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Abstract
We show that simple sequential randomized iterative algo-
rithms for random permutation, list contraction, and tree
contraction are highly parallel. In particular, if iterations of
the algorithms are run as soon as all of their dependencies
have been resolved, the resulting computations have log-
arithmic depth (parallel time) with high probability. Our
proofs make an interesting connection between the depen-
dence structure of two of the problems and random binary
trees. Building upon this analysis, we describe linear-work,
polylogarithmic-depth algorithms for the three problems.
Although asymptotically no better than the many prior
parallel algorithms for the given problems, their advan-
tages include very simple and fast implementations, and
returning the same result as the sequential algorithm. Ex-
periments on a 40-core machine show reasonably good
performance relative to the sequential algorithms.

1 Introduction
Over the past several decades there has been significant
research on deriving new parallel algorithms for a variety
of problems, with the goal of designing highly parallel
(polylogarithmic depth), work-efficient (linear in the se-
quential running time) algorithms. For some problems,
however, one might ask if perhaps a standard sequential
algorithm is already highly parallel if we simply execute
sub-computations opportunistically when they no longer
depend on any other uncompleted sub-computations. This
approach is particularly applicable in iterative or greedy
algorithms that iterate (loop) once through a sequence of
steps (or elements), each step depending on the results
or effects of only a subset of previous steps. In such al-
gorithms, instead of waiting for its turn in the sequential
order, a given step can run immediately once all previous
steps it depends on have been completed. The approach al-
lows for steps to run in parallel while performing the same
computations on each step as the sequential algorithm, and
consequently returning the same result. Surprisingly, this
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question has rarely been studied.
As an example, which we will cover in this paper, con-

sider the well-known algorithm for randomly permuting
a sequence of n values [13, 26]. The algorithm iterates
through the sequence from the end to the beginning (or the
other way) and for each location i, it swaps the value at i
with the value at a random target location j at or before i.
In the algorithm, each step can depend on previous steps
since on step i the value at i and/or its target j might have
already been swapped by a previous step. The question
is: What does this dependence structure look like? Also,
can the above approach be used to derive a highly parallel,
work-efficient parallelization of the sequential algorithm?

In this paper, we study these questions for three funda-
mental problems: random permutation, list contraction and
tree contraction [25, 24, 36]. For all three problems, we
analyze the dependencies of simple randomized sequential
algorithms, and show that the algorithms are efficient in
parallel, if we simply allow each step to run as soon as it no
longer depends on previous steps. To this end, we define
the notion of an iteration dependence graph that captures
the dependencies among the steps, and then we analyze the
depth of these graphs, which we refer to as the iteration
depth. We also study how to use low-depth iteration de-
pendence graphs to design efficient implementations. This
involves being able to efficiently recognize when a step no
longer depends on any uncompleted previous step.

Beyond the intellectual curiosity of whether sequential
algorithms are inherently parallel, the approach has several
important benefits for the design of parallel algorithms.
Firstly, it can lead to very simple parallel algorithms. In
particular, if there is an easy way to check for dependencies,
then the parallel algorithm will be very similar to the
sequential one. We use a framework based on deterministic
reservations [6] that makes programming such algorithms
particularly easy. Secondly, the approach can lead to very
efficient parallel algorithms. We show that if a sufficiently
small prefix of the uncompleted iterations are processed at
a time, then most steps do not depend on each other and can
run immediately. This reduces the overhead for repeated
checks and leads to work which is hardly any greater than
the sequential algorithm. Finally, the parallelization of the
sequential algorithm will be deterministic returning the
same result on each execution (assuming the same source



of random numbers). The result of the algorithm will
therefore be independent of how many threads are used,
how the scheduler works, or any other non-determinism
in the underlying hardware and software, which can make
debugging and reasoning about parallel programs much
easier [8, 6].

For the random permutation problem we consider the
algorithm described above. We show that the algorithm
leads to iteration dependence graphs that follow the same
distribution over the random choices as do random binary
search trees. Hence the iteration depth is Θ(log n) with
high probability.1 For this algorithm we also show that
recognizing when a step no longer depends on previous
steps is easy, leading to a straightforward linear-work
polylogarithmic-depth implementation. Therefore the
“sequential” algorithm is effectively parallel.

The list contraction problem is to contract a set of
linked lists each into a single node (possibly combining
values), and has many applications including list ranking
and Euler tours [24]. The sequential algorithm that
we consider simply iterates over the nodes in random
order splicing each one out.2 We show that for this
algorithm each list has an iteration dependence graph that
follows the same distribution as random binary search
trees. The iteration depth is therefore O(log n) w.h.p.
For this algorithm, determining when a step no longer
depends on previous steps is trivial—it is simply when
the node’s neighbors in the list are both later in the
ordering. This leads to a straightforward linear-work
parallel implementation of the algorithm.

The tree contraction problem is to contract a tree into
a single node (possibly combining node values), and again
has many applications [28, 29, 24]. We assume that the
tree is a rooted binary tree. The sequential algorithm that
we consider steps over the leaves of the tree in random
order and, for each leaf, it splices the leaf and its parent
out. We show that the iteration depth for this algorithm is
again O(log n) w.h.p. For this algorithm, however, there
seems to be no easy on-line way to determine when a
step no longer depends on any other uncompleted steps.
We show, however, that with some pre-processing we can
identify the dependencies. This leads to a linear-work
parallelization of the algorithm. We also show how to
relax the dependencies such that the contraction is still
correct and deterministic, but does not necessarily contract
in the same order as the sequential algorithm, giving us a
simple linear-work polylogarithmic-depth implementation.

Reducing the randomness required by algorithms is
important, as randomness can be expensive. Straightfor-
ward implementations of our algorithms requireO(n log n)

1We use “with high probability” (w.h.p.) to mean probability at least
1− 1/nc for any constant c > 0.

2The random order can be implemented by first randomly permuting
the nodes, then processing them in linear order.

random bits. By making use of a pseudorandom gener-
ator for space-bounded computation by Nisan [31], we
show that the algorithms for random permutation and list
contraction require only a polylogarithmic number of ran-
dom bits w.h.p. This result is based on showing that our
algorithms can be simulated in polylogarithmic space.

We have implemented all three of our algorithms in
the deterministic reservations framework [6]. Our imple-
mentations for random permutation and list contraction
contain under a dozen lines of C code, and tree contraction
is just a few dozen lines. We have experimented with these
implementations on a shared-memory multi-core machine
with 40 cores, obtaining reasonably good speedups rela-
tive to the sequential iterative algorithms, on problems for
which it is hard to compete with sequential algorithms.

Related Work. Beyond significant prior work on algo-
rithms for the problems that we consider, which is men-
tioned in the sections on each problem, there has been
prior work on understanding the parallelism in iterative (or
greedy) sequential algorithms, including work on the max-
imal independent set and maximal matching problems [7],
and on graph coloring [21].

Contributions. The main contributions of this paper
are as follows. We show that the standard sequential
algorithm for random permutation has low sequential
dependence (Θ(log n) w.h.p.). For list contraction and
tree contraction, we show that the sequential algorithms
also have a dependence that is logarithmic w.h.p. given a
random ordering of the input. We show natural parallel
implementations of these algorithms, where steps are
processed as soon as all of their dependencies have been
resolved. These parallel algorithms give the same result as
the sequential algorithms, which is useful for deterministic
parallel programming. We show linear-work parallel
implementations of these algorithms using deterministic
reservations and activation-based approaches. We also
prove that our algorithms for random permutation and
list contraction require only a polylogarithmic number
of random bits w.h.p., in contrast to O(n log n) random
bits in a straightforward implementation. Finally, our
experimental results show that our implementations of
the parallel algorithms achieve good speedup on a 40-core
machine and outperform the sequential algorithms with
just a modest number of cores.

2 Preliminaries
The random permutation problem takes as input an array
A of length n and returns a random ordering of the
elements ofA such that each of the n! possible orderings is
equally likely. The list contraction problem takes as input
a collection of linked lists represented by L, and contracts
each list into a single node, possibly combining values
on the nodes during contraction. The tree contraction



problem takes as input a tree T and contracts the tree down
to the root node, possibly combining values on the nodes
during contraction.

In this paper, we state our results in the work-
depth model, where work is equal to the number of
operations required (equivalently, the product of the time
and processors) and depth is equal to the number of time
steps required. We use the parallel random access machine
model (PRAM). We use the exclusive-read exclusive-
write (EREW) PRAM, the arbitrary-write and priority-
write versions of the concurrent-read concurrent-write
(CRCW) PRAM, where a priority-write here means that
the maximum value written concurrently is stored. We also
use the scan PRAM [5], a variant of the EREW PRAM
where scan (prefix sum) operations take unit depth. For
the priority-write model we will use a writeMax(l,i) which
writes value i to location l such that the maximum value
written to l will end up in that location.

We use the standard definition of a random binary
search tree, i.e., the tree generated by inserting a random
permutation of the integers {0, . . . , n − 1} into a binary
search tree.

In this paper, we are concerned with the parallelism
available in sequential iterative algorithms. We assume
that the iterative algorithm takes n steps, where each step
performs some computation, depending on the results or
effects of a subset of previous steps. We are interested in
running some of these steps in parallel. What we can run
safely in parallel will depend on both the algorithm and the
input, which together we will refer to as a computation.
We will model the dependencies in the computation as a
graph, where the steps I = {0, . . . , n−1} are vertices and
dependencies between steps are directed edges, denoted
by E.

DEFINITION 1. (ITERATION DEPENDENCE GRAPH)
An iteration dependence graph for an iterative compu-
tation is a (directed acyclic) graph G(I, E) such that
if every step i ∈ I runs after all predecessor steps in
the graph complete, then every step will do the same
computation as in the sequential order.

We are interested in the depth of an iteration depen-
dence graph, which we refer to as the iteration depth,
D(G). It should be clear that we can correctly simulate a
computation with iteration dependence graph G in D(G)
rounds, each running a set of steps in parallel. However, it
may not be clear how to efficiently determine for each each
step if all of its predecessors have completed. As we will
see, and not surprisingly, the method for doing this check is
algorithm specific. We will say that a step can be efficiently
checked if we can determine that all its predecessors have
completed in constant work/depth, and efficiently updated
if the step itself takes constant work/depth.

We define aggregate delay, A(G), of an iteration

1: procedure SEQUENTIALRANDPERM(A, H)
2: for i = n− 1 to 0 do
3: swap(A[H[i]], A[i])

Figure 1: Sequential algorithm for random permutation.

dependence graph G to be the sum of the heights (one
plus the longest directed path to a vertex) of the vertices in
G. To understand why this is a useful measure, consider a
process in which on every round all steps that have not yet
completed check to see if their predecessors are complete,
and if so they run and complete, otherwise they try again in
the next round. Each round can be run in parallel, and each
step is delayed by a number of rounds corresponding to
its height in G. Assuming each non-completed step does
constant work on each round, then the total work across
all steps and all rounds will be bounded by O(A(G)).

We will show that all three of our algorithms have
steps that can be checked and updated in constant time, and
have iteration dependence graphs with O(log n) depth and
O(n) aggregate delay. However, tree contraction requires
pre-processing to allow for efficient checking.

3 Bounding Iteration Depth and Aggregate Delay
In this section, we analyze the iteration depth and aggregate
delay for algorithms for the three problems that we are
concerned with: random permutation, list contraction and
tree contraction. Sections 4 and 5 will then describe how
to efficiently check for dependencies and how this leads to
efficient parallelizations of the algorithms.

3.1 Random Permutation. Durstenfeld [13] and
Knuth [26] discuss a simple sequential algorithm for
generating a random permutation which goes through the
elements of an array from the end to the beginning (or the
other way), and for each element swaps with a random at
or earlier position in the array. We assume that the random
integers used in the algorithm are generated beforehand,
and stored in an array H—i.e., for 0 ≤ i < n, H[i] is a
(uniformly) random integer from 0 to i, inclusive. The
pseudo-code for Durstenfeld’s sequential algorithm is
given in Figure 1.

Generating random permutations in parallel has been
well-studied, both theoretically [1, 2, 10, 14, 16, 17, 18,
20, 28, 33] and experimentally [9, 19]. Many of these al-
gorithms do linear work and have polylogarithmic depth.
As far as we know, however, none of this work has consid-
ered the parallelism available in Durstenfeld’s sequential
algorithm, and none of them return the same permutation
as it does, given the same source of randomness.

To analyze the iteration dependence depth of Dursten-
feld’s algorithm we will use the following definitions.
When performing a swap(x, y) we say x is the source
of the swap and y is the target of the swap. For a given H ,
we say i dominates j if H[i] = j and i 6= j. We define the
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Figure 2: Dominance and dependence forests for H = [0, 0, 1, 3, 1, 2, 3, 1] are shown in (a) and (b), respectively. (c) shows the
linked dependence tree for H and (d) shows the possible locations for inserting the 9th node; dashed circles correspond to the value
of H[8].

dominance forest of H to be the directed graph formed
on n nodes where node i points to node j if i dominates
j. Since each node can dominate at most one other node,
the graph is a forest. Note that the roots of the dominance
forest are exactly the nodes where H[i] = i.

Define the dependence forest of H to be a modifica-
tion of the dominance forest where the children of each
node (from incoming edges) are chained together in de-
creasing order. In particular, for a node i with incoming
edges from nodes j1 < . . . < jk we add an edge from jl+1

to jl for 1 ≤ l < k (creating a chain) and delete the edges
from jl to i for l > 1. Note that the dependence forest is
binary, since each node can have at most one incoming
edge from the set of nodes pointing to it in the dominance
forest, and since it can be part of at most one chain. See
Figures 2(a) and 2(b) for an example of the dominance
forest and dependence forest for a given H .

LEMMA 3.1. The dependence forest of H is an iteration
dependence graph for SEQUENTIALRANDPERM.

Proof. We define a step to be ready if all of its descendants
in the dependence forest have been processed. We will
show that when a step is ready, its corresponding location
in A will contain the same value as it would have when
the sequential algorithm processes it. The proof uses
induction on the iteration in which a step is processed
in the sequential algorithm (i.e., step n− 1 is the first and
step 0 is the last).

The base case is trivial as step n − 1 is ready at the
start of any ordering (no node can point to n − 1 in the
dependence forest) and has the correct value (location n−1
cannot be the target of any swap with another element).
Consider some step i. Suppose there are multiple steps
j1, . . . , jk where j1 < j2 < . . . < jk with location i as the
target of a swap operation. Since i < j1 < . . . < jk, by the
inductive hypothesis we may assume that steps j1, . . . , jk
had the correct value in their corresponding locations in
A when they were ready. The sequential algorithm will
perform the swaps in decreasing order of the steps (jk
down to j1), and since i < j1, in the sequential algorithm

location i will not be the source of a swap until all of steps
j1, . . . , jk have been processed. Any ordering respecting
the dependence forest will also process steps j1, . . . , jk
in decreasing order, since by definition the dependence
forest contains a directed path from jk to j1. The fact
that j1, . . . , jk have the same value as in the sequential
algorithm when they are ready, and that they are processed
in the same order as the sequential algorithm implies that
the location corresponding to step i will also have the same
value as in the sequential algorithm when it is ready (i.e.,
after all of its incoming steps have been processed). �

We are interested in showing that the dependence
forest is shallow. To do this we will actually add some
additional edges to make a tree and then show that this
tree has an identical distribution as random binary search
trees, which are known to have Θ(log n) depth with high
probability. We define the linked dependence tree as the
tree created by linking the roots of the dependence forest
along the right spine of a tree with indices appearing in
ascending order from the top of the spine to the bottom (see
Figure 2(c) for an example of the linked dependence tree).
The linked dependence tree is clearly also an iteration
dependence graph since it only adds constraints.

THEOREM 3.1. Given a random H , the distribution of
(unlabeled) linked dependence trees for H is identical to
the distribution of (unlabeled) random binary search trees.

Proof. We prove this by induction on the input size n.
For the base case, n = 1, there is a single vertex and the
claim is trivially true. For the inductive case note that
the linked dependence tree for the first n − 1 locations
is not affected by the last location since numbers at H[i]
point at or before i—i.e., the last location will end up as
a leaf. By the inductive hypothesis, the distribution of
trees on the first n− 1 locations has the same distribution
as random binary search trees of size n − 1. Now we
claim that, justified below, the nth element can go into
any leaf position. Since the nth location is a uniformly
random integer from 0 to n − 1 and there are n possible



leaf positions in a binary tree of size n−1, all leafs must be
equally likely. Hence this is the same process as inserting
randomly into a binary search tree.

To see that the nth location can go into any leaf,
first note that if it picks itself (index n − 1), then it is
at the bottom of the right spine of the tree, by definition.
Otherwise if it picks j < n − 1, and it will be placed at
the bottom of the right spine of the left child of j. This
allows for all possible tree positions—to be a left child of
a node just pick the parent, and to be a right child follow
the right spine up to the top, then pick its parent (e.g., see
Figure 2(d)). �

THEOREM 3.2. For SEQUENTIALRANDPERM on a ran-
dom H of length n, there is an iteration dependence graph
G with D(G) = Θ(log n) w.h.p., and A(G) = Θ(n) in
expectation.

Proof. For the depth, it is a well-known fact that the height
of a random binary search tree on n nodes is Θ(log n)
w.h.p. [12], so Theorem 3.1 implies that the longest path in
the iteration dependence graph is O(log n) w.h.p. To show
that this is tight, note that node 0 has Θ(log n) incoming
edges in the dominance forest w.h.p., and hence the longest
path to it in the iteration dependence graph is Ω(log n)
w.h.p.

To analyze the aggregate delay we analyze the sum
of heights of the nodes in a random binary search tree.
Let W (n) indicate the expected sum. The two children of
the root of a random binary search tree are also random
binary search trees of size i and n − i − 1, respectively,
for a randomly chosen i in {0, . . . , n− 1}. We therefore
have the recurrence: W (n) = H(n) + 1

n

∑n−1
i=0 (W (i) +

W (n− i− 1)), where H(n) = Θ(log n) is the expected
height of a random binary search tree with n nodes. This
solves to Θ(n) and hence the theorem follows. �

3.2 List Contraction. List contraction, and the related
list ranking, is one of the most canonical problems in the
study of parallel algorithms. The problem has received
considerable attention both because of its fundamental
nature as a pointer-based algorithm, and also because it
has many applications as a subroutine in other algorithms.
A summary of the work can be found in a variety of books
and surveys (see e.g. [25, 24, 36]).

Here we are concerned with analyzing a simple
sequential algorithm for list contraction and showing that
it has low iteration depth and aggregate delay. We assume
the linked list is represented as an array L of nodes, where
L[i].prev stores the index of the predecessor of node i (null
if none) and L[i].next stores the index of the successor
of node i (null if none). A natural sequential iterative
algorithm works by splicing out the nodes in order of
increasing index, as shown in Figure 3. Each list in L is
contracted down to a single node. For simplicity we do not

1: procedure SEQUENTIALLISTCONTRACT(L)
2: for i = 0 to n− 1 do
3: if L[i].prev 6= null then
4: L[L[i].prev].next = L[i].next
5: if L[i].next 6= null then
6: L[L[i].next].prev = L[i].prev

Figure 3: Sequential algorithm for list contraction.
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Figure 4: (a) An example list, where the numbers represent the
position in the input array L, and (b) its dependence forest.

show the values stored on the nodes. If values are stored,
then when a node is spliced out its value is combined with
its predecessor’s value using a combining function, and
stored on its predecessor. To perform list ranking, the
process is then reversed, adding the nodes back in with the
appropriate values. Note that when the combining function
is non-associative, then the result depends on the order in
which the nodes are spliced out. In such a case, a parallel
computation returns the same answer as the sequential
algorithm if it satisfies the dependence structure of the
sequential algorithm, which we define next.

We define the following dependence forest for an
input L. For a list, place the last position k in which any of
its links appear at the root r of a tree. Now recursively for
the sublists on each side of the node in position k, do the
same and make the two roots the children of r. If either
sublist is empty, r will not have a child on that side. This
defines a tree for each list and a forest across multiple lists.
As with the dependence forest for random permutation, the
dependencies go up the tree—i.e., each parent depends on
its children. An example list along with its dependence
forest is shown in Figure 4.

LEMMA 3.2. The dependence forest of L is an iteration
dependence graph for SEQUENTIALLISTCONTRACT(L).

Proof. For each step i, let j and k be the indices of prev
and next nodes when i is spliced out in the sequential order.
Clearly j and k must both be larger than i (or null) since
they have not yet been spliced out. We need to show that for
each i, once all of its descendants in the dependence forest
are completed (spliced out), possibly not in the sequential



order, it will point to j and k, and hence will do an identical
splice as in the sequential order. By induction we assume
this was true for all indices less than i.

Consider the sublist between j and k (not inclusive).
The index i must be the largest index on this list because
if there were a larger index l, when i is contracted in the
sequential order it cannot be linked with both j and k—l
must be in the way. By construction of the dependence
forest, and because i is the largest on the sublist, it is
picked as the root of a tree containing the sublist. Therefore
when all descendants are completed (and by induction we
assumed they operated correctly) all other nodes on the
sublist have been spliced out and i will point to j and k. �

LEMMA 3.3. Assuming the ordering of L has been ran-
domized, for each list in L the distribution of (unlabeled)
dependence trees is identical to the distribution of (unla-
beled) random binary search trees of the same size.

Proof. The root node of the dependence tree can appear
in any position of the list with equal probability, since L
is randomly ordered. This property also holds for each
sublist of the list. Therefore in each subtree all nodes are
equally likely to be the root, which is equivalent to the
distribution for random binary search trees. �

The following theorem now follows from the same
argument as in Theorem 3.2 since the iteration dependence
graph (for each list) has the same distribution—a random
binary search tree. There are no dependencies among
different lists.

THEOREM 3.3. For SEQUENTIALLISTCONTRACT on a
randomly ordered L of length n, there is an iteration
dependence graph G with D(G) = O(log n) w.h.p., and
A(G) = Θ(n) in expectation.

3.3 Tree Contraction. As with list contraction, parallel
algorithms for tree contraction has received considerable
interest [28, 24, 36]. There are many variants of parallel
tree contraction. Here we will assume we are contracting
rooted binary trees in which every internal node has exactly
two children. To represent the tree we use an array T of
nodes, each with a parent and two child pointers, with the
first n nodes being leaves, and the next n − 1 being the
internal nodes.

We consider an iterative sequential algorithm for tree
contraction that rakes the leaves of the tree one at a time,
shown in Figure 5. To rake a leaf v, we splice it and
its parent p out of the tree—i.e, set v’s sibling’s parent
pointer to be v’s grandparent, and v’s grandparent’s child
pointer to point to v’s sibling instead of p. At the end only
the root node remains. As in list contraction, values can
be stored on the nodes, and combined during contraction
(e.g., for evaluating arithmetic expressions), but we leave

1: procedure SEQUENTIALTREECONTRACT(T )
2: for i = 0 to n− 1 do
3: p = T [i].parent
4: if T [p].parent 6= null then . p is not root
5: s = sibling(T, i)
6: T [s].parent = T [p].parent
7: switchParentsChild(T, p, s)
8: else switchParentsChild(T, i, null) . p is root

Figure 5: Sequential algorithm for tree contraction, where
sibling(T, i) returns the sibling of i in T , and switchPar-
entsChild(T, i, v) resets the appropriate child pointer of the par-
ent of i to point to v instead of i.

it out of the code. Again, if the combining function is
non-associative, then the result depends on the order that
we rake the leaves in, and a parallel computation returns
the same result as the sequential algorithm if it satisfies the
dependence structure of the sequential algorithm.

We define the following labeling of internal nodes,
and then define a dependence structure based on it. Let
M(i) for each node i be the maximum index of any of
the leaves in its subtree, and the label of each internal
node be L(i) = min{M(j),M(k)}, where j and k are
the two children of i. The following fact about labels will
be useful.

LEMMA 3.4. In SEQUENTIALTREECONTRACT on a tree
T the internal node with label i will be raked by the leaf
with index i.

Proof. We prove this by induction. The base case for a
tree with a single leaf is trivial as there are no internal
nodes. Now assume by induction that this holds for the
internal nodes of two separate subtrees, joined together by
a new root r. The highest-indexed leaf in each subtree will
not appear as a label in the subtrees since the root takes
the minimum of the two subtrees, and hence the highest-
indexed leaf must be the leaf that remains when the tree is
contracted (by induction). Thus, one of the two highest-
indexed leaves in the two subtrees must be the node that
rakes r. The smaller of these two leaves will be processed
first, which is also the label on r by definition. This proves
the lemma. �

The dependence tree for a tree T is the tree created
by taking the maximum label i and placing it at the root.
We then partition the tree T by removing the internal node
labeled with i, and recursively apply this process to each
subtree. The three resulting dependence trees become the
children of i. This is repeated until we reach a leaf. Note
that this process creates a tree over the leaf indices, since
each label corresponds to a leaf index. Also note that this
process is similar to how we defined the dependence forest
for the list contraction problem, and hence the proof of the
lemma below has a similar structure.



(a) Tree decomposition for P-
state tree

(b) Tree decomposition for Q-
state tree

Figure 6: P-state and Q-state trees used in the proof of
Theorem 3.4. The red node is vs, the interior node corresponding
to the leaf with the second largest label. The yellow node is leaf
l, the leaf with the largest label.

LEMMA 3.5. The dependence tree of T is an iteration
dependence graph for SEQUENTIALTREECONTRACT(T ).

Proof. For each step i, let j and k be the labels of i’s
sibling and grandparent when it is raked in the sequential
order. We assume leaves have null labels, so the sibling
could be null. The labels j and k must both be larger than
i (or null) since they have not yet been raked out. We need
to show that for each i, once all of its descendants in the
dependence tree are completed (raked out), it will have
sibling j and grandparent k, and hence will do an identical
rake as in the sequential order. By induction we assume
this was true for all indices less than i.

Consider the tree between j and k (not inclusive).
The label i must be the largest label in this tree since if
there were a larger label l, when i is contracted in the
sequential order it cannot have both j as a sibling and k as
a grandparent—the node with label l is not yet raked out
and must be in the way. By construction of the dependence
tree, and since i is the largest label in the subtree, it is
picked as the root of a dependence tree containing the
subtree. Therefore when all descendants are completed
(and by induction we assumed they operated correctly), all
other nodes on the subtree have been raked out and i will
have j as a sibling and k as a grandparent. �

We are now ready to analyze the iteration depth and
work of a dependence tree.

THEOREM 3.4. For SEQUENTIALTREECONTRACT on
T with n randomly ordered leaves, there is an iteration
dependence graph G with D(G) = O(log n) w.h.p., and
A(G) = Θ(n) in expectation.

Proof. The dependence tree for T is based on recursively
partitioning T into subtrees. To analyze the depth of the
dependence tree, we need to consider two types of subtrees,
which have different properties. We define a (sub)tree to be
in the P-state if the distribution of its leaves is uniformly
random. We define a subtree to be in the Q-state if the
location of its highest-indexed leaf is fixed. Without loss of
generality, we assume a Q-state tree has its highest-indexed
leaf on its left spine. We denote the leaf with the largest

index in a subtree by l, the leaf with the second largest
index by s, and the internal node with label s by vs.

The initial tree is in the P-state since the ordering
of the leaves is uniformly random. For a P-state tree, it
is partitioned by vs into three subtrees, where the two
subtrees of the children of vs are also in the P-state but
the final tree is in the Q-state (see Figure 6(a)). This is
because as we process vs’s children’s subtrees there is no
information about the location of the highest-indexed leaf.
However after both of the children’s subtrees are processed,
then leaf l will become a leaf in vs’s original position in
(note that leaf l must be in vs’s subtree by definition),
hence fixing the location of the highest-indexed leaf in the
remaining subtree.

For a tree in the Q-state, it is partitioned by vs into
three subtrees (see Figure 6(b)), where vs’s left child
subtree is in the Q-state (as we fixed leaf l to be on the left
spine), vs’s right child subtree is in the P-state (we have
no information about the location of the highest-index leaf
in this subtree), and the remaining subtree is in the Q-state
as after vs’s subtree is completely processed, leaf l will
become a leaf in vs’s original position.

For a tree with n nodes in the P-state, the size of vs’s
subtree is greater than 3n/4 with at most probability 1/4.
This is because the location of leaf l is random and for vs’s
subtree not to contain leaf l, it must appear in the rest of
the tree, which has at most 1/4 probability of occurring
if vs’s subtree size is greater than 3n/4. Hence, at least
one of vs’s children’s subtree has size greater than 3n/4
with probability at most 1/4. By a similar argument, the
other subtree (of the Q-state) also has size greater than
3n/4 with probability at most 1/4.

For a tree with n nodes in Q-state, the size of vs’s
left child’s is greater than 3n/4 with at most probability
1/4. This is because the location of leaf s must appear in
vs’s right subtree by definition, and the location of leaf s
is uniformly random, so with at most 1/4 probability it
causes vs to have a left child of size at least 3n/4. For
the subtree remaining after removing vs’s subtree, it’s size
is greater than 3n/4 with probability at most 1/4 by a
similar argument. Note that we have no bound on the size
of vs’s right child subtree in the P-state. However, this is
fine because once a tree transitions into P-state, it will be
divided into small subtrees according to the analysis for
P-state trees in the previous paragraph.

We consider paths from the root to each leaf in the
dependence tree. Every two steps on such a path will
shrink the size of the tree by a factor of 3/4 with constant
probability (by the arguments above). Therefore, using
standard arguments, each path will have O(log n) steps
w.h.p., and by a union bound (multiplying the failure
probability by n), all path lengths and hence the tree depth
will be O(log n) w.h.p.

To show A(G), we note that a node in the dependence



tree with a subtree of size k will have height O(log k)
in expectation since it is true w.h.p. from the previous
discussion. Let W (n) indicate the expected sum of the
heights of the nodes in the dependence tree. For a tree of
size n, after two levels with constant probability the largest
remaining component will be 3/4n. Assuming the worst
case split is 3/4n and 1/4n when this is true, we have the
recurrenceW (n) ≤ O(log n)+p×

(
W ( 3

4n) +W ( 1
4n)
)
+

(1 − p) × W (n) for some constant 0 < p < 1. By
substitution, we have that W (n) = O(n). �

4 Algorithmic Design Techniques
We note that we can easily obtain implementations from the
iteration dependence graph. If steps in a computation can
be efficiently checked and updated, then an algorithm for
a problem with iteration depth D(G) can be implemented
with O(nD(G)) work and O(D(G)) depth simply by
proceeding in rounds, where in each round all steps check
if their predecessors in the iteration dependence graph have
been processed, and proceed if so. Since we are interested
in work-efficient (linear-work) algorithms, we will prove
the following lemma, which we use in Section 5 to obtain
linear-work algorithms for the three problems.

LEMMA 4.1. If steps can be efficiently checked and
updated, then an algorithm for a problem with itera-
tion depth D(G) can be implemented with O(A(G))
work and O(D(G) log n) depth on the EREW PRAM,
O(D(G) log∗ n) depth w.h.p. on the CRCW PRAM, or
O(D(G)) depth on the scan PRAM.

Proof. We define a step to be ready if all of its predeces-
sors in the iteration dependence graph have been processed.
The algorithm proceeds in rounds, where in each round all
remaining steps check if they are ready. If a step is ready,
it proceeds in executing its computation. After processing
the ready steps, consider them as having been removed
from the iteration dependence graph, and hence the itera-
tion depth of the remaining iteration dependence graph is
1 less than before. The initial iteration depth is D(G), so
D(G) rounds suffice. In each round, we pack out the suc-
cessful steps so that no additional work is done for them in
later rounds. The pack requires linear work in the number
of remaining steps. Since each round removes the leaves
of the iteration dependence graph, and the steps can be
efficiently checked and updated, the work done on each
step is proportional to its height in the graph. The total
work is proportional to the sum of the heights of all steps
in the iteration dependence graph, which is the aggregate
delayA(G). The depth of the algorithm isO(D(G)P (n)),
where P (n) is the depth of the pack, which is O(log n)
on the EREW PRAM, O(log∗ n) w.h.p. on the CRCW
PRAM using approximate compaction [17] and O(1) on
the scan PRAM. This proves the lemma. �

We now describe two techniques that we use to ob-
tain algorithms for the three problems in Section 5. The
deterministic reservations method checks all remaining
steps in each round, executing the ones whose dependen-
cies have all been satisfied, and gives algorithms satisfying
the bounds of Lemma 4.1. The activation-based approach
directly activates a step when it is ready.

4.1 Deterministic Reservations. Deterministic reserva-
tions is a framework introduced by Blelloch et al. [6] for
designing deterministic parallel algorithms. It gives a way
for steps in a parallel algorithm to check if all of their de-
pendencies have been satisfied using shared data structures.
Deterministic reservations proceeds in rounds, where each
round consists of a reserve phase, followed by a synchro-
nization point, and then a commit phase. In the reserve
phase, all (or a prefix) of the steps first write to locations in
shared data structures corresponding to the steps it conflicts
with in the iteration dependence graph. After synchroniz-
ing, then all (or a prefix) of the steps each check whether
it can proceed with its computation in the commit phase.
Steps that fail to proceed in the commit phase (it has a
conflict with a step earlier in the ordering) survive to the
next round. This is repeated until no steps remain. In deter-
ministic reservations, one can either execute all of the steps
in a round, or just a prefix of them. In the prefix-based
approach, each prefix is processed until completion before
moving on to the next prefix. In practice, this gives a nice
trade-off between extra work and parallelism by adjusting
the size of the prefix.

In the framework, each algorithm specifies only a
RESERVE function and a COMMIT function for the steps,
executed in the reserve and commit phase, respectively.
This yields very concise code. Each function takes the step
number as an argument. RESERVE returns 0 if the step
drops out; otherwise it applies the reservation and returns
1. COMMIT returns 0 if the step successfully commits
(and drops out), and 1 otherwise. The steps that drop out
are removed at the end of the round. The deterministic
reservations approach directly gives algorithms satisfying
the bounds in Lemma 4.1.

4.2 Activation-based Approach. The activation-based
approach directly “wakes-up” (activates) each step exactly
when it is ready [7, 21]. In particular, the predecessors
in the iteration dependence graph are responsible for
activating the step. At the beginning, we identify all the
steps that do not depend on any others (in our examples,
these can be determined easily). Then on each round,
each active step executes its computation, and then detects
whether it is the last predecessor of a successor; if so, it
wakes up the successor. The approach is work-efficient
since it only runs steps exactly when they are needed. As
we will see, the implementations are problem-specific.



1: H = swap targets
2: R = {−1, . . . ,−1}
3: procedure RESERVE(i)
4: writeMax(R[i], i) . reserve own location
5: writeMax(R[H[i]], i) . reserve target location
6: return 1

7: procedure COMMIT(i)
8: if (R[i] = i and R[H[i]] = i) then
9: swap(A[H[i]], A[i]) . swap if reserved

10: return 0
11: else return 1
Figure 7: RESERVE and COMMIT functions and associated data
for random permutation.

5 Parallel Algorithms
In this section, we describe parallel algorithms for random
permutation, list contraction and tree contraction designed
using the deterministic reservations approach and the
activation-based approach, discussed in Section 4.

5.1 Random Permutation. To implement the random
permutation algorithm using deterministic reservations,
we specify the RESERVE and COMMIT functions shown in
Figure 7. The implementation uses an array R, initialized
to contain all −1, to store reservations. The RESERVE
function for index i simply calls writeMax to the two
locations R[i] and R[H[i]] with value i and returns 1. The
COMMIT function simply checks if both writeMax’s were
successful (i.e., both R[i] and R[H[i]] store the value i)
and if so, swaps A[H[i]] and A[i] and returns 0; otherwise
it returns 1. This process guarantees that a step will
successfully commit (swap) if only if its children in the
dependence forest have finished in a previous round of
deterministic reservations. This is because if any child
were not finished, then it would have competed in the
writeMax and won since it has a higher index. In particular,
the left child as shown in Figure 2(b) will win on R[i] and
the right child in that figure will win on R[H[i]].

THEOREM 5.1. For a random H , deterministic reser-
vations using the RESERVE and COMMIT functions for
random permutation runs in O(n) expected work and
O(log n log∗ n) depth w.h.p. on the priority-write CRCW
PRAM.

Proof. Apply Theorem 3.2 and Lemma 4.1. The RESERVE
and COMMIT functions take constant work/depth, so the
steps of the computation can be efficiently checked and
updated. The writeMax requires the priority-write CRCW
PRAM. �

Activation-Based Implementation. We now discuss a
linear-work activation-based implementation of the parallel
random permutation algorithm. The implementation keeps
track of the nodes ready to be executed of the dependence
graph, processes and deletes these nodes from the graph in

each round, and identifies the new nodes that are ready for
the next round. It relies on constructing the dependence
forest, and the following lemma states that this can be done
efficiently.

LEMMA 5.1. The dependence forest for a given H can be
constructed in O(n) expected work and O(log n) depth
w.h.p. on the CRCW PRAM.

Proof. Building the dependence forest of random permu-
tation for a given H requires sorting all of the nodes which
point to the same node in the forest. We do this by (1)
using a non-stable integer sort in the range [1, . . . , n] [33]
to group all the nodes, and then (2) sorting the nodes
within each group using a parallel comparison sort [24].
(1) can be done in O(n) work and O(log n) depth on the
CRCW PRAM. The depth for (2) is O(log log n) w.h.p.
since the largest group is of size O(log n) w.h.p. The total
work for (2) is

∑n−1
i=0 csi log si where si is the number of

nodes pointing to node i and c1 is a constant. To show that∑n−1
i=0 c1si log si = O(n), we use a similar argument used

in the analysis of perfect hash tables [30]. Let Xij = 1 if
H[i] = H[j] and Xij = 0 otherwise.

n−1∑
i=0

c1si log si ≤
n−1∑
i=0

c2s
2
i for some constant c2

= c2

n−1∑
i=0

n−1∑
j=0

Xij

= c2(n+ 2

n−1∑
i=0

n−1∑
j=i+1

Xij) consider Xij where i < j

≤ c2(n+ 2

n−1∑
i=0

n−1∑
j=i+1

1

i+ 1

1

j + 1
) (*)

≤ c2(n+ 2

n−1∑
i=0

n−1∑
j=i+1

1

(i+ 1)2
)

≤ c2(n+ 2n

n∑
i=1

1

i2
)

< c2(n+ 2n ·
π2

6
)

= O(n)

(*) follows because H[i] and H[j] are independent.
After sorting, creating the pointers in the dependence

forest takes O(n) work and O(1) depth. �

We now use Theorem 5.1 to design an activation-based
random permutation algorithm.

THEOREM 5.2. For a random H , an activation-based
implementation of random permutation runs in O(n)
expected work and O(log n log∗ n) depth w.h.p. on the
CRCW PRAM.

Proof. We form the dependence forest for a given H ,



which by Lemma 5.1 can be done in O(n) expected work
and O(log n) depth w.h.p. on the CRCW PRAM.

We first identify the leaves of the dependence forest
and maintain the set of leaves at each step (these are the
steps that are ready to be processed). Then we repeatedly
process the leaf set, remove it and its edges from the graph,
and identify the new leaf set until the dependence forest
has been completely processed. Since we are satisfying
all dependencies in the dependence forest, by Lemma 3.1,
this guarantees correctness. We assume that the neighbors
of a node are represented in an array, and partitioned into
incoming edges and outgoing edges. To identify the new
leaf set at each step, nodes that are removed perform a
check on its parent to see if it has any incoming edges
remaining. The check can be done in O(1) work and time
per neighbor since each node has at most two incoming
edges.

After all checks are completed, nodes with no incom-
ing edges are added to the next leaf set. Duplicates can
be eliminated by filtering in work linear in the size of the
new leaf set since each node can be duplicated at most
once (each node has at most 2 incoming edges). The new
leaf set is packed with approximate compaction, requiring
work linear in the leaf set size and O(log∗ n) depth w.h.p.
Each step is processed a constant number of times, so the
total work is O(n). Each round reduces the iteration depth
of the iteration dependence graph on the remaining steps
by 1, and since the initial iteration depth is Θ(log n) w.h.p.
by Theorem 3.2, the overall depth isO(log n log∗ n) w.h.p.
�

Adapting to the CRQW PRAM. We adapt our random
permutation algorithms to the concurrent-read queue-write
(CRQW) PRAM [14, 15], which closely models cache
coherence protocols in multi-core machines. In this model,
concurrent reads to a memory location are charged unit
cost but concurrent writes to a memory location have a
contention cost equal to the total number of concurrent
writes to the location. In each step, the maximum
contention over all locations is charged to the depth.

Lemma 5.1 also applies for the CRQW PRAM as
integer sorting can be done in O(n) work and O(log n)
depth w.h.p. on the CRQW PRAM [14], and comparison
sorting can be implemented on an EREW PRAM (a weaker
model than the CRQW PRAM). Packing on the CRQW
PRAM can be done in linear work and O(

√
log n) depth

w.h.p. [15], so an activation-based implementation of the
sequential algorithm can be made to run in O(n) expected
work and O(log1.5 n) depth w.h.p.

The deterministic reservation-based implementation
of random permutation can also be adapted to the CRQW
PRAM, using prefix sums for packing. The only place
in the algorithm that requires concurrent writes is the
call to writeMax. However since the dominance forest

1: R = {0, . . . , 0} . boolean array

2: procedure RESERVE(i)
3: if i < L[i].prev and i < L[i].next then
4: R[i] = 1 . reserve own location
5: return 1

6: procedure COMMIT(i)
7: if (R[i] = 1) then
8: if L[i].prev 6= null then
9: L[L[i].prev].next = L[i].next

10: if L[i].next 6= null then
11: L[L[i].next].prev = L[i].prev
12: return 0
13: else return 1
Figure 8: RESERVE and COMMIT functions and associated data
for list contraction.

has in-degree O(log n) w.h.p., there can be at most
O(log n) concurrent calls to writeMax to a given location,
leading to O(log n) contention. This requires O(log n)
additional slackness (depth) per step. Using prefix sums
for packing, each round already requires O(log n) depth,
so this slackness does not affect the overall bounds, and
we are left with an algorithm that does linear work and
O(log2 n) depth w.h.p. on the CRQW PRAM.

Random Permutation via Rotations. Here we describe
another parallel implementation of the sequential algo-
rithm, using the fact that the values at the locations of
the nodes pointing to the same node in the dominance
forest just get rotated. In particular, if i1, . . . , ik with
il < il+1 point to j, then after all other dependencies to
i1, . . . , ik are resolved, then A[j] = A[ik], A[i1] = A[j]
and A[il+1] = A[il] for 1 ≤ l < k. We can build the dom-
inance forest using an integer sort to group the nodes and
then a comparison sort within each group in O(n) work
and O(log n) depth w.h.p. on the CRCW PRAM by the
same analysis as done in the proof of Lemma 5.1. Then
we can process the forest level by level, starting with the
leaves, and rotating the values of each group of leaves and
the target node. The level numbers for the nodes can be
computed using leaffix operations or Euler tours [24] in
linear work and O(log n) depth. Rotating the values can
be done in work proportional to the number of nodes pro-
cessed, and O(1) depth. As the height of the dominance
forest is Θ(log n) w.h.p., this gives an algorithm withO(n)
work and O(log n) depth w.h.p. on the CRCW PRAM. It
can also be implemented in the same bounds, as the integer
sort can be done in O(n) work and O(log n) depth w.h.p.
on the CRQW PRAM. We note that however this approach
is less practical than the approach using deterministic reser-
vations.

5.2 List Contraction. The deterministic reservations
implementation (pseudo-code shown in Figure 8) of list
contraction maintains a boolean array R initialized to



all 0’s. The RESERVE function for index i checks if
i < L[i].prev and i < L[i].next, and if so, writes a value
of 1 to R[i]. The COMMIT function for index i checks if
R[i] is equal to 1 and if so, splices out the node L[i] and
returns 0; otherwise it returns 1. These functions preserve
the ordering imposed by the iteration dependence graph of
L throughout its execution. To see this, note that if neither
of its current neighbors in the list is lower-indexed, then
step i will be a leaf in the iteration dependence graph by
definition (both neighbors will be selected as roots before
i in the dependence graph construction process, so i will
have no descendants). Only in this case will R[i] be set
to 1 in the RESERVE step and step i executes its COMMIT
step. Otherwise, step i will not proceed. Therefore, by
Lemma 3.2, it generates the same result as the sequential
algorithm.

The RESERVE and COMMIT functions take constant
work/depth, so the steps of the computation can be effi-
ciently checked and updated. By applying Theorem 3.3
and 4.1, we obtain the following theorem for list contrac-
tion. We can implement list contraction on the EREW
PRAM because reads and writes of the neighbors inside
the RESERVE and COMMIT steps can be separated into a
constant number of phases such that there are no reads or
writes to the same location in a phase.

THEOREM 5.3. For a random ordering of L, determinis-
tic reservations using the RESERVE and COMMIT func-
tions for list contraction runs in O(n) expected work
and O(log2 n) depth w.h.p. on the EREW PRAM,
O(log n log∗ n) depth w.h.p. on the CRCW PRAM, or
O(log n) depth on the scan PRAM.

Activation-Based Implementation.

THEOREM 5.4. For a random ordering of L, an
activation-based implementation of list contraction runs
in O(n) work and O(log2 n) depth w.h.p. on the EREW
PRAM, O(log n log∗ n) depth w.h.p. on the CRCW PRAM,
or O(log n) depth on the scan PRAM.

Proof. For each node, we store a counter keeping track
of the number of lower-indexed neighbors it has in the
list. These counters can be initialized in linear work and
constant depth. Then we identify the “roots”, which are the
nodes whose counters are 0 (they have no lower-indexed
neighbors). In each round, we process all roots, and update
the counters of their neighbors as follows. For a root
v, let vnext be the successor node of v and vprev be the
predecessor node of v. We first analyze the case where
vnext > vprev. We also have that vprev > v by definition
of a root. After splicing out v, vnext becomes a neighbor
of vprev so we decrement the counter of vprev. If the
counter of vprev reaches 0, then we add it to the next set
of roots. The counter of vnext is left unchanged as its

new neighbor is still a lower-indexed neighbor. In the case
where vprev > vnext, we decrement the counter of vnext,
and check whether it reaches 0. By splitting the reads and
updates of neighbors into a constant number of phases, no
concurrent reads or writes are required.

This algorithm satisfies the iteration dependence graph
by noting that a node will only be spliced out if both
of its neighbors in the list have higher indices, and
appealing to the same argument made for the correctness
of the deterministic reservations-based implementations
of list contraction. Each round processes all leaves in the
dependence graph, so by Theorem 3.3, O(log n) rounds
are sufficient w.h.p. to process all of the nodes. On each
round, O(P (n)) depth is required for packing the new
roots into an array, leading to a total of O(P (n) log n)
depth w.h.p. across all rounds. P (n) is O(log n) if using
prefix sums on the EREW PRAM, O(log∗ n) w.h.p. if
using approximate compaction on the CRCW PRAM, and
O(1) on the scan PRAM. The work spent on each node
is constant, since its counter is decremented a constant
number of times. The work for packing is linear in the
number of nodes. Thus the total work is O(n).

5.3 Tree Contraction. With a pre-processing phase, we
can label each internal node with the highest-indexed leaf
in its sub-tree using a parallel leaffix operation (with the
minimum operator) in O(n) work and O(log n) depth.
Then each internal node stores the smaller of the two
computed labels of its children. Since the minimum
operator does not have an inverse, we must do this
with tree contraction. Note that, however, minimum is
associative, so the result of this pre-processing phase
would be consistent with any tree contraction algorithm.
After pre-processing, we can run the parallel algorithms
described in this section with any operator (does not have to
be associative), and get the same answer as the sequential
algorithm (Algorithm 5). With the internal nodes labeled,
the neighborhood of a leaf is defined as the leaves labeled
on its parent and its grandparent nodes. Only if the labels
on these two internal nodes are greater than or equal to the
leaf’s ID can it proceed in raking.

Deterministic reservations-based implementation. Fig-
ure 9 defines the RESERVE and COMMIT functions and as-
sociated data required for deterministic reservations. N(i)
corresponds to the neighborhood of step i, which includes
the leaf labeled on its parent (if it has one) and the leaf
labeled on its grandparent (if it has one). These functions
preserve the ordering imposed by the iteration dependence
graph of T (defined in Section 3.3) throughout its execu-
tion because if the ith leaf is spliced out, the RESERVE step
guarantees that if R[i] is set to 1, and guarantees that there
are no lower-indexed leaves in the neighborhood of step i
(i.e. step i has no children in the dependence forest). Only
in this case does step i rake itself out in the COMMIT step



1: R = {0, . . . , 0} . boolean array

2: procedure RESERVE(i)
3: if i < j, ∀j ∈ N(i) then
4: R[i] = 1 . reserve own location
5: return 1

6: procedure COMMIT(i)
7: if (R[i] = 1) then
8: p = T [i].parent
9: if T [p].parent 6= null then . p is not root

10: s = sibling(T, i)
11: T [s].parent = T [p].parent
12: switchParentsChild(T, p, s)
13: else . p is root
14: switchParentsChild(T, i, null)
15: return 0
16: else return 1
Figure 9: RESERVE and COMMIT functions and associated data
for tree contraction. sibling(T, i) returns the sibling of i in T , and
switchParentsChild(T, i, v) resets the appropriate child pointer
of the parent of i to point to v instead of i.

(the procedure for raking is the same as in the sequential
algorithm shown in Algorithm 5).

Again, the steps can be efficiently checked and
updated because the RESERVE and COMMIT functions take
constant work/depth. By applying Theorem 3.4 and 4.1, we
obtain the following theorem for tree contraction. Again,
we can use the EREW PRAM because reads and writes of
the neighbors inside the RESERVE and COMMIT steps can
be separated into a constant number of phases such that
there are no reads or writes to the same location in a phase.

THEOREM 5.5. For a random ordering of T , deter-
ministic reservations using the RESERVE and COMMIT
functions for tree contraction runs in O(n) expected
work and O(log2 n) depth w.h.p. on the EREW PRAM,
O(log n log∗ n) depth w.h.p. on the CRCW PRAM, or
O(log n) depth on the scan PRAM.

The tree contraction used for pre-processing can
be done deterministically in linear work and O(log n)
depth on the EREW PRAM, which is within the stated
complexity bounds of Theorem 5.5.
Activation-based implementation.

THEOREM 5.6. An activation-based implementation of
Algorithm 5 runs in O(n) work and O(log2 n) depth w.h.p.
on the EREW PRAM, O(log n log∗ n) depth w.h.p. on the
CRCW PRAM, or O(log n) depth on the scan PRAM.

Proof. The activation-based implementation of list con-
traction described in Theorem 5.4 can be adapted for tree
contraction. The “roots” are the steps with no lower labels
on its parent and grandparent, which implies that it has
no lower-indexed steps in its neighborhood. A root that is
successfully processed potentially updates the counters of
the steps in its neighborhood. The counter of each step is

initialized to the number of lower-indexed steps that are
in its neighborhood. Overall this takes linear work and
constant depth. This algorithm satisfies the dependencies
of the iteration dependence graph defined in Section 3.3
because the roots are the steps that have no more dependen-
cies. Again, the reads and updates are split into a constant
number of phases to avoid concurrency. Since the iteration
depth is O(log n) w.h.p. by Theorem 3.4, and each round
of the algorithm reduces the iteration depth of the remain-
ing dependence graph by 1, O(log n) rounds are required
w.h.p. Therefore, we have a depth ofO(P (n) log n) w.h.p.,
where P (n) is O(log n) on the EREW PRAM, O(log∗ n)
w.h.p. on the CRCW PRAM and O(1) on the scan PRAM.
The work is linear because each step is processed a con-
stant number of times. �

6 Limited Randomness
The parallel algorithms that we described in Section 5 use
O(log n) random bits per input element, thus requiring
O(n log n) bits of randomness in total. In this section, we
describe how to reduce the amount of randomness to a
polylogarithmic number of random bits while preserving
the iteration dependence depth for random permutation
and list contraction.

To show that limited randomness suffices, we use
Nisan’s [31] pseudorandom generator for space-bounded
computation, which uses O(S log n) truly random bits to
generate pseudorandom bits that are capable of fooling
an S-space machine. More accurately, the probability of
failure event given the generated stream of pseudorandom
bits differs by at most (an additive) ε from the failure
probability given truly random bits, where the bias ε
can be driven down to O(1/nc) for any constant c by
increasing the number of truly random bits by a constant
factor. Thus, a result that holds with high probability using
truly random bits also holds with high probability using
the pseudorandom bits, provided that the failure event can
be tested by an S-space machine.

For our purposes, it suffices to show that a space-
S computation can verify the iteration depth of the
dependence graph. As long as the low-space computation
uses the same mapping from random bits to steps, the
actual computation would have the same dependence graph.
The challenge in designing these low-space verifiers and
applying Nisan’s theorem is that the verifier must consume
the random bits as a one-pass stream of bits. By exhibiting
such O(log n)-space and O(log2 n)-space verifiers for the
iteration depths of random permutation and list contraction,
respectively, we prove that O(log2 n) random bits suffice
for random permutation and O(log3 n) random bits suffice
for list contraction.

THEOREM 6.1. Using Nisan’s generator with a seed
of O(log2 n) random bits, the iteration depth of the



dependence graph for random permutation is O(log n)
w.h.p.

Proof. Consider a single step i. Theorem 3.2 states that
if each step chooses uniformly random numbers, then
for any constant c the probability of step i exceeding
depth O(c log n) is O(1/nc). Assuming we can verify
the depth bound for step i in O(log n) space, Nisan’s
theorem states that the probability of exceeding the depth
bound using the generated pseudorandom bits is at most
O(1/nc) + ε = O(1/nc). Taking a union bound over all
steps, the probability of choosing a seed that causes any
step to have high depth is O(1/nc−1).

The following is an O(log n)-space procedure for
calculating the depth of step i, using a single pass through
the stream of random bits. Scan from step i down to step
H[i] in the input array, counting the number of intervening
steps k such that H[k] = H[i]. These steps form a chain
in the dependence forest directed from i to H[i]. Repeat
this process starting from i′ = H[i] down to H[i′], until
reaching the root of this tree (i.e., the starting node i′ has
H[i′] = i′). The sum of the lengths is equal to the depth of
i in the dependence forest. This process requires O(log n)
space to maintain a few pointers and the sum.

One additional detail is that the permutation algorithm
expects random values in the range [0, . . . , i], but what we
have access to is a stream of (pseudo)random bits. Without
loss of generality, assume n is a power of 2. To generate
a number in the range [0, . . . , i], for any constant c first
generate a number x in the range [0, . . . , nc−1]. For values
x < (i+ 1)bnc/(i+ 1)c, use H[i] = x/(bnc/(i+ 1)c). If
any larger value is generated, the algorithm fails. The
probability of failure for a particular value is at most
n/nc = 1/nc−1, and using a union bound over all values,
the failure probability becomes O(1/nc−2). �

We note that the random permutation produced using
limited randomness is not truly random.

For list contraction, we assume that each node is
assigned a random number, which we call a priority, from
the random bits of Nisan’s generator. The random ordering
of the list L can be viewed as the ordering in which the
priorities are sorted in increasing order. By choosing
random numbers from the range [0, . . . , nc−1] for constant
c > 1, the priorities are distinct w.h.p. and Theorem 3.3
applies.

THEOREM 6.2. Using Nisan’s generator with a seed
of O(log3 n) random bits to assign each node a
(pseudo)random priority, the iteration depth of the depen-
dence graph for list contraction is O(log n) w.h.p.

Proof. As in Theorem 6.1, we will exhibit an algorithm
that can verify the depth of a node/step in the dependence
tree using a single pass through the random priorities.

Since the probability of the depth bound being exceeded is
polynomially small, a union bound over all steps completes
the proof.

To verify the depth of node x in the dependence forest,
the verifier simulates the incremental insertion of nodes,
in input order, into the dependence forest. After each
step, the structure of the dependence tree containing x
is identical to a treap using the same priorities and node
comparisons respecting list-order. We begin the simulation
by inserting the node x, assuming pessimistically that it
has minimum priority (which only increases its depth).
Throughout the process, we maintain the root-to-leaf path
down to x. When inserting a new node z, the idea is to
simulate the treap insertion process with respect to the path
down to x. To insert z, step down the path until finding
the first (highest) node y such that either x and z are in
different subtrees of y, or y = x. If z has lower priority
than y, then the path to x is unchanged. Otherwise, splice
in z to be the parent of y, and repeatedly rotate z and
its parent until z has lower priority than its parent. This
rotation process may result in the path shortening and/or
the ancestors being rearranged, depending on the list-order
comparisons among nodes.

List-order comparisons can be performed in O(log n)
space using a constant number of pointers and travers-
ing the list. As long as the depth of a node never ex-
ceeds O(log n), then the space used by the simulation is
O(log2 n). If the depth ever exceeds O(log n), then the
simulation stops and reports a high-depth node. By Theo-
rem 3.3, this is a low probability event. �

We now discuss the work and depth required to
generate the random numbers from Nisan’s pseudorandom
generator. The generator uses O(log n) independent
hash functions h1, . . . , hS , each requiring O(S) random
bits, and a seed x with O(S) random bits [31]. Define
G0(x) = x and Gt(x) = (Gt−1(x), ht(Gt−1(x))) for
t ≥ 1. The output of the generator is Gt′(x), where
t′ = O(log(n log n/S)), which has O(n log n) bits.

LEMMA 6.1. The output of Nisan’s pseudorandom gen-
erator can be computed in O(nS/ log n) work and
O(log n log(1 + S/ log n)) depth.

Proof. We construct Gt′(x) recursively using the def-
inition above. Level t of the recursion requires
O(2t(S/ log n)2) work and O(log(1 + S/ log n)) depth,
as the hash functions can be evaluated in O((S/ log n)2)
work and O(log(1 + S/ log n)) depth using naive multi-
plication (we can evaluate O(log n) bits with one unit of
work). To generate O(n log n) pseudorandom bits, we
perform O(log(n log n/S)) levels of recursion. The total
work is

∑log(n logn/S)
t=0 O(2t(S/ log n)2) = O(nS/ log n)

and depth is O(log n log(1 + S/ log n)). �



By plugging in the space bounds for random permu-
tation and list contraction into Lemma 6.1, we obtain the
following corollary.

COROLLARY 6.1. The random bits of Nisan’s pseudo-
random generator for our random permutation and
list contraction algorithms can be computed in O(n)
work and O(log n) depth, and O(n log n) work and
O(log n log log n) depth, respectively.

7 Experiments
We implement the deterministic parallel iterative algo-
rithms for random permutation, list contraction and tree
contraction. For tree contraction, we use a version that
does not do a pre-processing step, and each leaf simply
checks its nearby leaves to see if there are any conflicts.
This version is described in the Appendix, and while it
does not return the same answer as the sequential algo-
rithm (but is still deterministic), it is more efficient as it
does not require a pre-processing step. All of our parallel
implementations use the prefix-based version of determin-
istic reservations [6], which performs better in practice
than the version which processes all remaining steps in
each round. In the Appendix, we prove complexity bounds
for these versions. In our implementations, each prefix
is processed once, and the unsuccessful steps are moved
to the next prefix. For random permutation, we chose a
prefix size of ni/50 where ni is the number of remaining
steps. For list contraction we chose a fixed prefix size
of n/100 and for tree contraction we chose a fixed prefix
size of n/50. These were experimentally determined to
give the best performance. Our implementations are all
very simple—the random permutation and list contraction
implementations use under a dozen lines of C code and
the tree contraction implementation uses a few dozen lines.
For comparison, we also implement the sequential iterative
algorithms.

We run our experiments on a 40-core (with two-way
hyper-threading) machine with 4× 2.4GHz Intel 10-core
E7-8870 Xeon processors, a 1066MHz bus, and 256GB
of main memory. We ran all parallel experiments with
two-way hyper-threading enabled, for a total of 80 threads.
We compiled all of our code with g++ version 4.8.0 with
the -O2 flag. The parallel codes use Cilk Plus [27]
to express parallelism, which is supported by the g++
compiler that we use. The writeMax operation used in
random permutation is implemented using a compare-and-
swap loop [38]. We obtain randomness via hash functions,
although more sophisticated random number generators
could be used.

The number of elements for random permutation, num-
ber of nodes for list contraction, and number of leaves for
tree contraction is 109. For random permutation, the data
array A stores 32-bit integers and we randomly generated

Algorithm (1) (40h) (seq)
Random permutation 92.1 4.62 38.8

List contraction 160 3.97 46
Tree contraction 350 10.0 172

Table 1: Times (seconds) for n = 109 on 40 cores with hyper-
threading. (1) indicates 1 thread, (40h) indicates 80 hyper-threads,
and (seq) is the sequential iterative implementation.

the swap targets (the H array). For list contraction, to gen-
erate the input, we first generated a random permutation,
giving us a collection of cycles on the nodes, and then
deleted one edge on each cycle, giving us a collection of
linked lists. For tree contraction our input was a random
binary tree with 109 randomly-indexed leaves, giving us
a total of 2 × 109 − 1 nodes. Often, list and tree con-
traction are used as a part of a larger algorithm, so the
pre-processing step of randomly permuting the elements
only needs to be applied once. In our experiments, we
do not store values on the nodes for list contraction and
tree contraction. A summary of the timings for each of the
three algorithms are shown in Table 1. The times that we
report are based on a median of three trials.

Plots of running time versus number of threads in
log-log scale for each of the three algorithms are shown
in Figure 10. We see that the parallel implementations
all get good speedup, and outperform the corresponding
sequential implementation with a modest number of
threads.

For random permutation, the parallel implementation
outperforms the standard simple sequential implementa-
tion [26] with 4 or more threads. We also compared it to a
sorting-based random permutation algorithm that we im-
plemented, where we create pairs (A[i], ri) where each ri
is a random number drawn from [1, . . . , n2], and the key to
sort on is the second value of the pair. Note that this does
not give the same permutation as the sequential algorithm.
We used a parallel sample sort, which is part of the Prob-
lem Based Benchmark Suite [39]. On 80 hyper-threads
the sorting-based algorithm took 5.38 seconds, and on a
single thread it took 204 seconds. Both of these timings are
inferior to the random permutation algorithm implemented
with deterministic reservations.

We note that an experimental study of other parallel
random permutation algorithms has recently been con-
ducted by Cong and Bader [9], which compares algorithms
based on sorting [33], dart-throwing [28, 14, 16] and an
adaptation of Sander’s distributed algorithm [37]. None
of these algorithms generate the same permutation as the
sequential algorithm. It is difficult to directly compare with
their reported numbers because their numbers include the
cost for generating random numbers, while our numbers
do not, their input sizes are much smaller (the largest size
was 20 million elements), and the machine specifications
are different.

For list contraction, the parallel implementation out-
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Figure 10: Running time vs. number of threads for n = 109 on 40 cores with hyper-threading (log-log scale). (40h) indicates 80
hyper-threads.
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Figure 11: Total work vs. prefix size for n = 108.

performs the serial implementation with 8 or more threads.
We also implemented a parallel version of list contraction
where the random numbers are regenerated in each round.
In this strawman implementation, we cannot directly ap-
ply the prefix processing idea because the priorities of the
nodes are not fixed. Therefore all remaining nodes are
processed in each iteration. On 80 hyper-threads, the im-
plementation took 6.46 seconds to finish. This is slower
than our parallel implementation, which takes 3.97 seconds
on the same input. The reason is that there is more wasted
work in processing all of the nodes on each iteration, and
also an added cost of regenerating random numbers on
each iteration. In addition, this implementation does not
return the same answer as the sequential implementation.

List ranking algorithms have been studied experimen-
tally in the literature [35, 40, 32, 11, 22, 23, 3, 34]. None
of these implementations return the same answer as a se-
quential ordering of processing the nodes would. The most
recent experimental work on list ranking for multi-cores is
by Bader et al. [3]. However since they used a much older
machine, and they are solving list ranking instead of list
contraction, it is hard to compare.

Finally, for tree contraction the parallel implemen-
tation outperforms the sequential implementation with 4
or more threads. Again, we compare it with a parallel
strawman version that processes all remaining leaves and
regenerates the random numbers on each iteration. On
80 hyper-threads this implementation took 23.3 seconds,
compared to 10 seconds for our parallel implementation.
As in list contraction, this is due to the wasted work of
processing all leaves on each iteration and the added cost
of regenerating the random numbers.

The most recent experimental work on tree contraction
on multi-cores is by Bader et al. [4]. They present an
implementation of tree contraction based on the standard
algorithm that only rakes leaves [24]. The algorithm is
more complicated than ours as it involves using Euler tours
and list ranking to label the leaves to allow non-conflicting
leaves to be raked in parallel. Furthermore, it does not
return the same answer as a sequential algorithm. Again,
because they use a much older machine and they solve the
more expensive arithmetic expression computation, it is
hard to compare.

In Figure 11, we plot the total work performed by
the three algorithms as a function of the prefix size for
n = 108. Since the prefix size is a constant fraction for
random permutation, in the plots, the x-axis shows the
fraction used. For list contraction and tree contraction, the
prefix size is fixed across rounds, so the x-axis shows the
actual size of the prefix. We see that the work goes up as
we increase the prefix size as there is more wasted work
due to failed steps. Note that a prefix size of 1 corresponds
to the work performed by the sequential algorithm. In
Figure 12, we plot the number of rounds of deterministic
reservations as a function of prefix size in log-log scale.
We see the opposite effect here—a larger prefix size leads
to fewer rounds because there is more parallelism. These
plots show the trade-off between work and parallelism.
Finally, in Figure 13 we plot the parallel running time as a
function of the prefix size in log-log scale. We see that the
best running time uses a prefix size somewhere in between
1 and n.



 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e-08  1e-07  1e-06  1e-05  0.0001  0.001  0.01  0.1  1

N
um

be
r o

f r
ou

nd
s

Prefix size (fraction)

Prefix size versus number of rounds on 100 million elements

(a) random permutation

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

N
um

be
r o

f r
ou

nd
s

Prefix size

Prefix size versus number of rounds on 100 million elements

(b) list contraction

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

N
um

be
r o

f r
ou

nd
s

Prefix size

Prefix size versus number of rounds on 100 million elements

(c) tree contraction

Figure 12: Number of rounds vs. prefix size for n = 108 (log-log scale).
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Figure 13: Running time vs. prefix size for n = 108 on 40 cores with hyper-threading (log-log scale).

8 Conclusion
We have shown that simple “sequential” iterative algo-
rithms for random permutation, list contraction and tree
contraction are surprisingly parallel. We prove that the
iteration dependence depth for these problems is loga-
rithmic with high probability, and describe linear-work
polylogarithmic-depth parallel algorithms for solving these
problems. For random permutation and list contraction, we
show that the iteration depth bounds are maintained with
high probability even when using only a polylogarithmic
number of random bits. Using limited randomness in tree
contraction is left for future work. We show experimentally
that our implementations for the three problems get good
speedup and outperform the sequential implementations
with a modest number of cores. The simplicity, practical
efficiency, determinism, and theoretical guarantees of our
algorithms make them very attractive.
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A Appendix
A.1 Prefix-based deterministic reservations for ran-
dom permutation. For our experiments, we use the
prefix-based version of deterministic reservations. The
idea is that selecting a small enough prefix ensures that the
amount of wasted work is small in practice. We analyze a
version of the algorithm which processes each prefix until
completion before moving on to the next prefix. This dif-
fers from our implementation, but our implementation only
process more steps per round, so can only have lower depth.
If we select a constant fraction (e.g., half) of the remaining
elements as the prefix, then there are O(log n) iterations.
Processing each prefix requires O(log n log∗ n) depth by
Theorem 5.1 (the dependence forest of the prefix can only
be shallower than the dependence forest of all the steps).
Hence the total depth is O(log2 n log∗ n) w.h.p. Since pro-
cessing all steps per round gives expected linear-work by
Theorem 5.1, and processing a prefix only decreases the
amount of wasted work (work spent on processing failed
steps), the work is still O(n) in expectation.

A.2 Prefix-based deterministic reservations for list
contraction. Similar to the analysis for random permuta-
tion in Section A.1, a prefix-based version of list contrac-
tion with a prefix consisting of a constant fraction of the
remaining steps leads to an algorithm with O(n) expected
work and polylogarithmic depth by applying Theorem 5.3.

A.3 Variant of tree contraction algorithm. Here we
analyze the simpler version of tree contraction that does
not require a pre-processing phase. It does not return



the same answer as the sequential algorithm, but is still
deterministic.

The deterministic reservations-based algorithm still
uses the functions shown in Figure 9, but with a modified
definition of the neighborhood N(i). Define the region of
leaf i to contain i’s parent (if it exists) and i’s grandparent
(if it exists). Define N(i) to contain the leaves j, j 6= i,
such that the intersection of i’s region and j’s region is
non-empty. The dependence forest for a tree T is the tree
on the n leaf nodes such that leaf i has a directed edge to
leaf j if i < j and j is in i’s neighborhood.

LEMMA A.1. For any i, N(i) ≤ 4.

Proof. There can be at most 3 other regions that contain
i’s grandparent and at most 2 other regions that contain
i’s parent. If the number of other regions that contain i’s
grandparent is exactly 3 then the 4 grandchildren of i’s
grandparent are all leaves and N(i) = 3. In all other
cases, there are at most 2 other regions containing i’s
grandparent and at most 2 other regions containing i’s
parent, so N(i) ≤ 4. �

We now show that for a random ordering of the leaves
of T , the algorithm does not have a very long chain of
dependencies.

THEOREM A.1. For a random ordering of the leaves of
T , the parallel implementation of greedy tree contraction
requires O(log2 n) rounds to terminate w.h.p.

Proof. We analyze the prefix-based version of the algo-
rithm, which can only be slower than the fully parallel
version. Consider the dependence forest induced by the
δn lowest indexed leaves, where δ is the fraction of the re-
maining elements to take as the prefix. If there processing
the prefix takes k rounds, then there must be a k-length
(undirected) path in the dependence forest. The probability
of a k-length path is δk. By Lemma A.1, each node has
at most 4 neighbors so the maximum number of k-length
paths starting at any node in the dependence forest is 4k.
By a union bound over all nodes, the probability of a k-
length path in the prefix is at most n · 4k · δk. For δ = 1/8
and k = 2 log n, this gives a high probability bound. Since
δ is a constant fraction, the number of prefixes is O(log n),
giving O(log2 n) rounds w.h.p. overall. �

A straightforward implementation of this algorithm
using deterministic reservations has O(n log2 n) work
and O(log2 n) depth w.h.p. The algorithm can also be
implemented in linear work as the following theorem
shows.

THEOREM A.2. For a random ordering of the leaves of T ,
prefix-based deterministic reservations using the RESERVE
and COMMIT functions for tree contraction runs in O(n)

expected work and O(log3 n) depth w.h.p. on the EREW
PRAM.

Proof. Define a maximal path in the dependence forest
to be a path whose length cannot be extended following
either forward edges or backward edges. Since each
iteration processes all nodes in each maximal path of the
dependence forest, we need to show that the size of each
maximal path in the dependence forest is constant. Let Si
be the expected size of the ith maximal path. The work
for each maximal path is proportional the square of its
length, as each iteration processes all nodes and removes
one node. For a prefix of size δn, the probability of a
k-length path in the prefix starting at any node is at most
δk and number of paths is at most 4k. Therefore, we have
E[S2

i ] =
∑δn
k=1 k

2 · 4k · δk. For δ = 1/8, E[S2
i ] = O(1).

Note that our analysis is loose since we over-count the
work for maximal paths that intersect.

We pack out successful steps after each round, so that
the expected amount of work spent processing a prefix is
linear in its size, giving us overall expected O(n) work.
The pack requires O(log n) depth per round on the EREW
PRAM, and by Theorem A.1, there are O(log2 n) rounds
w.h.p., so the overall depth is O(log3 n) w.h.p. The reads
and writes are split into a constant number of phases to
avoid concurrency. �

The version we use in our experiments is slightly
different, but it only processes more steps per round so
the depth bound still applies. We do not analyze its work
bound here.


