Many Sequential Iterative Algorithms Can Be Parallel and Work-efficient

Zheqi Shen
UC Riverside
zheqi.shen@email.ucr.edu

Zijin Wan
UC Riverside
zwan018@ucr.edu

Yan Gu
UC Riverside
ygu@cs.ucr.edu

Yihan Sun
UC Riverside
yhans@cs.ucr.edu

ABSTRACT

Some recent papers showed that many sequential iterative algorithms can be directly parallelized, by identifying the dependences between the input objects. This approach yields many simple and practical parallel algorithms, but there are still challenges in achieving work-efficiency and high-parallelism. Work-efficiency means that the number of operations is asymptotically the same as the best sequential solution. This can be hard for certain problems where the number of dependences between objects is asymptotically more than optimal sequential work, and we cannot even afford to generate them. To achieve high-parallelism, we want to process as many objects as possible in parallel. The goal is to achieve $O(D)$ span for a problem with the deepest dependence length D. We refer to this property as round-efficiency.

This paper presents work-efficient and round-efficient algorithms for a variety of classic problems and propose general approaches to do so.

To efficiently parallelize many sequential iterative algorithms, we propose the phase-parallel framework. The framework assigns a rank to each object and processes the objects based on the order of their ranks. All objects with the same rank can be processed in parallel. To enable work-efficiency and high parallelism, we use two types of general techniques. Type 1 algorithms aim to use range queries to extract all objects with the same rank to avoid evaluating all the dependences. We discuss activity selection, and Dijkstra’s algorithm using Type 1 framework. Type 2 algorithms aim to wake up an object when the last object it depends on is finished. We discuss activity selection, longest increasing subsequence (LIS), greedy maximal independent set (MIS), and many other algorithms using Type 2 framework.

All of our algorithms are (nearly) work-efficient and round-efficient. Many of them improve previous best bounds, and some of them (e.g., LIS) are the first to achieve work-efficiency with round-efficiency. We also implement many of them. On inputs with reasonable dependence depth, our algorithms are highly parallelized and significantly outperform their sequential counterparts.

1 INTRODUCTION

There are two goals in designing efficient parallel algorithms: to reduce work, and to improve parallelism. Work-efficiency, meaning that the work (total number of operations) is asymptotically the same as the best sequential solution, is crucial for practical parallel algorithms. This is because nowadays and for the foreseeable future, the number of processors in a machine (up to thousands) is roughly polylogarithmic to input sizes. Hence, a parallel algorithm is less practical if it blows up the work of the best sequential algorithm by a polynomial factor. In this paper, we show (nearly) work-efficient parallel algorithms for a list of classic problems.

Our work is motivated by a list of recent papers that directly parallelize some sequential iterative algorithms (i.e., sequential algorithms that iteratively process input objects) [10, 12, 13, 16–18, 42, 47, 60, 64]. Their work-efficiency analysis usually directly follows the original sequential algorithm. To achieve high parallelism from a sequential iterative algorithm, the key is to identify the dependences among “objects” (e.g., iterations, instructions, or input objects), and process them in the proper order [10, 12, 13, 16–18, 42, 45, 47, 49, 60, 64]. In particular, we want to avoid waiting for “false dependences” and to process as many objects as possible in parallel. Such relationships can be modeled as a directed acyclic graph (DAG), referred to as the dependence graph (DG). Each object corresponds to a vertex in the DG, and a directed edge from vertex u to v means v can be executed only after u is finished, and we say v relies on (or depends on) u.

There are two existing general frameworks to design parallel algorithms using DGs, but they both have limitations. The first framework is deterministic reservations [10] (also used in [64]). These algorithms run in rounds, and in each round, check the unfinished objects, execute the “ready” objects in parallel, and postpone the rest to later rounds. This framework provides good parallelism—for a DG of depth D, we only need $O(D)$ rounds. In this paper, we define a computation as round-efficient if it executes a DG with depth D in $O(D)$ span (longest dependence of instructions in the algorithm, formally defined in Sec. 2)\(^1\). Despite the round-efficiency, deterministic reservations do not guarantee work-efficiency—the work in the worst case is $O(Dm)$, where m is the number of edges of the DG (using a topological sort sequentially only takes $O(m)$ work). The second approach was proposed by Blaho et al. [12] to prove work-efficiency of DG-based algorithms, but it only applies to when each vertex in the DG has a constant in-degree. As a result, most of the existing algorithms do not fit in these two frameworks, and each [12, 16–18] uses specific design and analysis to get the work and span bounds (if any). Moreover, previous approaches are edge-centric—all edges in the DGs are examined to find ready

\(^1\)We note that round-efficiency does not guarantee optimal span, since round-efficiency is with respect to a given DG. One can re-design a completely different algorithm that has a shallower DG and a better span.
Our approaches are (nearly) work-efficient and round-efficient. One of our approaches is to only when it is (almost surely) ready.

Contributions in this paper. We propose a general framework and algorithms in this framework to parallelize sequential iterative algorithms, many of them textbook greedy and dynamic programming (DP) algorithms, that are (nearly) work-efficient and round-efficient. Our approaches are vertex-centric, which avoid examining all edges in the dependence graph. We define the rank for each vertex in the DG (an input object or a subproblem), and we prove that rank fully captures the earliest “phase” that an object can be processed in a parallel algorithm. We believe that defining rank simplifies parallel algorithm design for many problems. Based on rank, we propose the phase-parallel algorithm framework, which processes all objects based on the ordering of ranks, and round \(i \) processes all objects with rank \(i \) in parallel. For example, the rank of an object in the LIS problem is the LIS length ending at this object. The phase-parallel algorithm will then process all objects with LIS size \(i \) in round \(i \), which finish in \(k \) rounds for an input sequence with LIS length \(k \). We present the list of problems discussed in the paper, their ranks, and the cost bounds of our solutions in Tab. 1.

To achieve work-efficiency and round-efficiency, we propose two types of general ideas, referred to as Type 1 and Type 2 algorithms.

Type 1 algorithms aim to identify objects to be processed in round \(i \) efficiently. To do this, we use range queries based on parallel augmented trees [66] (see Sec. 2), which take polylogarithmic work, instead of work proportional to the number of relevant edges in the DG. This idea applies to many greedy or DP algorithms, and our algorithms use range queries to find the maximal set of parallelizable objects. Type 1 algorithms include activity selection, and Dijkstra’s algorithm (we discuss more in the full version [62] of this paper). We note that some of these ideas may have been known. We do not claim them as the main contribution, but use them to exemplify our framework.

Our Type 2 algorithms aim at waking up the ready objects at the right time. Instead of checking the readiness of all objects in each round (as is done in previous work), we hope to touch an object only when it is (almost surely) ready. One of our approaches is to assign a pivot \(p_x \) to each object \(x \), which is an object \(x \) relies on. Only when \(p_x \) finishes, we check if \(x \) is ready. If \(x \) is ready, we process it in the next round. If not, we update \(x \)’s pivot to another unfinished object it relies on. Fig. 1(b) shows an example of LIS. Although there are many dependences (all edges) in the DG, each object only picks one pivot (the red edges). When the pivot is ready, the object itself is likely to be ready, but if not (e.g., (i) first picks (1)), it selects a new pivot (the yellow edge from (3)). Therefore, only a small fraction of edges in the DG (the red and yellow ones) are evaluated, which saves work. Another approach is based on a new structure to identify a ready object when its last predecessor in DG finishes, which we apply to the greedy maximal independent set (MIS) algorithm and other similar algorithms. Our approach is based on a new data structure called TAS tree, which makes use of the atomic test-and-set operation (formally defined in Sec. 2). For MIS, our algorithm is work-efficient, and improves existing span bound [13] from \(O(n \log^3 n) \) to \(O(n \log^2 n) \).

We believe that our framework applies to a broad set of problems. We picked the examples by reviewing the problems in Cormen, Leiserson, Rivest, and Stein [30]. All algorithms in this paper are (nearly) work-efficient (only the LIS algorithm has an \(O(\log^2 n) \) factor of overhead), and round-efficient.

Our framework applies to many existing algorithms in [10, 12, 13, 16–18, 42, 47, 60, 64], improves the bounds for many of them (e.g., the greedy MIS algorithm), and provides a much simpler way to understand these algorithms. As another example, our LIS algorithm (Algorithm 3) has \(O(n) \) work and \(O(k) \) span for LIS length \(k \). Parallel LIS is widely studied [5, 43, 52, 53, 58, 59, 61, 67]. Our algorithm is the first to achieve near-work-efficiency and round-efficiency, which is advantageous especially for small output size. We review the literature of parallel LIS in Sec. 5. Our algorithm is also simpler and more practical. We are unaware of any implementations of these previous algorithms with competitive performance to the standard sequential LIS algorithm with \(O(n \log n) \) work.

We implement many of these algorithms, and test them as a proof-of-concept to show how work- and round-efficiency affect practical performance. Although there is parallel overhead and our worst-case span is \(O(n) \), our work-efficient algorithms achieve significant speedup over the sequential algorithm in a reasonably large input parameter space. Our contributions include:

- The phase-parallel framework to parallelize sequential iterative algorithms based on the concept of rank defined in this paper.
- Two general techniques for phase-parallel algorithms to achieve work-efficiency and round-efficiency, based on range queries and a wake-up strategy to identify ready objects, respectively.
- The first nearly work-efficient \((\tilde{O}(n)) \) LIS algorithm with round-efficiency \((\tilde{O}(k)) \) for LIS length \(k \) and its implementation.
- A work-efficient greedy maximal independent set (MIS) algorithm with \(O((\log n \log d_{\text{max}}) \text{ span}) \) whp in the binary-forking model (defined in Sec. 2), where \(n \) is the number of vertices and \(d_{\text{max}} \) is the maximum degree in the graph. This improves the previous best span bound of \(O(\log^3 n) \).
- Two algorithms for the activity selection problem. This is the first parallel algorithm for this problem we know of. Although not complicated, they reveal the connections of the two types of algorithms in this paper. They are work-efficient and round-efficient.
For the unweighted version, we also provide an algorithm with $O(\log n)$ span whp.
- Many other simple and interesting algorithms using our framework, including Huffman tree, SSSP, unlimited knapsack, etc.
- Implementations and experimental studies of these algorithms.

2 PRELIMINARIES

Notations. For a sequence s, s_i or $s[i]$ denotes the i-th element, and $s_{i..j}$ or $s[i..j]$ denotes the i-th to the j-th elements in s. We use the term $O(f(n))$ with high probability (whp) in n to indicate the bound $O(kf(n))$ holds with probability at least $1 - 1/n^k$ for any $k \geq 1$. With clear context we drop “in n”.

Longest Increasing Subsequence (LIS). Given a sequence $s_{1...n}$, $s'_{1...m}$ is a subsequence of s if $s'_i = s_k$, where $k_1 < k_2 < \ldots < k_m$. Given a sequence s, the longest increasing subsequence (LIS) problem finds the longest subsequence s^* of s where $\forall i, s'_i < s^*_i$.

Dependence Graph. A sequential iterative algorithm processes each input object in a given order. The dependence graph (DG) represents the processing dependence of input objects. Each vertex in the DG denotes an input object. An edge from x to y means that object y can be processed only when x has been finished, and we say y relies on x. We say an object is finished if it has been processed, and unfinished otherwise. We say an object is ready if all its predecessors in the DG have been finished. For two objects x and y, where y relies on x and x is unfinished, we say x blocks y.

Parallel Computational Model. We use the work-span model on the binary-forking model (with test_and_set) to analyze parallel algorithms [12, 30] as is used in many recent papers [2, 4, 6–8, 11, 14–16, 18–21, 25–27, 36, 38, 46]. We assume a set of threads that share a memory. Each thread supports standard RAM instructions and a fork instruction that forks two new child threads. When a thread performs a fork, the two child threads both start by running the next instruction, and the original thread is suspended until both children terminate. A computation starts with a single root thread and finishes when that root thread finishes. We use atomic operation test_and_set (TAS), which checks whether a memory location is of zero, sets it to one if so, and returns its old value. We say a TAS is successful if it changes zero to one and unsuccessful otherwise.

One can use TAS to implement a join operation in the standard fork-join model [12]. An algorithm’s work is the total number of instructions, and the span (depth) is the length of the longest sequence of dependent instructions in the computation. Note that a parallel for-loop incurs $O(\log n)$ span because of binary-forking. We can execute the computation efficiently using a randomized work-stealing scheduler both in theory and in practice [12, 22, 30].

Parallel Data Structures. We now present useful theorems of data structures for range-sum queries used in this paper. More details are given in the full version of this paper [62]. The data structures maintain a map of entries (key-values) sorted by the keys, where keys can be either one or two dimensions. A range sum query is defined by a key range (an interval in 1D or a rectangle in 2D) and augmentation, which defines how the “sum”, called the augmented value, should be computed. One example is to report the sum (or min/max) of values in the given key range. Formally, suppose the map maintains key-value pairs of type $K \times V$, we define the augmented value of type A by an augmented structure consisting of two functions and the identity of A.

- Base function $g : K \times V \rightarrow A$, which maps an entry (key-value) to an augmented value.
- (Associative) Combine function $f : A \times A \rightarrow A$, which combines (adds) two augmented values into a new augmented value.
- The identity $I_A = A$ of f on A. (A, f, I_A) is a monoid.

In the value-sum example above, the base function $g = (k, v) \mapsto v$, the combine function $f = (a_1, a_2) \mapsto a_1 + a_2$, and $I_A = 0$. We first present a useful theorem about range sum queries.

Theorem 2.1. For $k \in \{1, 2\}$, there exist data structures that can answer k-D range sum query in $O(\log^k n)$ time, can be constructed by (or be flattened into) a sorted sequence of entries in $O(n \log^{k-1} n)$ work and $O(\log^k n)$ span, and allow for batch update (e.g., insertion, deletion and value updates) in $O(m \log^k n)$ work and $O(\log^k n)$ span, where n is the number of input entries, and $m \leq n$ is the batch size. We assume constant cost for the base and combine functions.

This can be achieved using parallel augmented balanced binary search trees (PA-BST) [66] with algorithms in [9, 12, 34, 66]. For 2D range sum queries, we use a 2D range tree using PA-BSTS [65, 66].

We also use multi-map, where multiple entries can have the same key, and a search on a key will return all values with this key (Note that this query is different from the 1D or 2D range query defined above, so this uses a different data structure from range trees stated above). By using PA-BST, we have the following theorem [9].

Theorem 2.2. For n key-values, there exists a data structure that can search or update (insert or delete) a batch of entries in $O(m \log n)$ work and $O(\log m \log n)$ span, where $m \leq n$ is the total number of elements found or updated in the batch.

3 PHASE-PARALLEL ALGORITHMS

In this section, we introduce our key concept: phase-parallel algorithms, and show a general approach to design phase-parallel algorithms to maximize parallelism based on the rank function.

Since our idea is sophisticated, we first show the pseudocode in Algorithm 1 and describe the high-level idea.

To seek parallelism in many sequential iterative algorithms, we define the rank() of each object to capture the dependencies among them, which indicates the earliest phase an object can be ready. With a properly defined rank function, Algorithm 1 processes all objects (in parallel) of rank i in round i. We call the set of objects processed in round i (T_i in Algorithm 1) the frontier of round i. Table 1 shows how rank is defined for the problems in this paper. For example, in the LIS problem, an object’s rank is the size of the LIS ending at this object. Therefore, Algorithm 1 finds and processes all objects with LIS size 1 in parallel, then those with LIS size 2, etc. Throughout the section, we use the LIS problem as an example to help understand the abstract concepts. Next, we formalize the phase-parallel algorithms. We note that all of our algorithms are reasonably simple. The goal of the formalization is to extend our idea to general independence systems, which generalizes to more DP and greedy algorithms.

An independence system is a pair (S, F), where S is a finite set and F is a collection of subsets of S (called the independent sets or feasible sets) with the following properties:

We say an object \(x \) is a feasible set for the LIS problem if it is any increasing subsequence of objects. The problems, their definitions of rank, the work and span of our solutions for the given problems.

<table>
<thead>
<tr>
<th>Activity Selection</th>
<th>Feasible Condition for objects (x) and (y)</th>
<th>(\text{rank}(x))</th>
<th>Type</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>(general) Unlimited Knapsack</td>
<td>Solution to weight (y) can contain (x), solution to the subproblem of weight (x) (x/w^, \text{ where } w^) is the minimum weight</td>
<td>(x/w^*)</td>
<td>(O(Wn))</td>
<td>(O(\text{rank}(S)\log(\text{rank}(S)+n)))</td>
<td></td>
</tr>
<tr>
<td>Huffman Tree</td>
<td>(y)'s Huffman code is a prefix of (x)</td>
<td>Subtree height of (x)</td>
<td>(O(n\log n))</td>
<td>(O(\text{rank}(S)\log n))</td>
<td></td>
</tr>
<tr>
<td>Dijkstra’s Algorithm</td>
<td>(x) is on the shortest path to (y)</td>
<td>Hop distance from (x) to the source on shortest path tree (\text{rank}(x) = \frac{d(x)/\min_{v \in E} w(e)}{\min_{v \in E} w(e)} \log n)</td>
<td>(O(m \log n))</td>
<td>(O\left(\frac{\max_{v \in E} d(v)}{\min_{v \in E} w(e)} \log n\right))</td>
<td></td>
</tr>
<tr>
<td>LIS</td>
<td>(y > x)</td>
<td>The length of LIS ending at (x)</td>
<td>(O(n \log n))</td>
<td>(O(\text{rank}(S)\log^2 n))</td>
<td></td>
</tr>
<tr>
<td>Activity Selection (unweighted)</td>
<td>(x) and (y) do not overlap</td>
<td>The maximum number of non-overlapping activities ending at (x)</td>
<td>(O(n \log n))</td>
<td>(O(\text{rank}(S)\log^2 n))</td>
<td></td>
</tr>
<tr>
<td>MIS</td>
<td>(\exists) a path from (x) to (y) s.t. the priorities on (x) are monotonically increasing</td>
<td>The the longest chain size ending at vertex (x) with increasing priorities</td>
<td>(O(n+m))</td>
<td>(O(\log^2 n))</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: The problems, their definitions of rank, the work and span of our solutions for the given problems. In feasible conditions, we assume \(y \) is later than \(x \). \(n = |S| \) is the input size. For graphs, \(n \) is the number of vertices and \(m \) is the number of edges. \(d(v) \) in SSSP is the shortest distance of \(v \) from the source and \(w(e) \) is the weight of edge \(e \). \(W \) in the knapsack problem is the weight limit. \(\text{rank} \) means a relaxed rank (see Sec. 4.2). \(\dagger \): with high probability.

Algorithm 1: The phase-parallel algorithm

1. Input: \(S \), and \(\text{rank}(x) \) that implies \(\mathcal{F} \)
2. \(i \leftarrow 1 \)
3. while \(S \neq \emptyset \) do
4. \(i \leftarrow 1 \)
5. Find the set \(T_i \) that contains all objects with rank \(i \)
6. Process all objects in \(T_i \) in parallel
7. \(S \leftarrow S \setminus T_i \)
8. Update the status of objects in \(S \) if necessary
9. \(i \leftarrow i + 1 \)

(1) The empty set is feasible, i.e., \(\emptyset \in \mathcal{F} \).
(2) (Hereditary property) A subset of a feasible set is feasible, i.e., for each \(Y \subseteq X \), we have \(X \in \mathcal{F} \implies Y \in \mathcal{F} \).

A feasible set for the LIS problem is any increasing subsequence.

Given an independence system \((S, \mathcal{F})\), a **sequential iterative algorithm** \(\mathcal{A} \) on \(S \) processes each object \(S_i \) in \(S \) iteratively based on the sequential order, with the goal to optimize some value of all (or some) feasible sets. Since a processed object usually corresponds to a subproblem on \(S_i^* \), they are sometimes called the states in dynamic programming problems. For example, in LIS, processing object \(S_i \) is to compute the LIS up to (and including) object \(S_i \).

To parallelize a sequential iterative algorithm, note that an object does not need to wait for all earlier objects to finish, but only a subset of them. Let \(\mathcal{P}(x) \) be all objects that \(x \) rely on, i.e., all predecessors of \(x \) in the DG. For LIS, \(\mathcal{P}(x) = \{ y : I(y) < I(x), y < x \} \). When all objects in \(\mathcal{P}(x) \) finish, \(x \) is ready. Also, if two objects do not rely on each other in the DG, they can be processed in parallel. These two simple observations have been used in existing parallel algorithms and frameworks (e.g., [13, 16, 16–18, 47, 64]). In this paper, we formalize the problem for a class of algorithms based on an independence system and point out that identifying the ready objects can be captured by the ranks of the objects. We define **phase-parallel** as follows.

Definition 3.1. Given an independence system \((S, \mathcal{F})\), a sequential iterative algorithm \(\mathcal{A} \) on \(S \) is phase-parallel if it has the following property: an object \(x \in S \) relies on \(y \in S \) in the parallel dependence graph if and only if:

1. (Ordering) \(I(y) < I(x) \).
2. (Compatibility) \(\forall E \subseteq \mathcal{F}(y) \), we have \(E \cup \{x\} \in \mathcal{F} \), i.e., any feasible set containing \(y \) and only objects up to \(y \) are also compatible with \(x \).

This means computing the state (processing an object) \(x \) only relies on previous states in \(x \) compatible with \(x \). This indicates optimal substructure property [30], where the best solution at \(x \) can be obtained by optimal solutions before \(x \).

To achieve maximum parallelism, our goal is to find the largest possible set of objects to process in parallel. We first show that all objects with the same rank (MFS size) can be processed in parallel.

Theorem 3.2. Given a phase-parallel algorithm \(\mathcal{A} \) on the independence system \((S, \mathcal{F})\), if \(\text{rank}(x) = \text{rank}(y) \), then \(x \) and \(y \) cannot rely on each other in the parallel dependence graph.
We assume all activities are pre-sorted by their end time. A feasible weight can be solved by the dynamic programming recurrence:

$$dp[i] = \max_{j \leq s_i} dp[j] + w_i$$ \hspace{1cm} (1)

The sequential order (and the index) is defined by the end time. We assume all activities are pre-sorted by their end time. A feasible set is a set of non-overlapping activities. $dp[i]$, or the DP value of activity i, means the highest possible weight by using the first i activities, which must include A_i. Naively computing Eq. (1) needs $O(n^2)$ work. Since the condition in Eq. (1) is a range of end time, sequentially, the work can be reduced to $O(n \log n)$ using augmented range queries. In parallel, an activity A_i depends on all activities ending before A_i starts (see an illustration in Fig. 2), which leads to $O(n^2)$ dependences in the worst case. Note that the rank of A_i by definition is the maximum size of the feasible set containing A_i and only the first i activities. We first present the following lemma.

Lemma 4.1. All activities overlapping the earliest-end activity A_i has rank 1. After removing all activities with rank no more than k, suppose the earliest-end activity is A_j, then all remaining activities that overlaps with A_j has rank $k+1$.

Proof. We first prove all activities overlapping the earliest-end activity A_j must have rank 1. Recall the rank of an activity x is the maximum number of compatible activities we can select from x and earlier activities, which must include x. For an activity overlapping A_j, if its rank is larger than 1, there must exist another activity y that is earlier than x and compatible with x. This means y ends before x starts, which contradicts the assumption that the earliest-end activity overlaps with x.

We next prove that after removing all activities of rank no more than k, if the current earliest-end activity is A_j, all activities overlapping A_j should have rank $k+1$. Let S' be the set of activities removed, which have rank no more than k. Assume to the contrary that one of such activity A_i has rank $r > k+1$. Then there must be an activity A_j' finishing earlier than A_i, and have rank $r' > k$. Therefore, $A_j' \notin S'$ since we only remove activities with rank no more than k. However, this contradicts the assumption that A_j is the earliest-end activity in $S \setminus S'$, and A_j already overlaps A_i. □

Based on the lemma and the phase-parallel framework, we can design an algorithm (Algorithm 2). To enable work-efficiency, we use a range query to find the largest parallelizable frontier. The algorithm uses two PA-BSTs T_{time} and T_{DP}. T_{time} maintains all unprocessed activities sorted by their start time and augmented on the minimum end time, which is used to identify the frontiers. T_{DP} maintains all activities sorted by their end time and augmented on the largest DP value, which is used to determine $\max_{w_i \leq s_i} dp[j]$ in the DP recurrence. In each round, we find the earliest-end activity x by reading the augmented value of T_{time}. Then we split T_{time} based on e_x. Those starting no later than e_x will be split out as the frontier
and will be processed in parallel. Since T_{time} is indexed on start time, $split$ takes $O(\log n)$ work. When processing activity i, we use T_{dp} to extract the highest DP value among all activities with end time in range $(-\infty, s_i]$, and use it to update the DP value of i in T_{dp}. The work for processing m objects in the frontier is $O(m \log n)$ for the augmented range query, and $O(m \log n)$ for updating the DP values in T_{dp}. This leads to the following theorem.

Theorem 4.2. Type 1 activity selection algorithm takes $O(n \log n)$ work and $O(rank(S) \log n)$ span, where S is the input set and $n = |S|$.

4.2 Algorithms with Relaxed Rank

In some problems, it is hard to find (or use) the exact rank of the objects, in which case we use a relaxed rank, defined as follows.

Definition 4.3. Given a phase-parallel algorithm \mathcal{A} on the independence system (S, F), a function $\hat{r}(x)$ on $x \in S$ is a relaxed rank on object x if:

- $\forall x \in S, rank(x) \leq \hat{r}(x)$.
- $\forall x, y \in S$ where x relies on y in the dependence graph, $\hat{r}(x) > rank(y)$.

Then Algorithm 1 can process all objects with the same relaxed rank in each round. Note that the trivial relaxed rank is the index of each object $I(x)$, which gives no parallelism in Algorithm 1. Therefore, when we use the relaxed rank, we need careful analysis to show non-trivial parallelism.

Dijkstra’s Algorithm. Dijkstra’s algorithm [37] solves the single-source shortest paths (SSSP) problem on a weighted graph. As a sequential iterative algorithm, Dijkstra processes the vertices in the order of their distances to the source and relaxes their neighbors. SSSP is very challenging in the parallel setting. Dijkstra is work-efficient and relaxes each edge exactly once. However, it is hard to parallelize because each round only processes one vertex. Bellman-Ford has better parallelism but significantly more work. Almost all state-of-the-art parallel SSSP algorithms (e.g., Δ-stepping [57] and ρ-stepping [39]) achieve high parallelism by using more work.

The DG of the SSSP problem is conceptually the shortest path tree. The rank of a vertex v is the hop distance from v to s in the shortest path tree. However, the algorithm itself is unaware of the explicit structure of DG before the shortest paths are computed. Hence, the exact rank of each object is hard to acquire. Let w^* be the smallest edge weight in the graph, and $d(v)$ the actual distance of v. We define a relaxed rank for a vertex $\hat{r}(v) = \lceil d(v)/w^* \rceil$. This is because distances within a window of w^* cannot rely on each other (relaxation increases the distance by at least w^*). Therefore, each frontier can be extracted using a range query. Interestingly, we observe that this is (conceptually) similar to using $\Delta = w^*$ in Δ-stepping [57]. Using PA-BST to maintain the distances of all vertices, we have the following result.

Theorem 4.4. There exists a parallel algorithm that solves SSSP problem on a graph $G = (V, E)$ using $O(|E| \log |V|)$ work and $O(rank(V) \log |V|)$ span, where $rank(V)$ is the ratio of the maximum shortest path in the graph and the smallest edge weight.

We note that there can be other ways to define the relaxed rank of the Dijkstra’s algorithm [31, 50], which enable different bounds to the phase-parallel algorithms. In the paper we simply discuss the version based on the smallest edge weight, since it can be easily tested using a Δ-stepping-based implementation.

In our experiments in Sec. 6, we use the Δ-stepping implementation in [39] with $\Delta = w^*$ to test the performance of this idea. On low-diameter graphs with reasonably large w^*, setting $\Delta = w^*$ gives the best performance among all choices of parameter Δ because of the work-efficiency.

5 TYPE 2 ALGORITHMS WITH WAKE-UP STRATEGIES

In phase-parallel algorithms, an object is ready when all its predecessors $\mathcal{P}(x)$ finish. Previous approaches require explicitly generating $\mathcal{P}(x)$ for each $x \in S$ [12, 16–18, 64] (achieving work-efficiency only when $|\mathcal{P}(x)| = O(1)$), checking the readiness of all objects every round [10] (not necessarily work-efficient), or based on dual-binary search [13, 47] (incurs overhead in span). To avoid exhaustively checking the readiness of every object, Type 2 algorithms aim to wake up an object x when the last object in $\mathcal{P}(x)$ finishes.

We propose two wake-up strategies. Our first approach, which we believe is very interesting, is to avoid explicitly generating $\mathcal{P}(x)$, and check the readiness of an object x when x is likely to be ready. To do so, we attach each object x to an unfinished object $p_x \in \mathcal{P}(x)$, called the pivot, which blocks x. We redo the check only when p_x is ready, which bounds the number of total checks to be $O(\log |\mathcal{P}(x)|)$ whp. We show activity selection and longest increasing sequence (LIS) as examples, and more applications in the full version.

The second approach applies to algorithms that can afford to generate $\mathcal{P}(x)$ for each $x \in S$. Our idea is to build an asynchronous structure with test_and_set to precisely identify when the last object in $\mathcal{P}(x)$ is ready, and achieve better span. We present the greedy MIS algorithm as an example in Sec. 5.3, and more discussions in the full version of the paper.

5.1 Activity Selection

We now revisit the activity selection problem and present an algorithm using Type 2 framework. Recall the DP recurrence ΔMFS algorithm as an example in Sec. 5.3, and more discussions in the full version.

Lemma 5.1. Given activity A_x, let activity $A_{p_x} = \arg \max_{A_{s_i} | s_i \leq x} s_i$ be the latest-start activity among all activities ending before A_x starts (i.e., those earlier than A_x and compatible with A_x), and call A_{p_x} the pivot activity of A_x. Then $rank(A_{x}) = rank(A_{p_x}) + 1$.

Proof. By definition, A_x depends on A_{p_x}, because A_x is compatible with all MFS ending with A_{p_x}. This indicates $|MFS(A_{p_x})| = rank(A_{p_x}) < rank(A_x) = |MFS(A_x)|$. We then show $MFS(A_{p_x}) \cup \{A_x\}$ is an MFS of A_x. Assume to the contrary that $t = |MFS(A_{p_x})| > |MFS(A_{p_x})| + 1$. Consider such an MFS $T = MFS(A_{p_x})$ where $T = t$. Let activity A_k be the activity with the latest starting time in $T \setminus \{A_x\}$. We first prove $A_k \in T \setminus \{A_x\}$. This is because if $A_k \notin T \setminus \{A_x\}$, A_k should have an earlier starting time than A_k (by definition of A_k), which contradicts the definition of A_{p_x}. Similarly, all other activities in $T \setminus \{A_x\}$ have earlier end time
We propose a parallel algorithm for the longest increasing subsequence (LIS) problem using our phase-parallel framework. Given a sequence a, LIS asks for the longest subsequence in a that is strictly increasing. LIS is widely studied, and its parallel solutions have been studied in [5, 43, 48, 52, 53, 58, 59, 61, 67]. Most of these algorithms [43, 52, 58, 59, 61, 67] introduced polynomial overhead in work, and Alem and Rahman’s algorithm [5] has $\Theta(n)$ span. Kruschke and Tiskin’s BSP algorithm [33] translates to $O(n)$ work and $O(n^{2/3})$ span, which is the only nearly-work-efficient algorithm with sublinear span. This algorithm relies on complicated techniques from [68], and has no implementation. In fact, we are unaware of any previous parallel LIS implementation with competitive performance to the standard sequential $O(n \log n)$ LIS algorithm.

Sequentially, LIS can be computed using the dynamic programming (DP) recurrence as follows. Let $dp[i]$, called the DP value, be the LIS length of $a_{1:i}$ ending with a_i. Then

$$
 dp[i] = \max(1, \max_{j < i, a_j < a_i} dp[j] + 1)
$$

We can iteratively compute $dp[i]$ and maintain any search structure to find $\max_{j < i, a_j < a_i} dp[j]$ in $O(\log n)$ work. Our new phase-parallel LIS algorithm parallels this sequential algorithm and achieves near work-efficiency ($O(n)$ expected work) and round-efficiency. Moreover, our algorithm is implementable, and we show experimental study in Sec. 6.3. Here we maximize LIS length, but our algorithm can be generalized to the weighted case where objects have different weights.

An object a_i is ready once all objects a_j with $j < i, a_j < a_i$ are ready. In our phase-parallel framework, the rank of an object a_i is the size of the LIS ending with a_i (its DP value). An object a_i only depends on objects with a smaller rank. After all objects with rank r have finished, all objects with rank $r + 1$ must be ready. The main challenge is to avoid processing all dependencies since there can be $\Theta(n^2)$ of them. Interestingly, the problem exhibits a nice geometric property. If we draw each object as a 2D coordinate (i, a_i), all the objects that a_i relies on are the points to its lower-left area (see Fig. 3). Therefore we can determine if an object x is ready using a 2D range query on the number of unfinished objects to its lower-left area. Similarly, the DP value of x can be obtained by querying the maximum DP value among all objects in its lower-left area (and plus one). Both queries can be done by a augmented 2D range tree (see Sec. 2). This gives a simple algorithm, where in each round, we can run a 2D range query to every unfinished object to identify the

Figure 2: Illustration of the activity selection problem. Left: The start and end time of 7 activities (ordered by end time). Right: The dependences between activities. Rank 1 activities start before x (shown in blue). Rank 2 activities start before y (shown in green). Rank 3 activities start before z (shown in purple). Red dependences are the pivots chosen in the Type 2 algorithm. The pivot of an object is the compatible activity before it with the latest start time. A rank-r object has a pivot with rank $r - 1$.

than s_k. By the definition of A_{p_x}, A_{p_y} starts no later than A_{p_x} (A_{p_y} is the latest starting activity before A_{x} and compatible with A_{x}). This means that A_{p_y} is also compatible with (and later than) $T = \{A_{x}, A_{k}\}$. $\text{MFS}(A_{p_y}) \geq |(T - \{A_{x}, A_{k}\}) \cup \{A_{p_y}\}| = t - 1$, contradicting the assumption of $t = |\text{MFS}(A_{x})| > |\text{MFS}(A_{p_y})| + 1$. □

We show an example of pivot activities in Fig. 2. Lem. 5.1 implies that the pivot activity p_x of any activity x must be processed in the previous round of when x is processed. In other words, once p_x is finished, we can wake up x and process it in the next round. In this case, we can first let all activities find their pivot via binary searches, which is $O(\log n)$ work per activity. We use a tree T_{pivot} as a multi-map to store all pairs (p_x, x). We start with processing all activities with rank 1. For each activity y in the current frontier, after processing them, we find all pairs $(y, z) \in T_{\text{pivot}}$ and put all such z in the next frontier (they will be waken up). An activity can be processed (computing its DP value) similarly as in Type 1 by using a PA-BST T_{DP}. We have the following theorem.

Theorem 5.2. Type 2 activity selection algorithm takes $O(n \log n)$ work and $O(\text{rank}(S) \log n)$ span, where S is the input set and $n = |S|$.

An $O(\log n)$ span algorithm for unweighted activity selection. Based on Lem. 5.1, we can further design a parallel algorithm with better span for the unweighted activity selection problem, where each activity has a unit weight ($w_j = 1$). Note that this is equivalent to computing the rank of each activity. Based on Lem. 5.1, we can rewrite the DP recurrence for the unweighted version as:

$$
 dp[i] = dp[j] + 1 : A_j \text{ is the pivot activity of } A_i
$$

This simplifies the dependence graph to a tree structure, where each activity only relies on its pivot. The rank of each activity is also its depth in this tree, which can be computed using a standard tree contraction [18] in $O(n)$ work and $O(\log n)$ span whp.

Theorem 5.3. The unweighted activity selection problem can be solved in $O(n \log n)$ work and $O(\log n)$ span whp.

5.2 Longest Increasing Subsequence (LIS)

We propose a parallel algorithm for the longest increasing subsequence (LIS) problem using our phase-parallel framework. Given a sequence a, LIS asks for the longest subsequence in a that is strictly increasing. LIS is widely studied, and its parallel solutions have been studied in [5, 43, 48, 52, 53, 58, 59, 61, 67]. Most of these algorithms [43, 52, 58, 59, 61, 67] introduced polynomial overhead in work, and Alem and Rahman’s algorithm [5] has $\Theta(n)$ span. Kruschke and Tiskin’s BSP algorithm [33] translates to $O(n)$ work and $O(n^{2/3})$ span, which is the only nearly-work-efficient algorithm with sublinear span. This algorithm relies on complicated techniques from [68], and has no implementation. In fact, we are unaware of any previous parallel LIS implementation with competitive performance to the standard sequential $O(n \log n)$ LIS algorithm.

Sequentially, LIS can be computed using the dynamic programming (DP) recurrence as follows. Let $dp[i]$, called the DP value, be the LIS length of $a_{1:i}$ ending with a_i. Then

$$
 dp[i] = \max(1, \max_{j < i, a_j < a_i} dp[j] + 1)
$$

We can iteratively compute $dp[i]$ and maintain any search structure to find $\max_{j < i, a_j < a_i} dp[j]$ in $O(\log n)$ work. Our new phase-parallel LIS algorithm parallels this sequential algorithm and achieves near work-efficiency ($O(n)$ expected work) and round-efficiency. Moreover, our algorithm is implementable, and we show experimental study in Sec. 6.3. Here we maximize LIS length, but our algorithm can be generalized to the weighted case where objects have different weights.

An object a_i is ready once all objects a_j with $j < i, a_j < a_i$ are ready. In our phase-parallel framework, the rank of an object a_i is the size of the LIS ending with a_i (its DP value). An object a_i only depends on objects with a smaller rank. After all objects with rank r have finished, all objects with rank $r + 1$ must be ready. The main challenge is to avoid processing all dependencies since there can be $\Theta(n^2)$ of them. Interestingly, the problem exhibits a nice geometric property. If we draw each object as a 2D coordinate (i, a_i), all the objects that a_i relies on are the points to its lower-left area (see Fig. 3). Therefore we can determine if an object x is ready using a 2D range query on the number of unfinished objects to its lower-left area. Similarly, the DP value of x can be obtained by querying the maximum DP value among all objects in its lower-left area (and plus one). Both queries can be done by an augmented 2D range tree (see Sec. 2). This gives a simple algorithm, where in each round, we can run a 2D range query to every unfinished object to identify the
We also maintain its DP value \(x \) (those in its lower-left corner) are finished. If so, we attempt to wake up \(x \) by checking whether all objects in \(P(x) \) (those in its lower-left corner) are finished. If so, \(x \) is ready, and we query the maximum DP value in \(P(x) \) to compute \(x \)'s DP value. Otherwise, \(x \) is not waked up successfully, and selects another random unfinished object in its lower-left corner as the new pivot. In each round, all ready objects will attempt to wake up all objects using \(x \) as the pivot. This inductively guarantees that objects with rank \(i \) (LIS length \(i \)) are waked up and processed in round \(i \).

Our algorithm is in Algorithm 3. Each object corresponds to a point, defined on its x-coordinate (its index \(i \)), and y-coordinate \((a_i) \). We also maintain its DP value \(dp \) (initialized to \(-\infty\)). We create a virtual point \(p [0] \) as a starting point with index 0 and value \(-\infty\).

We use a range tree \(T_{range} \) to maintain all the points in the 2D planar, augmenting on a tuple \((n_{\infty}, dp^*, x^*)\), which records for the current subtree, the number of unfinished points \(n_{\infty} \), the maximum DP value \(dp^* \), and an x-coordinate \(x^* \) (an index). If the maximum DP value \(dp^* \) is \(-\infty\), which means that there exist unfinished elements in this subtree, then the index \(x^* \) is selected uniformly at random from the unfinished objects. Otherwise, \(x^* \) is used to record the index to achieve the maximum DP value, which can be used to reconstruct the LIS if needed. To maintain such augmented values, the combine function simply adds up \(n_{\infty} \) (Lines 18 and 19), and reconstruct the LIS if needed. To maintain such augmented values, we also use a multi-map \(T_{pivot} \) to maintain the pivot-object pairs.

The algorithm starts from a frontier of the virtual point \(p [0] \). Initially, \(T_{pivot} \) stores pairs \((0, i)\) for all \(i \), since \(p [0] \) is the initial pivot of all objects. In each round, the algorithm processes each object \(x \) in the frontier in parallel. We first find all objects \(q \) such that \((x, q) \in T_{pivot} \), which are all objects with pivots in the frontier (Line 27). We attempt to wake up each such object \(q \) by searching in \(T_{range} \) the half-open rectangle with top-right point as \(q \) (Line 29), getting triple \((_k, k, i)\), where \(k \) is maximum \(dp^* \) in the query range and \(i \) is the \(x^* \) value. If \(k \neq +\infty \) (Line 30), meaning that there is no unfinished object in \(q \)'s lower-left area, then \(q \) is ready and we set the DP value of \(q \) as \(1 + k \) (Line 31). Otherwise (\(n_{\infty} \neq 0 \)), there are still unfinished objects in \(q \)'s lower-left area, and we reset \(q \)'s pivot as \(i \), which is selected uniformly at random from all unfinished objects in the queried range.

At the end of a round, all newly-generated pivot-object pairs are inserted into \(T_{pivot} \) in parallel (Line 35-36). All newly finished objects are packed into next frontier (Line 34). The DP values of the newly finished objects are updated in \(T_{range} \) (Line 37). We use the following lemma to prove the work of the algorithm and prove it in the full version of this paper [62].

Lemma 5.4. Construct a sequence \(x_0 \) as follows. Let \(x_0 = 1 \), and \(x_i \) be a uniformly random number selected from \(x_{i-1} \) to \(n \). Let \(k \) be the first element s.t. \(x_k = n \). Then \(k = O(\log n) \) w.h.p.

Lemma 5.5. For each object \(x \) in the input sequence of size \(n \), Algorithm 3 will attempt to wake up \(x \) for \(O(\log n) \) times w.h.p.

Proof. For an object \(x \), let \(S \) be the sequence of objects before \(x \) and smaller than \(x \) sorted by rank. Let the first pivot of \(x \) be the \(p \)-th
object in S, which is selected uniformly at random from S. When S_p finishes, all objects in S with rank smaller than S_p must have finished, and the next pivot is selected uniformly at random from $S_{p'}\ldots n$, where $p' > p$. Similar process applies to later pivot selections. Therefore, the number of pivots selected for x is no more than the length of sequence in Lemma 5.4, which is $O(n \log n)$ whp.

Theorem 5.6. Algorithm 3 computes the LIS of a sequence of size n in $O(n \log^2 n)$ work and $O(r \log^2 n)$ span whp, where r is the rank (LIS length) of the input sequence.

Proof. First, all initialization including constructing the range tree has work $O(n \log n)$ and span $O(\log^2 n)$. Assume in round i there are n_i objects in the ido list, which are the objects that we attempt to wake up. Line 27 finds at most n_i objects from T_{pivot} with $O(n_i \log^2 n)$ work. Each range query costs $O(\log^2 n)$, and thus the total cost in the parallel for-loop in Line 28 is $O(n_i \log^2 n)$. Line 34 packs at most n_i objects with work $O(n_i \log^2 n)$. Line 35 and 36 pack and insert at most n_i elements to T_{pivot}, and thus costs $O(n_i \log^2 n)$. Line 37 updates at most n_i objects to T_{range}, and thus costs $O(n_i \log^2 n)$.

In summary, each round of function $Func$ has work $O(n_i \log^2 n)$. From Lemma 5.5, we know that $\sum n_i = O(n \log n)$. This proves that the total work of Algorithm 3 is $O(n \log^3 n)$ whp.

By definition of rank, the number of rounds in Algorithm 3 is r. In each round, the span bounds of range queries (Line 29), pack (Lines 34–35), and update T_{pivot} and T_{range} (Lines 36 and 37) are all $O(\log^2 n)$. Therefore, the total span is $O(r \log^2 n)$. \Box

5.3 Greedy MIS and Related Applications

In this section, we propose a new parallel MIS (maximal independent set) algorithm. Parallel MIS is widely-studied [3, 13, 23, 24, 28, 29, 32, 33, 41, 42, 56]. Given a graph $G = (V, E)$, an independent set $A \subseteq V$ is a subset of vertices where $\forall u, v \in A, (u, v) \notin E$. An MIS is an independent set A such that $\forall v \in V, v \notin A, A \cup \{v\}$ is not an independent set.

The widely-adopted greedy MIS algorithm [13, 23, 28, 29, 42, 56] starts with assigning each vertex a random priority and greedily selecting the vertices based on the priority (highest to lowest). The MIS is initialized as an empty set.

Theorem 5.6. Algorithm 3 computes the LIS of a sequence of size n in $O(n \log^2 n)$ work and $O(r \log^2 n)$ span whp, where r is the rank (LIS length) of the input sequence.

Proof. First, all initialization including constructing the range tree has work $O(n \log n)$ and span $O(\log^2 n)$. Assume in round i there are n_i objects in the ido list, which are the objects that we attempt to wake up. Line 27 finds at most n_i objects from T_{pivot} with $O(n_i \log^2 n)$ work. Each range query costs $O(\log^2 n)$, and thus the total cost in the parallel for-loop in Line 28 is $O(n_i \log^2 n)$. Line 34 packs at most n_i objects with work $O(n_i \log^2 n)$. Line 35 and 36 pack and insert at most n_i elements to T_{pivot}, and thus costs $O(n_i \log^2 n)$. Line 37 updates at most n_i objects to T_{range}, and thus costs $O(n_i \log^2 n)$.

In summary, each round of function $Func$ has work $O(n_i \log^2 n)$. From Lemma 5.5, we know that $\sum n_i = O(n \log n)$. This proves that the total work of Algorithm 3 is $O(n \log^3 n)$ whp.

By definition of rank, the number of rounds in Algorithm 3 is r. In each round, the span bounds of range queries (Line 29), pack (Lines 34–35), and update T_{pivot} and T_{range} (Lines 36 and 37) are all $O(\log^2 n)$. Therefore, the total span is $O(r \log^2 n)$. \Box

Algorithm 4: The parallel MIS algorithm.

Input: A graph $G = (V, E)$ with priority $p : V \rightarrow \mathbb{Z}$.

Output: Maximal Independent Set of G

```plaintext
parallel_for_each $v \in V$ do
    $T_v \leftarrow$ the TAS tree for $v$
    Maintain the list of TAS trees that contains each vertex
    status[$v$] \leftarrow undecided
parallel_for_each $v \in V$ do
    if $T_v$ is empty then $WakeUp(v) // no blocking neighbor$
    return all $v \in V$ marked as selected

Func $WakeUp(v)$
status[$v$] \leftarrow selected
parallel_for_each $u \in N(v)$ do
    status[$u$] \leftarrow removed
parallel_for_each $TAS$ tree $T_v$ contains $u$ do
    if status[$u$] \neq removed then
        $x \leftarrow$ the leaf of $u$ in $T_v$
        $x$.flag \leftarrow true
        $p \leftarrow parent(x)$
    while test_and_set($p$.flag) successful do
        if $p$ is the root of $T_u$ then
            $WakeUp(u)$
        Break
    $p \leftarrow parent(p)$
```

that can apply in each round ($O(\log n)$ steps each requiring an $O(\log n)$-span min-reduce). There exist other algorithms such as Prism [51] which is work-efficient with $O(\log^2 n)$ span. However, it assumes to know the number of processors in the algorithm, and a strong constant-time atomic operation fetch-and-decrease.

In this paper, we show a new, asynchronous approach that improves span, while maintaining work-efficiency for parallel MIS. The key idea is to wake up a vertex only when the last blocking neighbor is finished. We use the atomic operation test_and_set (TAS), and build a complete binary tree, called the TAS tree, for each vertex, and use it to check if all the blocking neighbors are finished. Let the TAS tree of v be T_v. Each leaf in T_v corresponds to a blocking neighbor u of v (i.e., with a higher priority than v). We set a flag (initialized to zero) in each leaf to show if u has been unavailable. Each internal node in the TAS tree also maintains a flag: it is one when at least one subtree is fully unavailable, and zero otherwise. For example, in Fig. 4(b), u maintains four blocking neighbors in its TAS tree. Note that when all leaves in the T_u are one (unavailable), u is ready to be added to the MIS. We want to use the flag to reflect the unavailability of the subtree. More precisely, for each subtree t, when the last flag in t becomes one, the information should be carried to t’s parent.

The pseudocode of our MIS algorithm is given in Algorithm 4. The algorithm starts with constructing the TAS trees (initialized to zero for all tree nodes), and finding all vertices with an empty TAS tree (the ready ones). We start with processing these vertices in parallel. When processing a vertex, we will mark each of its neighbors u as unavailable. We further need to notify all the TAS trees containing u that u is now unavailable. For each of the TAS trees, we set u’s flag in the leaf to be one (Line 12). This information is propagated up along the path to set the flag of its parent, call it p, to be one by TAS (Line 17). If the TAS succeeds, it means that
the other branch of p's subtree is not fully finished yet, and we can just quit. For example, in Fig. 4, after we process 3 in round 1, we set 3 and 5 as unavailable in G's TAS tree. Both of them will TAS their parent and succeed, so they quit. When the TAS fails, it means that p's flag is already one, so the other branch has been fully unavailable. Since the current subtree at p is also fully unavailable, we will continue to attempt mark p's parent using TAS recursively. For example, in Fig. 4, when we mark 3 as unavailable in G's TAS tree, we first TAS its parent. As it was set by 5 previously, the TAS fails. We then continue to its parent (the root). This TAS succeeds. When a TAS at the root of any TAS tree T_α fails, the entire subtree is now unavailable, so v is ready to be waked up (Line 19), and we will repeat this process for v. For example, when we mark 1 as unavailable, we TAS its parent and fail, and continue to the parent, which is the root. This TAS also fails, which means the entire tree is unavailable. Therefore, 13 can be waked up.

We note that our new MIS algorithm is fully asynchronous: no round-based synchronization is used. Although this does not directly follow our phase-parallel algorithm, it also uses the same idea of our Type 2 framework, where we wish to identify the last finished object in $P(x)$ and wake up x at that time. The rank of each vertex v can be viewed as the longest chain with decreasing priority starting from v. We now analyze the cost of this algorithm.

Theorem 5.7. Algorithm 4 generates the greedy maximal independent set of $G = (V, E)$ in $O(m)$ work and $O(\log n \log d_{max})$ span whp. where $n = |V|$, $m = |E|$, and d_{max} is the maximum degree in G.

We show the proof in the full version of this paper [62]. In the worst case when $d_{max} = n$, the span of Algorithm 4 is $O(\log^2 n)$, which improves previous result by a factor of $O(\log n)$. Comparing to Prism [51], our approach requires no knowledge on the number of processors and is completely in the fork-join model. The efficiency of our algorithm comes from the simple idea TAS tree data structure. We note that using tree-like structure to do counting is used in previous work [40, 44], but our algorithm is different in that we make the observation that in the MIS algorithm, the information needed is whether all blocking neighbors all finish, instead of the number of unfinished blocking neighbors. This simplifies the problem and enables better span bound.

Graph Coloring and Matching. Several iterative graph algorithms that share the similar approach can be improved using the same technique. For graph coloring, Jones and Plassmann [49] showed the greedy algorithm that can be parallelized using the similar approach in [13]. Hasenplaugh et al. [47] analyzed a list of heuristics that vary the greedy order of the vertices and can lead to different span bounds and output quality. For graph matching, Blelloch et al. [13] showed a parallel greedy algorithm that is very similar to the MIS algorithm in the same paper. By replacing the original wake-up strategy in [13] with our new approach, we can improve the span by $O(\log n)$. We note that the parallel graph-matching algorithm cannot be fully asynchronous since each edge's readiness relies on two vertices, which needs to be checked after synchronization. Hence, a synchronization is required between the rounds, but that does not change the span bound. The analysis by Hasenplaugh et al. [47] assumes atomic decrement-and-fetch operations which is usually not included on the family of the binary-forking models [12]. Using the technique in this paper can achieve the same bounds without this assumption.

Other Algorithms. Many algorithms in [12, 16–18] have constant size $P(x)$ for all $x \in S$. Blelloch et al. [12] showed that test_and_set can be used to check the readiness in this case. Here we note that this can be considered as a special case for our TAS trees, just with constant sizes. These applications include random permutation, list ranking, and tree contraction [12, 64]; convex hull and Delaunay triangulation [16–18]. Although we do not improve the bounds of these algorithms, we show the interconnections among all these algorithms, and an additional angle to review these problems and algorithms.

6 Experiments

In addition to the new theoretical results, we also implemented many proposed algorithms based on our phase-parallel frameworks, including activity selection (both Type 1 and Type 2), Huffman tree, SSSP, and LIS. We use our experiments as proofs-of-concept to show how work-efficiency and round-efficiency affect performance in practice. We run our experiments on a 96-core (192 hyperthreads) machine with four Intel Xeon Gold 6252 CPUs, and 1.5 TiB of main memory. Our implementation is in C++ with Cilk Plus [55]. For the parallel results, we use all cores and fully interleave the memory among NUMA areas using numacl + all. We use r as the input rank. All reported numbers are the averages of the last five runs among six repeated experiments. Due to page limitation, we put some extra experimental results and discussions about LIS and Huffman tree in the full version of this paper [62].

6.1 Activity Selection

We implement Type 1 and Type 2 algorithms for activity selection. We also implement a sequential version based on the DP recurrence in Eq. (1) for comparison. For each activity, we set a random start time and a length based on a truncated normal distribution. We control the mean and standard deviation of this distribution to control...
the rank of the input data. The weights are generated uniformly at random in $[1, 2^{32}]$.

Fig. 5(a) shows the running time of all tested algorithms on 10^9 input activities with various ranks. Both our Type 1 and Type 2 algorithms have very similar performance and outperform the classic sequential algorithm up to rank of 4×10^6. Note that the running time of our algorithm increases as the rank increases because our algorithms have span proportional to the rank. Also, when the rank is large, each round in the algorithm only deals with a small number of objects, which also harms parallelism. Even so, the running time of our algorithm seems to grow sublinearly with the rank. This is because with about 200 threads, the work should still dominate the cost, and both our algorithms are work-efficient. Interestingly, the performance of the classic sequential algorithm improves with increasing input rank. This is because in the sequential algorithm, when the rank is large, the range query of an activity x (see Eq. (1)) will likely find an activity close to x, which exhibits better cache locality. For small ranks, our algorithms can be up to 80x faster than the sequential algorithm. For rank of $O(\sqrt{n})$, our algorithm is still about 14x than the classic sequential algorithm.

Fig. 5(b) shows the running time of all tested algorithms on different input sizes with a fixed rank of $r = 45000$. For other values of the rank, we see similar trends, so we just show $r = 45000$ as an example. Our algorithm scales well to large input sizes. The sequential algorithm grows superlinearly with the input size n, which matches the theoretical cost $O(n \log n)$. As shown in Fig. 5(b), our algorithm grows much slower with n (almost linearly). This is because when n increases, the number of activities to be processed within each round also increases, which overall enables better parallelism. We believe that this indicates the potential of our algorithm to scale to even larger data and more threads.

On all tests, Type 1 algorithm outperforms the Type 2 algorithm by up to 35%. This is because in the Type 2 algorithm, we need to first find pivots for all activities, while in the Type 1 algorithm, we directly start with processing all ready activities, and use a range query to find the frontier. Nevertheless, the two algorithms still have very similar performance and both outperform the classic sequential algorithm for reasonably large input rank.

\section{6.2 Parallel SSSP}

\textbf{Background.} SSSP is a challenging problem in the parallel setting. As mentioned, Dijkstra is work-efficient but hard to parallelize. Bellman-Ford has better parallelism but significantly more work. Even so, parallel Bellman-Ford has good performance on low-diameter graphs such as social networks [39, 63] due to better parallelism. In practice, many heuristics were proposed aiming to achieve a tradeoff between work and parallelism. For example, the Δ-stepping algorithm [57] determines the correct shortest distances of vertices in increments of Δ of the tentative distances. In step i, the algorithm will find and settle down all the vertices with distances in $[i\Delta, (i + 1)\Delta]$. Δ-stepping is highly practical and widely used. However, its performance is very sensitive to the parameter Δ [39].

\textbf{Our experiments.} As mentioned in Sec. 4.2, our phase-parallel algorithm settles down all vertices within tentative distance $[iw^*, (i + 1)w^*]$, where w^* is the smallest edge weight. This is conceptually the same as using $\Delta = w^*$ in Δ-stepping [57]. Therefore, we run experiments using the Δ-stepping implementation by Dong et al. [39] to test our idea. We note that this is not exactly the same as our algorithm as the implementation does not use a tree-based data structure to extract the frontier\footnote{In fact, almost none of the parallel SSSP implementation uses tree-based structures to maintain distances due to their worse cache locality than flat arrays.}, but is still “work-efficient” w.r.t. the number of total relaxations. We note that empirically, the I/O cost in processing and relaxing edges is usually the main cost in practical parallel SSSP algorithms. Our results highly match our theory. We tested two graph benchmarks, Twitter [54] and Friendster [69]. Both of them are real-world large-scale social networks with small diameters.

In our experiments, we fix the largest edge weight as $w_{\text{max}} = 2^{23}$, vary the w^* from 2^{17} to 2^{22}, and set the weight uniformly at random in this range for each edge\footnote{This setting is similar to weighted BFS [35] (which is trivially work-efficient). The difference is that after normalizing, the edge weight in our problem are not necessarily integers as in weighted BFS.}. For each edge weight range, we run Δ-stepping with Δ varying from 2^{16} to 2^{26}. We show the running time in Fig. 6. For both graphs, the best choice of Δ almost exactly matches w^* (differ by at most 2x), when w^* is close to w_{max}. This verifies the importance of work-efficiency in practical SSSP algorithms. When w^* gets even smaller, using $\Delta = w^*$ does not perform well, which is also as expected—despite work-efficiency, using a small Δ limits the frontier size, hence we cannot fully exploit parallelism. This also reveals the work-parallelism (or work-round)
tradeoff. In all, when w_{max}/w^* is within 32, using our algorithm (i.e., $\Delta = w^*$) gives reasonably good performance.

It is worth noting that we also tried the same algorithm on large-diameter graphs, such as some road graphs [1]. Probably not surprisingly, even on $w^* = w_{\text{max}}/2$, $\Delta = w^*$ did not give the best performance. This is because on such graphs, the frontier size is usually small, and the performance is usually limited by the lack of parallelism. In this case, avoiding extra work does not help much in improving performance (and even harms the performance since the parallelism gets worse). Many state-of-the-art implementations [39, 70] optimize performance on such (large-diameter) graphs by sacrificing more work to get better parallelism.

6.3 Parallel LIS

We implemented our LIS algorithm. We use nested arrays to represent augmented range trees to improve locality. We also use a heuristic when choosing pivots—instead of choosing a uniformly random pivot, we choose the right-most unfinished point as the pivot. This is based on an intuition such that points to the right are more likely to be processed in later rounds. We also implemented a standard $O(n \log n)$ sequential version based on Eq. (2).

We test input data of 10^8 with different ranks (LIS sizes). We present results for LIS implementations in Fig. 7 and Fig. 8. We also vary the input rank, which is the LIS size. We use two different data patterns. The first one is roughly k segments of data, and we call it the segment pattern. Within each segment the data values are roughly decreasing (we added some random noise), and across the segments, the values are roughly increasing. The LIS size is about k. The other pattern is generated by using an increasing line $a_i = t \times i + b_i$, where b_i is a random variable choosing from a uniform distribution. We call it the line pattern. By changing the slope t and the distribution of b, we can also control the rank of the input data. We give a visualization of the input data pattern in the full version of this paper [62].

We show our running time as well as the average number of wake-up attempts for all objects. On the two different data patterns, our algorithm is faster up to when the rank r is about 100, and perform worse than the sequential algorithm afterwards. Note that our algorithm has an $O(\log^2 n)$ overhead in work. When the parallelism is not sufficient to compensate for the overhead in work, the performance may drop.

Interestingly, similar to the activity selection, our algorithm is getting slower as the rank increases (which matches theory), but the standard sequential algorithm is getting faster. We believe the improvement in the sequential algorithm is also caused by better locality because the range query (in Eq. (2)) for an object x will find an object close to x.

We note that our algorithm still show very good scalability—in most tests, our self-speedup is more than 40x. The poor performance when the rank is large comes from the work-inefficiency. Although the overhead is polylogarithmic, it can still be large ($\log^2 n$ is much more than the number of available processors on our machine). Indeed, the sequential running time (on one core) of our algorithm is much more than the standard sequential algorithm. Therefore, when k is large, the parallelism cannot compensate the overhead due to work-inefficiency.

![Figure 7: Experiments on LIS (segment).](image1)

![Figure 8: Experiments on LIS (line).](image2)

7 CONCLUSION AND FUTURE WORK

In this paper, we used the phase-parallel framework with general techniques to parallelize sequential iterative algorithms with certain dependences, and designed work-efficient and round-efficient algorithms for a variety of classic problems. Our results improved the previous theoretical bounds for many of them (e.g., the LIS and MIS algorithms). We also implemented these algorithms. Our results illustrated how work-efficiency and round-efficiency affect performance in practice (which matches our theory). For reasonable (not too large) input ranks, our work-efficient algorithms achieved good parallelism and outperformed the sequential algorithms. One interesting future direction is to reduce the $O(\log^2 n)$ overhead in the work of the LIS algorithm, which is also likely to improve its practical performance.

ACKNOWLEDGEMENT

This work is supported by NSF grant CCF-2103483.

REFERENCES

