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Abstract

The DBSCAN method for spatial clustering has received sig-

nificant attention due to its applicability in a variety of data

analysis tasks. There are fast sequential algorithms for DB-

SCAN in Euclidean space that take O(n logn) work for two

dimensions, sub-quadratic work for three or more dimen-

sions, and can be computed approximately in linear work for

any constant number of dimensions. However, existing paral-

lel DBSCAN algorithms require quadratic work in the worst

case. This paper bridges the gap between theory and practice

of parallel DBSCAN by presenting new parallel algorithms

for Euclidean exact DBSCAN and approximate DBSCAN

that match the work bounds of their sequential counterparts,

and are highly parallel (polylogarithmic depth). We present

implementations of our algorithms along with optimizations

that improve their practical performance. We perform a com-

prehensive experimental evaluation of our algorithms on a

variety of datasets and parameter settings. Our experiments

on a 36-core machine with two-way hyper-threading show

that our implementations outperform existing parallel imple-

mentations by up to several orders of magnitude, and achieve

speedups of up to 33x over the best sequential algorithms.
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1 Introduction

Spatial clustering methods are frequently used to group to-

gether similar objects. Density-based spatial clustering of

applications with noise (DBSCAN) is a popular method de-

veloped by Ester et al. [32] that is able to find good clusters

of different shapes in the presence of noise without requiring
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prior knowledge of the number of clusters. The DBSCAN

algorithm has been applied successfully to clustering in spa-

tial databases, with applications in various domains such as

transportation, biology, and astronomy.

The traditional DBSCAN algorithm [32] and their variants

require work quadratic in the input size in the worst case,

which can be prohibitive for the large data sets that need to

be analyzed today. To address this computational bottleneck,

there has been recent work on designing parallel algorithms

for DBSCAN and its variants [1, 3, 4, 10, 14, 17, 23, 24, 27,

33, 33, 37, 43, 45–48, 52, 53, 57, 62, 63, 66–69, 77, 84, 86–88].

However, even though these solutions achieve scalability

and speedup over sequential algorithms, in the worst-case

their number of operations still scale quadratically with the

input size. Therefore, a natural question is whether there

exist DBSCAN algorithms that are faster both in theory and

practice, and in both the sequential and parallel settings.

Given the ubiquity of datasets in Euclidean space, there

has been work on faster sequential DBSCAN algorithms in

this setting. Gunawan [39] and de Berg et al. [29] has shown

that Euclidean DBSCAN in 2D can be solved sequentially

in O(n logn) work. Gan and Tao [34] provide alternative Eu-

clidean DBSCAN algorithms for two-dimensions that take

O(n logn) work. For higher dimensions, Chen et al. [18] pro-

vide an algorithm that takes O(n2(1−1/(d+2))
polylog(n)) work

for d dimensions, and Gan and Tao [34] improve the result

with an algorithm that takes O(n2−(2/( ⌈d/2⌉+1))+δ ) work for

any constant δ > 0. To further reduce the work complexity,

there have been approximate DBSCAN algorithms proposed.

Chen et al. [18] provide an approximate DBSCAN algorithm

that takes O(n logn) work for any constant number of di-

mensions, and Gan and Tao [34] provide a similar algorithm

takingO(n) expected work. However, none of the algorithms

described above have been parallelized.

This paper bridges the gap between theory and practice

in parallel Euclidean DBSCAN by providing new parallel

algorithms for exact and approximate DBSCAN with work

complexity matching that of best sequential algorithms [29,

34, 39], and with low depth, which is the gold standard in

parallel algorithm design. For exact 2D DBSCAN, we design

several parallel algorithms that use either the box or the

grid construction method for partitioning points [29, 39] and

one of the following three methods for determining con-

nectivity among core points: Delaunay triangulation [34],

unit-spherical emptiness checking with line separation [34],
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and bichromatic closest pairs. For higher-dimensional ex-

act DBSCAN, we provide an algorithm based on solving

the higher-dimensional bichromatic closest pairs problem

in parallel. Unlike many existing parallel algorithms, our

exact algorithms produce the same results according to the

standard definition of DBSCAN, and so we do not sacrifice

clustering quality. For approximate DBSCAN, we design an

algorithm that uses parallel quadtree construction and query-

ing. Our approximate algorithm returns the same result as

the sequential approximate algorithm by Gan and Tao [34].

We perform a comprehensive set of experiments on syn-

thetic and real-world datasets using varying parameters, and

compare our performance to optimized sequential implemen-

tations as well as existing parallel DBSCAN algorithms. On

a 36-core machine with two-way hyper-threading, our exact

DBSCAN implementations achieve 2–89x (24x on average)

self-relative speedup and 5–33x (16x on average) speedup

over the fastest sequential implementations. Our approx-

imate DBSCAN implementations achieve 14–44x (24x on

average) self-relative speedup. Compared to existing parallel

algorithms, which are scalable but have high overheads com-

pared to serial implementations, our fastest exact algorithms

are faster by up to orders of magnitude (16–6102x) under

correctly chosen parameters. Our algorithms can process the

largest dataset that has been used in the literature for exact

DBSCAN, and outperform the state-of-the-art distributed

RP-DBSCAN algorithm [77] by 18–577x.

The contributions of this paper are as follows.

(1) New parallel algorithms for 2D exact DBSCAN, and higher-

dimensional exact and approximate DBSCAN with work

bounds matching that of the best existing sequential al-

gorithms, and polylogarithmic depth.

(2) Highly-optimized implementations of our parallel DB-

SCAN algorithms.

(3) A comprehensive experimental evaluation showing that

our algorithms achieve excellent parallel speedups over

the best sequential algorithms and outperform existing

parallel algorithms by up to orders of magnitude.

2 Preliminaries

DBSCAN Definition. The DBSCAN (density-based spatial

clustering of applications with noise) problem takes as input

n points P = {p0, . . . ,pn−1}, a distance function d , and two

parameters ϵ and minPts [32]. A point p is a core point if
and only if |{pi | pi ∈ P,d(p,pi ) ≤ ϵ}| ≥ minPts. We denote

the set of core points as C. DBSCAN computes and outputs

subsets of P, referred to as clusters. Each point in C is

in exactly one cluster, and two points p,q ∈ C are in the

same cluster if and only if there exists a list of points p̄1 =

p, p̄2, . . . , p̄k−1, p̄k = q in C such that d(p̄i−1, p̄i ) ≤ ϵ . For all
non-core points p ∈ P \C, p belongs to clusterCi if d(p,q) ≤
ϵ for at least one point q ∈ C∩Ci . Note that a non-core point

can belong to multiple clusters. A non-core point belonging

to at least one cluster is called a border point and a non-

core point belonging to no clusters is called a noise point.
For a given set of points and parameters ϵ and minPts, the
clusters returned are unique. Similar tomany previous papers

on parallel DBSCAN, we focus on the Euclidean distance

metric in this paper. See Figure 1(a) for an illustration of the

DBSCAN problem.

Gan and Tao [34] define the approximate DBSCAN prob-

lem, which in addition to the DBSCAN inputs, takes a pa-

rameter ρ. The definition is the same as DBSCAN, except

for the connectivity rule among core points. In particular,

core points within a distance of ϵ are still connected, but

core points within a distance of (ϵ, ϵ(1 + ρ)] may or may

not be connected. Core points with distance greater than

ϵ(1+ ρ) are still not connected. Due to this relaxation, multi-

ple valid clusterings can be returned. The relaxation is what

enables an asymptotically faster algorithm to be designed. A

variation of this problem was described by Chen et al. [19].

Existing algorithms as well as some of our new algorithms

use subroutines for solving the bichromatic closest pair
(BCP) problem, which takes as input two sets of points P1

and P2, finds the closest pair of points p1 and p2 such that

p1 ∈ P1 and p2 ∈ P2, and returns the pair and their distance.

Computational Model.We use the work-depth model [25,

50] to analyze the theoretical efficiency of parallel algorithms.

The work of an algorithm is the number of operations used,

similar to the time complexity in the sequential RAM model.

The depth is the length of the longest sequence dependence.

By Brent’s scheduling theorem [15], an algorithm with work

W and depth D has overall running timeW /P + D, where P
is the number of processors available. In practice, the Cilk

work-stealing scheduler [9] can be used to obtain an expected

running time ofW /P +O(D). A parallel algorithm is work-
efficient if its work asymptotically matches that of the best

serial algorithm for the problem, which is important since in

practice theW /P term in the running time often dominates.

Parallel Primitives.We give an overview of the primitives

used in our new parallel algorithms, and show their work

and depth bounds in Table 1. We use implementations of

these primitives from the Problem Based Benchmark Suite

(PBBS) [76], an open-source library.

Prefix sum takes as input an array A of length n, and
returns the array (0,A[0],A[0]+A[1], . . . ,

∑n−2

i=0
A[i]) as well

as the overall sum,

∑n−1

i=0
A[i]. Prefix sum can be implemented

by first adding the odd-indexed elements to the even-indexed

elements in parallel, recursively computing the prefix sum

for the even-indexed elements, and finally using the results

on the even-indexed elements to update the odd-indexed

elements in parallel. This algorithm takes O(n) work and

O(logn) depth [50].
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Figure 1: An example of DBSCAN and basic concepts in two dimensions. Here we set minPts = 3 and ϵ as drawn. In (a), the points are

categorized into core points (circles) in two clusters (red and blue), border points (squares) that belong to the clusters, and noise points

(crosses). Using the grid method for cell construction, the algorithm constructs cells with side length ϵ/
√

2 (diagonal length ϵ), as shown
in (b). The cells with at least minPts points are marked as core cells (solid gray cells in (c)), while points in other cells try to check if they

have minPts points within a distance of ϵ . If so, the associated cells are marked as core cells as well (checkered cells in (c)). To construct the

cell graph, we create an edge between two core cells if the closest pair of points from the two cells is within a distance of ϵ (shown in (d)).

Each connected component in the cell graph is a unique cluster. Border points are assigned to clusters that they are within ϵ distance from.

Work Depth Reference

Prefix sum, Filter O(n) O(logn) [50]

Comparison sort O(n logn) O(logn) [21, 50]

Integer sort O(n) O(logn) [80]

Semisort O(n)† O(logn)∗ [38]

Merge O(n) O(logn) [50]

Hash table O(n)∗ O(logn)∗ [36]

2D Delaunay triangulation O(n logn)∗ O(logn)∗ [71]

Table 1:Work and depth bounds for parallel primitives.
†
indicates

an expected bound and
∗
indicates a high-probability bound. The

integer sort is for a polylogarithmic key range. The cost of the hash

table is for n insertions or queries.

Filter takes an array A of size n and a predicate f , and
returns a new array A′

containing elements A[i] for which
f (A[i]) is true, in the same order as inA. We first construct an

array P of size n with P[i] = 1 if f (A[i]) is true and P[i] = 0

otherwise. Then we compute the prefix sum of P . Finally,
for each element A[i] where f (A[i]) is true, we write it to
the output array A′

at index P[i] (i.e., A′[P[i]] = A[i]). This
algorithm also takes O(n) work and O(logn) depth [50].

Comparison sorting sorts n elements based on a com-

parison function. Parallel comparison sorting can be done in

O(n logn) work and O(logn) depth [21, 50]. We use a cache-

efficient samplesort [8] from PBBS which samples

√
n pivots

on each level of recursion, partitions the keys based on the

pivots, and recurses on each partition in parallel.

We also use integer sorting, which sorts integer keys

from a polylogarithmic range in O(n) work and O(logn)
depth [80]. The algorithm partitions the keys into sub-arrays

and in parallel across all partitions, builds a histogram on

each partition serially. It then uses a prefix sum on the counts

of each key per partition to determine unique offsets into a

global array for each partition. Finally, all partitions write

their keys into unique positions in the global array in parallel.

Semisort takes as input n key-value pairs, and groups

pairs with the same key together, but with no guarantee

on the relative ordering among pairs with different keys.

Semisort also returns the number of distinct groups. We use

the implementation from [38], which is available in PBBS.

The algorithm first hashes the keys, and then selects a sample

of the keys to predict the frequency of each key. Based on the

frequency of keys in the sample, we classify them into “heavy

keys” and “light keys”, and assign appropriately-sized arrays

for each heavy key and each range of light keys. Finally,

we insert all keys into random locations in the appropriate

array and sort within the array. This algorithm takes O(n)
expected work and O(logn) depth with high probability.

1

Merge takes two sorted arrays, A and B, and merges them

into a single sorted array. If the sum of the lengths of the

inputs is n, this can be done in O(n) work and O(logn)
depth [50]. The algorithm takes equally spaced pivots fromA
and does a binary search for each pivot in B. Each sub-array

between pivots in A has a corresponding sub-array between

the binary search results in B. Then it repeats the above pro-

cess for each pair, except that equally spaced pivots are taken

from the sub-array from B and binary searches are done in

the sub-array from A. This creates small subproblems each

of which can be solved using a serial merge, and the results

are written to a unique range of indices in the final output.

All subproblems can be processed in parallel.

For parallel hash tables, we can perform n insertions or

queries takingO(n) work andO(logn) depth w.h.p. [36]. We

use the non-deterministic concurrent linear probing hash

table from [75], which uses an atomic update to insert an

element to an empty location in its probe sequence, and

continues probing if the update fails.

The Delaunay triangulation on a set of points in 2D

contains triangles among every triple of points p1, p2, and p3

such that there are no other points inside the circumcircle

defined by p1, p2, and p3 [28]. Delaunay triangulation can be

computed in parallel in O(n logn) work and O(logn) depth
w.h.p. [71]. We use the randomized incremental algorithm

from PBBS, which inserts points in parallel into the triangu-

lation in rounds, such that the updates to the triangulation

in each round by different points do not conflict [7].

1
We say that a bound holds with high probability (w.h.p.) on an input

of size n if it holds with probability at least 1 − 1/nc for a constant c > 0.
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Algorithm 1 DBSCAN Algorithm

Input: A set P of points, ϵ , and minPts
Output: An array clusters of sets of cluster IDs for each point

1: procedure DBSCAN(P, ϵ , minPts)
2: G := Cells(P, ϵ)
3: coreFlags := MarkCore(P,G, ϵ,minPts)
4: clusters := ClusterCore(P,G, coreFlags, ϵ,minPts)
5: ClusterBorder(P,G, coreFlags, clusters, ϵ,minPts)
6: return clusters

3 DBSCAN Algorithm Overview

This section reviews the high-level structure of existing se-

quential DBSCAN algorithms [29, 34, 39] as well as our new

parallel algorithms. The high-level structure is shown in Al-

gorithm 1, and an illustration of the key concepts are shown

in Figure 1(b)-(d).

We place the points into disjoint d-dimensional cells with
side-length ϵ/

√
d based on their coordinates (Line 2 and

Figure 1(b)). The cells have the property that all points inside

a cell are within a distance of ϵ from each other. Then on

Line 3 and Figure 1(c), we mark the core points. On Line

4, we generate the clusters for core points as follows. We

create a graph containing one vertex per core cell (a cell

containing at least one core point), and connect two vertices

if the closest pair of core points from the two cells is within

a distance of ϵ . We refer to this graph as the cell graph. This
step is illustrated in Figure 1(d). We then find the connected

components of the cell graph to assign cluster IDs to points

in core cells. On Line 5, we assign cluster IDs for border

points. Finally, we return the cluster labels on Line 6.

All of our algorithms share this common structure. In Sec-

tion 4, we introduce our 2D algorithms, and in Section 5, we

introduce our algorithms for higher dimensions. We analyze

the complexity of our algorithms in Section 6.

4 2D DBSCAN Algorithms

This section presents our parallel algorithms for implement-

ing each line of Algorithm 1 in two dimensions. The cells

can be constructed either using a grid-based method or a

box-based method, which we describe in Sections 4.1 and 4.2,

respectively. Section 4.3 presents our algorithm for marking

core points. We present several methods for constructing the

cell graph in Section 4.4. Finally, Section 4.5 describes our

algorithm for clustering border points.

4.1 Grid Computation

In the grid-based method, the points are placed into disjoint

cells with side-length ϵ/
√

2 based on their coordinates, as

done in the sequential algorithms by Gunawan [39] and de

Berg et al. [29]. A hash table is used to store only the non-

empty cells, and a serial algorithm simply inserts each point

into the cell corresponding to its coordinates.

(a) (b)
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Figure 2: Parallel box method construction. In (a), the gray dashed

rectangles correspond to strips and the brown solid rectangles

correspond to box cells. To compute the strips, we create a pointer

from each point to the first point with an x-coordinate that is more

than ϵ/
√

2 larger. We initialize the leftmost point with a value of 1

and all other points with a value of 0. As shown in (b), after running

pointer jumping, the points at the beginning of strips have values of

1 and all other points have values of 0. We apply the same procedure

in each strip on the y-coordinates to obtain the boxes.

Parallelization. The challenge in parallelization is in dis-

tributing the points to the cells in parallel while maintaining

work-efficiency. While a comparison sort could be used to

sort points by their cell IDs, this approach requiresO(n logn)
work and is not work-efficient. We observe that semisort (see

Section 2) can be used to solve this problem work-efficiently.

The key insight here is that we only need to group together

points in the same cell, and do not care about the relative

ordering of points within a cell or between different cells.

We apply a semisort on an array of length n of key-value

pairs, where each key is the cell ID of a point and the value is

the ID of the point. This also returns the number of distinct

groups (non-empty cells).

We then create a parallel hash table of size equal to the

number of non-empty cells, where each entry stores the

bounding box of a cell as the key, and the number of points

in the cell and a pointer to the start of its points in the

semisorted array as the value. We can determine neighboring

cells of a cell д with arithmetic computation based on д’s
bounding box, and then look up each neighboring cell in the

hash table, which returns the information for that cell if it is

non-empty.

4.2 Box Computation

In the box-based method, we place the points into disjoint 2-

dimensional bounding boxes with side-length at most ϵ/
√
d ,

which are the cells.

Existing sequential solutions [29, 39] first sort all points by

x-coordinate, then scan through the points, grouping them

into strips of width ϵ/
√

2 and starting a new strip when a

scanned point is further than distance ϵ/
√

2 from the begin-

ning of the strip. It then repeats this process per strip in

the y-dimension to create cells of side-length at most ϵ/
√

2.

This step is shown in Figure 2(a). Pointers to neighboring

cells are stored per cell. This is computed for all cells in each

x-dimensional strip s by merging s with each of strips s − 2,
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s − 1, s + 1, and s + 2, as these are the only strips that can

contain cells with points within distance ϵ . For each merge,

we compare the bounding boxes of the cells in increasing

y-coordinate, linking any two cells that may possibly have

points within ϵ distance.

Parallelization.We now describe the method for assigning

points to strips, which is illustrated in Figure 2(b). Let px be

the x-coordinate of point p. We create a linked list where

each point is a node. The node for point p stores a pointer to

the node for pointq (we callq the parent ofp), whereq is the
point with the smallest x-coordinate such that px + ϵ/

√
2 <

qx . Each point can determine its parent inO(logn)work and
depth by binary searching the sorted list of points.

We then assign a value of 1 to the node with the smallest

x-coordinate, and 0 to all other nodes. We run a pointer jump-

ing routine on the linked list where on each round, every

node passes its value to its parent and updates its pointer to

point to the parent of its parent [50]. The procedure termi-

nates when no more pointers change in a round. In the end,

every node with a value of 1 will correspond to the point at

the beginning of a strip, and all nodes with a value of 0 will

belong to the strip for the closest node to the left with a value

of 1. This gives the same strips as the sequential algorithm,

since all nodes marked 1 will correspond to the closest point

farther than ϵ/
√

2 from the point of the previously marked

node. For merging to determine cells within distance ϵ , we
use the parallel merging algorithm described in Section 2.

4.3 Mark Core

Illustrated in Figure 1(c), the high-level idea in marking the

core points is as follows: first, if a cell contains at leastminPts
points then all points in the cell are core points, as it is guar-

anteed that all the points inside a cell will be within ϵ to

any other point in the same cell; otherwise, each point p
computes the number of points within its ϵ-radius by check-

ing its distance to points in all neighboring cells (defined
as cells that could possibly contain points within a distance

of ϵ to the current cell), and marking p as a core point if

the number of such points is at least minPts. For a constant
dimension, only a constant number of neighboring cells need

to be checked.

Parallelization. Our parallel algorithm for marking core

points is shown in Algorithm 2.We create an array coreFlaдs
of length n that marks which points are core points. The ar-

ray is initialized to all 0’s (Line 2). We then loop through

all cells in parallel (Line 3). If a cell contains at least minPts
points, we mark all points in the cell as core points in parallel

(Line 4–6). Otherwise, we loop through all points p in the

cell in parallel, and for each neighboring cell h we count the

number of points within a distance of ϵ to p, obtained using

a RangeCount(p, ϵ , h) query (Lines 8–11) that reports the

number of points in h that are no more than ϵ distance from

Algorithm 2 ParallelMarkCore

1: procedure MarkCore(P,G, ϵ,minPts)
2: coreFlags := {0, . . . , 0} ▷ Length |P | array

3: par-for each д ∈ G do

4: if |д | ≥ minPts then ▷ |д | is the number of points in д
5: par-for each p in cell д do

6: coreFlags[p] := 1

7: else

8: par-for each p in cell д do

9: count := |д |
10: for each h ∈ д.NeighborCells(ϵ) do
11: count := count + RangeCount(p, ϵ,h)
12: if count ≥ minPts then
13: coreFlags[p] := 1

14: return coreFlags

p. The RangeCount(p, ϵ , h) query can be implemented by

comparing p to all points in each neighboring cell h in paral-

lel, followed by a parallel prefix sum to obtain the number

of points in the ϵ-radius. If the total count is at least minPts,
then p is marked as a core point (Lines 12–13).

4.4 Cluster Core

We present three approaches for determining the connec-

tivity between cells in the cell graph. After obtaining the

cell graph, we run a parallel connected components algo-

rithm to cluster the core points. For the BCP-based approach,

we describe an optimization that merges the BCP computa-

tion with the connected components computation using a

lock-free union-find data structure.

BCP-based Cell Graph. The problem of determining cell

connectivity can be solved by computing the BCP of core

points between two cells (recall the definition in Section 2),

and checking whether the distance is at most ϵ .
Each cell runs a BCP computation with each of its neigh-

boring cells to check if they should be connected in the cell

graph. We execute all BCP calls in parallel, and furthermore

each BCP call can be implemented naively in parallel by

computing all pairwise distances in parallel, writing them

into an array containing point pairs and their distances, and

applying a prefix sum on the array to obtain the BCP. We

apply two optimizations to speed up individual BCP calls:

(1) we first filter out points further than ϵ from the other cell

beforehand as done by Gan and Tao [34], and (2) we iterate

only until finding a pair of points with distance at most ϵ , at
which point we abort the rest of the BCP computation, and

connect the two cells. Filtering points can be done using a

parallel filter. To parallelize the early termination optimiza-

tion, it is not efficient to simply parallelize across all the

point comparisons as this will lead to a significant amount

of wasted work. Instead, we divide the points in each cell

into fixed-sized blocks, and iterate over all pairs of blocks.

For each pair of blocks, we compute the distances of all pairs
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Figure 3: Using Delaunay triangulation (DT) to construct the cell

graph in 2D. (Left) We construct the DT for all core points, and an

edge in the DT can either be inside a cell (dark blue), or across cells

with length no more than ϵ (orange), or with length more than ϵ
(gray). (Right) An orange edge will add the associated edge in the

cell graph, and in this example, there are two clusters.

of points between the two blocks in parallel by writing their

distances into an array. We then take the minimum distance

in the array using a prefix sum, and return if the minimum is

at most ϵ . This approach reduces the wasted work over the

naive parallelization, while still providing ample parallelism

within each pair of blocks.

Triangulation-based Cell Graph. In two dimensions, Gu-

nawan [39] describes a special approach using Voronoi dia-

grams. In particular, we can efficiently determine whether a

core cell should be connected to a neighboring cell by finding

the nearest core point from the neighboring cell to each of

the core cell’s core points. Gan and Tao [34] and de Berg et

al. [29] show that a Delaunay triangulation can also be used

to determine connectivity in the cell graph. In particular, if

there is an edge in the Delaunay triangulation between two

core cells with distance at most ϵ , then those two cells are

connected. This process is illustrated in Figure 3. The proof

of correctness is described in [29, 34].

To compute Delaunay triangulation or Voronoi diagram

in parallel, Reif and Sen present a parallel algorithm for con-

structing Voronoi diagrams and Delaunay triangulations in

two dimensions. We use the parallel Delaunay triangulation

implementation from PBBS [7, 76], as described in Section 2.

Unit-spherical emptiness checking-based (USEC) Cell

Graph. Gan and Tao [34] (who attribute the idea to Bose et

al. [12]) describe an algorithm for solving the unit-spherical

emptiness checking (USEC) with line separation problem to

determine cell connectivity. The high-level idea is to com-

pute the wavefront of each cell containing the area within

distance ϵ to any point in this cell, and check if core points

in neighboring cells are contained in this region. We design

a new parallel algorithm for this approach and evaluate it in

Section 7. Due to space constraints, we present details in the

full version of the paper [83].

Reducing Cell Connectivity Queries.We now present an

optimization that merges the cell graph constructionwith the

connected components computation using a parallel lock-

free union-find data structure to maintain the connected

components on-the-fly. This technique is used in both the

Algorithm 3 Parallel ClusterCore

1: procedure ClusterCore(P,G, coreFlags, ϵ,minPts)
2: uf := UnionFind() ▷ Initialize union-find structure

3: SortBySize(G) ▷ Sort by non-increasing order of size

4: par-for each {д ∈ G : д is core} do

5: for each {h ∈ д.NeighborCells(ϵ) : h is core} do

6: if д > h and uf .Find(д) , uf .Find(h) then
7: if Connected(д,h) then ▷ On core points only

8: uf .Link(д,h)
9: clusters := {−1, . . . ,−1} ▷ Length |P | array

10: par-for each {д ∈ G : д is core} do

11: par-for each {p in cell д : coreFlags[p] = 1} do

12: clusters[p] := uf .Find(д)
13: return clusters

BCP approach and USEC approach for cell graph construc-

tion. The pseudocode is shown in Algorithm 3. The idea is

to only run a cell connectivity query between two cells if

they are not yet in the same component (Line 6), which can

reduce the total number of connectivity queries. For example,

assume that cells a, b, and c belong to the same component.

After connecting a with b and b with c , we can avoid the con-

nectivity check between a and c by checking their respective
components in the union-find structure beforehand. This

optimization was used by Gan and Tao [34] in the sequential

setting, and we extend it to the parallel setting. We also only

check connectivity between two cells at most once by having

the cell with higher ID responsible for checking connectivity

with the cell with a lower ID (Line 6).

When constructing the cell graph and checking connec-

tivity, we use a heuristic to prioritize the cells based on the

number of core points in the cells, and start from the cells

with more points, as shown on Line 3. This is because cells

with more points are more likely to have higher connectivity,

hence connecting the nearby cells together and pruning their

connectivity queries. This optimization can be less efficient

in parallel, since a connectivity query could be executed be-

fore the corresponding query that would have pruned it in

the sequential execution. To overcome this, we group the

cells into batches, and process each batch in parallel before

moving to the next batch. We refer to this new approach as

bucketing, and show experimental results for it in Section 7.

4.5 Cluster Border

To assign cluster IDs for border points. We check all points

not yet assigned a cluster ID, and for each point p, we check
all of its neighboring cells and add it to the clusters of all

neighboring cells with a core point within distance ϵ to p.

Parallelization. Our algorithm is shown in Algorithm 4.

We loop through all cells with fewer than minPts points in
parallel, and for each such cell we loop over all of its non-

core points p in parallel (Lines 2–3). On Lines 4–7, we check

all core points in the current cell д and all neighboring cells,
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Algorithm 4 Parallel ClusterBorder

1: procedure ClusterBorder(P,G,coreFlags,clusters,ϵ,minPts)
2: par-for each {д ∈ G : |д | < minPts} do
3: par-for each {p in cell д : coreFlags[p] = 0} do

4: for each h ∈ д ∪ д.NeighborCells(ϵ) do
5: par-for each {q in cell h : coreFlags[q] = 1}do

6: if d(p,q) ≤ ϵ then

7: clusters[p] := clusters[p] ∪ clusters[q] ▷ In parallel

and if any are within distance ϵ to p, we add their clusters

to p’s set of clusters (recall that border points can belong to

multiple clusters).

5 Higher-dimensional Exact and

Approximate DBSCAN

The efficient exact and approximate algorithms for higher-

dimensional DBSCAN are also based on the high-level struc-

ture of Algorithm 1, and are extensions of some of the tech-

niques for two-dimensional DBSCAN described in Section 4.

They use the grid-based method for assigning points to cells

(Section 4.1). Algorithms 2, 3, and 4 are used for marking core

points, clustering core points, and clustering border points,

respectively. However, we use two major optimizations on

top of the 2D algorithms: a k-d tree for finding neighboring

cells and a quadtree for answering range counting queries.

5.1 Finding Neighboring Cells

The number of possible neighboring cells grows exponen-

tially with the dimension d , and so enumerating all possible

neighboring cells can be inefficient in practice for higher di-

mensions (although still constant work in theory). Therefore,

instead of implementing NeighborCells by enumerating

all possible neighboring cells, we first insert all cells into a

k-d tree [6], which enables us to perform range queries to

obtain just the non-empty neighboring cells. The construc-

tion of our k-d tree is done recursively, and all recursive calls
for children nodes are executed in parallel. We also sort the

points at each level in parallel and pass them to the appropri-

ate child. Queries do not modify the k-d tree, and can all be

performed in parallel. Since a cell needs to find its neighbor-

ing cells multiple times throughout the algorithm, we cache

the result on its first query to avoid repeated computation.

5.2 Range Counting

WhileRangeCount queries can be implemented theoretically-

efficiently in DBSCAN by checking all points in the target

cell, there is a large overhead for doing so in practice. In

higher-dimensional DBSCAN, we construct a quadtree data

structure for each cell to answer RangeCount queries. The

structure of a quadtree is illustrated in Figure 4. A cell of

side-length ϵ/
√
d is recursively divided into 2

d
sub-cells of

the same size until the sub-cell becomes empty. This forms a

tree where each sub-cell is a node and its children are the up

to 2
d
non-empty sub-cells that it divides into. Each node of
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00 01 10 11
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Figure 4: A cell (left) and its corresponding quadtree data struc-

ture (right).

the tree stores the number of points contained in its corre-

sponding sub-cell. Queries do not modify the quadtrees and

are therefore all executed in parallel. We now describe how

to construct the quadtrees in parallel.

Parallel Quadtree Construction. The construction proce-

dure recursively divides each cell into sub-cells. Each node

of the tree has access to the points contained in its sub-cell in

a contiguous subarray that is part of a global array (e.g., by

storing a pointer to the start of its points in the global array

as well as the number of points that it represents). We use

an integer sort on keys from the range [0, . . . , 2d − 1] to sort

the points in the subarray based on which of the 2
d
sub-cells

it belongs to. Now the points belonging to each of the child

nodes are contiguous, and we can recursively construct the

up to 2
d
non-empty child nodes independently in parallel by

passing in the appropriate subarray.

To reduce construction time, we set a threshold for the

number of points in a sub-cell, below which the node be-

comes a leaf node. This reduces the height of the tree but

makes leaf nodes larger. In addition, we avoid unnecessary

tree node traversal by ensuring that each tree node has at

least two non-empty children: when processing a cell, we

repeatedly divide the points until they fall into at least two

different sub-cells.

Range Counting in MarkCore. RangeCount queries

are used in marking core points in Algorithm 2. For each

cell, a quadtree containing all of its points is constructed in

parallel. Then the RangeCount(p, ϵ , h) query reports the

number of points in cell h that are no more than ϵ distance
from point p. Instead of naively looping through all points in

h, we initiate a traversal of the quadtree starting from cell h,
and recursively search all children whose sub-cell intersects

with the ϵ-radius of p. When reaching a leaf node on a query,

we explicitly count the number of points contained in the

ϵ-radius of the query point.

Exact DBSCAN. For higher-dimensional exact DBSCAN,

one of our implementations uses RangeCount queries when

computing BCPs in Algorithm 3. For each core cell, we build

a quadtree on its core points in parallel. Then for each core

point p in each core cell д, we issue a RangeCount query

to each of its neighboring core cells h and connect д and
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h in the cell graph if the range query returns a non-zero

count of core points. Since we do not need to know the

actual count, but only whether or not it is non-zero, our

range query is optimized to terminate once such a result can

be determined. We combine this with the optimization of

reducing cell connectivity queries described in Section 4.4

Approximate DBSCAN. For approximate DBSCAN, the se-

quential algorithm of Gan and Tao [34] follows the high-level

structure of Algorithm 1 using the grid-based cell structure.

The only difference is in the cell graph construction, which

is done using approximate RangeCount queries.

In the quadtree for approximate RangeCount, each cell

of side-length ϵ/
√
d is still recursively divided into 2

d
sub-

cells of the same size, but until either the sub-cell becomes

empty or has side-length at most ϵρ/
√
d . The tree has max-

imum depth l = 1 + ⌈log
2

1/ρ⌉. We use a modified version

of our parallel quadtree construction method to parallelize

approximate DBSCAN.

An approximate RangeCount(p, ϵ , h, ρ) query takes as

input a point p, and returns an integer that is between the

number of points in the ϵ-radius and the number of points

in the ϵ(1 + ρ)-radius of p that are in h, (when using ap-

proximate RangeCount, all relevant methods takes an ad-

ditional parameter ρ). If the answer is non-zero, then the

core cell containing p is connected to core cell h. Our query
implementation starts a traversal of the quadtree from h, and
recursively searches all children whose sub-cell intersects

with the ϵ-radius of p. As done in exact DBSCAN, our query

is optimized to terminate once a zero count or a non-zero

count can be determined. Once either a leaf node is reached

or a node’s sub-cell is completely contained in the ϵ(1 + ρ)-
radius of p, the search on that path terminates. Queries do

not modify the quadtree and can all be executed in parallel.

6 Analysis

This section analyzes the theoretical complexity of our al-

gorithms, showing that they are work-efficient and have

polylogarithmic depth.

6.1 2D Algorithms

Grid Computation. In our parallel algorithm presented in

Section 4.1, creating n key-value pairs can be done in O(n)
work and O(1) depth in a data-parallel fashion. Semisorting

takes O(n) expected work and O(logn) depth w.h.p. Con-

structing the hash table and inserting non-empty cells into it

takes O(n) work and O(logn) depth w.h.p. The overall cost

of the parallel grid computation is therefore O(n) work in

expectation and O(logn) depth w.h.p.

BoxComputation.The serial algorithm [29, 39] usesO(n logn)
work, including sorting, scanning the points to assign them

to strips and cells, and merging strips. However, the span is

O(n) since in the worst case there can be O(n) strips.

Parallel comparison sorting takes O(n logn) work and

O(logn) depth. Therefore, sorting the points by x-coordinate,
and each strip by y-coordinate can be done in O(n logn)
work andO(logn) depth overall. Parent finding using binary

search for all points takes O(n logn) work and O(1) depth.
For pointer jumping, the longest path in the linked list halves

on each round, and so the algorithm terminates afterO(logn)
rounds. We do O(n) work per round, leading to an overall

work ofO(n logn). The depth isO(1) per round, for a total of
O(logn) overall. We repeat this process for the points in each

strip, but in the y-direction, and the work and depth bounds

are the same. For assigning pointers to neighboring cells for

each cell, we use a parallel merging algorithm, which takes

O(n) work and O(logn) depth. The pointers are stored in an

array, accessible in constant work and depth.

MarkCore. For cells with at leastminPts points, we spend
O(n) work overall marking their points as core points (Lines

4–6 of Algorithm 2). All cells are processed in parallel, and

all points can be marked in parallel, giving O(1) depth.
For all cells with fewer thanminPts points, each point only

needs to execute a range count query on a constant number

of neighboring cells [34, 39]. RangeCount(p, ϵ , h) compares

p to all points in neighboring cell h in parallel. Across all

queries, each cell will only be checked by O(minPts) many

points, and so the overall work for range counting is O(n ·

minPts). Therefore, Lines 8–13 of Algorithm 2 takes O(n ·

minPts) work. All points are processed in parallel, and there

are a constant number of RangeCount calls per point, each

of which takes O(logn) depth for a parallel prefix sum to

obtain the number of points in the ϵ-radius. Therefore, the
depth for range counting is O(logn).
The work for looking up the neighbor cells is O(n) and

depth is O(logn) w.h.p. using the parallel hash table that

stores the non-empty cells. Therefore, parallelMarkCore

takes O(n ·minPts) work and O(logn) depth w.h.p.

Cell Graph Construction. Reif and Sen present a parallel

algorithm for constructing Voronoi diagrams and Delaunay

triangulations in two dimensions in O(n logn) work and

O(logn) depthw.h.p. [71]. For the Voronoi diagram approach,

each nearest neighbor query can be answered in O(logn)
work, which is used to check whether two cells should be

connected and can be applied in parallel. Each cell will only

execute a constant number of queries, and so the overall

complexity is O(n logn) work and O(logn) depth w.h.p. For

the Delaunay triangulation approach, we can simply apply

a parallel filter over all of the edges in the triangulation,

keeping the edges between different cells with distance at

most ϵ . The cost of the filter is dominated by the cost of

constructing the Delaunay triangulation. In the full version

of the paper [83], we show that the USEC-based approach

takes O(n logn) work and O(log
3 n) depth.
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Connected Components. After the cell graph that con-

tains O(n) points and edges are constructed, we run con-

nected components on the cell graph. This step can be done

in parallel in O(n) work and O(logn) depth w.h.p. using par-

allel connectivity algorithms [22, 35, 41, 42, 70].

ClusterBorder.Using a similar analysis as done formark-

ing core points, it can be shown that assigning cluster IDs to

border points takesO(n ·minPts) work sequentially [29, 39].

In parallel, since there are a constant number of neighboring

cells for each non-core point, and all points in neighboring

cells as well as all non-core points are checked in parallel,

the depth is O(1) for the distance comparisons. Looking up

the neighboring cells can be done inO(n) work andO(logn)
depth w.h.p. using our parallel hash table. Adding cluster IDs

to border point’s set of clusters, while removing duplicates

at the same time, can be done using parallel hashing in linear

work and O(logn) depth w.h.p. The work is O(n · minPts)
since we do not introduce any asymptotic work overhead

compared to the sequential algorithm.

Overall, we have the following theorem.

Theorem 6.1. For a constant value of minPts, 2D Euclidean
DBSCAN can be computed in O(n logn) work and O(logn)
depth w.h.p.

6.2 Higher-dimensional Algorithm

The theoretically-efficient algorithms for grid construction,

marking core points, connected components, and clustering

border points extend naturally from the 2D algorithms with

linear work and O(logn) depth w.h.p. In the full version of

the paper [83], we analyze higher-dimensional cell graph

construction using a more sophiscated higher-dimensional

BCP algorithm and show that it takes sub-quadratic work

and polylogarithmic depth. This gives the following theorem.

Theorem 6.2. For a constant value of minPts, Euclidean
DBSCAN can be solved inO((n logn)4/3) expected work ford =
3 andO(n2−(2/( ⌈d/2⌉+1))+δ ) expected work for any constant δ >
0 for d > 3, and polylogarithmic depth with high probability.

The theoretically-efficient BCP algorithm for higher di-

mensions is not practical, and so our implementation of DB-

SCAN uses the approach described in Section 4.4 in higher

dimensions, which takes quadratic work.

6.3 Approximate Algorithm

The algorithms for grid construction, marking core points,

connected components, and clustering border points are the

same as the exact algorithms, and so we only analyze approx-

imate cell graph construction in the approximate algorithm

based on the quadtree introduced in Section 5.2. The quadtree

has l = 1+ ⌈log
2

1/ρ⌉ levels and can be constructed inO(n′l)
work sequentially for a cell with n′ points. A hash table is

used to map non-empty cells to their quadtrees, which takes

O(n) work w.h.p. to construct. Using a fact from [5], Gan

and Tao show that the number of nodes visited by a query

isO(1 + (1/ρ)d−1). Therefore, for constant ρ and d , all of the
quadtrees can be constructed in a total of O(n) work w.h.p.,

and queries can be answered in O(1) expected work.

All of the quadtrees can be constructed in parallel. To

parallelize the construction of a quadtree for a cell with n′

points, we sort the points on each level in O(n′) work and

O(logn′) depth using parallel integer sorting [80], since the

keys are integers in a constant range. In total, this gives

O(n′l) work and O(l logn′) depth per quadtree. We use a

parallel hash table to map non-empty cells to their quadtrees,

which takesO(n)work andO(logn) depth w.h.p. to construct.
To construct the cell graph, all core points issue a constant

number of queries to neighboring cells in parallel. The O(n)
hash table queries can be done in O(n) work and O(logn)
depth w.h.p. and thus cell graph construction has the same

complexity. This gives the following theorem.

Theorem 6.3. For constant values of minPts and ρ, our
approximate Euclidean DBSCAN algorithm takes O(n) work
and O(logn) depth with high probability.

7 Experiments

This section presents experiments comparing our exact and

approximate algorithms as well as existing algorithms.

Datasets.We use the synthetic seed spreader (SS) datasets

produced by Gan and Tao’s generator [34]. The generator

produces points generated by a randomwalk in a local neigh-

borhood, but jumping to a random location with some prob-

ability. SS-simden and SS-varden refer to the datasets with

similar-density and variable-density clusters, respectively.

We also use a synthetic dataset called UniformFill that con-
tains points distributed uniformly at random inside a bound-

ing hypergrid with side length

√
n, where n is the total num-

ber of points. The points have double-precision floating point

values, but we scaled them to integers when testing Gan and

Tao’s implementation, which requires integer coordinates.

We generated the synthetic datasets with 10 million points

(unless specified otherwise) for dimensions d = 2, 3, 5, 7.
In addition, we use the following real-world datasets, which

contain points with double-precision floating point values.

(1) Household [30] is a 7-dimensional dataset with 2, 049, 280

points excluding the date-time information.

(2) GeoLife [89] is a 3-dimensional dataset with 24, 876, 978

points. This dataset contains user location data (longi-

tude, latitude, altitude), and its distribution is extremely

skewed.

(3) Cosmo50 [59] is a 3-dimensional dataset with 321, 065, 547

points. We extracted the x , y, and z coordinate informa-

tion to construct the 3-dimensional dataset.

(4) OpenStreetMap [40] is a 2-dimensional dataset with

2, 770, 238, 904 points, containing GPS location data.
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(5) TeraClickLog [26] is a 13-dimensional dataset with

4, 373, 472, 329 points containing feature values and click

feedback of online advertisements. As far as we know,

TeraClickLog is the largest dataset used in the literature

for exact DBSCAN.
We performed a search on ϵ and minPts for the synthetic

datasets and chose the default parameters to be those that

output a correct clustering. For the SS datasets, the default
parameters that we use are similar to those found by Gan

and Tao [34]. For ease of comparison, the default parameters

for Household are the same as Gan and Tao [34] and the

default parameters for GeoLife, Cosmo50, OpenStreetMap, and
TeraClickLog are same as RP-DBSCAN [77]. For approximate

DBSCAN, we set ρ = 0.01, unless specified otherwise.

Testing Environment. We perform all of our experiments

on Amazon EC2 machines. We use a c5.18xlarge machine for

testing of all datasets other than Cosmo50, OpenStreetMap,
and TeraClickLog. The c5.18xlarge machine has 2 × Intel

Xeon Platinum 8124M (3.00GHz) CPUs for a total for a total

of 36 two-way hyper-threaded cores, and 144 GB of RAM.

We use a r5.24xlarge machine for the three larger datasets

just mentioned. The r5.24xlarge machine has 2 × Intel Xeon

Platinum 8175M (2.50 GHz) CPUs for a total of 48 two-way

hyper-threaded cores, and 768 GB of RAM. By default, we

use all of the cores with hyper-threading on each machine.

We compile our programs with the g++ compiler (version

7.4) with the -O3 flag, and use Cilk Plus for parallelism [60].

7.1 Algorithms Tested

We implement the different methods for marking core points

and BCP computation in exact and approximate DBSCAN

for d ≥ 3, and present results for the fastest versions, which

are described below.

• our-exact: This exact implementation implements the

RangeCount query in marking core points by scanning

through all points in the neighboring cell in parallel de-

scribed in Section 4.3. For determining connectivity in the

cell graph, it uses the BCP method described in Section 4.4.

• our-exact-qt: This exact implementation implements the

RangeCount query supported by the quadtree described

in Section 5.2. For determining connectivity in the cell

graph, it uses the BCP method described in Section 4.4.

• our-approx: This approximate implementation implements

the RangeCount query in marking core points by scan-

ning through all points in the neighboring cell in paral-

lel, and uses the quadtree for approximate RangeCount

queries in cell graph construction described in Section 5.2.

• our-approx-qt: This approximate implementation is the

same as our-approx except that it uses the RangeCount

query supported by the quadtree described in Section 5.2

for marking core points.

We append the -bucketing suffix to the names of these

implementations when using the bucketing optimization

described in Section 4.4.

For d = 2, we have six implementations that differ in

whether they use the grid or the boxmethod to construct cells

and whether they use BCP, Delaunay triangulation, or USEC

with line separation to construct the cell graph. We refer to

these as our-2d-grid-bcp, our-2d-grid-usec, our-2d-grid-
delaunay, our-2d-box-bcp, our-2d-box-usec, and our-2d-
box-delaunay.

We note that our exact algorithms return the same answer

as the standard DBSCAN definition, and our approximate

algorithms return answers that satisfy Gan and Tao’s approx-

imate DBSCAN definition (see Section 2).

We compare with the following implementations:

• Gan&Tao-v2 [34] is the state-of-the-art serial implemen-

tation for both exact and approximate DBSCAN.Gan&Tao-
v2 only accepts integer values between 0 and 100, 000, and

so when running their code we scaled the datasets up into

this integer range and scaled up the ϵ value accordingly to
achieve a consistent clustering output with other methods.

• pdsdbscan [68] is the implementation of the parallel disjoint-

set exact DBSCANby Patwary et al. compiledwithOpenMP.

• hpdbscan [37] is the implementation of parallel exact DB-

SCAN by Gotz et al. compiled with OpenMP. We modified

the source code to remove the file output code.

• rpdbscan [77] is the state-of-the-art distributed imple-

mentation for DBSCAN using Apache Spark. We note that

their variant does not return the same result as DBSCAN.

We tested rpdbscan on the same machine that we used,

and also report the timings in [77], which were obtained

using at least as many cores as our largest machine.

7.2 Experiments for d ≥ 3

We first evaluate the performance of the different algorithms

for d ≥ 3. In the following plots, data points that did not

finish within an hour are not shown.

Influence of ϵ on Parallel Running Time. In this experi-

ment, we fix the default value of minPts corresponding to

the correct clustering, and vary ϵ within a range centered

around the default ϵ value. Figure 5 shows the parallel run-
ning time vs. ϵ for the different implementations. In general,

both pdsdbscan and hpdbscan becomes slower with increas-

ing ϵ . This is because they use pointwise range queries, which
get more expensive with larger ϵ . Our methods tend to im-

prove with increasing ϵ because there are fewer cells leading
to a smaller cell graph, which speeds up computations on

the graph. Our implementations significantly outperform

pdsdbscan and hpdbscan on all of the data points.

We observe a spike in plot Figure 5(f) when ϵ = 608. The

implementations that mark core points by scanning through

all points in neighboring cells spend a significant amount
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Figure 5: Running time vs. ϵ on 36 cores with hyper-threading. The y-axes are in log-scale.

of time in that phase; in comparison, the quadtree versions

perform better because of their more optimized range count-

ing. There is also a spike in Figure 5(j) when ϵ = 80. Our

exact implementation spends a significant amount of time in

cell graph construction. This is because the GeoLife dataset
is heavily skewed, certain cells could contain significantly

more points. When many cell connectivity queries involve

these cells, the quadratic nature using the BCP approach in

our-exact makes the cost of queries expensive. On the con-

trary, methods using the quadtree for cell graph construction

(our-exact-qt, our-approx-qt, and our-approx) tend to have

consistent performance across the ϵ values. For the spike in

Figure 5(j), it is interesting to see that the bucketing imple-

mentations, our-exact-qt-bucketing and our-exact-bucketing,
are significantly faster than our-exact-qt and our-exact be-
cause many of the expensive connectivity queries are pruned.

Influence ofminPts on Parallel Running Time. In this

experiment, we fix the default value of ϵ for a dataset and

vary minPts over a range from 10 to 10, 000. Figure 6 shows

that our implementations have an increasing trend in run-

ning time as minPts increases in most cases. This is consis-

tent with our analysis in Section 6.1 that the overall work

for marking core points isO(n ·minPts). In contrast,minPts
does not have much impact on the performance of hpdbscan
and pdsdbscan because their range queries, which dominate

the total running times, do not depend onminPts. Our imple-

mentations outperform hpdbscan and pdsdbscan for almost

all values ofminPts. Figures 6(d) and 6(g) suggests that hpdb-
scan can surpass our performance for certain datasets when

minPts = 10, 000. However, as suggested by Schubert et

al. [74], the minPts value used in practice is usually much

smaller, and based on our observation, a minPts value of at
most 100 usually gives the correct clusters.

Parallel Speedup. To the best of our knowledge, Gan&Tao-
v2 is the fastest existing serial implementation both for exact

and approximate DBSCAN. However, we find that across

all of our datasets, our serial implementations are faster

than theirs by an average of 5.18x and 1.52x for exact DB-

SCAN and approximate DBSCAN, respectively. In Figure 7,

we compare the speedup of the parallel implementations

under different thread counts over the best serial baselines

for each dataset and choice of parameters. We also show

the self-relative speedups for one dataset in Figure 8 and

note that the trends are similar on other datasets. For these

experiments, we use parameters that generate the correct

clusters. Our implementations obtain very good speedups on

most datasets, achieving speedups of 5–33x (16x on average)

over the best serial baselines. Additionally, the self-relative

speedups of our exact and approximate methods are 2–89x

(24x on average) and 14-44x (24x on average), respectively.

Although hpdbscan and pdsdbscan achieve good self-relative

speedup (22–31x and 7–20x, respectively), they fail to out-

perform the serial implementation on most of the datasets.

Compared to hpdbscan and pdsdbscan, we are faster by up to

orders of magnitude (16–6102x).

Our speedup on the GeoLife dataset (Figure 7(j)) is low due

to the high skewness of cell connectivity queries caused by

the skewed point distribution, however the parallel running
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Figure 6: Running time vs. minPts on 36 cores with hyper-threading. The y-axes are in log-scale.
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Figure 7: Speedup of implementations over the best serial baselines vs. thread count. The best serial baseline and its running time for each

dataset is shown on the y-axis label. “36h” on the x-axes refers to 36 cores with hyper-threading.

time is reasonable (less than 1 second). In contrast, hpdbscan
and pdsdbscan did not terminate within an hour.

The bucketing heuristic achieved the best parallel perfor-

mance for several of the datasets (Figures 5(f), (g), and (j);

Figures 6(c) and (j); and Figures 7(c), (f), (g), and (j)). In gen-

eral, the bucketing heuristic greatly reduces the number of

connectivity queries during cell graph construction, but in

some cases it can reduce parallelism and/or increase over-

head due to sorting. We also observe a similar trend on all

methods where bucketing is applied.

We also implemented our own parallel baseline based on

the original DBSCAN algorithm [32]. We use a parallel k-d
tree, and all points perform queries in parallel to find all

neighbors in their ϵ-radius to check if they should be a core
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Figure 8: Self-relative speedup of implementations vs. thread count.

“36h” on the x-axis refers to 36 cores with hyper-threading.
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Figure 9: Running time vs. ρ on 36 cores with hyper-threading.

point. However, the baseline was over 10x slower than our

fastest parallel implementation for datasets with the correct

parameters, and hence we do not show it in the plots.

Influence of ρ onParallel RunningTime. Figure 9 shows

the effect of varying ρ for our two approximate DBSCAN

implementations. We also show our best exact method as a

baseline. We only show plots for two datasets as the trend

was similar in other datasets. We observe a small decrease in

running time as ρ increases, but find that the approximate

methods are still mostly slower than the best exact method.

On average, for the parameters corresponding to correct

clustering, we find that our best exact method is 1.24x and

1.53x faster than our best approximate method when running

in parallel and serially, respectively; this can also be seen in

Figure 7. Schubert et al. [74] also found exact DBSCAN to be

faster than approximate DBSCAN for appropriately-chosen

parameters, which is consistent with our observation.

Large-scale Datasets. In Table 2, we show the running

times of our-exact on large-scale datasets. We compare with

the reported numbers for the state-of-the-art distributed im-

plementation rpdbscan, which use 48 cores distributed across

12 machines [77], as well as numbers for rpdbscan on our

machines. The purpose of this experiment is to show that

we are able to efficiently process large datasets using just a

multicore machine. GeoLife was run on the 36 core machine

whereas others were run on the 48 core machine due to their

larger memory footprint. We see that our-exact achieves a
18–577x speedup over rpdbscan using the same or a fewer

number of cores. We believe that this speedup is due to lower

communication costs in shared-memory as well as a better

algorithm. Even though TeraClickLog is significantly larger

than the other datasets, our running times are not propor-

tionally larger. This is because for the parameters chosen

by [77], all points fall into one cell. Therefore, in our imple-

mentation all points are core points and are trivially placed

into the only cluster. In contrast, rpdbscan incurs communi-

cation costs in partitioning the points across machines and

merging the clusters from different machines together.

7.3 Experiments for d = 2

In Figure 10, we show the performance of our six 2D algo-

rithms as well as hpdbscan and pdsdbscan on the synthetic

datasets. We show the running time while varying ϵ ,minPts,
number of points, or number of threads. We first note that all

of our implementations are significantly faster than hpdbscan
and pdsdbscan. In general, we found the grid-based imple-

mentations to be faster than the box-based implementations

due to the higher cell construction time of the boxed-based

implementations. We also found the Delaunay triangulation-

based implementations to be significantly slower than the

BCP and USEC-based methods due to the high overhead of

computing the Delaunay triangulation. The fastest imple-

mentation overall was our-2d-grid-bcp.

8 Related Work

Xu et al. [87] provide the first parallel exact DBSCAN algo-

rithm, called PDBSCAN, based on a distributed R∗
-tree. Arlia

and Coppola [4] present a parallel DBSCAN implementa-

tion that replicates a sequential R∗
-tree across machines to

process points in parallel. Coppola and Vanneschi [23] de-

sign a parallel algorithm using a queue to store core points,

where each core point is processed one at a time but their

neighbors are checked in parallel to see whether they should

be placed at the end of the queue. Januzaj et al. [52, 53] de-

sign an approximate DBSCAN algorithm based on deter-

mining representative points on different local processors,

and then running a sequential DBSCAN on the representa-

tives. Brecheisen et al. [14] parallelize a version of DBSCAN

optimized for complex distance functions [13].

Patwary et al. [67] present PDSDBSCAN, a multicore and

distributed algorithm for DBSCAN using a union-find data

structure for connecting points. Their union-find data struc-

ture is lock-based whereas ours is lock-free. Patwary et

al. [66, 69] also present distributed DBSCAN algorithms that

are approximate but more scalable than PDSDBSCAN. Hu et

al. [46] design PS-DBSCAN, an implementation of DBSCAN

using a parameter server framework. Gotz et al. [37] present

HPDBSCAN, an algorithm for both shared-memory and

distributed-memory based on partitioning the data among

processors, running DBSCAN locally on each partition, and

then merging the clusters together. Very recently, Sarma

et al. [73] present a distributed algorithm, µDBSCAN, and
report a running time of 41 minutes for clustering one bil-

lion 3-dimensional points using a cluster of 32 nodes. Our

running times on the larger 13-dimensional TeraClickLog

dataset are significantly faster (under 30 seconds on 48 cores).
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GeoLife Cosmo50 OpenStreetMap TeraClickLog

ϵ 20 40 80 160 0.01 0.02 0.04 0.08 0.01 0.02 0.04 0.08 1500 3000 6000 12000

our-exact 0.541 0.617 0.535 0.482 41.8 5.51 4.69 3.03 41.4 43.2 40 44.5 26.8 26.9 27.0 27.6

rpdbscan (our machine) 29.13 27.92 32.04 27.81 3750 562.0 576.9 672.6 – – – – – – – –

rpdbscan ([77]) 36 33 28 27 960 504 438 432 3000 1720 1200 840 15480 7200 3540 1680

Table 2: Parallel running times (seconds) for our-exact and rpdbscan. The value of minPts is set to 100. GeoLife was run on the 36 core

machine and the other datasets were run on the 48 core machine. For rpdbscan, we omit timings for experiments that encountered exceptions

or did not complete within 1 hour. We also include the distributed running times reported in [77] that used as many cores as our machines.
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Figure 10: Running time vs. ϵ , minPts, number of points, or thread count for the 2D implementations. In (c) and (g), the parameters are

chosen for each input size such that the algorithm outputs the correct clustering. In (d) and (h), “36h” on the x–axis refers to 36 cores with

hyper-threading. The y-axes in (a)–(c) and (e)–(g) are in log-scale.

Exact and approximate distributed DBSCAN algorithms

have been designed using MapReduce [3, 27, 33, 45, 47, 57,

86, 88] and Spark [24, 43, 48, 62, 63, 77]. RP-DBSCAN [77], an

approximate DBSCAN algorithm, has been shown to be the

state-of-the-art for MapReduce and Spark. GPU implemen-

tations of DBSCAN have also been designed [1, 10, 17, 84].

In addition to parallel solutions, there have been optimiza-

tions proposed to speed up sequential DBSCAN [13, 58, 64].

DBSCAN has also been generalized to other definitions of

neighborhoods [72]. Furthermore, there have been variants

of DBSCAN proposed in the literature, which do not return

the same result as the standard DBSCAN. IDBSCAN [11],

FDBSCAN [61], GF-DBSCAN [78], I-DBSCAN [82], GNDB-

SCAN [49], Rough-DBSCAN [81], and DBSCAN++ [51] use

sampling to reduce the number of range queries needed. El-

Sonbaty et al. [31] presents a variation that partitions the

dataset, runs DBSCAN within each partition, and merges

together dense regions. GriDBSCAN [65] uses a similar idea

with an improved scheme for partitioning andmerging. Other

partitioning based algorithms include PACA-DBSCAN [54],

APSCAN [20], and AA-DBSCAN [56]. DBSCAN
∗
and H-

DBSCAN
∗
are variants of DBSCAN where only core points

are included in clusters [16]. Other variants use approximate

neighbor queries to speed up DBSCAN [44, 85].

OPTICS [2], SUBCLU [55], and GRIDBSCAN [79], are hier-

archical versions of DBSCAN that compute DBSCAN clusters

on different parameters, enabling clusters of different den-

sities to more easily be found. POPTICS [68] is a parallel

version of OPTICS based on concurrent union-find.

9 Conclusion

We have presented new parallel algorithms for exact and

approximate Euclidean DBSCAN that are both theoretically-

efficient and practical. Our algorithms are work-efficient and

have polylogarithmic depth, making them highly parallel.

Our experiments demonstrate that our solutions achieve ex-

cellent parallel speedup and significantly outperform existing

parallel DBSCAN solutions. Future work includes designing

theoretically-efficient and practical parallel algorithms for

variants of DBSCAN and hierarchical versions of DBSCAN.
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