
Parallelism in Randomized Incremental Algorithms

Guy E. Blelloch
Carnegie Mellon University

guyb@cs.cmu.edu

Yan Gu
Carnegie Mellon University
yan.gu@cs.cmu.edu

Julian Shun
UC Berkeley

jshun@eecs.berkeley.edu
Yihan Sun

Carnegie Mellon University
yihans@cs.cmu.edu

ABSTRACT
In this paper we show that many sequential randomized incremental
algorithms are in fact parallel. We consider several random incre-
mental algorithms including algorithms for comparison sorting and
Delaunay triangulation; linear programming, closest pair, and small-
est enclosing disk in constant dimensions; as well as least-element
lists and strongly connected components on graphs.

We analyze the dependence between iterations in an algorithm,
and show that the dependence structure is shallow for all of the
algorithms, implying high parallelism. We identify three types of de-
pendences found in the algorithms studied and present a framework
for analyzing each type of algorithm. Using the framework gives
work-efficient polylogarithmic-depth parallel algorithms for most of
the problems that we study. Some of these algorithms are straightfor-
ward (e.g., sorting and linear programming), while others are more
novel and require more effort to obtain the desired bounds (e.g.,
Delaunay triangulation and strongly connected components). The
most surprising of these results is for planar Delaunay triangulation
for which the incremental approach is by far the most commonly
used in practice, but for which it was not previously known whether
it is theoretically efficient in parallel.

1. INTRODUCTION
The randomized incremental approach has been an extremely

useful paradigm for generating simple and efficient algorithms for
a variety of problems. There have been dozens of papers on the
topic (e.g., see the surveys [57, 48]). Much of the early work was in
the context of computational geometry, but the approach has more
recently been applied to graph algorithms [20, 23]. The main idea is
to insert elements one-by-one in random order while maintaining a
desired structure. The random order ensures that the insertions are
somehow spread out, and worst-case behaviors are unlikely.

The incremental process would appear sequential since it is it-
erative, but in practice incremental algorithms are widely used in
parallel implementations by allowing some iterations to start in
parallel and using some form of locking to avoid conflicts. Many
parallel implementations for Delaunay triangulation and convex hull,
for example, are based on the randomized incremental approach [17,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SPAA’16, July 11–13, 2016, Pacific Grove, California, USA.

c© 2016 ACM. ISBN 978-1-4503-4210-0/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2935764.2935766

26, 18, 46, 5, 33, 15, 50, 59]. In theory, however, after 25 years,
there are still no known bounds for parallel Delaunay triangulation
using the incremental approach, nor for many other problems.

In this paper we show that the incremental approach for Delaunay
and many other problem is actually parallel, at least with the right
incremental algorithms, and leads to work-efficient polylogarithmic-
depth (time) algorithms for the problems. The results are based on
analyzing the dependence graph. This technique has recently been
used to analyze the parallelism available in a variety of sequential
algorithms, including the simple greedy algorithm for maximal in-
dependent set [7], the Knuth shuffle for random permutation [60],
greedy graph coloring [40], and correlation clustering [49]. The
advantage of this method is that one can use standard sequential al-
gorithms with modest change to make them parallel, often leading to
very simple parallel solutions. It has also been shown experimentally
that this approach leads to quite practical parallel algorithms [6],
and to deterministic parallelism [12, 6].

The contributions of the paper can be summarized as follows.

1. We describe a framework for analyzing parallelism in randomized
incremental algorithms, and give general bounds on the depth of
algorithms with certain dependence probabilities (Section 2).

2. We show that randomly ordered insertion into a binary search
tree is inherently parallel, leading to an almost trivial comparison
sorting algorithm taking O(logn) depth and O(n logn) work
(i.e., n processors), both with high probability on the priority-
write CRCW PRAM (Section 3). Surprisingly, we know of no
previous description and analysis of this parallel algorithm.

3. We propose a new randomized incremental algorithm for planar
Delaunay triangulation, and then describe a simple way to paral-
lelize it (Section 4). The algorithm takes O(log2 n) depth with
high probability, and O(n logn) work (i.e., n/ logn processors)
in expectation, on the CRCW PRAM. It would seem to be by
far the simplest work-efficient parallel Delaunay triangulation
algorithm.

4. We show that classic sequential randomized incremental algo-
rithms for constant-dimensional linear programming, closest pair,
and smallest enclosing disk can be parallelized (Section 5). This
leads to very simple linear-work and polylogarithmic-depth ran-
domized parallel algorithms for all three problems.

5. For two incremental graph algorithms, instead of forcing the
parallel version to abide by all dependences, we allow some
dependences to be violated, but show that this does not asymptot-
ically increase work, or change the result. We use this approach
for a sequential algorithm for computing least-element lists, lead-
ing to an efficient parallel implementation (Section 6.1). Least-
element lists have applications for probabilistic tree embeddings
on graph metrics [30, 10], and estimating neighborhood sizes in

Problem Work (expected) Depth (with high probability)

Comparison sorting (Section 3) O(n logn) O(logn)

Planar Delaunay triangulation (Section 4) O(n logn) O(log2 n)

2D linear programming (Section 5.1) O(n) O(logn)

2D closest pair (Section 5.2) O(n) O(logn log∗ n)

Smallest enclosing disk (Section 5.3) O(n) O(log2 n)

Least-element lists (Section 6.1) O(WSP(n,m) logn) O(DSP(n,m) logn)

Strongly connected components (Section 6.2) O(WR(n,m) logn) O(DR(n,m) logn)

Table 1: Work and depth bounds for our parallel randomized incremental algorithms. WSP(n,m) and DSP(n,m) denote the work and depth, respectively, of
a single-source shortest paths algorithm. WR(n,m) and DR(n,m) denote the work and depth, respectively, of performing a reachability query.

graphs [21]. We also use the approach to parallelize an elegant
algorithm for strongly connected components [23] (Section 6.2).

Other than the graph algorithms, which call subroutines that are
known to be hard to parallelize, all of our solutions are work-efficient
and run in polylogarithmic depth (time). The bounds for all of our
parallel randomized incremental algorithms can be found in Table 1.

Preliminaries
We analyze parallel algorithms in the work-depth paradigm [42].
An algorithm proceeds in a sequence of D (depth) rounds, with
round i doing wi work in parallel. The total work is therefore
W =

∑D
i=1 wi. We account for the cost of allocating processors

and compaction in our depth. Therefore the bounds on a PRAM with
P processors is O(W/P + D) time [14]. We use the concurrent-
read and concurrent-writes (CRCW) PRAM model. By default,
we assume the arbitrary-write CRCW model, but when stated use
the priority-write model. We say O(f(n)) with high probability
(w.h.p.) to indicateO(kf(n)) with probability at least 1−1/nk.

2. ITERATION DEPENDENCES
An iterative algorithm is an algorithm that runs in a sequence of

steps (iterations) in order. When applied to a particular input, we
refer to the computation as an iterative computation. Each step i
of an iterative computation does some work W (i), and has some
depth D(i) (the steps themselves can be parallel). Step j is said
to depend on step i < j if the computation of step j is affected by
the computation of step i. The particular dependences, or even the
number of steps, can be a function of the input, and can be modeled
as a directed acyclic graph (DAG)—the steps (I = 1, . . . , n) are
vertices and dependences between them are arcs (directed edges).

DEFINITION 1 (ITERATION DEPENDENCE GRAPH [60]). An
iteration dependence graph for an iterative computation is a (di-
rected acyclic) graph G(I, E) such that if every step i ∈ I runs
after all predecessor steps in G have completed, then every step will
do the same computation as in the sequential order.

We are interested in the depth (longest directed path) of iteration
dependence graphs since shallow dependence graphs imply high
parallelism—at least if the dependences can be determined online,
and depth of each step D(i) can be appropriately bounded. We
refer to the depth of the DAG as the iteration depth, and denote it
as D(G). In this paper, we are interested in probabilistic bounds on
the iteration depth over random input orders.

An incremental algorithm is an iterative algorithm that maintains
some property over elements while inserting a new element on each
step. We will use E = {e1, . . . , en} to indicate the insertion order
of n elements. A randomized incremental algorithm is an incre-
mental algorithm in which the elements are added in a uniformly

random order. In randomized incremental algorithms, the presence
of a dependence arc between steps i and j will have a probability
pij based on all possible orders (each of the n! orders is a primitive
event in the sample space). We are interested in upper bounds on
these probabilities, which we will refer to as p̂ij . A subtle point
is that the exact probabilities pij are sometimes not independent
(e.g., along a path), but the upper bounds p̂ij are, allowing them to
be multiplied. We will use backwards analysis [57]—we consider
“removing” randomly selected elements one at a time from the end,
noting that the analysis of elements 1, . . . , i does not depend on the
elements j > i.

In this paper, we consider three types of incremental algorithms,
which we refer to as Type 1, 2, and 3, for lack of better names.

Type 1 Algorithms. In these algorithms we analyze the dependence
depth by considering all possible paths in the iteration dependence
graph and taking a union bound over the probability of each. We
describe two algorithms of this type—sorting by insertion into a bi-
nary search tree, and incremental planar Delaunay triangulation. In
the algorithms (and indeed in just about all incremental algorithms)
inserting an element j between two elements i < j and k > j
will never add a dependence between i and k (although it might
remove one). The property means that we only need to consider the
dependence between positions i and i+1 when calculating an upper
bound on the probability p̂ij (j > i). In particular, for all j ≥ i+ 1
we use p̂i(i+1) ≥ p̂ij ≥ pij . We use the following lemma.

LEMMA 2.1. Consider an iteration dependence graph G of n
iterations with p̂ij = f(i) ≥ 1/n, independent along any path,
then

Pr(D(G) ≥ l) < n

(
e
∑n

i=1 f(i)

l

)l

PROOF. Consider a path of length l−1, and letK ⊆ {1, . . . , n}
be the vertices on the path (|K| = l). We have that the probability
of the path existing is upper bounded by:

P (K) = n
∏
k∈K

f(k) .

The multiplicative factor of n is needed to account for the fact that
the last element of Kdoes not contribute to the probability of the
path and can be as small as 1/n. We can now take the union bound
over all possible paths of length l − 1, giving:

Pr(D(G) > l − 1) ≤ X(G) =
∑

K⊆{1,...,n},|K|=l

P (K)

If f(i) is a constant with value p̂ we have:

X(G) =

(
n

l

)
np̂l < n

(
enp̂

l

)l

= n

(
e
∑n

i=1 f(i)

l

)l

where we use the inequality
(
n
m

)
<
(
en
m

)m.

We now show that unequal (non-constant) probabilities that main-
tain the same sum

∑n
i=1 f(i) will only reduce X(G) and hence

the upper bound on Pr(D(G) ≥ l). Therefore the probability is
maximized by the equation above. Consider two locations i and j
such that f(i) 6= f(j). We show that changing these probabilities
both to p̂m = (f(i) + f(j))/2 will increase X(G). A path will
either go through i but not j, j but not i, neither or both. Clearly
the ones through neither will not affect the total sum. For every
path through just i there is a path through just j going through the
same set of other vertices. If Pr is the product of probabilities of
the other vertices in one of these pairs of paths then the contribution
to the union bound of both is f(i)Pr + f(j)Pr = 2p̂mPr . The
contribution from these paths is therefore not changed by changing
f(i) and f(j) to p̂m. However, the contribution from paths going
through both will increase since the old product is f(i)f(j)Pr while
the new one is p̂2mPr , which has to be at least as large.

COROLLARY 2.2. Consider an iteration dependence graph G
of n iterations with p̂ij ≤ c/i, independent along any path. Then
for any k ≥ 2ce2 we have

Pr(D(G) > k lnn) ∈ O(1/nk−1) .

PROOF. Plugging into Lemma 2.1 gives:

Pr(D(G) ≥ k lnn) < n

(
ec
∑n

i=1 1/i

k lnn

)k lnn

< n

(
ec(1 + lnn)

k lnn

)k lnn

≤ n(1/e)k lnn = 1/nk−1

To apply the previous lemma or corollary requires showing in-
dependence of the upper p̂ij along every path. For sorting this is
easy. For Delaunay triangulation the probabilities are not indepen-
dent among the iterations corresponding to points, but we divide
the iterations into sub-iterations, corresponding to the creation of
triangles, for which they are independent.

The Type 1 algorithms that we describe can be parallelized by
running a sequence of rounds. Each round checks all remaining
steps to see if their dependences have been satisfied and runs the
steps if so. The algorithms require at most O(n) work per round
to check violations. By Theorem 2.2, the number of rounds will be
O(logn) w.h.p. The total expected work is therefore O(n logn)
for the checks, plus the work for the steps, which is the same as for
the sequential variants—O(n logn) in expectation. The total work
is therefore O(n logn) in expectation.

Type 1 incremental algorithms can be implemented in two ways:
one completely online, only seeing a new element at the start of
each step, and the other offline, keeping track of all elements from
the beginning. In the first case, a structure based on the history of all
updates can be built during the algorithm that allows us to efficiently
locate the “position” of a new element (e.g., [38]), and in the second
case the position of each uninserted element is kept up-to-date on
every step (e.g., [19]). The bounds on work are typically the same
in either case. Our incremental sort uses an online style algorithm,
and the Delaunay triangulation uses an offline one.

Type 2 Algorithms. Here we describe a class of incremental al-
gorithms, called Type 2 algorithms, that have a special structure.
The iteration dependence graph for these algorithms is formed as
follows: each step j independently has probability at most c/j of
being a special step for some constant c; each special step j has
dependence arcs to all steps i < j; and all non-special steps have
one dependence arc to the closest earlier special step. For Type

2 algorithms, when a special step i is processed, it will check all
previous steps, requiring O(i) work and d(i) depth, and when a
non-special step is processed it does O(1) work. It can be shown
that in expectation each step takes O(1) work, so this means that
sequential implementations of Type 2 algorithms take O(n) work
in expectation.

THEOREM 2.3. A Type 2 incremental algorithm has an iteration
dependence depth of O(logn) w.h.p., and can be implemented to
run in O(n) expected work and O(d(n) logn) depth w.h.p., where
d(n) is the depth of processing a special step.

PROOF. Since the probabilities are independent and the expec-
tation is

∑n
j=1 c/j = O(logn), using a Chernoff bound, it is easy

to show that the number of special steps is O(logn) w.h.p. With
this bound, we can show that the iteration dependence depth, or
the length of the longest path in the dependence graph, is O(logn)
w.h.p. by noticing that there cannot be two consecutive non-special
steps in a path (i.e., in the worst case every other vertex in the path
is a special step, and there are only O(logn) of them w.h.p.).

We now show how parallel linear-work implementations can be
obtained. A parallel implementation needs to execute the special
steps one-by-one, and for each special step it can do its computation
in parallel. For the non-special steps whose closest earlier special
step has been executed, their computation can all be done in parallel.
To maintain work-efficiency, we cannot afford to keep all unfin-
ished steps active on each round. Instead, we start with a constant
number of the earliest steps on the first round and on each round
geometrically increase the number of steps processed, similar to the
prefix methods described in earlier work on parallelizing iterative
algorithms [7].

Without loss of generality, assume n = 2k for some integer k.
We can process batched steps in k + 1 rounds—the first round runs
the first task and the i-th round (i > 1) runs the second half of the
first 2i−1 tasks (we refer to each batch as a prefix). Each time a
prefix is processed it checks all steps, finds the earliest unfinished
special step, applies the computation associated with that step, and
marks that special step and all earlier steps as finished. Since each
step takes O(1) work in expectation, each time a prefix is processed,
it applies some computation with work O(2i−2) and depth d(n).
The maximum/minimum of n elements can be computed in O(n)
work and O(1) depth w.h.p. on an arbitrary CRCW PRAM [66], so
finding the earliest special step can be done in O(2i−2) work and
O(1) depth w.h.p. Marking steps as finished can be done in the same
bounds. The number of times a prefix needs to be executed is equal
to the number of special steps in the prefix, which for any prefix
k is bounded by

∑2k−1−1

i=2k−2 c/i = O(1) in expectation. Therefore,
the work per prefix is O(2i−2) in expectation, and summed over all
rounds isO(1)+

∑logn
i=2 O(2i−2) = O(n) in expectation. Summed

across all prefixes, the total number of times they are processed is
equal to the iteration dependence depth, which is O(logn) w.h.p.,
and so we have an overall depth of O(d(n) logn) w.h.p.

Type 3 Algorithms. In the third type of incremental algorithms,
instead of fully abiding by the dependence arcs and bounding the
iteration depth, we allow for violations of the dependence arcs, and
hence allow computations to differ from the sequential ordering
possibly doing some extra work. However, we bound the extra work
and show how to resolve the conflicts so the results are the same as
in the sequential algorithm.

Consider a set of elements S. We assume that each element
x ∈ S defines a total ordering <x on all S. This ordering can be
the same for each x ∈ S, or different. For example, in sorting the

total ordering would be the order of the keys and the same for all
x ∈ S. We say the computation has separating dependences if the
following condition is satisfied.

DEFINITION 2 (SEPARATING DEPENDENCES). For any three
elements a, b, c ∈ S, if a <c b <c c or c <c b <c a, then c can
only depend on a if a is inserted first among the three.

In other words, if b separates a from c in the total ordering for c,
and runs first, it will separate the dependence between a and c (also
if c runs before a, of course, there is no dependence from a to c).
Again using sorting as an example, if we insert b into a BST first (or
use it as a pivot in quicksort), it will separate a from c and they will
never be compared (each comparison corresponds to a dependence).

LEMMA 2.4. In a randomized incremental algorithm that has
separating dependences, p̂ij = 2/i is an upper bound on pij .

PROOF. Consider the total ordering <j . The elements are in-
serted in random order, and so the probability that i is the nearest
element before j among the first i is at most 1/i. If it is not the
nearest, it has already been separated from j by an earlier insertion.
Similarly for the nearest element after j, giving a total probability
of 2/i.

COROLLARY 2.5. The number of dependences in a randomized
incremental algorithm with separating dependences is O(n logn)
in expectation.1

This comes simply from the sum
∑n

j=2

∑j−1
i=1 pij which is bounded

by 2n lnn. This leads to yet another proof that quicksort, or ran-
domized insertion into a binary search tree, does O(n logn) com-
parisons in expectation. This is not the standard proof based on
pij = 2/(j − i + 1) being the probability that the i’th and j’th
smallest elements are compared. Here the pij represent the probabil-
ity that the i’th and j’th elements in the random order are compared.

In this paper we introduce graph algorithms that have separating
dependences with respect to insertion of the vertices, and there is a
dependence from vertex i to vertex j if a search from i (e.g., shortest
path or reachability) visits j.

To allow for parallelism we permit iterations to run concurrently
in rounds. This means that we might not separate elements that
were separated in the sequential order (for example, if i separated
j from k in the sequential order, but we run i and j concurrently,
then they might both have a dependence to k). Also, for each
algorithm we describe a way to combine results from steps that
run in parallel so they give an identical result as the sequential
order. If all elements are randomly permuted and the rounds are
of geometrically increasing size starting with constant size, as with
Type 2 algorithms, the approach wastes at most a constant factor in
extra dependences (extra visited vertices in our graph algorithms).

THEOREM 2.6. A randomized incremental algorithm with sep-
arating dependences can run in O(logn) parallel rounds over the
iterations and every element will have O(logn) incoming depen-
dence arcs in expectation (for a total of O(n logn)).

PROOF. As in the proof of Theorem 2.3, assume without loss of
generality n = 2k − 1 for some integer k, and we process batched
steps in k rounds where the batch size increases by powers of 2
(1, 2, 4, 8, . . .). Clearly the number of rounds isO(logn). Consider
the number of incoming arcs to the last element x to be inserted since
it is the worst case in expectation. We can consider all elements at
each round happening at the very beginning of the round, since in a
1Also true w.h.p.

Algorithm 1: INCREMENTALSORT

Input: A sequence K = {k1, . . . , kn} of keys.
Output: A binary search tree over the keys in K.
// ∗P reads indirectly through the pointer P .
// The check on Line 8 is only needed for the parallel version.

1 Root← a pointer to a new empty location
2 for i← 1 to n do
3 N ← newNode(ki)
4 P ← Root
5 while true do
6 if ∗P = null then
7 write N into the location pointed to by P
8 if ∗P = N then
9 break

10 if N .key < ∗P .key then
11 P ← pointer to ∗P .left
12 else
13 P ← pointer to ∗P .right
14 return Root

parallel execution no other elements in the round will separate any
elements in the round from x (although all previous rounds can). For
round i, the beginning of the round is at position 2i−1. Therefore by
Lemma 2.4, the probability from any element in round i is 2/2i−1,
and there are 2i−1 such elements giving 2 as the expected number
of incoming arcs to x from elements in round i. When summed
across the logn rounds we get 2 logn, which gives us the O(logn)
bound on incoming arcs as claimed.

As a side remark we note that by batching we have increased the
number of incoming arcs over the sequential algorithm by a factor
of about (2 log2 n)/(2 lnn) = log2 e ≈ 1.44.

3. COMPARISON SORTING
The first algorithm that we consider is sorting by incrementally in-

serting into a binary search tree (BST) with no rebalancing (w.l.o.g.
we assume that no two keys are equal). It is well-known that for a
random insertion order, this takes O(n logn) expected time. We
apply our approach to show that the sequential incremental algo-
rithm is also efficient in parallel. Algorithm 1 gives pseudocode that
works either sequentially or in parallel. A step is one iteration of the
for loop on Line 2. For the parallel version, the for loop should be
interpreted as a parallel for, and the assignment on Line 7 should be
considered a priority-write—i.e., all writes happen synchronously
across the n iterations, and when there are writes to the same loca-
tion, the smallest value gets written. The sequential version does
not need the check on Line 8 since it is always true.

The dependence between iterations in the algorithm is in the
check if ∗P is empty in Line 6. This means that iteration j depends
on i < j if and only if the node for i is on the path to j. This leads
to the following lemma.

LEMMA 3.1. For keys in random order, INCREMENTALSORT
iteration j depends on iteration i < j with probability at most 2/i,
and this upper bound is independent of all choices for k > i.

PROOF. The proof follows the standard analysis (e.g. [57]). We
consider the probability for steps i and i+ 1 (and hence an upper
bound for all j > i). Since it was inserted last, node i is a leaf
in the BST when i + 1 is inserted. Node i will therefore only be
on the path to i + 1 if they are neighbors in sorted(1, . . . , i + 1).

Node i+ 1 has at most two neighbors, each which is added on step
i with probability 1/i (independent of all choices of k > i), giving
p̂i = 2/i.

Along with Corollary 2.2 this implies the following.

COROLLARY 3.2. Insertion of n keys into a binary search tree
in random order has iteration dependence depth O(logn) w.h.p.

We note that since iterations only depend on the path to the key,
the transitive reduction of the iteration dependence graph is simply
the BST itself. In general, e.g. Delaunay triangulation in the next
section, the dependence structure is not a tree.

THEOREM 3.3. The parallel version of INCREMENTALSORT
generates the same tree as the sequential version, and for a random
order of n keys runs in O(n logn) work and O(logn) depth w.h.p.
on a priority-write CRCW PRAM.

PROOF. They generate the same tree since whenever there is a
dependence, the earliest step wins. The number of rounds of the
while loop is bounded by the iteration depth (O(logn) w.h.p.) since
for each iteration, each round checks a new dependence (i.e. each
round traverses one level of the iteration dependence graph). Since
each round takes constant depth on the priority-write CRCW PRAM
with n processors, this gives the required bounds.

Note that this gives a much simpler work-optimal logarithmic-
depth algorithm for comparison sorting than Cole’s mergesort algo-
rithm [22], although it is on a stronger model (priority-write CRCW
instead of EREW) and is randomized.

4. PLANAR DELAUNAY TRIANGULATION
A Delaunay triangulation (DT) in the plane is a triangulation of a

set of points P such that no point in P is inside the circumcircle of
any triangle (the circle defined by the triangle’s three corner points).
We say a point encroaches on a triangle if it is in the triangle’s
circumcircle, and will assume for simplicity that the points are
in general position (no three points on a line or four points on a
circle). Delaunay triangulation can be solved sequentially in optimal
O(n logn) work. There are also several work-efficient parallel
algorithms that run in polylogarithmic depth [54, 3, 11], but they
are all quite complicated.

The widely-used incremental Delaunay algorithms, due to their
simplicity, date back to the 1970s [36]. They are based on the
rip-and-tent idea: for each point p in order, rip out the triangles
p encroaches on and tent over the resulting cavity with a ring of
triangles centered at p. The algorithms differ in how the encroached
triangles are found, and how they are ripped and tented. Clarkson
and Shor [19] first showed that randomized incremental 3D convex
hull is efficient, running in O(n logn) time in expectation, which
by reduction implies the same results for DT. Guibas et al. (GKS)
showed a simpler direct incremental algorithm for DT [38] with the
same bounds, and this has become the standard version described
in textbooks [48, 24, 29] and often used in practice. The GKS
algorithm uses a history of triangle updates to locate the triangle t
that p is in. It then searches out for all other encroached triangles.
The algorithm, however, is inherently sequential since for certain
inputs and certain points in the input, the search from t will likely
have depth Θ(n), and hence a single step can take linear depth.

Our goal is to use an incremental DT algorithm for which the
steps themselves can be parallelized. For this purpose we use an
offline variant of an algorithm by Boissonnat and Teillaud [13].
We show that the iteration depth is O(logn) w.h.p. although this

Algorithm 2: INCREMENTALDT
Input: A sequence V = {v1, . . . , vn} of points in the plane.
Output: DT(V).
Maintains: A set of triangles M , and for each t ∈M , the

points that encroach on it, E(t).

1 tb ← a sufficiently large bounding triangle
2 E(tb)← V
3 M ← {tb}
4 for i← 1 to n do
5 foreach triangle t ∈M with vi ∈ E(t) do
6 REPLACETRIANGLE(M ,t,vi)
7 return M

8 function REPLACETRIANGLE(M ,t,v)
9 foreach edge (u,w) ∈ t (three of them) do

10 if (u,w) is a boundary of v’s encroached region then
11 to ← the other triangle sharing (u,w)
12 t′ ← (u,w, v)
13 E(t′)← {v′ ∈ E(t) ∪ E(to) | INCIRCLE(v′, t′)}
14 M ←M ∪ {t′}
15 M ←M \ {t}

𝑢

𝑤
𝑣𝑜

𝑣
𝑡′ 𝑡

𝑡𝑜

𝑣′

Figure 1: An illustration of the procedure of REPLACETRIANGLE. For
each edge (u,w) that is a boundary of v’s encroached triangle t, we find
the triangle to on the other side of (u,w), generate the new triangle t′,
and recompute the encroaching set E(t′). Notice that the new (colored)
circumcircle for t′ (the encroaching region for t′) can only contain points
that are in the circumcircles of t and to.

requires analyzing substeps. We further show that each step can be
parallelized leading to a simple parallel algorithm with O(n logn)
work in expectation and O(log2 n) depth w.h.p.

Our variant is described in Algorithm 2. For each triangle t ∈M
it maintains the set of uninserted points that encroach on t, denoted
as E(t). On each step i the algorithm selects the triangles that
point i encroach on (all already known), removes these triangles and
replaces them with new ones (see Figure 1). All work on uninserted
points is done in determining E(t′) for each new triangle t′, and
for each new triangle only requires going through two existing sets,
E(t) and E(t′). This justified by Fact 4.1 [13]. Determining which
triangles encroach on a point can be implemented by keeping a
mapping of points to encroached triangles.

FACT 4.1. When adding a triangle t′ = (u,w, v) for a new
point v, and for the two old triangles t and to that shared the edge
(u,w), we have E(t) ∩ E(to) ⊆ E(t′) ⊆ E(t) ∪ E(to).

PROOF. Let t = (u,w, v′) be the triangle being removed and
to = (w, u, vo) be the other triangle sharing the edge (u,w). The
new point v must be in the circumcircle of t since it is removing
it, but cannot be in the circumcircle of to since then it would be
removing to as well and (u,w) would not be a boundary. The
circumcircle of t′ therefore must be contained in the union of the
circumcircles of t and to, and must contain the intersection (see
Figure 1).

A time bound for INCREMENTALDT of O(n logn) follows from
the analysis of Boissonnat and Teillaud [13], and more indirectly
from Clarkson and Shor [19]. However for completeness and to
show precise (within constant factor) bounds we include a bound on
the number of INCIRCLE tests here. We note that due to Fact 4.1, the
INCIRCLE test is not required for points that appear in both E(to)
and E(t).

THEOREM 4.2. INCREMENTALDT on n points in random order
does at most 24n lnn+O(n) INCIRCLE tests in expectation.

PROOF. On step i, for each point at j > i we consider the
boundary of the region j encroaches on. We define each of the
boundary edges by its two endpoints (u,w) along with the (up to)
two points sharing a triangle with (u,w). Note that in REPLACE-
TRIANGLE a point is only tested for encroachment on the triangle
(u,w, v) if its boundary (u,w, vo, v

′) is being deleted and replaced
with (u,w, vo, v). We can therefore charge every comparison to the
creation of a boundary of a point, and spend it when deleted.

Consider steps i and i+ 1 (recall we can use i+ 1 as a surrogate
for any j > i). By Euler’s formula, the average degree of a node
in a planar graph is at most 6. Therefore, since i + 1 is selected
uniformly at random (among 1, . . . , i+ 1), its expected boundary
size will be at most 6. Each boundary involves up to 4 points from
1, . . . , i, so the probability that the random point removed on step i
is one of them is at most 4/i. Therefore, the total expected number
of boundaries of i + 1 (and hence any j > i) added on step i is
at most 6× 4/i = 24/i. If C is the number of in-circle tests, this
gives:

E[C] ≤ 3n+

n∑
j=2

j∑
i=1

24/i ≤ 24n lnn+O(n)

where the 3n term comes from having to charge for the creation of
the initial bounding triangle.

Parallel Version and Analysis
We now consider the dependence depth of our algorithm. One
approach to parallelizing the algorithm is to on each parallel round
have every uninserted point check if its dependences are satisfied,
and insert itself if so. It turns out that two points i and i + 1 are
dependent if and only if immediately before either is added, their
encroached regions overlap by at least an edge. Unfortunately this
means that the probabilities of the dependence arcs (i, j) and (j, k)
are not independent. In particular if j has a large encroached region,
this increases both pij and pjk. For example, consider a wagon
wheel—(n− 1) points nearly on a circle, and a single point at the
hub. When the hub point is inserted at j, it will have dependence
arcs from all previous points, and to all future points.

We therefore consider a more fine-grained dependence structure
that relaxes the dependences. The observation is that not all triangles
added by a point need to be added on the same round. In particular,
REPLACETRIANGLE only depends on the triangle it is replacing
and the three neighbors. We therefore can run REPLACETRIAN-
GLE(M, t, v) as long as among the points encroaching on t and the
three neighbors of t, there is no earlier point than v. An equal point
is fine, since that would be the same point.

Algorithm 3 describes such a parallel variant. Since the triangles
for a given point can be added on different rounds, the mesh is not
necessarily self consistent after each round. We therefore assume
that if a neighboring triangle (i.e., t1, t2 or t3) is already deleted
it can be ignored, and if not yet added, then REPLACETRIANGLE
cannot proceed until added. A hash table mapping pairs of vertices
representing edges to their up to two adjacent triangles can be used to

Algorithm 3: PARINCREMENTALDT
Input: A sequence V = {v1, . . . , vn} of points in the plane.
Output: DT(V).
Maintains: E(t), the points that encroach on each triangle t.

1 tb ← a sufficiently large bounding triangle
2 E(tb)← V
3 M ← {tb}
4 while E(t) 6= ∅ for any t ∈M do
5 parallel foreach triangle t ∈M do
6 Let t1, t2, t3 be the three neighboring triangles
7 if min(E(t)) ≤ min(E(t1) ∪ E(t2) ∪ E(t3)) then
8 REPLACETRIANGLE(M, t,min(E(t)))

9 return M

find neighboring triangles. We assume that there is a synchronization
point before Line 8.

Note that there is a one-to-one correspondence between the calls
to REPLACETRIANGLE in the sequential and parallel algorithm—
i.e., they are the “same” algorithm but just with a different ordering.
We believe that this parallel version is even simpler than the se-
quential version since it does not require a mapping from points to
encroached triangles.

For a sequence of points V , let GT (V) = (T,E) be the depen-
dence graph defined by PARINCREMENTALDT(V) in the following
way. The vertices T corresponds to triangles created by the algo-
rithm, and for each call to REPLACETRIANGLE(M, t, vi) we place
an arc from triangle t and its three neighbors (t1, t2 and t3) to each
of the one, two, or three triangles created by REPLACETRIANGLE.
Note that we can associate each triangle with the point vi that cre-
ated it. This is an iteration dependence graph over all iterations,
including subiterations that create triangles.

THEOREM 4.3. For points V in random order, D(GT (V)) =
O(logn) w.h.p.

PROOF. For a sequence of points V let T (V, i) be the set of tri-
angles created by point vi, and letEt,t′(V) be the indicator variable
for a dependence arc from triangle t to t′ given V . Let p̂ij be an
upper bound for the total probability that triangles created by vi
have an arc to any single triangle created by vj (uniformly random
over all permutations of the input). More precisely:

p̂ij ≥
1

|V |!

 ∑
V ′∈perms(V)

 max
t∈T (V ′,j)

 ∑
t′∈T (V ′,i)

Et,t′(V
′)

 .

Consider a path going through a triangle created by each point
K ⊆ {1, . . . , n}. If the p̂ij are independent along any path, then the
probability of such a path is bounded by the product of the p̂ij along
the path and the expectation on the number of triangles on the last
point (which is 6 and independent of the p̂ij). For p̂ij = f(i) ≥ 1/n
this gives a total bounded by 6n

∏
k∈K f(k). We can now apply the

proof of Lemma 2.1, where the p̂ij are interpreted in this new way,
and the probability along a path K ⊆ {1, . . . , n} is interpreted as
the probability that any path exists involving triangles created by
those points. As in the proof of Lemma 2.1, the union bound over
all possible subsets K of length l gives an overall upper bound on
the probability of any path of length l − 1:

Pr(D(GT (V)) > l − 1) ≤
∑

K⊆{1,...,n},|K|=l

6n
∏
k∈K

f(k)

𝑣

𝑎

𝑡

𝑏𝑐

𝑡′

𝑒

𝑓

𝑑

Figure 2: The dependence of t′ on four previously created triangles.

and assuming that p̂ij = f(i) = O(1/i) gives O(logn) depth
w.h.p. (the argument about equal probabilities being the worst case
still holds).

We are therefore left with showing that the p̂ij = O(1/i) is a
valid upper bound, and that this bound is independent along any
path (allowing us to multiply them). As usual we consider steps
(points) i and j = i+1, and hence an upper bound for any j > i. We
consider one triangle t′ created at i+1. Every triangle t′ depends on
4 triangles—the t that was sacrificed for it in REPLACETRIANGLE,
and its three neighbors (see Figure 2). These 4 triangles have six
corners in total, any one of which could be the point i. Three of
those points (a, b and c in the figure) would create three triangles
that t′ depends on. The other three (d, e and f in the figure) only
create one triangle t′ depends on. Therefore given that the point i
is selected uniformly at random from i points the total probability
that triangles at i have an arc to t′ (a triangle at i+ 1) is bounded
by p̂ij = (3 · 3 + 3 · 1)/i = 12/i.

The probabilities are independent since p̂ij = 12/i does not
depend on the point j, or indeed any of the points selected in posi-
tions (i+ 1), . . . , n. For example, conditioned on the center of the
wagon wheel being at j, p̂ij = 12/i is still an upper bound. With
p̂ij = O(1/i), and independence of the p̂ij along paths, we can
apply our variant of Lemma 2.1 (described above), and Corollary 2.2
for the result.

THEOREM 4.4. PARINCREMENTALDT (Algorithm 3) runs in
O(n logn) work in expectation and O(log2 n) depth w.h.p. on the
CRCW PRAM.

PROOF. The number of rounds of PARINCREMENTALDT is
D(GT (V)) since the iteration dependence graph is defined by the
algorithm. Each round has depth O(logn) for merging the en-
croached sets and load balancing, for an overall depth of O(log2 n)
(w.h.p.). Assuming each triangle maintains its minimum index,
checking if a triangle is safe to process takes constant work. Since
there are be at most O(n) triangles on any round (true even though
the mesh is not necessarily consistent), each round does at most
O(n) work to check all the triangles, for a total of O(n logn) work
across rounds (w.h.p.). The rest of the work is no more than the
sequential version, which is O(n logn) in expectation.

5. LINEAR-WORK ALGORITHMS
In this section, we study several problems from low-dimensional

computational geometry that have linear-work randomized incre-
mental algorithms. These algorithms fall into the Type 2 category of
algorithms defined in Section 2, and their iteration depth is polyloga-
rithmic w.h.p. To obtain linear-work parallel algorithms, we process
the steps in prefixes, as described in Section 2. For simplicity, we
describe the algorithms for these problems in two dimensions, and
and briefly note how they can be extended to any fixed number of
dimensions.

5.1 Linear Programming
Constant-dimensional linear programming (LP) has received sig-

nificant attention in the computational geometry literature, and sev-
eral parallel algorithms for the problem have been developed [16,
25, 35, 28, 1, 34, 58, 2]. We consider linear programming in two
dimensions. We assume that the constraints are given in general po-
sition and the solution is either infeasible or bounded. We note that
these assumptions can be removed without affecting the asymptotic
cost of the algorithm [56]. The standard randomized incremental
algorithm [56] adds the constraints one-by-one in a random order,
while maintaining the optimum point at any time. If a newly added
constraint causes the optimum to no longer be feasible (a tight
constraint), we find a new feasible optimum point on the line corre-
sponding to the newly added constraint by solving a one-dimension
linear program, i.e., taking the minimum or maximum of the set of
intersection points of other earlier constraints with the line. If no
feasible point is found, then the algorithm reports the problem as
infeasible.

The iteration dependence graph is defined with the constraints as
steps, and fits in the framework of Type 2 algorithms from Section 2.
The steps corresponding to inserting a tight constraint are the special
steps. Special steps depend on all earlier steps because when a tight
constraint executes, it needs to look at all earlier constraints. Non-
special steps depend on the closest earlier special step i because
it must wait for step i to execute before executing itself to retain
the sequential execution (we can ignore all of the earlier constraints
since i will depend on them). Using backwards analysis, a step j
has a probability of at most 2/j of being a special step because the
optimum is defined by at most two constraints and the constraints
are in a randomized order. Furthermore, the probabilities are inde-
pendent among different steps. This gives us a dependence depth of
O(logn) w.h.p. as discussed in Section 2.

As described in the proof of Theorem 2.3, our parallel algorithm
executes the steps in prefixes. Each time a prefix is processed, it
checks all of the constraints and finds the earliest one that causes the
current optimum to be infeasible using line-side tests. The check
per step takes O(1) work and processing a violating constraint at
step i takes O(i) work and O(1) depth w.h.p. to solve the one-
dimensional linear program which involves minimum/maximum
operations. Applying Theorem 2.3 with d(n) = O(1) gives the
following theorem.

THEOREM 5.1. The randomized incremental algorithm for 2D
linear programming can be parallelized to run in O(n) work in ex-
pectation and O(logn) depth w.h.p. on an arbitrary-CRCW PRAM.

We note that the algorithm can be extended to the case where
the dimension d is greater than two by having a randomized incre-
mental d-dimensional LP algorithm recursively call a randomized
incremental algorithm for solving (d− 1)-dimensional LPs. This
increases the iteration dependence depth (and hence the depth of
the algorithm) to O(d! logd−1 n) w.h.p. and increases the expected
work to O(d!n). We note that we can generate the random permuta-
tion only once and reuse it for the sub-problems. Although we lose
independence, the expectation is not affected, and since there are
only a constant (a function of d) number of sub-problems with high
probability, the high probability bound for the depth is not affected.

5.2 Closest Pair
The closest pair problem takes as input a set of points in the plane

and returns the pair of points with the smallest distance between each
other. We assume that no pair of points have the same distance. A
well-known expected linear-work algorithm [51, 44, 32, 39] works
by maintaining a grid and inserting the points into the grid in a

random order. The grid partitions the plane into regions of size r×r
where each non-empty region stores the points inside the region and
r is the distance of the closest pair so far (initialized to the distance
between the first two points). It is maintained using a hash table.
Whenever a new point is inserted, one can check the region the point
belongs in and the eight adjacency regions to see whether the new
value of r has decreased, and if so, the grid is rebuilt with the new
value of r. The check takes O(1) work as each region can contain at
most nine points, otherwise the grid would have been rebuilt earlier.
Therefore insertion takes O(1) work, and rebuilding the grid takes
O(i) work where i is the number of points inserted so far. Using
backwards analysis, one can show that point i has probability at
most 2/i of causing the value of r to decrease, so the expected work
is
∑n

i=1O(i) · (2/i) = O(n).
This is a Type 2 algorithm, and the iteration dependence graph

is similar to that of linear programming. The special steps are the
ones that cause the grid to be rebuilt, and the dependence depth
is O(logn) w.h.p. Rebuilding the grid involves hashing, and can
be done in parallel in O(i) work and O(log∗ i) depth w.h.p. for a
set of i points [31]. We also assume that the points in each region
are stored in a hash table, to enable efficient parallel insertion and
lookup in linear work and O(log∗ i) depth. To obtain a linear-
work parallel algorithm, we again execute the algorithm in prefixes.
Applying Theorem 2.3 with d(n) = O(log∗ n) gives the following
theorem.

THEOREM 5.2. The randomized incremental algorithm for clos-
est pair can be parallelized to run in O(n) work in expectation and
O(logn log∗ n) depth w.h.p. on an arbitrary-CRCW PRAM.

We note that the algorithm can be extended to d dimensions
where the depth is O(log d logn log∗ n) w.h.p. and expected work
is O(cdn) where cd is some constant that depends on d.

5.3 Smallest Enclosing Disk
The smallest enclosing disk problem takes as input a set of points

in two dimensions and returns the smallest disk that contains all of
the points. We assume that no four points lie on a circle. Linear-
work algorithms for this problem have been described [47, 67],
and in this section we will study Welzl’s randomized incremental
algorithm [67]. The algorithm inserts the points one-by-one in
a random order, and maintains the smallest enclosing disk so far
(initialized to the smallest disk defined by the first two points). Let
vi be the point inserted on the i’th iteration. If an inserted point
vi lies outside the current disk, then a new smallest enclosing disk
is computed. We know that vi must be on the smallest enclosing
disk. We first define the smallest disk containing v1 and vi, and
scan through v2 to vi−1, checking if any are outside the disk (call
this procedure Update1). Whenever vj (j < i) is outside the
disk, we update the disk by defining the disk containing vi and
vj and scanning through v1 to vj−1 to find the third point on the
boundary of the disk (call this procedure Update2). Update2 takes
O(j) work, and Update1 takes O(i) work plus the work for calling
Update2. With the points given in a random order, the probability
that the j’th iteration of Update1 calls Update2 is at most 2/j by a
backwards analysis argument, so the expected work of Update1 is
O(i) +

∑i
j=1(2/j) ·O(j) = O(i). The probability that Update1

is called when the i’th point is inserted is at most 3/i using a
backwards analysis argument, so the expected work of this algorithm
is
∑n

i=1(3/i) ·O(i) = O(n).
This is another Type 2 algorithm whose iteration dependence

graph is similar to that of linear programming and closest pair. The
points are the steps, and the special steps are the ones that cause
Update1 to be called, which for step i has at most 3/i probability

of happening. The dependence depth is again O(logn) w.h.p. as
discussed in Section 2.

Our work-efficient parallel algorithm again uses prefixes, both
when inserting the points, and on every call to Update1. We re-
peatedly find the earliest point that is outside the current disk by
checking all points in the prefix with an in-circle test and taking
the minimum among the ones that are outside. Update1 is work-
efficient and makes O(logn) calls to Update2 w.h.p., where each
call takes O(1) depth w.h.p. as it does in-circle tests and takes a
maximum. As in the sequential algorithm, each step takes O(1)
work in expectation. Applying Theorem 2.3 with d(n) = O(logn)
w.h.p. (the depth of a executing a step and calling Update1) gives
the following theorem.

THEOREM 5.3. The randomized incremental algorithm for small-
est enclosing disk can be parallelized to run in O(n) work in expec-
tation and O(log2 n) depth w.h.p. on an arbitrary-CRCW PRAM.

The algorithm can be extended to d dimension, with O(d! logd n)
depth w.h.p., and O(cdn) expected work for some constant cd that
depends on d. Again, we can use the same randomized order for all
sub-problems.

6. ITERATIVE GRAPH ALGORITHMS
In this section we study two sequential graph algorithms that can

be viewed as offline versions of randomized incremental algorithms.
We show that the algorithms are Type 3 algorithms, as described in
Section 2, and also that steps executing in parallel can be combined
efficiently. This gives us simple parallel algorithms for the problems.
The algorithms use single-source shortest paths and reachability
as (black-box) subroutines, which is the dominating cost. Our
algorithms are within a logarithmic factor in work and depth of a
single call to these subroutines on the input graph.

6.1 Least-Element Lists
The concept of Least-Element lists (LE-lists) for a graph (either

unweighted or with non-negative weights) was first proposed by
Cohen [20] for estimating the neighborhood sizes of vertices. The
idea has subsequently been used in many applications related to es-
timating the influence of vertices in a network (e.g., [21, 27] among
many others), and generating probabilistic tree embeddings of a
graph [43, 8], which itself is a useful component in a number of net-
work optimization problems and in constructing distance oracles [8].
For d(u, v) being the shortest path from u to v in G, we have:

DEFINITION 3 (LE-LIST). Given a graph G = (V,E) with
V = {v1, . . . , vn}, the LE-lists are

L(vi) =

{
vj ∈ V | d(vi, vj) <

j−1

min
k=1

d(vi, vk)

}
sorted by d(vi, vj).

In other words, a vertex u is in vertex v’s LE-list if and only if
there are no earlier vertices (than u) that are closer to v. Often one
stores with each vertex vj in L(vi) the distance of d(vi, vj).

Algorithm 4 provides a sequential iterative (incremental) con-
struction of the LE-lists, where the i’th step is the i’th iteration of
the for-loop. The set S captures all vertices that are closer to the i’th
vertex than earlier vertices (the previous closest distance is stored
in δ(·)). Line 3 involves computing S with a single-source short-
est paths (SSSP) algorithm (e.g., Dijkstra’s algorithm for weighted
graphs and BFS for unweighted graphs, or other algorithms [62, 65,
45, 9] with more work but less depth). Note that the only minor

Algorithm 4: The iterative LE-lists construction [20]
Input: A graph G = (V,E) with V = {v1, . . . , vn}
Output: The LE-lists L(·) of G

1 Set δ(v)← +∞ and L(v)← ∅ for all v ∈ V .
2 for i← 1 to n do
3 Let S = {u ∈ V | d(vi, u) < δ(u)}
4 for u ∈ S do
5 δ(u)← d(vi, u)
6 concatenate 〈vi, d(vi, u)〉 to the end of L(u)

7 return L(·)

change to these algorithms is to remove the initialization of the
tentative distances before we run SSSP, and instead use the δ(·)
values from previous steps in Algorithm 4. Thus the search will
only explore S and its outgoing edges. Cohen [20] showed that if
the vertices are in random order, then each LE-list has size O(logn)
w.h.p., and that using Dijkstra, with distances initialized with δ(·),
the algorithm runs in O(logn(m+ n logn)) time. Here we show
that the algorithm is in fact parallel, and in particular a Type 3
incremental algorithm.

In this paper, we treat the shortest paths algorithm as a black box
that computes the set S in depthDSP(n′,m′) and workWSP(n′,m′),
where n′ = |S| and m′ is the sum of the degrees of S. We
also assume the cost functions are convex, i.e. WSP(n1,m1) +
WSP(n2,m2) ≤WSP(n,m) for n1 +n2 ≤ n and m1 +m2 ≤ m,
which holds for all existing shortest paths algorithms.

For the separating dependences: vj depends on vi if and only if
vi ∈ L(vj), (i.e., was searched by vi), and we use the total orderings
i <k j if d(vk, vi) < d(vk, vj). This gives:

LEMMA 6.1. Algorithm 4 has a separating dependence for the
dependences and orderings <v defined above.

PROOF. By Definition 2, we need to show that for any three
vertices va, vb, vc ∈ V , if va <c vb <c vc or vc <c vb <c va,
then vc can only be visited on va’s step if va’s step is the first among
the three.

Clearly the statement holds if vc’s step is the earliest among the
three. We now consider the case when vb’s step is the first among
the three. Since d(vc, vc) = 0, va <c vb <c vc cannot happen,
so we only need to consider the case vc <c vb <c va. Since
d(vc, vb) < d(vc, va) and b < a, based on the definition of the
LE-lists, va /∈ L(vc). As a result, vc can only be visited in va’s step
if va’s step is first among the three.

To parallelize the algorithm, we execute prefixes of vertices in
batches that are geometrically increasing in size. Multiple searches
will be executing in parallel in a round, so some dependences will be
violated. We discuss how to fix these violations in a post-processing
phase, which effectively combines the steps so we can apply Theo-
rem 2.6 and Lemma 6.1 to obtain the following theorem.

THEOREM 6.2. The LE-lists of a graph with the vertices in ran-
dom order can be constructed in O(WSP(n,m) logn) expected
work and O(DSP(n,m) logn) depth w.h.p. on the CRCW PRAM.

PROOF. First we bound the cost of the algorithm excluding the
post-processing step. Note that here visiting each vertex is no
longer the same cost but based on the number of outgoing edges.
However, since each vertex is visited no more than O(logn) times,
the cost can be averaged. Assuming random input order, we can
apply Theorem 2.6 and Lemma 6.1 with the convexity of the work
complexity, and this is within the claimed bounds.

Since we execute multiple searches in parallel, there may be
entries in the LE-lists that would not have been generated in the
sequential algorithm. These extra entries violate the property that
entries have to be strictly increasing in distance. We fix this with
a post-processing phase, which effectively combines the steps exe-
cuting in parallel. If the elements in the list are sorted by order of
the vertices, we can sequentially filter out the extra entries in the list
by finding the ones that are out of order by their distance (distances
should be in reverse order). The size of the LE-lists can be shown
to be O(logn) w.h.p. [20, 57], so the overall cost of the scan is
O(n logn) work and O(logn) depth w.h.p.

We now show that we can efficiently sort the list. Without loss of
generality, assume n = 2k for some integer k. Since the order of
vertices in lists can only be violated inside a round, we only need to
sort the entries within rounds. Consider the last vertex vn (which
is the worst case) and let Xi be the indicator variable for the event
that vi is in the LE-list of vn. Thus E[Xi] = 1/i when i < n and
E[Xi] = 1 when i = n. Note that two random variables Xi and Xj

are independent. We analyze the cost of sorting the LE-list of vn in
a round, which executes a prefix of the steps. Assume that we use a
loose upper bound of quadratic work for sorting and let s = 2k−2

and t = 2k−1. The expected work in round 1 is clearly O(1) and in
round k > 1 is:

E

[
(

t∑
j=s+1

Xj)
2

]
= E

[
t∑

j=s+1

X2
j

]
+ 2 · E

 t∑
j=s+1

t∑
j′=j+1

XjXj′

< s · 1

s
+ 2 · 1

s2
· s(s− 1) = O(1)

Since there are O(logn) rounds, the expected work to sort this
LE-list is O(logn) ·O(1) = O(logn). The only exception is Xn,
which is 1 with probability 1 instead of 1/n. In the worst case, this
adds at most O(logn) to the work to compare it to all elements in
the list. Thus the expected work to sort one LE-list in the worst
case is O(logn), and is O(n logn) when summed over all lists.
The depth for sorting is O(logn) [22], which is within the claimed
bounds.

6.2 Strongly Connected Components
Given a directed unweighted graph G = (V,E), a strongly con-

nected component (SCC) is a maximal set of vertices C ⊆ V such
that for every pair of vertices u and v in C, there are directed paths
both from u to v and from v to u. Tarjan’s algorithm [63] finds all
strongly connected components of a graph using a single pass of
depth-first search (DFS) in O(|V |+ |E|) work. However, DFS is
generally considered to be hard to parallelize [53], so a divide-and-
conquer SCC algorithm [23] is usually used in parallel settings [41,
4, 61, 64].

The basic idea of the divide-and-conquer algorithm is similar to
quicksort. It applies forward and backward reachability queries for
a specific “pivot” vertex v, which partitions the remaining vertices
into four subsets of the graph, based on whether it is forward reach-
able from v, backward reachable, both, or neither. The subset of
vertices reachable from both directions form a strongly connected
component, and the algorithm is applied recursively to the three
remaining subsets. Coppersmith et al. [23] show that if the vertex
v is selected uniformly at random, then the algorithm sequentially
runs in O(m logn) work in expectation.

Although divide-and-conquer is generally good for parallelism,
a problem with this algorithm is that the divide-and-conquer tree
can be very unbalanced. The issue is that if the input graph is very
sparse such that most of the reachability searches only visit a few
vertices, then most of the vertices will fall into the subset of un-

Algorithm 5: The sequential iterative SCC algorithm
Input: A directed graph G = (V,E) with V = {v1, . . . , vn}.
Output: The set of strongly connected components of G.

1 V ← {{v1, v2, . . . , vn}} (Initial Partition)
2 Sscc ← {}
3 for i← 1 to n do
4 Let S ∈ V be the subgraph that contains vi
5 if S = ∅ then go to the next iteration;
6 R+ ← FORWARD-REACHABILITY(S, vi)

7 R− ← BACKWARD-REACHABILITY(S, vi)

8 Vscc ← R+ ∩R−

9 V ← V\{S} ∪ {R+\Vscc, R
−\Vscc, S\(R+ ∪R−)}

10 Sscc ← Sscc ∪ {Vscc}
11 return Sscc

reachable vertices from v, creating unbalanced partitions with Θ(n)
recursion depth. Schudy describes a technique to better balance the
partitions [55], however the approach requires a factor of O(logn)
extra work compared to the original algorithm and the depth is equal
to the depth of O(log2 n) reachability queries. Tomkins et al. de-
scribe another parallel approach [64], although the analysis is quite
complicated.2

The divide-and-conquer algorithm [23] can also be viewed as
an incremental algorithm as described in Algorithm 5. A random
ordering is equivalent to picking the pivots at random. This is the
algorithm we will analyze as a Type 3 algorithm. Our analysis is
significantly simpler than those of [55, 64], and furthermore the
work of our algorithm matches that of the sequential algorithm.

As in previous work on parallel SCC algorithms, we treat the
algorithm for performing reachability queries as a black box with
WR(n,m) work and DR(n,m) depth, where n are the number
of reachable vertices and m is the sum of their degrees. It can
be implemented using a variety of algorithms with strong theoret-
ical bounds [62, 65] or simply with a breadth-first search for low-
diameter graphs. We also assume convexity on the workWR(n,m),
which holds for existing reachability algorithms.

We first show that the algorithm has separating dependences.
Here a dependence from i to j corresponds to a forward or backward
reachability search from i visiting j (Lines 6 and 7 in Algorithm 5).
Let T = (t1, t2, . . . , tn) be an arbitrary topological order of com-
ponents in the given graph G, with vertices of the same component
arbitrarily ordered within the component. T is not constructed ex-
plicitly, but only used in analysis. To define the total order for vertex
vi, i.e., <vi , we take all vertices of T that are forward or backward
reachable from vi (including vi itself) and put them at the begin-
ning of the ordering (maintaining their relative order), and put the
unreachable vertices after them. Given this ordering we have the
following lemma.

LEMMA 6.3. Algorithm 5 has a separating dependence for the
dependences and orderings <v defined above.

PROOF. By Definition 2, we need to show that for any three
vertices va, vb, vc ∈ V , if va <c vb <c vc or vc <c vb <c va, vc
2Tomkins et al. [64] claim that their algorithm takes the same amount of
work as the sequential algorithm, however it seems that there are errors
in their analysis. For example, the goal of the analysis is to show that in
each round their algorithm visits O(n) vertices in expectation, which they
claimed to imply visiting O(m) edges in expectation. This is not generally
true since the vertices do not necessarily have the same probabilities of being
visited. Other than this, their work contains many interesting ideas that
motivated us to look at this problem.

𝑣𝑎

𝑣𝑏

𝑣𝑐

Topological order

Figure 3: An illustration for the proof of Lemma 6.3.

can only be reached (forward or backward) in va’s step if va’s step
is the first among the three.

Clearly the statement is true if vc is earliest. We now consider
the case when vb’s step is first among the three vertices. We give
the argument for the forward direction, and the backward direction
is true by symmetry. If vb is in the same SCC as either va or vc,
then in vb’s step either va or vc is marked in one SCC and removed
from the subgraph set V . Otherwise, since vb and va are not in the
same SCC, when vc <c vb <c va, vc cannot be forward reachable
in va’s step, and when va <c vb <c vc, va cannot be forward
reachable from vb’s step. In the second case, after vb’s step, the
forward reachability search from vb reaches vc but not va, so va
and vc fall into different components in V (shown in Figure 3). As
a result, vc is also not reachable in va’s step.

In conclusion, vc can only be reached (forward or backward) in
va’s step if va’s step is first among the three.

Note that this separating dependence implies that the sequential
algorithm on a random ordering does O(m logn) work since each
vertex vj is visited

∑j
i=1 2/i = O(logn) times in expectation

using Lemma 2.4, and the expectation is independent of the degrees.
Since WR(n,m) = O(m) sequentially, e.g., using BFS, this gives
O(m logn) work.

We now consider a parallel version based on rounds. To imple-
ment the parallel version, we need a way to efficiently combine
the steps that run in the same round. First, there might be multiple
vertices (sources) that obtain the same SCC in the same round and
we want to avoid having duplicates in the final output. Second, since
multiple reachability queries are performed in parallel, we want
them to partition the subgraph set V consistently. The solution for
combining steps is have all steps do a priority-write into a data field
associated with the vertices that they visit during the reachability
queries, and synchronize after the reachability queries.

To partition the graph, all edges with endpoints that hold different
data values or differ in whether they are forward or backward reach-
able are removed (marked) from the graph, and this disconnects the
graph into appropriate subgraphs. Also, all nodes that are reachable
from the sources in both directions, which can be checked by their
data fields, form SCCs and are removed (marked) from graph. All
of these extra steps take linear work and constant depth. Finally,
after all O(logn) rounds are complete, we group the vertices to
form SCCs based on the vertex labels in data fields, which requires
linear work and O(logn) depth [52, 37]. Note that this implemen-
tation yields exactly the same intermediate state as the sequential
algorithm after each round, making it deterministic.

THEOREM 6.4. For a random order of the input vertices, the
incremental SCC algorithm does O(WR(n,m) logn) expected
work and has O(DR(n,m) logn) depth on a priority-write CRCW
PRAM.

PROOF. The overall extra work is O(m logn) and no more than
the work for executing the reachability queries. The depth for the
additional operations is constant in each round and O(logn) at the
end of the algorithm. Therefore if the input vertices are randomly

permuted, we can apply Theorem 2.6 with Lemma 6.3 and the
convexity of the work cost to bound the expected work and depth of
the algorithm.

7. CONCLUSION
In this paper, we have analyzed the dependence structure in a

collection of known randomized incremental algorithms (or slight
variants) and shown that there is inherently high parallelism in all
of the algorithms. The approach leads to particularly simple parallel
algorithms for the problems—only marginally more complicated (if
at all) than some of the very simplest efficient sequential algorithms
that are known for the problems. Furthermore the approach allows
us to borrow much of the analysis already done for the sequential
versions (e.g., with regard to total work and correctness). We pre-
sented three general classes of algorithms, and tools and general
theorems that are useful for multiple algorithms within each class.
We expect that there are many other algorithms that can be analyzed
with these tools and theorems.

Acknowledgments
This research was supported in part by NSF grants CCF-1314590
and CCF-1533858, the Intel Science and Technology Center for
Cloud Computing, and the Miller Institute for Basic Research in
Science at UC Berkeley.

8. REFERENCES
[1] M. Ajtai and N. Megiddo. A deterministic

poly(log logn)-time n-processor algorithm for linear
programming in fixed dimension. In ACM Symposium on
Theory of Computing (STOC), pages 327–338, 1992.

[2] N. Alon and N. Megiddo. Parallel linear programming in fixed
dimension almost surely in constant time. J. ACM (JACM),
41(2):422–434, Mar. 1994.

[3] M. Atallah and M. Goodrich. Deterministic parallel
computational geometry. In Synthesis of Parallel Algorithms,
pages 497–536. Morgan Kaufmann, 1993.

[4] J. Barnat, P. Bauch, L. Brim, and M. Ceska. Computing
strongly connected components in parallel on CUDA. In
International Parallel & Distributed Processing Symposium
(IPDPS), pages 544–555, 2011.

[5] D. K. Blandford, G. E. Blelloch, and C. Kadow. Engineering a
compact parallel Delaunay algorithm in 3D. In ACM
Symposium on Computational Geometry (SoCG), pages
292–300, 2006.

[6] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun.
Internally deterministic algorithms can be fast. In Principles
and Practice of Parallel Programming (PPoPP), pages
181–192, 2012.

[7] G. E. Blelloch, J. T. Fineman, and J. Shun. Greedy sequential
maximal independent set and matching are parallel on average.
In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 308–317, 2012.

[8] G. E. Blelloch, Y. Gu, and Y. Sun. Efficient construction of
probabilistic tree embeddings. arXiv preprint: 1605.04651,
2016.

[9] G. E. Blelloch, Y. Gu, Y. Sun, and K. Tangwongsan. Parallel
shortest-paths using radius stepping. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 2016.

[10] G. E. Blelloch, A. Gupta, and K. Tangwongsan. Parallel
probabilistic tree embeddings, k-median, and buy-at-bulk
network design. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 205–213, 2012.

[11] G. E. Blelloch, J. C. Hardwick, G. L. Miller, and D. Talmor.
Design and implementation of a practical parallel Delaunay
algorithm. Algorithmica, 24(3-4):243–269, 1999.

[12] R. L. Bocchino, V. S. Adve, S. V. Adve, and M. Snir. Parallel
programming must be deterministic by default. In Usenix
HotPar, 2009.

[13] J.-D. Boissonnat and M. Teillaud. On the randomized
construction of the delaunay tree. Theoretical Computer
Science, 112(2):339–354, 1993.

[14] R. P. Brent. The parallel evaluation of general arithmetic
expressions. J. ACM (JACM), 21(2):201–206, 1974.

[15] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun.
STAMP: Stanford transactional applications for
multi-processing. In IEEE International Symposium on
Workload Characterization (IISWC), 2008.

[16] D. Z. Chen and J. Xu. Two-variable linear programming in
parallel. Computational Geometry, 21(3):155 – 165, 2002.

[17] P. Cignoni, C. Montani, R. Perego, and R. Scopigno. Parallel
3D delaunay triangulation. Computer Graphics Forum,
12(3):129–142, 1993.

[18] M. Cintra, D. R. Llanos, and B. Palop. International
conference on computational science and its applications. In
Speculative Parallelization of a Randomized Incremental
Convex Hull Algorithm, pages 188–197, 2004.

[19] K. L. Clarkson and P. W. Shor. Applications of random
sampling in computational geometry, II. Discrete &
Computational Geometry, 4(5):387–421, 1989.

[20] E. Cohen. Size-estimation framework with applications to
transitive closure and reachability. Journal of Computer and
System Sciences, 55(3):441–453, 1997.

[21] E. Cohen and H. Kaplan. Efficient estimation algorithms for
neighborhood variance and other moments. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 157–166,
2004.

[22] R. Cole. Parallel merge sort. SIAM J. Comput., 17(4):770–785,
1988.

[23] D. Coppersmith, L. Fleischer, B. Hendrickson, and A. Pinar.
A divide-and-conquer algorithm for identifying strongly
connected components. Technical Report RC23744, IBM,
2003.

[24] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars.
Computational Geometry: Algorithms and Applications.
Springer-Verlag, 2008.

[25] X. Deng. An optimal parallel algorithm for linear
programming in the plane. Information Processing Letters,
35(4):213 – 217, 1990.

[26] P. Diaz, D. R. Llanos, and B. Palop. Parallelizing 2D-convex
hulls on clusters: Sorting matters. Jornadas De Paralelismo,
2004.

[27] N. Du, L. Song, M. Gomez-Rodriguez, and H. Zha. Scalable
influence estimation in continuous-time diffusion networks. In
Advances in Neural Information Processing Systems (NIPS),
pages 3147–3155, 2013.

[28] M. Dyer. A parallel algorithm for linear programming in fixed
dimension. In Symposium on Computational Geometry
(SoCG), pages 345–349, 1995.

[29] H. Edelsbrunner. Geometry and Topology for Mesh
Generation. Cambridge University Press, 2006.

[30] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on
approximating arbitrary metrics by tree metrics. Journal of
Computer and System Sciences (JCSS), 69(3):485–497, 2004.

[31] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly
constant time parallel algorithms. In Foundations of Computer
Science (FOCS), pages 698–710, 1991.

[32] M. Golin, R. Raman, C. Schwarz, and M. Smid. Simple
randomized algorithms for closest pair problems. Nordic J. of
Computing, 2(1):3–27, Mar. 1995.

[33] A. Gonzalez-Escribano, D. R. Llanos, D. Orden, and B. Palop.
Parallelization alternatives and their performance for the
convex hull problem. Applied Mathematical Modelling,
30(7):563 – 577, 2006.

[34] M. T. Goodrich. Fixed-dimensional parallel linear
programming via relative ε-approximations. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 132–141,
1996.

[35] M. T. Goodrich and E. A. Ramos. Bounded-independence
derandomization of geometric partitioning with applications
to parallel fixed-dimensional linear programming. Discrete &
Computational Geometry, 18(4):397–420, 1997.

[36] P. J. Green and R. Sibson. Computing Dirichlet tessellations
in the plane. The Computer Journal, 21(2):168–173, 1978.

[37] Y. Gu, J. Shun, Y. Sun, and G. E. Blelloch. A top-down
parallel semisort. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 24–34, 2015.

[38] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized
incremental construction of Delaunay and Voronoi diagrams.
Algorithmica, 7(4):381–413, 1992.

[39] S. Har-peled. Geometric Approximation Algorithms.
American Mathematical Society, 2011.

[40] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson.
Ordering heuristics for parallel graph coloring. In ACM
Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 166–177, 2014.

[41] S. Hong, N. C. Rodia, and K. Olukotun. On fast parallel
detection of strongly connected components (SCC) in
small-world graphs. In International Conference for High
Performance Computing, Networking, Storage and Analysis
(SC), pages 1–11, 2013.

[42] J. Jaja. Introduction to Parallel Algorithms. Addison-Wesley
Professional, 1992.

[43] M. Khan, F. Kuhn, D. Malkhi, G. Pandurangan, and K. Talwar.
Efficient distributed approximation algorithms via
probabilistic tree embeddings. Distributed Computing,
25(3):189–205, 2012.

[44] S. Khuller and Y. Matias. A simple randomized sieve
algorithm for the closest-pair problem. Information and
Computation, 118(1):34–37, 1995.

[45] P. N. Klein and S. Subramanian. A randomized parallel
algorithm for single-source shortest paths. Journal of
Algorithms, 25(2):205–220, 1997.

[46] D. R. Llanos, D. Orden, and B. Palop. Meseta: A new
scheduling strategy for speculative parallelization of
randomized incremental algorithms. International Conference
on Parallel Processing Workshops, pages 121–128, 2005.

[47] N. Megiddo. Linear-time algorithms for linear programming
in R3 and related problems. SIAM Journal on Computing,
1983.

[48] K. Mulmuley. Computational geometry - an introduction
through randomized algorithms. Prentice Hall, 1994.

[49] X. Pan, D. Papailiopoulos, S. Oymak, B. Recht,
K. Ramchandran, and M. I. Jordan. Parallel correlation

clustering on big graphs. In Advances in Neural Information
Processing Systems (NIPS), 2015.

[50] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A.
Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich,
M. Méndez-Lojo, D. Prountzos, and X. Sui. The tao of
parallelism in algorithms. In ACM SIGPLAN conference on
Programming Language Design and Implementation (PLDI),
2011.

[51] M. O. Rabin. Probabilistic algorithms. Algorithms and
Complexity: New Directions and Recent Results, pages 21–39,
1976.

[52] S. Rajasekaran and J. H. Reif. Optimal and sublogarithmic
time randomized parallel sorting algorithms. SIAM J.
Comput., 18(3):594–607, 1989.

[53] J. H. Reif. Depth-first search is inherently sequential.
Information Processing Letters, 20(5):229–234, 1985.

[54] J. H. Reif and S. Sen. Optimal randomized parallel algorithms
for computational geometry. Algorithmica, 7(1-6):91–117,
1992.

[55] W. Schudy. Finding strongly connected components in
parallel using O(log2 n) reachability queries. In ACM
Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 146–151, 2008.

[56] R. Seidel. Small-dimensional linear programming and convex
hulls made easy. Discrete & Computational Geometry,
6(3):423–434, 1991.

[57] R. Seidel. Backwards analysis of randomized geometric
algorithms. In New Trends in Discrete and Computational
Geometry, pages 37–67. 1993.

[58] S. Sen. A deterministic poly(log log n) time optimal CRCW
PRAM algorithm for linear programming in fixed dimensions.
Technical report, Department of Computer Science,
University of Newcastle, 1995.

[59] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons,
A. Kyrola, H. V. Simhadri, and K. Tangwongsan. Brief
announcement: the Problem Based Benchmark Suite. In ACM
Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 68–70, 2012.

[60] J. Shun, Y. Gu, G. Blelloch, J. Fineman, and P. Gibbons.
Sequential random permutation, list contraction and tree
contraction are highly parallel. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 431–448, 2015.

[61] G. M. Slota, S. Rajamanickam, and K. Madduri. BFS and
Coloring-based parallel algorithms for strongly connected
components and related problems. In International Parallel
and Distributed Processing Symposium (IPDPS), 2014.

[62] T. H. Spencer. Time-work tradeoffs for parallel algorithms.
Journal of the ACM (JACM), 44(5):742–778, 1997.

[63] R. Tarjan. Depth-first search and linear graph algorithms.
SIAM Journal on Computing, 1(2):146–160, 1972.

[64] D. Tomkins, T. Smith, N. M. Amato, and L. Rauchwerger.
Efficient, reachability-based, parallel algorithms for finding
strongly connected components. Technical report, Texas
A&M University, 2015.

[65] J. D. Ullman and M. Yannakakis. High-probability parallel
transitive-closure algorithms. SIAM Journal on Computing,
20(1):100–125, 1991.

[66] U. Vishkin. Thinking in Parallel: Some Basic Data-Parallel
Algorithms and Techniques. 2010.

[67] E. Welzl. Smallest enclosing disks (balls and ellipsoids). In
New Results and New Trends in Computer Science, 1991.

