, we show a new, asynchronous approach that im-

proves span, while maintaining work-efficiency for parallel MIS.

The key idea is to wake up a vertex only when the last blocking

neighbor is finished. We use the atomic operation test_and_set
(TAS), and build a complete binary tree, called the TAS tree, for

each vertex, and use it to check if all the blocking neighbors are

finished. Let the TAS tree of 𝑣 be 𝑇𝑣 . Each leaf in 𝑇𝑣 corresponds

to a blocking neighbor 𝑢 of 𝑣 (i.e., with a higher priority than 𝑣).

We set a flag (initialized to zero) in each leaf to show if 𝑢 has been

unavailable. Each internal node in the TAS tree also maintains a

flag: it is one when at least one subtree is fully unavailable, and zero
otherwise. For example, in Fig. 4(b), 14○ maintains four blocking

neighbors in its TAS tree. Note that when all leaves in the𝑇𝑣 are one
(unavailable), 𝑣 is ready to be added to the MIS. We want to use the

flag to reflect the unavailability of the subtree. More precisely, for

each subtree 𝑡 , when the last flag in 𝑡 becomes one, the information

should be carried to 𝑡 ’s parent.

The pseudocode of our MIS algorithm is given in Algorithm 4.

The algorithm starts with constructing the TAS trees (initialized

to zero for all tree nodes), and finding all vertices with an empty

TAS tree (the ready ones). We start with processing these vertices

in parallel. When processing a vertex, we will mark each of its

neighbors 𝑢 as unavailable. We further need to notify all the TAS

trees containing 𝑢 that 𝑢 is now unavailable. For each of the TAS

trees, we set 𝑢’s flag in the leaf to be one (Line 12). This information

is prorogated up along the path to set the flag of its parent, call it

𝑝 , to be one by TAS (Line 17). If the TAS succeeds, it means that
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Figure 4: Illustration of the greedy maximal independent set (MIS) algorithm. (a). The input graph (numbers are priorities) and the round in which

each vertex is processed in the algorithm. (b). The TAS tree of 14○ in the graph in (a) from the initial status to when marking some leaves unavailable. ✓=

successful TAS. ✗ = unsuccessful TAS. When there is an unsuccessful TAS at the root, the entire TAS tree is finished.

the other branch of 𝑝’s subtree is not fully finished yet, and we can

just quit. For example, in Fig. 4, after we process 2○ in round 1, we

set 7○ and 13○ as unavailable in 14○’s TAS tree. Both of them will

TAS their parent and succeed, so they quit. When the TAS fails, it

means that 𝑝’s flag is already one, so the other branch has been fully
unavailable. Since the current subtree at 𝑝 is also fully unavailable,

we will continue to attempt mark 𝑝’s parent using TAS recursively.

For example, in Fig. 4, when we mark 12○ as unavailable in 14○’s TAS

tree, we first TAS its parent. As it was set by 13○ previously, the TAS

fails. We then continue to its parent (the root). This TAS succeeds.

When a TAS at the root of any TAS tree 𝑇𝑣 fails, the entire subtree

is now unavailable, so 𝑣 is ready to be waked up (Line 19), and we

will repeat this process for 𝑣 . For example, when we mark 11○ as

unavailable, we TAS its parent and fail, and continue to the parent,

which is the root. This TAS also fails, which means the entire tree

is unavailable. Therefore, 14○ can be waked up.

We note that our new MIS algorithm is fully asynchronous:

no round-based synchronization is used. Although this does not

directly follow our phase-parallel algorithm, it also uses the same

idea of our Type 2 framework, where we wish to identify the last

finished object in P(𝑥) and wake up 𝑥 at that time. The rank of

each vertex 𝑣 can be viewed as the longest chain with decreasing

priority starting from 𝑣 . We now analyze the cost of this algorithm.

Theorem 5.7. Algorithm 4 generates the greedy maximal inde-
pendent set of 𝐺 = (𝑉 , 𝐸) in 𝑂 (𝑚) work and 𝑂 (log𝑛 log𝑑max ) span
whp, where 𝑛 = |𝑉 |,𝑚 = |𝐸 |, and 𝑑max is the maximum degree in 𝐺 .

We show the proof in the full version of this paper [62]. In the

worst case when 𝑑max = 𝑛, the span of Algorithm 4 is 𝑂 (log2 𝑛),
which improves previous result by a factor of𝑂 (log𝑛). Comparing

to Prism [51], our approach requires no knowledge on the number

of processors and is completely in the fork-join model. The effi-

ciency of our algorithm comes from the simple idea TAS tree data

structure. We note that using tree-like structure to do counting is

used in previous work [40, 44], but our algorithm is different in that

we make the observation that in the MIS algorithm, the informa-

tion needed is whether all blocking neighbors all finish, instead of

the number of unfinished blocking neighbors. This simplifies the

problem and enables better span bound.

Graph Coloring and Matching. Several iterative graph algo-

rithms that share the similar approach can be improved using the

same technique. For graph coloring, Jones and Plassmann [49]

showed the greedy algorithm that can be parallelized using the

similar approach in [13]. Hasenplaugh et al. [47] analyzed a list

of heuristics that vary the greedy order of the vertices and can

lead to different span bounds and output quality. For graph match-

ing, Blelloch et al. [13] showed a parallel greedy algorithm that is

very similar to the MIS algorithm in the same paper. By replacing

the original wake-up strategy in [13] with our new approach, we

can improve the span by 𝑂 (log𝑛). We note that the parallel graph-

matching algorithm cannot be fully asynchronous since each edge’s

readiness relies on two vertices, which needs to be checked after

synchronization. Hence, a synchronization is required between the

rounds, but that does not change the span bound. The analysis

by Hasenplaugh et al. [47] assumes atomic decrement-and-fetch

operations which is usually not included on the family of the binary-

forking models [12]. Using the technique in this paper can achieve

the same bounds without this assumption.

Other Algorithms. Many algorithms in [12, 16–18] have con-

stant size P(𝑥) for all 𝑥 ∈ 𝑆 . Blelloch et al. [12] showed that

test_and_set can be used to check the readiness in this case. Here

we note that this can be considered as a special case for our TAS

trees, just with constant sizes. These applications include random

permutation, list ranking, and tree contraction [12, 64]; convex hull

and Delaunay triangulation [16–18]. Although we do not improve

the bounds of these algorithms, we show the interconnections

among all these algorithms, and an additional angle to review these

problems and algorithms.

6 EXPERIMENTS
In addition to the new theoretical results, we also implemented

many proposed algorithms based on our phase-parallel frameworks,

including activity selection (both Type 1 and Type 2), Huffman tree,

SSSP, and LIS.We use our experiments as proofs-of-concept to show

how work-efficiency and round-efficiency affect performance in

practice. We run our experiments on a 96-core (192 hyperthreads)

machine with four Intel Xeon Gold 6252 CPUs, and 1.5 TiB of main

memory. Our implementation is in C++ with Cilk Plus [55]. For the

parallel results, we use all cores and fully interleave the memory

among NUMA areas using numactl -i all. We use 𝑟 as the input rank.

All reported numbers are the averages of the last five runs among

six repeated experiments. Due to page limitation, we put some

extra experimental results and discussions about LIS and Huffman

tree in the full version of this paper [62].

6.1 Activity Selection
We implement Type 1 and Type 2 algorithms for activity selection.

We also implement a sequential version based on the DP recurrence

in Eq. (1) for comparison. For each activity, we set a random start

time and a length based on a truncated normal distribution. We con-

trol the mean and standard deviation of this distribution to control
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Figure 5: Experiments on activity selection. (a). fix input size 𝑛 = 10
9

and vary the rank of the input. (b). fix rank 𝑟 = 45000 and vary the input size.

“Classic seq” is the classic sequential DP algorithm. “Linear scale” shows the

slope of linearly growing line.
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Figure 6: Experiments on parallel SSSP. (a). Running time on graph

Twitter (41.7 millions of vertices and 1.47 billions of directed edges). (b).

Running time on graph Friendster (65.6 millions of vertices and 3.61 billions

of undirected edges). We use Δ-stepping implementation from [39] with

different values of Δ and 𝑤∗ (the smallest edge weight in the graph). Values

on the right are the values of log
2
𝑤∗. The maximum edge weight is 2

23
.

the rank of the input data. The weights are generated uniformly at

random in [1, 232).
Fig. 5(a) shows the running time of all tested algorithms on 10

9

input activities with various ranks. Both our Type 1 and Type 2 al-

gorithms have very similar performance and outperform the classic

sequential algorithm up to rank of 4 × 106. Note that the running
time of our algorithm increases as the rank increases because our

algorithms have span proportional to the rank. Also, when the rank

is large, each round in the algorithm only deals with a small number

of objects, which also harms parallelism. Even so, the running time

of our algorithm seems to grow sublinearly with the rank. This

is because with about 200 threads, the work should still dominate

the cost, and both our algorithms are work-efficient. Interestingly,

the performance of the classic sequential algorithm improves with

increasing input rank. This is because in the sequential algorithm,

when the rank is large, the range query of an activity 𝑥 (see Eq. (1))

will likely find an activity close to 𝑥 , which exhibits better cache

locality. For small ranks, our algorithms can be up to 80x faster

than the sequential algorithm. For rank of 𝑂 (
√
𝑛), our algorithm is

still about 14x than the classic sequential algorithm.

Fig. 5(b) shows the running time of all tested algorithms on dif-

ferent input sizes with a fixed rank of 𝑟 = 45000. For other values of

the rank, we see similar trends, so we just show 𝑟 = 45000 as an ex-

ample. Our algorithm scales well to large input sizes. The sequential

algorithm grows superlinearly with the input size 𝑛, which matches

the theoretical cost𝑂 (𝑛 log𝑛). As shown in Fig. 5(b), our algorithm

grows much slower with 𝑛 (almost linearly). This is because when

𝑛 increases, the number of activities to be processed within each

round also increases, which overall enables better parallelism. We

believe that this indicates the potential of our algorithm to scale to

even larger data and more threads.

On all tests, Type 1 algorithm outperforms the Type 2 algorithm

by up to 35%. This is because in the Type 2 algorithm, we need to

first find pivots for all activities, while in the Type 1 algorithm, we

directly start with processing all ready activities, and use a range

query to find the frontier. Nevertheless, the two algorithms still

have very similar performance and both outperform the classic

sequential algorithm for reasonably large input rank.

6.2 Parallel SSSP
Background. SSSP is a challenging problem in the parallel set-

ting. As mentioned, Dijkstra is work-efficient but hard to paral-

lelize. Bellman-Ford has better parallelism but significantly more

work. Even so, parallel Bellman-Ford has good performance on

low-diameter graphs such as social networks [39, 63] due to better

parallelism. In practice, many heuristics were proposed aiming to

achieve a tradeoff between work and parallelism. For example, the

Δ-stepping algorithm [57] determines the correct shortest distances

of vertices in increments of Δ of the tentative distances. In step 𝑖 , the

algorithm will find and settle down all the vertices with distances

in [𝑖Δ, (𝑖 + 1)Δ]. Δ-stepping is highly practical and widely used.

However, its performance is very sensitive to the parameter Δ [39].

Our experiments. As mentioned in Sec. 4.2, our phase-parallel al-

gorithm settles down all vertices within tentative distance [𝑖𝑤∗, (𝑖+
1)𝑤∗], where𝑤∗ is the smallest edge weight. This is conceptually

the same as using Δ = 𝑤∗ in Δ-stepping [57]. Therefore, we run ex-

periments using the Δ-stepping implementation by Dong et al. [39]

to test our idea. We note that this is not exactly the same as our

algorithm as the implementation does not use a tree-based data

structure to extract the frontier
3
, but is still “work-efficient” w.r.t.

the number of total relaxations. We note that empirically, the I/O

cost in processing and relaxing edges is usually the main cost in

practical parallel SSSP algorithms. Our results highly match our

theory. We tested two graph benchmarks, Twitter [54] and Friend-

ster [69]. Both of them are real-world large-scale social networks

with small diameters.

In our experiments, we fix the largest edge weight as 𝑤max =

2
23
, vary the 𝑤∗ from 2

17
to 2

22
, and set the weight uniformly at

random in this range for each edge
4
. For each edge weight range,

we run Δ-stepping with Δ varying from 2
16

to 2
26
. We show the

running time in Fig. 6. For both graphs, the best choice of Δ almost

exactly matches𝑤∗ (differ by at most 2x), when𝑤∗ is close to𝑤max .

This verifies the importance of work-efficiency in practical SSSP

algorithms. When 𝑤∗ gets even smaller, using Δ = 𝑤∗ does not
perform well, which is also as expected—despite work-efficiency,

using a small Δ limits the frontier size, hence we cannot fully exploit

parallelism. This also reveals the work-parallelism (or work-round)

3
In fact, almost none of the parallel SSSP implementation uses tree-based structures

to maintain distances due to their worse cache locality than flat arrays.

4
This setting is similar to weighted BFS [35] (which is trivially work-efficient). The

difference is that after normalizing, the edge weight in our problem are not necessarily

integers as in weighted BFS.



tradeoff. In all, when 𝑤max/𝑤∗ is within 32, using our algorithm

(i.e., Δ = 𝑤∗) gives reasonably good performance.

It is worth noting that we also tried the same algorithm on

large-diameter graphs, such as some road graphs [1]. Probably

not surprisingly, even on 𝑤∗ = 𝑤max/2, Δ = 𝑤∗ did not give the

best performance. This is because on such graphs, the frontier size

is usually small, and the performance is usually limited by the

lack of parallelism. In this case, avoiding extra work does not help

much in improving performance (and even harms the performance

since the parallelism gets worse). Many state-of-the-art implemen-

tations [39, 70] optimize performance on such (large-diameter)

graphs by sacrificing more work to get better parallelism.

6.3 Parallel LIS
We implemented our LIS algorithm. We use nested arrays to rep-

resent augmented range trees to improve locality. We also use a

heuristic when choosing pivots—instead of choosing a uniformly

random pivot, we choose the right-most unfinished point as the

pivot. This is based on an intuition such that points to the right are

more likely to be processed in later rounds. We also implemented a

standard 𝑂 (𝑛 log𝑛) sequential version based on Eq. (2).

We test input data of 10
8
with different ranks (LIS sizes). We

present results for LIS implementations in Fig. 7 and Fig. 8. We also

vary the input rank, which is the LIS size. We use two different

data patterns. The first one is roughly 𝑘 segments of data, and we

call it the segment pattern. Within each segment the data values

are roughly decreasing (we also added some random noise), and

across the segments, the values are roughly increasing. The LIS size

is about 𝑘 . The other pattern is generated by using an increasing

line 𝑎𝑖 = 𝑡 × 𝑖 + 𝑏𝑖 , where 𝑏𝑖 is a random variable choosing from a

uniform distribution. We call it the line pattern. By changing the

slope 𝑡 and the distribution of 𝑏, we can also control the rank of

the input data. We give a visualization of the input data pattern in

the full version of this paper [62].

We show our running time as well as the average number of

wake-up attempts for all objects. On the two different data patterns,

our algorithm is faster up to when the rank 𝑟 is about 100, and

perform worse than the sequential algorithm afterwards. Note that

our algorithm has an 𝑂 (log2 𝑛) overhead in work. When the paral-

lelism is not sufficient to compensate for the overhead in work, the

performance may drop.

Interestingly, similar to the activity selection, our algorithm is

getting slower as the rank increases (which matches theory), but

the standard sequential algorithm is getting faster. We believe the

improvement in the sequential algorithm is also caused by better

locality because the range query (in Eq. (2)) for an object 𝑥 will find

an object close to 𝑥 .

We note that our algorithm still show very good scalability—in

most tests, our self-speedup ismore than 40x. The poor performance

when the rank is large comes from the work-inefficiency. Although

the overhead is polylogarithmic, it can still be large (log
2 𝑛 is much

more than the number of available processors on our machine).

Indeed, the sequential running time (on one core) of our algorithm

is much more than the standard sequential algorithm. Therefore,

when 𝑘 is large, the parallelism cannot compensate the overhead

due to work-inefficiency.
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Figure 7: Experiments on LIS (segment). We fix input size 𝑛 = 10
8

and use the segment pattern, with varying the output size. “Classic seq”

is the classic sequential DP algorithm.
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Figure 8: Experiments on LIS (line). We fix input size 𝑛 = 10
8
and

use the line pattern, with varying the output size. “Classic seq” is the

classic sequential DP algorithm.

We also observed that the average number of wake-ups is very

small. In all our tests, the maximum value is 8 times, which is

less than log𝑛 shown in Lem. 5.5. This is partially enabled by our

heuristic. Especially for the segment pattern, when the pivot is

chosen as the right-most unfinished object, it is almost always the

last blocking object to wait.

We believe our algorithm are scalable to more cores, but we are

also interested in improving the work bound to closer to work-

efficient. Reducing work-bound should be promising to improve

practical performance.

7 CONCLUSION AND FUTUREWORK
In this paper, we used the phase-parallel framework with general

techniques to parallelize sequential iterative algorithms with cer-

tain dependences, and designed work-efficient and round-efficient

algorithms for a variety of classic problems. Our results improved

the previous theoretical bounds for many of them (e.g., the LIS

and MIS algorithms). We also implemented these algorithms. Our

results illustrated how work-efficiency and round-efficiency affect

performance in practice (which matches our theory). For reasonable

(not too large) input ranks, our work-efficient algorithms achieved

good parallelism and outperformed the sequential algorithms. One

interesting future direction is to reduce the 𝑂 (log2 𝑛) overhead in

the work of the LIS algorithm, which is also likely to improve its

practical performance.
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