
LuisaRender: A High-Performance Rendering Framework with
Layered and Unified Interfaces on Stream Architectures

SHAOKUN ZHENG, BNRist, Department of CS&T, Tsinghua University, China
ZHIQIAN ZHOU, BNRist, Department of CS&T, Tsinghua University, China
XIN CHEN, BNRist, Department of CS&T, Tsinghua University, China
DIFEI YAN, BNRist, Department of CS&T, Tsinghua University, China
CHUYAN ZHANG, BNRist, Department of CS&T, Tsinghua University, China
YUEFENG GENG, Recreate Games, China
YAN GU, University of California, Riverside, United States
KUN XU∗, BNRist, Department of CS&T, Tsinghua University, China

Kernel Programming Backends

DirectX

CUDA

Code Generation

Cached Compilation

Native API Adaption

Unified Runtime

Trace

Embedded Kernel DSL

auto l = dot(lumi, beta);

$if(l == 0.0f) { $break; };

$if(any(isnan(radiance))) {

 radiance = make_float3(0);};

img.write(coord, radiance);

Capture

Metal

ISPC

Resource Wrappers

Bindless
Arrays

Acceleration
Structures

Buffers 2D/3D
Textures

Abstract Device

Resource Management

Abstract Syntax Tree

LOCAL l CALL dot

REF lumi REF beta

ASSIGN

Abstract Commands

Task Scheduling

Track

Renderer

PBRT-v4: 1351s

Mitsuba 3: 1235s

Ours: 241s / 203s

PBRT-v4: 1220s

Mitsuba 3: 987s

Ours: 213s / 180s

Fig. 1. The system architecture of LuisaRender (right) and a rendering application built atop it (left). Our layered framework provides a kernel programming
language and a unified runtime on various backends. We compare the performance of our renderer with PBRT-v4 and Mitsuba 3 on two scenes, Classroom
and Living Room. Results are shown on the left, with the rendering time of PBRT-v4 (CUDA, wavefront), Mitsuba 3 (CUDA, mega-kernel), and our renderer
(CUDA and DirectX, wavefront). Both scenes are spectrally rendered on RTX-3080Ti with 16 bounces and 16384spp. Our renderer is about 5.5× faster than
PBRT-v4 and 4.5× faster than Mitsuba 3 on the same CUDA backend, and is even faster on DirectX.

The advancements in hardware have drawn more attention than ever to

high-quality offline rendering with modern stream processors, both in the

∗
Kun Xu is the corresponding author.

Authors’ addresses: Shaokun Zheng, BNRist, Department of CS&T, Tsinghua University,

Beijing, China, zsk20@mails.tsinghua.edu.cn; Zhiqian Zhou, BNRist, Department of

CS&T, Tsinghua University, Beijing, China, zhouzq18@mails.tsinghua.edu.cn; Xin Chen,

BNRist, Department of CS&T, Tsinghua University, Beijing, China, chenxin18@mails.

tsinghua.edu.cn; Difei Yan, BNRist, Department of CS&T, Tsinghua University, Beijing,

China, ydf18@mails.tsinghua.edu.cn; Chuyan Zhang, BNRist, Department of CS&T,

Tsinghua University, Beijing, China, chuyan-z19@mails.tsinghua.edu.cn; Yuefeng Geng,

Recreate Games, Shanghai, China, maxwellgeng@outlook.com; Yan Gu, University

of California, Riverside, Riverside, United States, ygu@cs.ucr.edu; Kun Xu, BNRist,

Department of CS&T, Tsinghua University, Beijing, China, xukun@tsinghua.edu.cn.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

0730-0301/2022/12-ART232

https://doi.org/10.1145/3550454.3555463

industry and in research fields. However, the graphics APIs are fragmented

and existing shading languages lack high-level constructs such as polymor-

phism, which adds complexity to developing and maintaining cross-platform

high-performance renderers.We present LuisaRender
1
, a high-performance

rendering framework for modern stream-architecture hardware. Our main

contribution is an expressive C++-embedded DSL for kernel programming

with JIT code generation and compilation. We also implement a unified run-

time layer with resource wrappers and an optimized Monte Carlo renderer.

Experiments on test scenes show that LuisaRender achieves much higher

performance than existing research renderers on modern graphics hardware,

e.g., 5–11× faster than PBRT-v4 and 4–16× faster than Mitsuba 3.

CCS Concepts: • Computing methodologies → Ray tracing; Parallel
programming languages; • Software and its engineering → Domain
specific languages.

Additional Key Words and Phrases: rendering framework, stream architec-

ture, cross-platform renderer

1
LuisaRender is open-source with applications at https://github.com/LuisaGroup.

ACM Trans. Graph., Vol. 41, No. 6, Article 232. Publication date: December 2022.

https://doi.org/10.1145/3550454.3555463
https://github.com/LuisaGroup

232:2 • Shaokun Zheng, Zhiqian Zhou, Xin Chen, Difei Yan, Chuyan Zhang, Yuefeng Geng, Yan Gu, and Kun Xu

ACM Reference Format:
Shaokun Zheng, Zhiqian Zhou, Xin Chen, Difei Yan, Chuyan Zhang, Yue-

feng Geng, Yan Gu, and Kun Xu. 2022. LuisaRender: A High-Performance

Rendering Framework with Layered and Unified Interfaces on Stream Ar-

chitectures. ACM Trans. Graph. 41, 6, Article 232 (December 2022), 19 pages.

https://doi.org/10.1145/3550454.3555463

1 INTRODUCTION
The demand to quickly render increasingly complex scenes is draw-

ing attention to the development of high-performance rendering

systems. Among the techniques, stream-processing architectures,

typically GPUs with massive parallelism, are a prospective choice.

Graphics hardware and software frameworks are emerging and

evolving, yet accompanied by new challenges.

A major challenge in exploiting the stream-processing architec-

tures is the current design of graphics APIs and shading languages.

Modern graphics APIs tend towards explicitness and controllability

and the companion shading languages lack enough expressiveness

and inter-operability with the host language [He et al. 2018, 2017].

For example, users are required to one-by-one bind arguments to the

compute shader (sometimes necessarily translating the data layouts,

too), and then manually inform the driver to be prepare and map the

resources. Also, the fragmentation of APIs and shading languages

complicates the design of cross-platform applications, making the

development and mantainance painful and error-prone.

Various domain-specific frameworks and languages are proposed

to ease the programming on modern stream-processing hardware.

For example, Taichi [Hu et al. 2019] is an easy-to-use and efficient

domain-specific language (DSL), mainly designed for physical simu-

lation. Halide [Ragan-Kelley et al. 2012] and follow-up work aimed

at automatic scheduling for image processing tasks, which adopts a

functional programming model at the level of image buffers. Though

not primarily targeted at rendering, their insightful designs, such as

embedded DSLs and execution scheduling, inspired us in this work.

Targeting rendering tasks, Mitsuba 2 [Nimier-David et al. 2019]

is a retargetable system on Enoki [Jakob 2019]. It uses an array-

based programming model, which achieves good performance on

CPUs with small vectorization widths but results in much overhead

on the GPU side—mainly due to the memory traffic of arrays and the

thread divergence from the manually implemented array masks. The

follow-up work, Dr.JIT [Jakob et al. 2022a], alleviates the memory

bandwidth pressure by fusing computation graph nodes into mega-

kernels. Mitsuba 3 [Jakob et al. 2022b] is the successor renderer

atop Dr.JIT and also has a better performance. PBRT [Pharr et al.

2016] is a widely appreciated educational renderer and recently has

introduced GPU support into its latest version. The implementation

is based on the straightforward source-level code sharing between

CUDA and C++, which well serves its principles of clarity and

simplicity but sets a limit on the portability to other platforms.

We propose LuisaRender, a rendering framework that seeks

to balance the seemingly ever-conflicting pursuits for unification,

programmability, and performance. To achieve this goal, we present

three major components: a kernel programming DSL, a unified

runtime, and multiple optimized backends. The DSL adopts the

single-instruction-multiple-threads (SIMT) programming model for

fine controllability and is embedded inside pure modern C++. It

aims to simplify the interaction between the host and device code

and to enable high-level programming patterns such as polymor-

phism with just-in-time (JIT) code generation and compilation. The

unified runtime abstracts the common concepts across different

graphics and computing APIs to hide low-level platform-specific

details. Atop the low-level interfaces, we also provide wrappers to

ease resource management and task scheduling. Behind the unified

DSL and runtime, the backends realize the concrete resource man-

agement requests and computation tasks on different native APIs.

Currently, we have implemented 5 backends for different platforms,

namely CUDA, Metal, DirectX, ISPC, and LLVM.

To demonstrate the practicality and efficiency of LuisaRender,

we implement a Monte Carlo renderer atop. Our experiments in

Sec. 8 show that our renderer achieves significantly faster perfor-

mance on modern graphics hardware than state-of-the-art open-

source renderers, such as PBRT-v4 and Mitsuba 3.

To recap, we contribute a high-performance rendering framework

for stream-processing architectures with

(1) a DSL embedded inside modern C++ for kernel programming

exploiting JIT code generation and compilation;

(2) a unified runtime layer that hides platform-specific details

and provides access to the latest hardware capabilities; and

(3) an optimized Monte Carlo renderer that is 5–11× faster than

PBRT-v4 and 4–16× faster than Mitsuba 3 on modern GPUs.

2 RELATED WORK
Stream processors and architectures. Recent advances in computer

architectures improve performance via exploiting parallelism from

the stream-processing architecture. In this model, data are concep-

tually arrays flowing through parallel computation units, which can

be GPU threads or CPU vector processors. Such processing is usu-

ally vectorized as the GPU threads (or CPU SIMD lanes) executing

the same program (kernels) on different input data. Vectorization

provides better efficiency since it amortizes the cost of fetching and

decoding the instructions which are expensive in modern circuit

design. This approach is referred to as single program, multiple data
(SPMD) or single instruction, multiple threads (SIMT), and is widely

used in existing parallel computation frameworks such as OpenCL,

ISPC [Pharr and Mark 2012], and CUDA. We also base LuisaRender

upon this programming model for its fine granularity and natural

affinity with modern hardware.

Shading languages. Modern graphics APIs are equipped with spe-

cific shading languages, such as HLSL, GLSL, Cg [Mark et al. 2003],

and the Metal Shading Language [Apple 2021], to support customiz-

able shading effects with high performance. Unlike general-purpose

languages such as C++ and Java, shading languages usually have

simplified syntax to avoid complicating the compilation and opti-

mization phases. Thus, high-level constructs, such as support for

object-oriented and functional programming, are typically missing.

Various efforts have been made by researchers to strengthen the

programmability of shading languages. Dating back to the early age

of programmable graphics pipelines, the poirneering work Sh [Mc-

Cool et al. 2002] has already incorporated an embedded DSL in

C++ to assemble vertex and fragment shaders at runtime. More

recently, He et al. [2017] propose Shader Components to provide

ACM Trans. Graph., Vol. 41, No. 6, Article 232. Publication date: December 2022.

https://doi.org/10.1145/3550454.3555463

LuisaRender: A High-Performance Rendering Framework • 232:3

first-class language constructs for shader modularity by encapsulat-

ing the shading logics together with the interface parameter blocks.

Slang [He et al. 2018] further explores shader specialization and

composition, which extends HLSL with generics and interfaces,

allowing shader variant generation and management in a more

structured and semantic manner. Seitz et al. [2019] construct the Se-

los shading system atop Terra [DeVito et al. 2013] by exploiting its

meta-programming ability. They identify multi-stage programming

as an effective approach to reducing the implementation efforts.

Despite the discrepancies in technical choices, these methods

share consistent core insights: easy interactions between the host

and device and handy language constructs for high-level abstraction.

Inspired by them, we design the DSL in LuisaRender to 1) be

embedded inside pure C++ to conveniently interact with the host

language and runtime; and 2) leverage JIT code generation and

compilation to enable multi-stage programming and other high-

level patterns with decent performance across platforms.

Rendering systems. Various rendering systems are available nowa-

days for research and production usages, some adopting mature

architecture designs, and some exploring novel technical schemes.

PBRT [Pharr et al. 2016] is an influential open-source renderer,

whose recent version adds GPU support. For simplicity and clarity

as an educational renderer, it bases the GPU implementation on

the straightforward source-level code sharing between CUDA and

C++, which depends certain CUDA-exclusive functionalities, such as

the unified address space and extended device lambda expressions,

hindering the portability toward other platforms. Also, the tagged

pointers only allow polymorphic calls to statically known sub-types,

limiting the extensibility; and the conventional ahead-of-time kernel
compilation requires the compiler to generate instructions and allo-

cate registers for every component even if unused. In LuisaRender,

we have an extensible support for multiple backends other than

CUDA through the unified runtime, so the same code runs across

platforms. Moreover, the multi-stage programming ability of our

DSL enables dynamic composition and specialization of kernels

with runtime information, aggressively inlining scene parameters

and eliminating unused instructions and redundant branches.

Mitsuba 2 [Nimier-David et al. 2019] focuses on retargetable

and differentiable rendering. It is based on Enoki [Jakob 2019], a

computation library for vectorized array programming. While ar-

rays enable a neat and easy-to-retarget programming model, an

optimized implementation requires considerable effort, especially

on GPUs. Otherwise, the overwhelming memory traffic and thread

divergence would lead to severe performance issues, as seen in

Mitsuba 2. Jakob et al. [2022a] further propose Dr.Jit, a drop-in

replacement of Enoki, to improve the efficiency of array program-

ming. It traces the computation graphs and fuses operations into op-

timized mega-kernels to eliminate unnecessary memory I/O. Based

on Dr.JIT, Mitsuba 3 [Jakob et al. 2022b] achieves a considerable

speedup over Mitsuba 2. However, control flows in the array model

still rely on the semi-manual management of software execution

masks, introducing overhead and redundant computation. Therefore,

we opt to stick with the kernel-based explicit SIMT programming

model, which receives native support on modern graphics hardware.

Rodent [Pérard-Gayot et al. 2019] is a renderer generator built on
AnyDSL [Leißa et al. 2018]. Via partial evaluation, it takes a particu-
lar scene as the static input and specializes the renderer accordingly

during compilation. Despite the theoretical grace and optimization

potential, the relatively long compilation time (typically several

minutes) required for each scene impedes its practicality.

As for production rendering systems, MoonRay [Lee et al. 2017]

uses ISPC [Pharr and Mark 2012] to materialize vectorized render-

ing on CPUs. Manuka [Fascione et al. 2018] leverages JIT shader

compilation to fully exploit the SSE and AVX vector instruction sets.

Cycles, an open-source path-tracing renderer of the Blender [2022]

project, has brought the GPU rendering support to multiple plat-

forms, e.g., Apple Metal, NVIDIA CUDA, and AMD HIP.

Other domain-specific frameworks and languages. Halide [Ragan-

Kelley et al. 2012, 2013] is an image-processing DSL. It decouples

image processing algorithms from scheduling such as choices of

vectorization and tiling, and hence supports easy programming as

well as high performance. Afterward, differentiable programming

is added to the language [Li et al. 2018] and various algorithms

have been proposed for the automatic scheduling of Halide pro-

grams [Adams et al. 2019; Anderson et al. 2021; Mullapudi et al.

2016]. Opt [DeVito et al. 2017] and ProxImaL [Heide et al. 2016]

are DSLs for efficient image optimization. Aether [Anderson et al.

2017] is a sampling DSL embedded in C++ for automatic probability

density calculation from user-written sampling routines.

In the field of physically based simulation, typical frameworks in-

clude Taichi [Hu et al. 2019] and Warp [NVIDIA 2022]. Specifically,

the Taichi programming language decouples data structures from

computation, such that users can easily try various optimized data

layouts and access patterns without modifying the core algorithms.

Later, Taichi is further extended with automatic differentiation [Hu

et al. 2020a] and quantization [Hu et al. 2021].

Beyond graphics, domain-specific frameworks for numeric com-

putation and deep learning are actively proposed and extensively ex-

plored. For example, CXYPY [Diamond and Boyd 2016] is a Python-

embedded DSL for convex optimization. PyTorch [Paszke et al.

2019], TensorFlow [Abadi et al. 2015], and Jittor [Hu et al. 2020b]

represent neural models as computation graphs of basic tensor op-

erations (including addition, multiplication, convolution, pooling,

activation functions, etc.) and support automatic differentiation.

JAX [Frostig et al. 2018], designed as building blocks for machine

learning, employs an array-level programming model and supports

JIT compilation and optimization of pure-and-statically-composed
(PSC) subroutines defined in Python.

Interesting designs and insights of these languages and frame-

works also provide valuable inspirations for LuisaRender.

3 SYSTEM DESIGN
Modern renderers are intricate software systems and require a sys-

tematic viewwhen designing the underlying computing frameworks.

However, the core demands remains simple and clear — effective

data representations, friendly yet flexible programming interfaces,

and, mostly importantly, efficient computation.

ACM Trans. Graph., Vol. 41, No. 6, Article 232. Publication date: December 2022.

232:4 • Shaokun Zheng, Zhiqian Zhou, Xin Chen, Difei Yan, Chuyan Zhang, Yuefeng Geng, Yan Gu, and Kun Xu

The pursuit of these objectives also motivates our design of Luis-

aRender. In this section, we will first discuss the design principles

and then provide an overview of the resulting architecture.

3.1 Principles
We architect the LuisaRender framework to be unified, easy-to-

program, and high-performance.

3.1.1 Unification. The fragmentation of graphics APIs and shad-

ing languages adds burdens to the development of cross-platform

software: low-level API- and language-specific details require per-

platform handling, even though the high-level logic is the same.

We believe such extra efforts are avoidable and that appropriate

abstraction layers are the key. For programming languages, compiler

frameworks such as LLVM [Lattner and Adve 2004] have proved the

effectiveness and elegance of intermediate representations to bridge

varying front and backends. For graphics APIs, render hardware
interfaces (RHIs) in modern game engines (e.g., Unreal [Epic Games

2019]) are the core for cross-platform runtime design.

Learning from their success, we introduce similar abstraction tech-

niques into LuisaRender, namely the abstract syntax trees (ASTs)
and the runtime layer. They decouple the unified frontend inter-

faces of kernel programming, resource management, and execution

scheduling, from the platform-specific backend implementations.

3.1.2 Programmability. Popular shading languages, such as HLSL,

are standalone languages with simplified constructs. The lack of

support for high-level abstraction such as meta-programming and

polymorphism complicates their generation, specialization, compi-

lation, and runtime invocation [He et al. 2018; Seitz et al. 2019].

We resort to an embedded DSL inside modern C++ with JIT code

generation and compilation to improve kernel programmability. The

rationales are as follows:

• Simplicity. The embeddedness inside pure C++ eliminates

the burden of implementing a custom compiler. Instead, it

naturally allows reusing the functionalities (e.g., type infer-

ence and checking) from the well-established host language

and compilers. Also, users will not be bothered to learn yet

another shading language and toolset.

• Flexibility. Users can access the host-side data while con-

structing kernels. Thus, only the necessary kernels need to

be dynamically generated and compiled, rather than the nu-

merous combinations of all shader variants.

• Expressiveness. The DSL inherits the rich language constructs

from C++, e.g., classes, templates, and lambda expressions.

Besides, the host language being a meta-stage of the device-

side code, users can programmatically specialize kernels and

perform optimizations (e.g., loop unrolling, constant inlining,

and de-virtualization), with runtime information and data.

3.1.3 Performance. We expect our framework to exploit modern

hardware’s capabilities and that applications built atop it could

achieve the equivalent performance of those directly on native

APIs. This leads to requirements in two dimensions: implementation

quality and practical usability.

For implementation, appropriate layering and abstraction gran-

ularity offers freedom for high-quality backend implementations.

For example, exposing the fine-grained management interfaces and

manipulation commands for device resources allows backends to

leverage dedicated hardware (e.g., texture units and RT Cores). Also,

JIT code generation and compilation is a powerful tool to enable

scene-specific dynamic optimizations with runtime information.

For usage, we argue that the viability of high-level abstraction is

an assistant to performance rather than a burden, as it unleashes

users’ productivity and creativity. For example, by extending HLSL

with generics and interfaces, Slang [He et al. 2018] enables a mod-

ular approach to shader composition and specialization, achiev-

ing better performance with fewer implementation efforts than

the base language. Meta-programming is also proved effective for

high-quality shader generation while relieving the development and

maintenance complexity [McCool et al. 2002; Seitz et al. 2019].

Thus, to exploit hardware capabilities, we opt for the SIMT pro-

gramming model, explicit command-based task submission, and

fine-grained resource management. Meanwhile, with high-level

DSL constructs and automatic command scheduling, the required

programming effort to achieve decent performance is reduced.

3.2 Architecture Overview
Our framework has three major components (shown in Fig. 1): an

embedded DSL for kernel programming, a unified runtime for re-

source management and execution scheduling, and multiple back-

ends implementing the low-level platform-specific functionalities.

A short example with our framework is shown in Listing 1.

3.2.1 Embedded DSL. The DSL in our system provides a unified

approach to authoring kernels, i.e., programmable computation

tasks on the device. Distinct from typical graphics APIs that use

standalone shading languages for device code, our system unifies

the authoring of both the host-side logic and device-side kernels

into the same language, i.e., modern C++.

The implementation purely relies on the C++ language itself,

without any custom preprocessing pass or compiler extension. We

exploit meta-programming techniques to simulate the syntax, and

function/operator overloading to dynamically trace the user-defined

kernels. ASTs are constructed during the tracing as an intermediate

representation and later handed over to the backends for generating

concrete, platform-dependent shader source code.

3.2.2 Unified runtime. Likewise the RHIs in game engines, we intro-

duce an abstract runtime layer to re-unify the fragmented graphics

APIs across platforms. It extracts the common concepts and con-

structs shared by the backend APIs and plays the bridging role

between the high-level frontend interfaces and the low-level back-

end implementations.

On the low-level end, unification involves two parts: 1) the ab-
stract device interfaces for resource management, e.g., buffer alloca-

tion and de-allocation; and 2) the abstract commands as intermediate

descriptors for device-side computation and resource manipulation,

such as launching kernels and building acceleration structures.

On the programming interfaces for users, we provide high-level

resource wrappers to ease programming and eliminate boilerplate

code. They are strongly and statically typed modern C++ objects,

which not only simplify the generation of commands via convenient

ACM Trans. Graph., Vol. 41, No. 6, Article 232. Publication date: December 2022.

LuisaRender: A High-Performance Rendering Framework • 232:5� �
1 // initialize the device
2 auto device = context.create_device("cuda");
3

4 // define the rendering kernel
5 Kernel2D kernel = [&](ImageFloat image) {
6 auto pos = dispatch_id ().xy();
7 auto color = sin(make_float2(p)) * .5f + .5f;
8 image.write(pos , make_float4(color , 1.f, 1.f));
9 };
10

11 // create resources on the device and on the host
12 auto size = make_uint2 (1024u);
13 auto render = device.compile(kernel);
14 auto image = device.create_image <float >(BYTE4 , size);
15 auto host_image = std::vector <float4 >(size.x * size.y);
16

17 // create a stream for submitting tasks
18 auto stream = device.create_stream ();
19

20 // dispatch tasks and wait for completion
21 stream << render(image). dispatch(size)
22 << image.copy_to(host_image.data ())
23 << synchronize ();� �

Listing 1. A short example program with our framework.

member methods but also support close interaction with the DSL.

Moreover, with the resource usage information in kernels and com-

mands, the runtime automatically probes the dependencies between

commands and re-schedules them to improve hardware utilization.

3.2.3 Backend implementations. The backends are the final realizers

of computation. They generate concrete shader sources from the

ASTs and compile them into native shaders. They implement the

virtual device interfaces with low-level platform-dependent API

calls and translate the intermediate command representations into

native kernel launches and command dispatches.

Currently, we have 5 backends, including 3 GPU backends based

on CUDA, Metal, and DirectX, respectively, a scalar CPU backend

on LLVM, and a vectorized CPU backend on ISPC.

4 EMBEDDED DOMAIN-SPECIFIC LANGUAGE
To enable a unified experience of kernel authoring, we implement

an embedded domain-specific language in C++, which is designed

to maximize familiarity with native C++ and other popular shading

languages. Meanwhile, embedding the language in pure C++ greatly

simplifies the compilation process and allows a seamless interac-

tion with other parts of the system as well as powerful, high-level

programming patterns hardly seen in previous work.

In this section, we will discuss the basic components and usages

of the DSL, introduce the techniques behind the scene to materialize

and drive the syntax and compilation, and describe some high-level

abstraction patterns to showcase its rich expressiveness.

4.1 Basic Components and Usages
The embedded language is designed to enable a fluent experience

authoring kernels and blur the boundaries with the host code. To

achieve this, we provide language constructs similar to the original

C++, honoring its features and idioms.

Types and variables. As in most imperative programming languages,

the basic building blocks of kernels in our DSL are variables, which

� �
1 template <typename T>
2 class Var { /*...*/ };
3

4 /* aliases for commonly used instantiations */
5 using Int = Var <int >;
6 using Int2 = Var <int2 >;
7 using Int3 = Var <int3 >;
8 using Int4 = Var <int4 >;
9 /* ... */
10

11 /* aliases for runtime resources */
12 using BufferInt = Var <Buffer <int >>;
13 using ImageInt = Var <Image <int >>;
14 /* ... */� �

Listing 2. Types of the variables in the DSL.

are typed as wrapper templates upon the scalar types (i.e., int, uint,

float, and bool) and the derived vector and matrix types (i.e., int2,

bool3, float3x3, etc.) resembling those in popular shading languages,

as well as the runtime resources aforementioned in Sec. 5.2.

Listing 2 displays the definition of the Var<T> template, which is

the core basis for all the behind-scene techniques of AST tracing and

recording that are revealed in Sec. 4.2. Unlike vanilla C++ variables,

the class is substantially designed as proxies to kernel variables,

whose operators and methods are overloaded to only record the

operations rather than actually perform the calculation. Also, for

users’ convenience, we pre-define aliases to the most commonly

used instantiations, which are in a capitalized naming convention,

clearly distinguishable from the native types.

Definitions of DSL variables are the same as ordinary objects

in C++: the name of the variable preceded by its type, optionally

followed by an initializer. Leveraging user-defined guides for the

class template argument deduction (CTAD) in C++, we can omit

explicit specifications of the template arguments of the Var class

and let the compiler automatically deduce them from the initializers,

analogous to the auto keyword. Besides, implemented in pure C++,

the DSL types are naturally allowed as class members, function

parameters, and return types, even in a mixture with other C++

types. The following listing shows some of the use cases.� �
1 /* defining local variables as natively in C++ */
2 Int a; // an int variable without initializers
3 Float b = 1.f; // a float variable initialized to 1.0f
4 Int c = a; // initialized with other variables , or
5 Bool2 d{true , false }; // with an initializer list
6

7 /* defining local variables with type deduction */
8 Var e = 256u; // deduced to UInt by user -defined CTAD
9 auto f = Var {256u}; // alternative style 1: ad hoc Var
10 auto g = def (256u); // alternative style 2: def helper
11

12 /* in a function signature mixed with ordinary types */
13 Bool3 test(BufferFloat b, int static_index) { /*...*/ }
14

15 /* as class members , mixable with ordinary types */
16 class Bar { std:: string name; int id; Float3 v; };� �
Expressions and statements. Program logic is assembled by trans-

forming and transfering data held in variables. We provide arith-

metic, relational, and assignment operators of DSL variables for

basic computation in kernels. Exploiting operator overloading and

type traits, we furnish the DSLwith almost the same interfaces as the

ACM Trans. Graph., Vol. 41, No. 6, Article 232. Publication date: December 2022.

232:6 • Shaokun Zheng, Zhiqian Zhou, Xin Chen, Difei Yan, Chuyan Zhang, Yuefeng Geng, Yan Gu, and Kun Xu� �
1 $if (cond) { /*...*/ };
2 $if (cond) { /*...*/ } $else { /*...*/ };
3 $if (cond) { /*...*/ } $elif (cond2) { /*...*/ };
4 $while (cond) { /*...*/ };
5 $for (variable , n) { /*...*/ };
6 $for (variable , begin , end) { /*...*/ };
7 $for (variable , begin , end , step) { /*...*/ };
8 $loop { /*...*/ }; // infinite loop , unless $break 'ed
9 $switch (variable) {
10 $case (value) { /*...*/ };
11 $default { /*...*/ };
12 };
13 $break; $continue;� �

Listing 3. Special macros for control flows in the DSL.

original C++ syntax, together with static type checking, inference,

and conversion support, even when mixed with native types.� �
1 auto a = def(0u); // Var <uint > defined in DSL
2 auto b = def(1u); // Var <uint > defined in DSL
3

4 /* operators , assignments , and type inference */
5 auto c = a + b; // operator +: (uint , uint) -> uint
6 auto d = a < b; // operator <: (uint , uint) -> bool
7 b = a - c * 3u; // operator - and *, and assignment
8

9 /* static type check and conversion */
10 auto u = 1 + c; // literal int(1) converted to uint
11 // float3 (1.f) + u => compile -time error: float3 + uint� �
Control flows. In addition to arithmetic and assignment statements,

control flows also play important roles in program construction.

Unfortunately, they are not overloadable in C++, nor can we detect

and extract them within the language itself. Therefore, in the DSL,

we opt for special macros to imitate them (see Listing 3), which are

prefixed by the $ sign, a rarely used but valid character in identifiers,

to be told apart from the native C++ counterparts. We will describe

their implementation in Sec. 4.2.

Kernels and callable functions. LuisaRender supports two cate-

gories of device functions, namely, 1) Kernels (1D, 2D, or 3D), which

are entries to the parallelized computation tasks on the device; and 2)

Callables that are function objects invocable from kernels or other

callables. Both kinds are template classes that are constructible from

C++ functions or function objects including lambda expressions.

Again, leveraging CTAD guides, the template parameters can op-

tionally be omitted and deduced by the C++ compiler. At the code

generation stage in the backend, they are mapped and translated to

corresponding function entities in the target shading/programming

language, e.g., Kernels into __global__ functions and Callables into

__device__ functions in CUDA.

It is also worth mentioning that, since our DSL is itself valid

C++, ordinary C++ functions and function objects, including class

member functions and lambda expressions, are naturally available

too. When used together with the DSL, they act like macros that

are directly expended into the ASTs, without generating function

entities as Kernels and Callables. In other words, they are meta-
stages that control the assembly of the kernel ASTs, which can be

extremely powerful for composing higher-order abstraction patterns

as will be discussed in Sec. 4.3.

Listing 4 shows example callable and kernel functions written

in our DSL, which, in combination, write gradient color to an im-

age (i.e., 2D texture) in sRGB encoding. By exploiting type-traits

and defining deduction guides, the template arguments for types

Callable and Kernel2D are automatically inferred from the signa-

tures of the lambdas, e.g., deduced to be Callable<float3(float3)>

and Kernel2D<ImageView<float>>, respectively.� �
1 Callable to_srgb = [](Float3 x) {
2 $if (x <= 0.00031308f) {
3 x = 12.92f * x;
4 } $else {
5 x = 1.055f * pow(x, 1.f / 2.4f) - .055f;
6 };
7 return x;
8 };
9 Kernel2D fill = [&](ImageFloat image) {
10 auto coord = dispatch_id ().xy();
11 auto size = make_float2(dispatch_size ().xy());
12 auto rg = make_float2(coord) / size;
13 // invoke the callable
14 auto srgb = to_srgb(make_float3(rg, 1.f));
15 image.write(coord , make_float4(srgb , 1.f));
16 };� �

Listing 4. An example code snippet using our DSL.

Note that for Kernels and Callables to correctly trace the ASTs,

parameters of the underlying definition functions must be wrapped

in Var<T>, or equivalently, use aliases such as Float3 and ImageFloat.

Built-in functions. Besides user-defined functions, we also provide a

rich library of built-in DSL functions. They are typically intrinsic

functions that are not possible (or at least not efficient) to be imple-

mented in user code and hence must be supplied by the framework.

In LuisaRender, built-in functions include

• Thread coordinate and launch configuration queries, includ-

ing block_id, thread_id, dispatch_size, and dispatch_id;

• Mathematical routines, such as max, abs, sin, pow, and sqrt;

• Resource accessing andmodification methods, such as texture

sampling, buffer read/write, and ray intersection;

• Variable construction and type conversion, e.g., def<T> for

making variable copies, make_int3 for creating 3D integer

vectors, and as<T> for bitwise type casting; and

• Optimization hints for backend compilers, which currently

consist of assume and unreachable.

We exploit concepts in C++20 to constrain the signatures of built-

in functions such that the compiler would not confuse themwith the

host functions. In the DSL, invocations to themwill record CallExprs

with special tags in the AST.

During code generation, the backend maps the built-in invocation

nodes to platform-specific code. Simple functions like thread_id

and abs are directly mapped to shader intrinsics, possibly backed

by hardware instructions, while the more complicated ones, such

as ray intersection, might be forwarded to pre-defined functions or

even external libraries. Also, on platforms without native support

for some functionalities, we have to simulate the corresponding

semantics with software implementations. For example, on Metal,

we simulate atomic floating-point operations through the compare-
and-swap (CAS) operation on atomic integers.

ACM Trans. Graph., Vol. 41, No. 6, Article 232. Publication date: December 2022.

LuisaRender: A High-Performance Rendering Framework • 232:7� �
1 /* option 1:
2 * use DSL members in device -only classes */
3 class BSDFSample {
4 public:
5 Float3 f;
6 Float3 w;
7 Float pdf;
8 auto valid() const { return pdf != 0.f; }
9 };
10

11 /* option 2:
12 * reflect host -side structures for device usage */
13 struct BSDFSample { // host -side ordinary C++ structure
14 float3 f;
15 float3 w;
16 float pdf;
17 };
18

19 LUISA_STRUCT(BSDFSample , f, w, pdf) { // DSL reflection
20 auto valid() const { return pdf != 0.f; }// extension
21 };
22 // briefly , the macro expends to
23 // template <>
24 // class Var <BSDFSample > {
25 // public:
26 // Var <decltype(f)> f;
27 // Var <decltype(w)> w;
28 // Var <decltype(pdf)> pdf;
29 // auto operator ->() {// for extension methods
30 // return (VarExtension <BSDFSample > *)this;
31 // }
32 // };
33 // template <>
34 // struct VarExtension <BSDFSample > : Var <BSDFSample > {
35 // auto valid() const { return pdf != 0.f; }
36 // };
37

38 // after the registration , the host -side structure is
39 // now available in DSL for variables and resources
40 Buffer <BSDFSample > sample_bufer = /* ... */;
41 Var <BSDFSample > sample = sample_buffer.read (0);
42 Bool is_valid = sample ->valid ();� �
Listing 5. Two ways in our DSL to incorporate C++ structures and classes.
The first is to use DSL variables as class or structure members, and the
second is to reflect and register existing C++ structures.

Structures and classes. In C++, structures and classes are important

constructs to organize data and express logic. Since variables in

our DSL are intrinsically C++ objects, they are naturally allowed as

structure or class members and used inside device functions. In this

case, structures and classes act like DSL variable packs, usages of

which are instantly inlined without any entities generated in the

backend shading language.

However, to conveniently exchange data between the host and

device side through buffers, we usually also want the ability to

reflect and register existing C++ structures. We provide a macro,

LUISA_STRUCT, to fulfill this need, which leverages type traits to

automatically inspect the types of the members and initialize the

corresponding Var<T> template for DSL compatibility. Also, resem-

bling the object-oriented fashion, the macro supports extending the

original structures with device-side methods.

Listing 5 gives examples of incorporating C++ classes and struc-

tures in the aforementioned ways.

4.2 Syntax Tree Recording
The DSL traces and records the abstract syntax trees (ASTs) of

Kernels and Callables through extensive usage of macro and tem-

plate meta-programming. The ASTs, together with the captured

runtime information, are later forwarded to backends for code gen-

eration, compilation, and pipeline creation.

Conceptually, the process can be interpreted as a dynamic im-

plementation of multi-stage programming [Taha 2004]: like what

templates and macros are to classes and functions, our DSL is a

meta-programming stage to the backend shading language, which

controls the assembly of the generated code. That said, the dy-

namic information (that is available only at runtime for the host

C++ language), is known “statically” concerning shaders and thus

integratable into their construction and compilation.

Plus, the DSL is embedded natively in modern C++, requiring no

special pre- or post-processing of the source code, nor customized

modifications or extensions to the compilers. Thus, all C++ lan-

guage constructs as well as programming patterns, idioms, and

paradigms, either object-oriented, procedural, or functional, are

seamlessly compatible with our system, putting atop another layer

of programmability at no overhead regarding the backend device.

Tracing of the syntax tree is through the proxy objects of the

Var<T> template class. Operators, as well as built-in functions (e.g.,

pow), are all overloaded for the proxy type Var<T>, so that mathemat-

ical operators on them or function calls to them do not compute the

result, but rather add nodes into the AST. It is also worth noting that,

by using type-traits and concepts, the DSL is statically and almost

strongly typed, such that type-level errors are promptly reported

during the compilation of the host C++ language, reducing the effort

required to debug at runtime.

Below we explain how statements and function definitions are

recorded, and how control flows are handled.

Recording of statements. The pseudocode in Listing 6 is an example

showing how a single statement in C++ (i.e., auto y = x * 12.92f;)

is traced and recorded into the AST (suppose x is a Var<float>).

However, control flows (e.g., if, while, and break) are not over-

loadable. Instead, we use special macros, such as $if, $while, and

$break, to imitate these statements, by intruding into the syntax of

lambda expressions. For example, the definition of $if-related con-

structs are shown in Listing 7, followed by the expansion of Line 2

to 6 in Listing 4, where the IfStmtBuilder has overloaded operator%

and operator/ for recording the true and false branches, respectively,
by invoking the corresponding stitched lambda expressions.

Should our readers have noticed, this also explains why there

must be braces around the body statements and semicolons after the

closing braces, as they are parts of the lambda-expression syntax.

Recording of function definitions. Types of the device functions,

Kernel and Callable, are in fact template classes, whose constructors

drive the recording of the passed-in functions. Briefly, on calling

the constructor, the following steps are taken to build the AST:

(1) a new FunctionBuilder that stores the AST is created and

pushed to a global stack to open a new function scope;

(2) parameter types of the passed-in function are automatically

detected to proxy Var<T> argument objects;

ACM Trans. Graph., Vol. 41, No. 6, Article 232. Publication date: December 2022.

232:8 • Shaokun Zheng, Zhiqian Zhou, Xin Chen, Difei Yan, Chuyan Zhang, Yuefeng Geng, Yan Gu, and Kun Xu� �
1 // C++ statement: auto y = x * 12.92f;
2 // wrap the left -hand -side operand for operator*
3 Expr <float > lhs{x.expression ()};
4 // wrap the right -hand -side literal for operator*
5 Expr <float > rhs{builder ->literal(
6 Type::of<float >(), 12.92f)};
7 // create a BinaryOp node
8 const Expression *binary = builder ->binary(
9 Type::of<float >(), BinaryOp ::Tag::MUL ,
10 lhs.expression (), rhs.expression ());
11 // construct variable y from the result
12 Var <float > y{builder ->local(Type::of<float >())};
13 builder ->assign(y.expression(), binary);� �

Listing 6. Recording process of a DSL statement.

� �
1 #define $if (...) \
2 detail :: IfStmtBuilder{__VA_ARGS__} \
3 % [&]()
4 #define $else \
5 / [&]()
6

7 // expansion process:
8 // create a temporary if-statement node builder
9 detail :: IfStmtBuilder{x <= 0.00031308f}
10 // operator %: records the true branch
11 % [&]() { x = 12.92f * x; }
12 // operator /: records the false branch
13 / [&]() { x = 1.055f * pow(x, 1.f / 2.4f) - .055f; };� �
Listing 7. Macro definition of the $if-related constructs and the example
expanding process of Line 2 to 6 in Listing 4.

(3) the passed-in function is invoked with the proxy arguments

and its execution drives the tracing of the AST; and

(4) at the return of the definition function, the previously opened

function scope is closed and the syntax tree stored in the

FunctionBuilder is handed over to the newly constructed

Kernel or Callable objects.

For example, the definition (Line 1 to 8) of the callable to_srgb in

Listing 4 basically expands to the following simplified pseudocode

(suppose the definition function, i.e., the lambda expression in this

example, is passed to the constructor as to_srgb_impl):� �
1 // create a callable builder
2 auto builder = FunctionBuilder :: create(Tag:: CALLABLE);
3 // push the new function scope
4 FunctionBuilder ::push(builder);
5 // create a expression node for the the argument
6 auto arg0 = builder ->argument(Type::of<float3 >());
7 // wrap the node into a proxy object
8 Var <float3 > v0{arg0};
9 // invoke the definition function , all DSL operations
10 // in to_srgb_impl are traced and recorded in the AST
11 auto ret = to_srgb_impl(std::move(v0));
12 // record the return statement (if any)
13 builder ->return_(ret.expression ());
14 // pop function scope
15 FunctionBuilder ::pop(builder);
16 // construct the callable object with the builder
17 Callable <float3(float3)> to_srgb;
18 to_srgb._builder = std::move(builder);� �
Recording of function calls. There are two categories of functions

supported in the DSL: built-in functions and user-defined ones. Both

are statically typed and calls to them add CallExpr nodes in the ASTs.

� �
1 template <typename T1 , typename T2 >
2 inline auto cosine_sample_hemisphere(T1 u1, T2 u2) {
3 auto r = sqrt(u1);
4 auto phi = 2.f * pi * u2;
5 auto x = r * cos(phi);
6 auto y = r * sin(phi);
7 auto z = sqrt (1.f - u1);
8 return make_float3(x, y, z);
9 };� �
Listing 8. A generic function compatible with both the host C++ language
and the DSL in our system.

� �
1 inline auto tea(UInt s, UInt v0, UInt v1) {
2 for (auto i = 0; i < 4; i++) {
3 s += 0x9e3779b9u;
4 v0 += ((v1 << 4) + 0xa341316cu) ^ (v1 + s) ^
5 ((v1 >> 5u) + 0xc8013ea4u);
6 v1 += ((v0 << 4) + 0xad90777du) ^ (v0 + s) ^
7 ((v0 >> 5u) + 0x7e95761eu);
8 }
9 return v0;
10 };� �
Listing 9. User-controlled loop unrolling of the tiny encryption algorithm [Za-
far et al. 2010] hash function, easily achieved in our DSL by repeatedly (4
times in the example) recording the statements within a host loop.

For example, pow on the 5th line of Listing 4 is a built-in function

and to_srgb itself is a custom callable function, which is invoked

on the 14th line. Note that callables are invocable both in kernels

and other callables, while kernels are only allowed to be dispatched

and executed through command streams after compilation.

Besides, ordinary C++ functions, as mentioned before, are also

available for use in our DSL. Different from kernels and callables,

they are directly expended and inlined into the ASTs without cre-

ating device function entities and can be used for higher-order

abstraction patterns as will be discussed in the next subsection.

4.3 Advanced Features
In this part, we will discuss the advanced abilities inherited from the

host C++ languages, as well as those possibilities novelly discovered

and developed with our system.

Generic functions compatible with both the host code and DSL. Tem-

plates are primarily designed for generic programming. Our DSL,

natively implemented in C++, is compatible with templates.

Listing 8 showcases the inherited generic programming ability,

which defines a cosine-weighted hemisphere sampling routine com-

patible with both the host C++ language and DSL. More sophisti-

cated cases, e.g., template classes, are also available in our system.

Fine-grained control over code generation. As discussed in Sec. 4,

the DSL in our system can be interpreted as a wrapper of the AST

building functionalities. Therefore, it naturally allows users to have

fine-grained control over the code generation process, if preferable.

For example, user-controlled loop unrolling is easily achievable by

repeatedly recording the AST nodes of the corresponding statements

several times as in Listing 9.

ACM Trans. Graph., Vol. 41, No. 6, Article 232. Publication date: December 2022.

LuisaRender: A High-Performance Rendering Framework • 232:9� �
1 // defined in plug -in: tonemapping_aces.dll
2 Float3 apply(Float3 in) { /*...*/ }
3 // defined in plug -in: tonmapping_filmic.dll
4 Float3 apply(Float3 in) { /*...*/ }
5 // defined in plug -in: tonemapping_uncharted2.dll
6 Float3 apply(Float3 in) { /*...*/ }
7 /* ... */
8

9 // a polymorphic tonemapping shader creator
10 // parameterized by a higher -order function
11 auto create_kernel(function <Float3(Float3)> op) {
12 Kernel2D kernel = [&op](ImageFloat image) {
13 auto p = dispatch_id ().xy();
14 auto color = image.read(p);
15 // op(): a host -side dynamic call , expanding the
16 // polymorphic logic into the shader , which is
17 // effectively de-virtualized on the device side
18 auto mapped = op(color.xyz ());
19 image.write(p, make_float4(mapped , color.w));
20 };
21 return kernel;
22 }
23

24 // at runtime , load a tonemapping plug -in dynamically
25 auto tm_plugin = load_module(/*...*/);
26 // now use the dynamically loaded op to create kernels
27 auto tm_kernel = create_kernel(tm_plugin.get("apply"));
28 /* ... */� �
Listing 10. Dynamic polymorphic host code enabling construction of shader
variants at runtime.

4.4 Dynamic Polymorphism
A rendering system consists of various categories of textures, sur-

face materials, light sources, etc., which are ideally handled using

polymorphism. However, language support for dynamic polymor-

phism, such as virtual functions and pattern matching, are limited

or even absent in the GPU world. The conventional approach to

working around is to generate numerous shader variants by enu-

merating all possible combinations from code snippets or high-level

components [He et al. 2017] ahead of time and selecting them at

runtime. However, such a solution wastes not only the compilation

and packaging time of unnecessary variants but also the time and

memory to load and hold them at runtime. Another technique, as

extensively explored in PBRT-v4 [Pharr et al. 2016], is to use tagged
pointers to dynamically dispatch polymorphic method calls, which,

unfortunately, requires support for templates in the shading lan-

guage and full knowledge of all subtypes (i.e., derived classes), thus

greatly hurting the portability and extensibility. Moreover, statically

compiled without the chance to prune unused subtypes, the tagged

pointer approach is unable to alleviate register pressure and always

has a constant branching overhead for each polymorphic call.

Our system, taking a different approach, leverages the embed-

ded DSL and just-in-time compilation to support polymorphism,

achieving both flexibility and performance. Specifically, we imple-

ment two types of dynamic polymorphisms. The first is achieved

through de-virtualization, which provides dynamic polymorphism

on host code while reduces to static polymorphism on device code.

The second is achieved through dynamic tagged dispatching, which
provides true dynamic polymorphism on device code.

De-virtualized host-side polymorphism. As an elegant and flexible

alternative to shader variants, we incorporate the subtyping and

� �
1 class BRDF {
2 virtual Eval eval(Float3 wo, Float3 wi) = 0;
3 };
4 class Lambertian : public BRDF {
5 Eval eval(Float3 wo, Float3 wi) override { /*...*/ }
6 };
7 class Microfacet : public BRDF {
8 Eval eval(Float3 wo, Float3 wi) override { /*...*/ }
9 };
10 class BRDFEvaluator {
11 private:
12 Polymorphic <BRDF > _f;
13 public:
14 void do_registration () {
15 auto tag1 = _f.create <Lambertian >(); // tag1 == 0
16 auto tag2 = _f.create <Microfacet >(); // tag2 == 1
17 // register other BRDFs ...
18 }
19 auto evaluate(Hit hit , Float3 wo, Float3 wi) {
20 Eval eval;
21 _f->dispatch(hit ->brdf_tag(), [&](auto f) {
22 eval = f->eval(wo, wi);
23 });
24 // equivalently expands to
25 // $switch (hit ->brdf_tag ()) {
26 // /* calling Lambertian ::eval() */
27 // $case (0) { eval = _f[0]->eval(wo, wi); };
28 // /* calling Microfacet ::eval() */
29 // $case (1) { eval = _f[1]->eval(wo, wi); };
30 // ...
31 // };
32 return eval;
33 }
34 };� �
Listing 11. Dynamic polymorphism achieved on device with the templated
Polymorphic<T> construct.

dynamic dispatching mechanisms in the host language to assemble

shaders at runtime with different components. In this case, the DSL

acts like dynamic macros, extracting the polymorphic logic into the

different ASTs. Listing 10 gives a functional-style example reflecting

this ability, one in a functional programming style with high-order

functions and the other in an object-oriented fashion with virtual,

dynamically dispatched methods.

Such dynamism is engaged in the AST construction stage and

wiped out in the device code, which, from the perspective of compiler

optimization, resembles a de-virtualization pass that aggressively
eliminates redundant indirect calls, branches, and register allocation,

effectively improving the hardware occupancy and utilization.

Device-side dynamic dispatches. We provide a more efficient and

agile replacement to virtual functions and tagged pointers [Pharr

et al. 2016] when device-side dynamically polymorphic calls are in-

evitable, by utilizing the meta-programming ability to dynamically

generate tagged dispatches in the shader ASTs at runtime. In this

case, we offer a helper template class named Polymorphic, which,

as shown in Listing 11, automatically assigns tags to each subtype

implementation or object instance and constructs the tagged dis-

patch logic on demand by generating switch statements in the AST,

through loop unrolling (Sec. 4.3).

Compared to function pointers and virtual functions, this ap-

proach does not require high-level object-oriented or functional

features in the shading languages and is generally more efficient

without the overhead of indirect function calls. Meanwhile, the

ACM Trans. Graph., Vol. 41, No. 6, Article 232. Publication date: December 2022.

232:10 • Shaokun Zheng, Zhiqian Zhou, Xin Chen, Difei Yan, Chuyan Zhang, Yuefeng Geng, Yan Gu, and Kun Xu

method is more flexible than tagged pointers, in that it constructs

the dispatch logic at runtime without the need to know all subtypes

statically. More importantly, it allows generating code only for used

subtypes, which potentially reduces code size and register usage,

providing better performance.

4.5 Interactions with the Runtime
The DSL is closely tied to the runtime: device resources are easily

captured, tracked, and bound; resource usage information flows

through the runtime to the backends; DSL function interfaces are

transformed from kernels to compiled shaders, etc. Such interactions

between the DSL and the runtime make it possible to achieve great

performance while maintaining an extensible and easy-to-use API.

Resource capturing. While binding arguments by name or index for

resources is a common choice in most compute APIs, it is cumber-

some and error prone, and mistakes are reported only at runtime

or even unpredictably lead to undefined behaviors. In contrast, our

DSL allows users to use resources via capturing. Suppose we have

created a 2D image as follows, by capturing it in the lambda and

calling to its write() method, a kernel argument will be automati-

cally declared and bound to this device resource, without the need

to put it in the function signature.� �
1 auto image = device.create_image <float >(/* ... */);
2 Kernel2D fill = [&] {
3 auto coord = dispatch_id ().xy();
4 auto rg = make_float2(coord) /
5 make_float2(dispatch_size ().xy());
6 auto srgb = to_srgb(make_float3(rg, 1.f));
7 image.write(coord , make_float4(srgb , 1.f));
8 };� �
As will be demonstrated in Sec. 7, this recording-by-capturing fea-

ture is extremely useful, which provides applications with full free-

dom to hold distinct resources while maintaining the same inter-

faces, thus blurring the boundary between host and device code and

enabling extra patterns of polymorphism.

Interface transformation and shader dispatching from the host. Lever-

aging template meta-programming, the signature of a kernel (i.e.,

parameters with type Var<T>) is converted into a statically typed

shader interface. Any invocation through this interface will then

automatically type-check the resources and create a dispatch com-

mand recording the binding information.� �
1 Kernel2D kernel = [](Var <Image <float >>, Var <uint2 >) {
2 /* ... */
3 };� �

For example, suppose we have the kernel above, compiling it

yields a shader with an interface-transformed operator(). Invoca-

tions to this interface construct shader dispatch commands, which

are later engaged in command buffers, committed through the

stream, and executed by the backend device.� �
1 Kernel2D kernel = [](Var <Image <float >>, Var <uint2 >) {
2 /* ... */
3 };
4 auto shader = device.compile(kernel);
5 // Now shader has a transformed interface:
6 // Shader2D <Image <float >, uint2 >
7 // :: operator ()(ImageView <float >, uint2);
8

9 // invoke the transformed interface
10 auto cmd = shader(image , size). dispatch (512, 256);
11 // which expends to
12 // auto cmd = ShaderDispatchCommand :: create(
13 // shader.handle(), shader.function ());
14 // cmd ->encode_texture(image.handle(), image.level ());
15 // cmd ->encode_uniform (&size , sizeof(uint2));
16 // cmd ->set_dispatch_size (512, 256, 1);� �

The interface transformation feature is fully compatible with

the aforementioned resource capturing capability and handles the

captured resources in a consistent way — they are simply implicitly

bound items in the shader dispatch commands.

Usage tracking for resources. With full knowledge of the kernels and

their ASTs, we can analyze the usages (e.g., read-only, write-only,

and read-write) of any resources in the kernels, which are useful for

further optimizations. For example, if we found a buffer argument

is never written to in a kernel, then the buffer view bound to the

corresponding shader is marked read-only, hence the opportunity

to execute the shader dispatch command in concurrency with other

read-only commands. More details are discussed in Sec. 5.3.

5 UNIFIED RUNTIME LAYER
To make our system cross-platform, we introduce a unified run-

time layer that defines the common abstract interfaces for different

backends and provide convenient wrappers for users. One major

functionality of the layer is the management of resources, which
provides interfaces and wrappers to create, destroy, organize, and

access data for computation. Another important part is to support

the description, submission, and scheduling of commands, such as

transferring data between the device and the host, or invoking ker-

nels written in our DSL. Besides, the runtime layer also performs

common optimizations based on runtime information.

5.1 Abstract Device Interfaces
Analogous to RHIs in game engines, the abstract device interfaces

in LuisaRender are a set of thin routines that extract common

concepts and patterns across different backends, so that logic built

upon them is liberated from platform-dependent details.

Our interface class is shown in Listing 12. It declares virtual

methods to communicate with the backends, including creating, de-

stroying and manipulating device resources, dispatching commands

(such as invoking kernel computation), and methods for synchro-

nization. New backends can be easily added and dynamically loaded

as plugins, as long as they inherit from this class and implement

its virtual methods. For flexibility in the backend implementations,

we use handles, each as a 64-bit unsigned integer, to represent the

device resources and stream management components.

5.2 Resources and Their Wrappers
Device Resources. As we have mentioned, one of the major parts of

the runtime layer is resource management. We categorize device

resources into the following classes (some illustrated in Fig. 2):

• Buffers, which are linear memory ranges on the device for

structured data storage;

ACM Trans. Graph., Vol. 41, No. 6, Article 232. Publication date: December 2022.

LuisaRender: A High-Performance Rendering Framework • 232:11� �
1 class Interface {
2 public:
3 // methods for creating , destroying , and managing
4 // resources , including buffers , textures , meshes ,
5 // shaders , bindless resource arrays , acceleration
6 // structures , streams , and synchronization events.
7 virtual u64 create_buffer(size_t size) = 0;
8 virtual void destroy_buffer(u64 handle) = 0;
9 /* ... */
10

11 // methods for dispatching commands and shaders
12 virtual void dispatch(u64 stream , CommandList) = 0;
13 virtual void dispatch(u64 stream , Callback) = 0;
14

15 // methods for synchronization
16 virtual void synchronize_stream(u64 handle) = 0;
17 virtual void signal_event(u64 event , u64 stream) = 0;
18 virtual void wait_event(u64 event , u64 stream) = 0;
19 virtual void synchronize_event(u64 handle) = 0;
20

21 // miscellaneous methods , e.g., feature query
22 /* ... */
23 };� �

Listing 12. The abstract device interface class.

Meshes Bindless
Arrays

BuffersAcceleration
Structures

1

2

3

4

Textures

Fig. 2. Various hardware resources, including accelaration structures for ray-
mesh intersection tests, buffers for storing structured data, 2D/3D textures
for sampling and bindless arrays as indices of buffers and textures.

• Textures, which are 2D images or 3D volumes of scalars or

vectors, typically with optimized layouts and dedicated hard-

ware for caching, sampling, and format conversion;

• Bindless arrays, which provide slots for references to buffers

and textures, helpful for reducing the overhead and bypassing

the limitations of binding shader parameters;

• Meshes and acceleration structures for high-performance ray

intersection tests, with hardware-accelerated if available (e.g.,

on graphics cards that feature RT-Cores);

• Shaders, i.e., kernels that are compiled into pipeline state

objects for general-purpose computation on device; and

• Streams and events for command submission and intra- or

inter-stream synchronization.

They are common concepts supported by modern graphics and com-

puting APIs, though usually referred to by different terminologies.

Readers might notice that these concepts are often absent from

other research work, and doubt the necessity of this “complication”

instead of using a single, seemingly more elegant abstraction, e.g.,

fields in Taichi [Hu et al. 2019] and arrays in Enoki [Jakob 2019]

and Dr.JIT [Jakob et al. 2022a]. However, the various workloads

in an intricate rendering system often benefit from optimized data

layouts and specialized hardware units, such as the texture units

� �
1 template <typename T>
2 class Buffer final : public Resource {
3 /* ... */
4 public:
5 // for DSL usage
6 template <typename I>
7 auto read(I &&i) const noexcept {
8 return Expr{*this}.read(std::forward <I>(i));
9 }
10 // for convenient command generation
11 auto copy_from(BufferView <T> src) const {
12 /* some lines of bounds checking */
13 return BufferCopyCommand :: create(
14 src.handle(), src.offset_bytes (),
15 handle(), 0u /* dst_offset */, size_bytes ());
16 }
17 /* other methods */
18 };� �

Listing 13. The wrapper for buffers and their views.

for efficient image sampling and hardware-accelerated BVHs and

ray intersection units for fast ray tracing. Therefore, targeting high

performance, we decide to leave the freedom of choice to our users.

We believe the clear semantics of the resources will ease, not harden,

the development of graphics applications.

Resource Wrappers. The abstract device interface (Listing 12) pro-

vides a unified layer for low-level backend functionalities. To hide

excessive details from users, we implement wrapper classes for the

aforementioned resources on top of this layer. They conform to the

resource-acquisition-is-initialization (RAII) idiom in C++ to simplify

the lifetime and ownership management, with member methods for

resource usage and management in the DSL and host code.

For example, in Listing 13, the Buffer template class supplies a

readmethod, invocations of which are forwarded to the DSL and the

function builder, and they automatically register argument bindings

as well as typed BUFFER_READ instructions in the AST, with a DSL

variable representing the result returned (see Sec. 4 for details on

how this works). Calling the wrapper’s copy_from method with an-

other buffer creates a BufferCopy command that can be later inserted

in a stream and submitted to the backend device.

5.3 Command Encoding and Submission
Command-based model. Conceptually, commands are description
units of atomic computation tasks, such as transferring data be-

tween the device and host, or from one resource to another; building

meshes and acceleration structures; populating or updating bindless

arrays; and most importantly, launching shaders. Commands are or-

ganized into command buffers and then submitted to streams which
are essentially queues forwarding commands to the backend devices

in a logically first-in-first-out (FIFO) manner. Since multiple streams

run concurrently, users may require synchronizations between them

or with respect to the host via events, similar to condition variables

that ensure ordering across threads.

With explicit command buffers and fully asynchronous submis-

sion, this command-based model clarifies the execution boundaries

between tasks and brings optimization opportunities to scheduling,

well matching our design principle of performance.

ACM Trans. Graph., Vol. 41, No. 6, Article 232. Publication date: December 2022.

232:12 • Shaokun Zheng, Zhiqian Zhou, Xin Chen, Difei Yan, Chuyan Zhang, Yuefeng Geng, Yan Gu, and Kun Xu� �
1 /* example usages of streams and command buffers */
2 auto command_buffer = stream.command_buffer ();
3 command_buffer
4 << raytrace_shader(framebuffer , accel , resolution)
5 .dispatch(resolution)
6 << accumulate_shader(accum_image , framebuffer)
7 .dispatch(resolution)
8 << hdr2ldr_shader(accum_image , ldr_image)
9 .dispatch(resolution)
10 << ldr_image.copy_to(host_image.data ())
11 << commit ();� �

Listing 14. A use case of command buffers in a simple path tracer.

1) Original Task Queue

2) Dependency Graph 3) Re-scheduled Task Queue

Task 2 Task 3

W
rite Write W

ri
te

Rea
d Re

ad

Task 1 Task 3

Depend Task 1

Task 3

Task 2

Task 4

Task 1 Task 4

Task 4Depend

Resource 2 Resource 1

Task 2

Fig. 3. Dependencies between commands are detected using resource track-
ing. Although task 1 and task 3 seemingly occupy the same resource, they
are independent because they use non-overlapping regions of the resource.
Commands are then re-scheduled into sub-lists to exploit concurrency.

Command buffer and stream. Command buffers are designed for

low-overhead asynchronous command submission, likewise modern

graphics APIs. Users can encode and stage commands in a list and

submit them to the stream at once, which reduces the frequencies

of state preparation and switching. Command buffers are created

from streams and have an overloaded operator<< for a clean syntax

to append commands and a commit method for submitting gathered

commands to their creator streams. Listing 14 shows a use case of

rendering and downloading a frame in a mega-kernel path tracer.

Togther with the command creation methods in resource wrappers,

the overloaded operator<< makes the process succinct.

The stream submits the command list to the backend through

the interface defined in Listing 12. The backend then fetches the

serialized commands from the list, deserializes and translates them

into native commands and API calls, and eventually hands them

over to the compute devices for execution. The seemingly redundant

serialization and deserialization processes play important roles in

abstracting away the disparities across backends. Besides, since the

commands in a stream are asynchronously executed to the host and

multiple streams run in parallel to each other, we provide events for

stream-to-stream and stream-to-host synchronizations.

Resource tracking and command scheduling. The usage of command

buffers, together with streams, eliminates the overhead of state

bookkeeping and frequent API calls, allows parallel command en-

coding, and enables a fully asynchronous execution model. Also,

since we define streams as FIFO queues to submit computation

tasks in our system, command buffers act as the role of execution

boundaries and barriers. We can safely reorder commands within a

command buffer as long as the dependencies between commands

are preserved, achieving higher hardware utilization.

By exploiting the closed-world knowledge of the resource usage

in kernels and commands, we design a algorithm to automatically

perform the scheduling, without the distracting manual dependency

marking or barrier placement as commonly requested by modern

graphics APIs. The algorithm is efficient and capable to process

thousands of commands in a millisecond. For example, on M1 Max,

it schedules 1045 commands submitted at once inside a single com-

mand buffer in 0.86ms for the wavefront path integrator.

Moreover, the tracking is performed at the sub-resource level, so

that false-positive dependencies, such as writes to non-overlapping

ranges within the same buffer, are effectively culled, thus offering a

broader space for the discovery of possibly higher concurrency. An

illustration is given in Fig. 3.

6 BACKEND IMPLEMENTATION DETAILS
While we extract the common concepts for computing devices and

encapsulate them in a unified runtime layer, there is still a lot of spe-

cial care and effort to pay when implementing the abstract interfaces

atop different low-level backend APIs.

Currently, we have implemented 5 backends based on CUDA,

Metal, DirectX, ISPC (with vectorization on CPUs), and LLVM (scalar

CPU), respectively. In this section, we will explain several technical

details of the backend implementations.

6.1 Native API Adaptation
To correctly and effectively implement the runtime interfaces, we

have to wrap the native APIs, manage the resources, ensure data

layouts, respect the execution order, etc. For example, in the CUDA

backend, ray tracing shaders are taken over and spawned by OptiX

rather than native CUDA. Therefore, we implement a mechanism to

automatically detect ray tracing calls in the shader, which, if found,

triggers the different code path for code generation and compilation,

pipeline and shader binding table construction, parameter buffer

preparation, and kernel launching. For the DirectX backend, we need

to wrap the pipeline-based low-level API into the more semantic,

stateless task-based interfaces and implement resource trackers and

barriers, while simultaneously maintaining an decent performance.

Listing 15 gives the translation process of the buffer-to-texture

copying command in LuisaRender to the native CUDA driver API.

For more complicated commands (such as acceleration structure con-

struction and kernel launching) on lower-level APIs (e.g., DirectX),

the elimination of boilerplate code appears even more significant.

6.2 Code Generation
For the CUDA, Metal, DirectX, and ISPC backends, code generation

is performed in a source-to-source fashion, i.e., from the DSL to the

platform-specific native shading languages. For LLVM, we leverage

its built-in IRBuilder to construct the in-memory IR modules.

The usage of ASTs helps preserve kernel structures and semantics,

simplifying the translation process. Still, we have to work around

ACM Trans. Graph., Vol. 41, No. 6, Article 232. Publication date: December 2022.

LuisaRender: A High-Performance Rendering Framework • 232:13� �
1 // with LuisaRender
2 stream << texture.copy_from(buffer);
3

4 // with native CUDA
5 CUDA_MEMCPY3D copy {};
6 copy.srcMemoryType = CU_MEMORYTYPE_DEVICE;
7 copy.srcDevice = /* buffer address */;
8 copy.srcPitch = /* texture pitch (in bytes) */;
9 copy.srcHeight = /* texture height (in texels) */;
10 copy.dstMemoryType = CU_MEMORYTYPE_ARRAY;
11 copy.dstArray = /* texture handle */;
12 copy.WidthInBytes = /* texture pitch (in bytes) */;
13 copy.Height = /* texture height (in texels) */;
14 copy.Depth = /* texture depth (in texels) */;
15 cuMemcpy3DAsync (© , /* stream handle */);� �
Listing 15. Translation of the buffer-to-texture copying command in Luis-
aRender to the native CUDA driver API.

defects and complement missing functionalities in the backend

shading languages and compilers. For example, the ISPC compiler

does not allow visiting structure members of rvalues, so we detect

and have special handling for such cases by transforming them into

built-in function calls. ISPC is also sensitive to variables defined in

outer scopes but used in branches because it has to generate SIMD

masks for their loads and stores. Therefore, we analyze and tweak

the definition site of each local variable, narrowing its lifetime scopes

and decreasing the number of necessary masks, which brings up

to 100× faster compilation and 5× runtime performance boost (e.g.,

on M1 Max with the mega-kernel path integrator, this optimization

reduces the compilation time from 2152.3s to 23.9s for the Coffee
scene and the 1024spp rendering time decreases from 2627.2s to

493.6s at the resolution of 1200 × 1800).

Data layouts are another important aspect to pay attention to.

We allow users to specify the alignments of structures, which is

easily realizable in Metal and CUDAwith the built-in support for the

alignas specifier. However, such language constructs are missing

in HLSL and ISPC, so we have to manually pad the structures to

achieve a conforming layout. Moreover, the intricate constant buffer

packing rules in DirectX requires correct transformation of the input

host data. We bypass these rules by using argument buffers.

6.3 Shader Compilation
The generated shader sources are JIT compiled, typically via in-

memory compilation interfaces (e.g., LLVMMCJIT, NVRTC, and the

DirectX Shader Compiler) to elide disk I/O. We ensure a thread-safe

design to allow accelerated parallel compilation with multithread-

ing. Also, by employing memory and disk caches, redundant code

generation and compilation for identical kernels are eliminated,

further reducing the runtime overhead.

7 APPLICATIONS AND EXTENSIONS

7.1 Physically-Based Offline Renderer
To better understand and demonstrate the practicality of LuisaRen-

der, we build a high-performance cross-platform physically-based

offline renderer atop, utilizing almost all the available features, con-

structs, and patterns provided by the framework.

Architecture Design. The high-level interfaces of the renderer are

expressed as a node system, where the scenes are organized as

graphs with component nodes, such as cameras, shapes, and ma-

terials, each tracking reference to child nodes as well as necessary

parameters and resource descriptors (e.g., paths to textures). To

maximize the extensibility of the renderer, all the components are

implemented as decoupled, dynamically loaded plug-ins, so that

users can freely add new functionalities to the renderer without

modifying and rebuilding the entire application.

After loading the scene, a build process instantiates the scene

graph into a data-oriented pipeline on a specified backend device.

With the embedded DSL enabling the powerful multiple-stage pro-

gramming capability (discussed in Sec. 4.2), the scene components,

each responsible for amodular functionality in the renderer, are actu-

ally playing the roles of AST builders, expanding the corresponding

logic. The system fuses the nodes into flattened rendering kernels,

while automatically tracking resources in use and scheduling an

optimized execution order.

In other words, we provide a flexible and easy-to-use interface

and clean implementation comparable to research- and education-

oriented CPU renderers that heavily exploit dynamism and polymor-

phism, while achieving much better performance across platforms.

Sec. 8 gives the comparison with several popular open-source re-

search and production renderers.

Differentiable Rendering. Beyond the conventional forward render-

ing workloads, inverse rendering, typically via physically based

differentiable rendering techniques, is arousing more and more

attention and interest both in academia and industry nowadays.

Therefore, we also equip our renderer with two differential light

transport algorithms, namely Radiative Backpropagation [Nimier-

David et al. 2020] and Path Replay Backpropagation [Vicini et al.

2021], both implemented as integrator plug-ins. We showcase an

inverse rendering example in Sec. 8.2.2.

7.2 Python Frontend
The layered architecture of our system well decouples different lev-

els of abstraction and thus enables extending and replacing specific

layers while reusing the others. We provide a Python frontend for

fast prototyping, which binds to the same runtime, AST, and back-

end layers as the C++ frontend but replaces the embedded DSL and

resource wrappers with a re-implementation in pure Python.

Being a dynamic language, Python allows us to inspect the user

source code and parse it into ASTs. Therefore, different from the

tracing strategy in C++, we directly obtain and traverse the ASTs

of Python functions and classes, and translate them into the in-

ternal AST representations in LuisaRender through the exported

FunctionBuilder. Resource wrappers, as well as other high-level

logic and user-side interfaces, are also implemented within Python

in a “Pythonic” way, whose functionalities are eventually converted

to lower-level API calls forwarded to the core system in C++.

The Python frontend achieves a similar performance to the native

C++ implementation on dense, compute-heavy workloads, outper-

forming existing frameworks such as Taichi [Hu et al. 2019]. Mean-

while, it provides richer constructs necessary in rendering than

existing frameworks, such as textures and acceleration structures,

ACM Trans. Graph., Vol. 41, No. 6, Article 232. Publication date: December 2022.

232:14 • Shaokun Zheng, Zhiqian Zhou, Xin Chen, Difei Yan, Chuyan Zhang, Yuefeng Geng, Yan Gu, and Kun Xu� �
1 import luisa
2 from luisa.mathtypes import *
3 from cv2 import imwrite
4

5 n = 2048
6 luisa.init()
7 image = luisa.Texture2D.zeros ((2 * n, n), 4, float)
8

9 @luisa.func # makes LuisaRender handle the function
10 def draw(max_iter):
11 p = dispatch_id ().xy
12 z, c = float2 (0), 2 * p / n - float2(2, 1)
13 for itr in range(max_iter):
14 z = float2(z.x**2 - z.y**2, 2 * z.x * z.y) + c
15 if length(z) > 20:
16 break
17 image.write(p, float4(float3 (1 - itr/max_iter), 1))
18

19 draw(50, dispatch_size =(2*n, n)) # parallelize
20 imwrite("mandelbrot.exr", image.numpy ())� �

Listing 16. Example user code with the Python frontend.

Fig. 4. Some of the test scenes: Glass of Water , Spaceship, Coffee, Staircase,
and Dining Room. See also Fig. 1 for two other test scenes, Classroom and
Dining Room. All scenes are from Rendering Resources [Bitterli 2016].

upon which rapid development of graphics applications, such as

simple path tracers and shader toys, are made easy and convenient

without loss of performance, as demonstrated in Sec. 8. An example

program with the Python frontend is shown in Listing 16.

(a) Ours (b) Mitsuba 3

Fig. 5. Rendering comparison between (a) our renderer and (b) Mitsuba 3.
Both applications use the spectral mode and render the Spaceship scene
with 16 bounces and 16384spp at 1080p. The renderings are visually identical
with minor numeric difference (1-SSIM: 0.01148).

8 EXPERIMENTS
In this section, we conduct several experiments to measure and

analyze the performance of LuisaRender, as well as comparing it

with other state-of-the-art graphics systems.

8.1 Test Scenes and Platforms
We adapt 7 test scenes from the Rendering Resources website [Bitterli
2016]: Coffee, Glass of Water , Classroom, Staircase, Spaceship, Living
Room, and Dining Room. Fig. 4 shows a snapshot of the test scenes.

The experiments are conducted on multiple platforms. Tested

CPUs include Intel i9-9900K (8-core 16-thread) and Apple M1 Max

(with 8 performance cores and 2 efficiency cores). Tested GPUs

include NVIDIA RTX-2080Ti (11GB), RTX-3080Ti (12GB), and Apple

M1 Max (32-core). The PCs feature 32GB memory and the Mac has

64GB unified memory shared across the CPU and GPU.

8.2 Comparisons
8.2.1 Comparison with other renderers. To showcase the perfor-

mance of our framework, we compare the rendering time of the test

scenes using our renderer and existing open-source renderers in-

cluding PBRT-v4 [Pharr et al. 2016], Mitsuba 3 [Jakob et al. 2022b],

Falcor [Kallweit et al. 2017] and Ignis [Ignis 2022]. Note that Ignis

is a follow-up renderer based on the Rodent framework [Pérard-

Gayot et al. 2019], with shorter compilation time, better performance

and more supported scenes. Besides the research renderers, we also

compare our renderer with Cycles, which is a GPU-enabled pro-

duction renderer from the Blender [Blender Online Community

2022] project. We run all the tests on Windows 11, except for Ignis

on Linux (Manjaro distribution with kernel version 5.15) which we

fail to make work on Windows.

All scenes are rendered at 1080p, except Coffee at 1200 × 1080.

We tune the scenes and renderer options to ensure a fair compari-

son. Fig. 5 compares the Spaceship renderings of our renderer and

Mitsuba 3. The visual appearances are almost identical, despite the

minor numeric difference due to the implementation discrepancies

between renderers, e.g., in the material and shading systems.

The results of 8-bounce renderings are displayed in Fig. 6, con-

figurations including all combinations of mega-kernel/wavefront

(solid/striped bars), RGB/spectral, and CPU/GPU. Note that our ren-

derer supports all the configurations, while other renderers may

ACM Trans. Graph., Vol. 41, No. 6, Article 232. Publication date: December 2022.

LuisaRender: A High-Performance Rendering Framework • 232:15

not support certain ones. We also experiment with 16-bounce ren-

derings and the trends appear similar. We refer the audience to the

supplemental material for more details.

On GPUs, we run our renderer on two backends, CUDA and

DirectX, and our renderer significantly outperforming PBRT-v4,

Mitsuba 3, and Ignis in all scene configurations on both backends.

Falcor runs faster than other renderers but is still slower than

our DirectX mega-kernel counterpart. On CPUs, our renderer is

much faster than PBRT-v4 but slower than Mitsuba 3 in most cases.

We conclude that the array model used in Mitsuba 3 fits well for

vectorized computation on CPUs where the SIMDwidth is relatively

small (typically 4 or 8).

The runtime comparisons show that our framework is able to

generate highly optimized programs at the scale of intricate offline

rendering tasks. We also analyze the results on different platforms

and backends, and between the mega-kernel version and the wave-

front version. Please refer to Sec. 8.3.

8.2.2 Comparison on differentiable rendering. Radiative Backpropa-
gation [Nimier-David et al. 2020] (RB) is a differential light trans-

port algorithm for material optimization. Path Replay Backpropa-
gation [Vicini et al. 2021] (PRB) further improves RB to compute

unbiased gradients of material parameters. We implement both algo-

rithms (without support for volumes and perfect specular surfaces)

in our renderer as integrator plug-ins. In Fig. 7, we compare the

performance of our PRB implementation with the one in Mitsuba 3.

Our implementation is about 4× faster, both in the forward and

backward rendering processes.

8.2.3 Comparison with Taichi. Taichi [Hu et al. 2019] is a graphics-

oriented DSL embedded in Python. We port two example applica-

tions fromTaichi to our framework:MPM 3D, which simulates fluids

with the material point method in dense grids; and SDF Renderer,
which path-traces a signed distance field. As shown in Fig. 8, we

compare the performance of the examples on Taichi, our C++ DSL,

our Python DSL, and native CUDA. All Taichi’s and our programs

are tested on the CUDA backend on RTX-3080Ti. Our framework

consistently outperforms Taichi in supporting these applications

of dense computation, achieving a closer frame time to the native

CUDA implementations. The results indicate that our system is able

to generate CUDA code with a comparable quality to the hand-tuned

ones. Also, we notice that when the dispatch sizes are small (e.g.,

64
3
grids inMPM 3D), the overhead of our Python frontend is larger,

but still smaller than that of Taichi.

8.3 Analysis
8.3.1 Backends and devices. We implement multiple backends in

LuisaRender to support various hardware/OS platforms. Fig. 9

compares the rendering time on different backends and platforms.

On PCs with NVIDIA graphics cards where CUDA and DirectX

are available, we found that the DirectX backend runs consistently

faster than CUDA. This is probably because DirectX is a lower-

level API featuring inline ray tracing, thus having less overhead. On
Macs, the Metal backend is available for GPUs. However, without

dedicated ray-tracing hardware units, the M1 Max GPU is much

slower than the RTX ones, which also reflects the necessity of the

built-in support for acceleration structures in our framework.

8.3.2 Mega-kernel vs. wavefront. Wavefront path tracing [Laine et al.
2013] separates the computation stages (e.g. ray generation, inter-

section, next-event estimation, and shading) into multiple kernels,

as opposed to mega-kernels, where a monolithic kernel handles a

full path tracing loop per thread. The major advantage of wave-

front path tracing is the improved thread coherence, since threads

are at the same computation stage, but at the cost of increased

global memory I/O and kernel launches. As a result (Fig. 9), we see

wavefront path tracing achieving twice the performance compared

to mega-kernels on the M1 Max GPU, which is more sensitive to

thread divergence. However, small or negative improvements are

observed on the newer hardware RTX-3080Ti, possibly due to the

2nd-generation RT-cores with optimized hardware scheduling and

the ability of concurrent shading and tracing.

Notably, the wavefront model appears more profitable in the

spectral rendering cases, where the computation requires more

registers and is more likely to cause register spilling in mega-kernels.

By contrast, the wavefront implementation splits the rendering

process into smaller kernels and thus alleviates the register pressure.

8.3.3 De-virtualization. In this experiment we showcase the per-

formance benefit of de-virtualization as mentioned in Sec. 4.4, one

of the most important optimizations enabled by our system. De-

virtualizing polymorphic function calls drastically reduces branches

and register pressure caused by dynamic dispatching. As shown in

Fig. 10, this optimization reduces rendering time by up to 39%.

8.3.4 Command scheduling. As discussed in Sec. 5.3, our frame-

work can automatically schedule commands within a command

buffer based on the resource usage information in kernels and com-

mands. The algorithm re-groups non-dependent commands into

sub-lists and submits them to the device at once, which potentially

reduces resource barriers and state changes and improves hardware

utilization. In Fig. 11, we compare the rendering time with and

without (i.e., fencing each command into individual lists) automatic

command reordering. The results show that command scheduling

reduces rendering time by up to 19%.

8.3.5 Preparation time. Our renderer has to go through a few prepa-

ration steps before rendering a scene, which mainly include

(1) Scene loading, where scene files are parsed and required plug-

ins (e.g., shapes, cameras, and integrators) are loaded;

(2) Pipeline creation that creates devices resources (e.g., buffers,

textures, and meshes) and uploads data to them;

(3) Shader compilation that generates backend-specific shader

code from kernel ASTs and compiles it to executable shaders

that are also optionally cached for future use; and on

(4) Shader cache hit, i.e., when compilation cache is found for a

shader, we can skip the compilation step.

We measure and list the detailed time of each step in Table 1 for

the Coffee scene. When cache is not available, shader compilation

takes up most of the time. Compilation on CUDA, DirectX, and

LLVM is decently fast. The ISPC backend is much slower at compil-

ing shaders but the time is significantly reduced with cache. Aside

ACM Trans. Graph., Vol. 41, No. 6, Article 232. Publication date: December 2022.

232:16 • Shaokun Zheng, Zhiqian Zhou, Xin Chen, Difei Yan, Chuyan Zhang, Yuefeng Geng, Yan Gu, and Kun Xu

GPU (RTX-3080Ti) / RGB
0

10

20

30

C
of

fe
e

1.9× 2.5×
1.0× 1.8×

11.5×

2.5×

10.4×

15.5×

LuisaRender (CUDA Mega-kernel)

LuisaRender (CUDA Wavefront)

LuisaRender (DirectX Mega-kernel)

LuisaRender (DirectX Wavefront)

Mitsuba 3 (CUDA Mega-kernel)

PBRT-v4 (CUDA Wavefront)

Falcor (DirectX Mega-kernel)

Ignis (CUDA Mega-kernel)

Cycles (CUDA Wavefront)

GPU (RTX-3080Ti) / Spectral
0

10

20

30

1.2× 1.3× 1.1× 1.0×

4.1×

(47.6)
8.8×

CPU (i9-9900K) / RGB
0

1000

2000

3000

1.8× 2.3× 2.0×
3.4×

1.0×
3.7×

LuisaRender (ISPC Mega-kernel)

LuisaRender (ISPC Wavefront)

LuisaRender (LLVM Mega-kernel)

LuisaRender (LLVM Wavefront)

Mitsuba 3 (LLVM Mega-kernel)

PBRT-v4 (CPU Mega-kernel)

PBRT-v4 (CPU Wavefront)

Cycles (CPU Mega-kernel)

CPU (i9-9900K) / Spectral
0

1000

2000

3000

8.1× 7.1×

1.9× 2.9×
1.0×

16.4×
18.2×

GPU (RTX-3080Ti) / RGB
0

10

20

30

G
la

ss
 o

f W
at

er

1.9×
3.6×

1.0× 1.7×

9.8×

1.6×

7.9×

11.2×

GPU (RTX-3080Ti) / Spectral
0

10

20

30

1.5× 1.7×
1.2× 1.0×

4.2×
(38.9)
6.9×

CPU (i9-9900K) / RGB
0

1000

2000

3000

1.5× 2.2× 2.0× 2.9×
1.0×

2.8×

CPU (i9-9900K) / Spectral
0

1000

2000

3000

5.0× 4.7×

1.6× 2.4×
1.0×

10.6×

13.7×

GPU (RTX-3080Ti) / RGB
0

10

20

30

C
la

ss
ro

om

1.9× 1.9×
1.0×

1.7×

(55.9)
16.0×

1.7×

(46.8)
13.4×

(77.0)
22.0×

GPU (RTX-3080Ti) / Spectral
0

10

20

30

1.7×

1.1× 1.0× 1.0×

(65.2)
7.2×

(54.4)
6.0×

CPU (i9-9900K) / RGB
0

1000

2000

3000

1.8× 1.8× 1.7× 2.1×
1.0×

3.5×

CPU (i9-9900K) / Spectral
0

1000

2000

30007.2×

5.2×

1.5× 1.9×
1.0×

(3391)
8.3×

(3919)
9.6×

GPU (RTX-3080Ti) / RGB
0

10

20

30

St
ai

rc
as

e

1.7× 2.0×
1.0×

1.6×

(59.0)
16.4×

1.9×

(62.9)
17.5×

(85.0)
23.6×

GPU (RTX-3080Ti) / Spectral
0

10

20

30

1.5× 1.6×
1.0×

1.4×

(70.1)
11.1×

(52.2)
8.3×

CPU (i9-9900K) / RGB
0

1000

2000

3000

2.0× 2.0× 2.4× 2.7×

1.0×

8.1×

CPU (i9-9900K) / Spectral
0

1000

2000

3000

4.9×
3.9×

2.0× 2.6×

1.0×

(4091)
12.9×

(4370)
13.7×

GPU (RTX-3080Ti) / RGB
0

10

20

30

Sp
ca

es
hi

p

1.9× 2.5×
1.0× 1.9×

10.3×

2.6×

9.5×

13.6×

GPU (RTX-3080Ti) / Spectral
0

10

20

30

1.4× 1.2× 1.2× 1.0×

4.1×

(38.3)
7.2×

CPU (i9-9900K) / RGB
0

1000

2000

3000

1.4× 2.2× 1.5× 2.5×
1.0×

3.4×

CPU (i9-9900K) / Spectral
0

1000

2000

3000

7.7× 7.2×

1.4× 2.2×
1.0×

8.1×
10.0×

GPU (RTX-3080Ti) / RGB
0

10

20

30

Li
vi

ng
 R

oo
m

2.1× 2.4×
1.0× 1.7×

(34.6)
15.7×

2.2×

13.4×
(65.9)
30.0×

GPU (RTX-3080Ti) / Spectral
0

10

20

30

1.7× 1.8×
1.0×

1.4×

(44.4)
9.9×

(41.7)
9.3×

CPU (i9-9900K) / RGB
0

1000

2000

3000

1.4× 1.7× 1.7× 2.2×
1.0×

6.1×

CPU (i9-9900K) / Spectral
0

1000

2000

3000

4.6× 4.0×

1.6× 2.1×
1.0×

9.2×
10.5×

GPU (RTX-3080Ti) / RGB
0

10

20

30

D
in

in
g

R
oo

m

1.8× 2.2×
1.0× 1.7×

13.1×

2.2×

10.9×

(43.9)
23.1×

GPU (RTX-3080Ti) / Spectral
0

10

20

30

1.2× 1.3× 1.0× 1.1×

6.2× (35.7)
7.0×

CPU (i9-9900K) / RGB
0

1000

2000

3000

1.3× 1.6× 1.5× 2.1×
1.0×

4.2×

CPU (i9-9900K) / Spectral
0

1000

2000

3000

6.4× 5.8×

1.4× 1.9×
1.0×

10.8×
12.1×

Fig. 6. Time (in seconds) to render 7 different scenes with different renderers in all combined integrator and spectrum configurations. Solid-colored and
striped bars refer to the mega-kernel and wavefront modes, respectively. All scenes are rendered on an i9-9900K (CPU) or RTX-3080Ti (GPU) with 8 bounces
and 1024spp. The Coffee scene is at 1200 × 1800 and other scenes are at 1080p. Results with 16 bounces are included in the supplemental material.

ACM Trans. Graph., Vol. 41, No. 6, Article 232. Publication date: December 2022.

LuisaRender: A High-Performance Rendering Framework • 232:17

Resolution: 720 × 1280

(a) Target (b) Initial (iter. #0)

512spp/iter.

(c) Optimizing (#iter. #3)

Ours: 0.59h
Mitsuba 3: 2.30h

(d) Final (iter. #199)

Mean: 3.5×10 6

(e) Error (L2)

Forward Backward
0

10

20

30

3.4

7.3

11.9

29.4

(f) Average iteration time (s)

Ours
Mitsuba 3

0 0.0005

Fig. 7. Average iteration time (in seconds, lower is better) to optimize the albedo textures of the wallpaper and the decorative paintings on the wall on CUDA
using an 𝐿2 objective function. The scene is rendered in RGB at 720 × 1280 pixels with 512spp per forward/backward pass. Both renderers use the CUDA
backends on RTX-2080Ti with the mega-kernel mode. The 𝐿2 error between the final image (d) after 199 iterations and the target image (a) is shown in (e).

MPM 3D 643 1283 1923 2563 grids
0.5

1.5

2.5

1.0 1.0 1.0 1.01.0
1.2 1.1 1.0

2.0
1.8

1.1 1.1

5.6 2.3

1.3
1.6

Native CUDA LuisaRender (C++) LuisaRender (Python) Taichi (Python)

SDF Renderer 4 16 64 256 spp/f
0.5

1.0

1.5

1.0 1.0 1.0 1.01.0 1.0 1.0 1.01.1 1.1 1.1 1.1

1.4
1.3 1.2 1.3

Fig. 8. Frame time of MPM 3D and SDF Renderer, relative to the native
CUDA implementations. Lower is better. MPM 3D simulates 256 iterations
with 25 steps per iteration. SDF Renderer runs at 1280×720 pixels. Both
programs run on RTX-3080Ti with display disabled.

0

10

20

30

40

R
G

B

6.0 7.2
3.6 5.7

13.5 12.0
8.6 10.3

239 94Mega-kernel

Wavefront

0

500

1000

1500

2000

549 565 661 747 744
957

715

1808

3080Ti
CUDA

3080Ti
DirectX

2080Ti
CUDA

2080Ti
DirectX

M1 Max
Metal

0

10

20

30

40

Sp
ec

tr
al

9.7 10.1
6.3 8.6

27.7

16.5 18.1
14.5

248 103

i9-9900K
ISPC

i9-9900K
LLVM

M1 Max
ISPC

M1 Max
LLVM

0

500

1000

1500

2000
1558

1245

645
824

1485
1322

717

1851

Fig. 9. Rendering time (in seconds) of Staircase on different platforms and
backends. The scene is rendered with 8 bounces and 1024spp at 1080× 1920.

these backends, Metal has a system-controlled compilation cache

and thus is not included in the table.

Dining Room Living Room Staircase Classroom
0

5

10

15

20

-39% -7%
-35% -11%

-16% -9%

-17%

-21%

Mega-kernel (w/o de-virt.)
Mega-kernel (w/ de-virt.)

Wavefront (w/o de-virt.)
Wavefront (w/ de-virt.)

Fig. 10. Rendering time (in seconds) on RTX-3080Ti with or without de-
virtualization. All scenes are spectrally rendered on CUDA with 8 bounces
and 1024spp at 1080p.

Dining Room Spaceship Glass of Water Classroom
0

2

4

6

-14%

-11%

-18%

-13%

-19%

-14% -16%

-15%
Mega-kernel (w/o reord.)
Mega-kernel (w/ reord.)

Wavefront (w/o reord.)
Wavefront (w/ reord.)

Fig. 11. Rendering time (in seconds) on RTX-3080Ti with or without auto-
matic command scheduling. All scenes are rendered in RGB on DirectX with
8 bounces and 1024spp at 1080p.

8.3.6 Scalability. To test the scalability of our renderer, we stress it

with varying numbers of objects, light sources, and unique material

instances, respectively. In each test, we fix other parameters except

the corresponding testees, and measure the compilation and render-

ing time. Specifically, in the light test, there are 400 objects assigned

20 materials, and we increase the number of lights from 20 to 1000

and assign 15 emissive surface profiles to them. In the material test,

there are 15 lights each with a unique profile and 400 objects to

which we increasingly assign 5 to 200 unique material instances.

In the object test, we fix the number of lights to 15, each with a

ACM Trans. Graph., Vol. 41, No. 6, Article 232. Publication date: December 2022.

232:18 • Shaokun Zheng, Zhiqian Zhou, Xin Chen, Difei Yan, Chuyan Zhang, Yuefeng Geng, Yan Gu, and Kun Xu

Table 1. Breakdown of preprocessing time (in seconds) of the Coffee scene,
using the mega-kernel path tracer in RGB. The timings are measured on a
Windows PC with i9-9900K and RTX-2080Ti. The AST construction time is
negligible (typically under or about a millisecond), thus not reported.

Backend

Scene

Loading

Pipeline

Creation

Shader

Compilation

Shader

Cache Hit

CUDA 0.26 0.08 2.57 (NVRTC) 0.014

DirectX 0.26 0.17 0.54 (DXC) —

ISPC 0.29 0.12 35.11 (ISPC) 0.09

LLVM 0.28 0.07 1.04 (MCJIT) 0.26

unique profile, and the number of material instances to 20. The

objects count from 100 to 1000, assigned the 20 material instances.

In all cases, a sphere mesh is used for objects. We arrange them in a

10 × 10 × 10 array by filling the 𝑥 , 𝑧, and 𝑦 axes in order.

The results are shown in Fig. 12, from which we have the follow-

ing interesting observations:

• The wavefront mode is more efficient than mega-kernel for

relatively large numbers of lights, materials, and objects, due

to the reduced thread divergence and register pressure;

• The compilation and rendering time is insensitive to the

numbers of lights with fixed numbers of objects, material

instances, and emissive surface profiles;

• The compilation time increases linearly with the number of

material instances that add dynamic branches to the pipeline,

while the rendering time grows steadily; and

• The rendering time has a relatively obvious growth with the

object counts, which possibly results from the deeper BVHs

and the longer paths before the rays exit the scene due to the

increased inter-reflections between objects.

9 CONCLUSION AND FUTURE WORK
In this paper, we present LuisaRender, a high-performance render-

ing framework for modern stream architectures, with the objective

to seek balance between unification, programmability, and perfor-

mance. The framework features an expressive DSL embedded in

modern C++ to ease kernel authoring, a unified runtime with user-

friendly resource wrappers to hide device-specific and low-level

details, and multiple backends on different devices and graphics

APIs. We also implement a cross-platform Monte Carlo renderer

on the framework. As demonstrated in the experiments, it achieves

significantly higher performance on modern graphics hardware

than state-of-the-art open-source renderers.

We plan to further improve the usability of our framework on

different platforms and use scenarios by supporting more backends

in the future. Example can be a Vulkan backend for even better

controllability and portability across multiple GPU platforms, or

a proxy backend for remote and/or distributed computation. As

gradient-based research prevailed in recent years, functionalities

of automatic differentiation may also be added to our framework,

to support the research and development of differentiable render-

ing systems and deep learning systems. Other optimizations and

improvements for domain-specific usages are also possible, e.g.,

1

2

3

4

C
om

pi
la

ti
on

Mega-kernel
Wavefront

5

10

15

20

1

2

3

4

100 400 700 1000

(a) #Lights

2

4

6

8

R
en

de
ri

ng

20 80 140 200

(b) #Materials

2

4

6

8

100 400 700 1000

(c) #Objects

2

4

6

8

Fig. 12. Compilation (top row, in seconds) and rendering time (bottom row,
in seconds) of the scalability tests. The timings are measured on RTX-3080Ti
with the DirectX backend. (a) Increasing light instances (20–1000), with
fixed numbers of 400 objects, 20 material instances, and 15 emissive surface
profiles. (b) Increasing unique material instances (5–200) assigned to a fixed
number of 400 objects, which are lit by 15 light instances each assigned a
unique emissive profile. (c) Increasing objects (20–1000), with fixed numbers
of 20 material instances and 15 lights each assigned a unique profile. We
render all cases in RGB with 8 bounces and 1024spp at 1024 × 1024.

support for sparse data structures in physical simulation. In addi-

tion, the Python frontend may be further exploited, to supply an

easy-to-use high-performance computing framework to a broader

audience other than rendering, potentially packing interoperability

with machine learning packages in Python (e.g., PyTorch [Paszke

et al. 2019]).

ACKNOWLEDGMENTS
We would like to thank all anonymous reviewers for their insightful

comments and valuable suggestions. This work is supported by the

National Natural Science Foundation of China (Project Number:

61932003). Yan Gu is supported by NSF CCF #2103483.

REFERENCES
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal

Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat

Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,

Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay

Vasudevan, Fernanda Viégas, Oriol Vinyals, PeteWarden,MartinWattenberg,Martin

Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine

Learning on Heterogeneous Systems. http://tensorflow.org/ Software available

from tensorflow.org.

Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaël

Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, and

Jonathan Ragan-Kelley. 2019. Learning to Optimize Halide with Tree Search and

Random Programs. ACM Trans. Graph. 38, 4, Article 121 (jul 2019), 12 pages. https:

//doi.org/10.1145/3306346.3322967

Luke Anderson, Andrew Adams, Karima Ma, Tzu-Mao Li, Tian Jin, and Jonathan Ragan-

Kelley. 2021. Efficient Automatic Scheduling of Imaging and Vision Pipelines for

the GPU. Proc. ACM Program. Lang. 5, OOPSLA, Article 109 (oct 2021), 28 pages.
https://doi.org/10.1145/3485486

Luke Anderson, Tzu-Mao Li, Jaakko Lehtinen, and Frédo Durand. 2017. Aether: An

Embedded Domain Specific Sampling Language for Monte Carlo Rendering. ACM
Trans. Graph. 36, 4, Article 99 (jul 2017), 16 pages. https://doi.org/10.1145/3072959.

3073704

Apple. 2021. Metal. https://developer.apple.com/metal/

ACM Trans. Graph., Vol. 41, No. 6, Article 232. Publication date: December 2022.

http://tensorflow.org/
https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1145/3485486
https://doi.org/10.1145/3072959.3073704
https://doi.org/10.1145/3072959.3073704
https://developer.apple.com/metal/

LuisaRender: A High-Performance Rendering Framework • 232:19

Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/

Blender Online Community. 2022. Blender - A 3D Modelling and Rendering Package.
Blender Foundation, Stichting Blender Foundation, Amsterdam. http://www.blender.

org

Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek. 2013. Terra:

A Multi-Stage Language for High-Performance Computing. SIGPLAN Not. 48, 6 (jun
2013), 105–116. https://doi.org/10.1145/2499370.2462166

Zachary DeVito, Michael Mara, Michael Zollhöfer, Gilbert Bernstein, Jonathan Ragan-

Kelley, Christian Theobalt, Pat Hanrahan, Matthew Fisher, and Matthias Niessner.

2017. Opt: A Domain Specific Language for Non-Linear Least Squares Optimization

in Graphics and Imaging. ACM Trans. Graph. 36, 5, Article 171 (oct 2017), 27 pages.
https://doi.org/10.1145/3132188

Steven Diamond and Stephen Boyd. 2016. CVXPY: A Python-Embedded Modeling

Language for Convex Optimization. J. Mach. Learn. Res. 17, 1 (jan 2016), 2909–2913.

Epic Games. 2019. Unreal Engine. https://www.unrealengine.com

Luca Fascione, Johannes Hanika, Mark Leone, Marc Droske, Jorge Schwarzhaupt, Tomáš

Davidovič, Andrea Weidlich, and Johannes Meng. 2018. Manuka: A Batch-Shading

Architecture for Spectral Path Tracing in Movie Production. ACM Trans. Graph. 37,
3, Article 31 (aug 2018), 18 pages. https://doi.org/10.1145/3182161

Roy Frostig, Matthew Johnson, and Chris Leary. 2018. Compiling machine learning

programs via high-level tracing. https://mlsys.org/Conferences/doc/2018/146.pdf

Yong He, Kayvon Fatahalian, and Tim Foley. 2018. Slang: Language Mechanisms for

Extensible Real-Time Shading Systems. ACM Trans. Graph. 37, 4, Article 141 (jul
2018), 13 pages. https://doi.org/10.1145/3197517.3201380

Yong He, Tim Foley, Teguh Hofstee, Haomin Long, and Kayvon Fatahalian. 2017. Shader

Components: Modular and High Performance Shader Development. ACM Trans.
Graph. 36, 4, Article 100 (jul 2017), 11 pages. https://doi.org/10.1145/3072959.3073648

Felix Heide, Steven Diamond, Matthias Nießner, Jonathan Ragan-Kelley, Wolfgang

Heidrich, and Gordon Wetzstein. 2016. ProxImaL: Efficient Image Optimization

Using Proximal Algorithms. ACM Trans. Graph. 35, 4, Article 84 (jul 2016), 15 pages.
https://doi.org/10.1145/2897824.2925875

Shi-Min Hu, Dun Liang, Guo-Ye Yang, Guo-Wei Yang, andWen-Yang Zhou. 2020b. Jittor:

a novel deep learning framework with meta-operators and unified graph execution.

Science China Information Sciences 63, 222103 (2020), 1–21.
YuanmingHu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley,

and Frédo Durand. 2020a. DiffTaichi: Differentiable Programming for Physical

Simulation. In Proceedings of ICLR 2020.
Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand.

2019. Taichi: A Language for High-Performance Computation on Spatially Sparse

Data Structures. ACM Trans. Graph. 38, 6, Article 201 (nov 2019), 16 pages. https:

//doi.org/10.1145/3355089.3356506

Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang

Dai, William T. Freeman, and Frédo Durand. 2021. QuanTaichi: A Compiler for

Quantized Simulations. ACM Trans. Graph. 40, 4, Article 182 (jul 2021), 16 pages.
https://doi.org/10.1145/3450626.3459671

Ignis. 2022. Ignis. https://github.com/PearCoding/Ignis

Wenzel Jakob. 2019. Enoki: structured vectorization and differentiation on modern

processor architectures. https://github.com/mitsuba-renderer/enoki.

Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-David, Delio Vicini,

Tizian Zeltner, Baptiste Nicolet, Miguel Crespo, Vincent Leroy, and Ziyi Zhang.

2022b. Mitsuba 3 renderer. https://mitsuba-renderer.org.

Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, and Delio Vicini. 2022a. DR.JIT:

A Just-in-Time Compiler for Differentiable Rendering. ACM Trans. Graph. 41, 4,
Article 124 (jul 2022), 19 pages. https://doi.org/10.1145/3528223.3530099

Simon Kallweit, Petrik Clarberg, Craig Kolb, Tom’aš Davidovič, Kai-Hwa Yao, Theresa

Foley, Yong He, Lifan Wu, Lucy Chen, Tomas Akenine-Möller, Chris Wyman, Cyril

Crassin, and Nir Benty. 2017. The Falcor Rendering Framework. https://github.

com/NVIDIAGameWorks/Falcor https://github.com/NVIDIAGameWorks/Falcor.

Samuli Laine, Tero Karras, and Timo Aila. 2013. Megakernels Considered Harm-

ful: Wavefront Path Tracing on GPUs. In Proceedings of the 5th High-Performance
Graphics Conference (Anaheim, California) (HPG ’13). Association for Computing

Machinery, New York, NY, USA, 137–143. https://doi.org/10.1145/2492045.2492060

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation. In Proceedings of the International Symposium
on Code Generation and Optimization: Feedback-Directed and Runtime Optimization
(Palo Alto, California) (CGO ’04). IEEE Computer Society, USA, 75.

Mark Lee, Brian Green, Feng Xie, and Eric Tabellion. 2017. Vectorized Production Path

Tracing. In Proceedings of High Performance Graphics (Los Angeles, California) (HPG
’17). Association for Computing Machinery, New York, NY, USA, Article 10, 11 pages.

https://doi.org/10.1145/3105762.3105768

Roland Leißa, Klaas Boesche, Sebastian Hack, Arsène Pérard-Gayot, Richard Membarth,

Philipp Slusallek, André Müller, and Bertil Schmidt. 2018. AnyDSL: A Partial

Evaluation Framework for Programming High-Performance Libraries. Proc. ACM
Program. Lang. 2, OOPSLA, Article 119 (oct 2018), 30 pages. https://doi.org/10.1145/

3276489

Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo Durand, and Jonathan Ragan-

Kelley. 2018. Differentiable Programming for Image Processing and Deep Learning

in Halide. ACM Trans. Graph. 37, 4, Article 139 (jul 2018), 13 pages. https://doi.org/

10.1145/3197517.3201383

William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard. 2003. Cg: A

System for Programming Graphics Hardware in a C-like Language. ACM Trans.
Graph. 22, 3 (jul 2003), 896–907. https://doi.org/10.1145/882262.882362

Michael D. McCool, Zheng Qin, and Tiberiu S. Popa. 2002. Shader Metaprogramming.

In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware (Saarbrucken, Germany) (HWWS ’02). Eurographics Association, Goslar,
DEU, 57–68.

Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and

Kayvon Fatahalian. 2016. Automatically Scheduling Halide Image Processing

Pipelines. ACM Trans. Graph. 35, 4, Article 83 (jul 2016), 11 pages. https:

//doi.org/10.1145/2897824.2925952

Merlin Nimier-David, Sébastien Speierer, Benoît Ruiz, andWenzel Jakob. 2020. Radiative

Backpropagation: An Adjoint Method for Lightning-Fast Differentiable Rendering.

ACM Trans. Graph. 39, 4, Article 146 (jul 2020), 15 pages. https://doi.org/10.1145/

3386569.3392406

Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2:

A Retargetable Forward and Inverse Renderer. ACM Trans. Graph. 38, 6, Article 203
(nov 2019), 17 pages. https://doi.org/10.1145/3355089.3356498

NVIDIA. 2022. NVIDIA Warp. https://developer.nvidia.com/warp-python

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-

tala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.

In Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,

8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-

performance-deep-learning-library.pdf

Arsène Pérard-Gayot, Richard Membarth, Roland Leißa, Sebastian Hack, and Philipp

Slusallek. 2019. Rodent: Generating Renderers without Writing a Generator. ACM
Trans. Graph. 38, 4, Article 40 (jul 2019), 12 pages. https://doi.org/10.1145/3306346.

3322955

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering:
From Theory to Implementation (3rd ed.). Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA. https://github.com/mmp/pbrt-v4

Matt Pharr and William R. Mark. 2012. Ispc: A SPMD compiler for high-performance

CPU programming. In 2012 Innovative Parallel Computing (InPar). 1–13. https:

//doi.org/10.1109/InPar.2012.6339601

Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amaras-

inghe, and Frédo Durand. 2012. Decoupling Algorithms from Schedules for Easy

Optimization of Image Processing Pipelines. ACM Trans. Graph. 31, 4, Article 32
(jul 2012), 12 pages. https://doi.org/10.1145/2185520.2185528

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,

and Saman Amarasinghe. 2013. Halide: A Language and Compiler for Optimizing

Parallelism, Locality, and Recomputation in Image Processing Pipelines. In Proceed-
ings of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Seattle, Washington, USA) (PLDI ’13). Association for Computing

Machinery, New York, NY, USA, 519–530. https://doi.org/10.1145/2491956.2462176

Kerry A. Seitz, Tim Foley, Serban D. Porumbescu, and John D. Owens. 2019. Staged

Metaprogramming for Shader SystemDevelopment. ACMTrans. Graph. 38, 6, Article
202 (nov 2019), 15 pages. https://doi.org/10.1145/3355089.3356554

Walid Taha. 2004. A Gentle Introduction to Multi-stage Programming. Springer Berlin
Heidelberg, Berlin, Heidelberg, 30–50. https://doi.org/10.1007/978-3-540-25935-0_3

Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2021. Path Replay Backpropagation:

Differentiating Light Paths Using Constant Memory and Linear Time. ACM Trans.
Graph. 40, 4, Article 108 (jul 2021), 14 pages. https://doi.org/10.1145/3450626.3459804

Fahad Zafar, Marc Olano, and Aaron Curtis. 2010. GPU Random Numbers via the Tiny

Encryption Algorithm (HPG ’10). Eurographics Association, Goslar, DEU, 133–141.

ACM Trans. Graph., Vol. 41, No. 6, Article 232. Publication date: December 2022.

https://benedikt-bitterli.me/resources/
http://www.blender.org
http://www.blender.org
https://doi.org/10.1145/2499370.2462166
https://doi.org/10.1145/3132188
https://www.unrealengine.com
https://doi.org/10.1145/3182161
https://mlsys.org/Conferences/doc/2018/146.pdf
https://doi.org/10.1145/3197517.3201380
https://doi.org/10.1145/3072959.3073648
https://doi.org/10.1145/2897824.2925875
https://doi.org/10.1145/3355089.3356506
https://doi.org/10.1145/3355089.3356506
https://doi.org/10.1145/3450626.3459671
https://github.com/PearCoding/Ignis
https://doi.org/10.1145/3528223.3530099
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://doi.org/10.1145/2492045.2492060
https://doi.org/10.1145/3105762.3105768
https://doi.org/10.1145/3276489
https://doi.org/10.1145/3276489
https://doi.org/10.1145/3197517.3201383
https://doi.org/10.1145/3197517.3201383
https://doi.org/10.1145/882262.882362
https://doi.org/10.1145/2897824.2925952
https://doi.org/10.1145/2897824.2925952
https://doi.org/10.1145/3386569.3392406
https://doi.org/10.1145/3386569.3392406
https://doi.org/10.1145/3355089.3356498
https://developer.nvidia.com/warp-python
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/3306346.3322955
https://doi.org/10.1145/3306346.3322955
https://github.com/mmp/pbrt-v4
https://doi.org/10.1109/InPar.2012.6339601
https://doi.org/10.1109/InPar.2012.6339601
https://doi.org/10.1145/2185520.2185528
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/3355089.3356554
https://doi.org/10.1007/978-3-540-25935-0_3
https://doi.org/10.1145/3450626.3459804

	Abstract
	1 Introduction
	2 Related Work
	3 System Design
	3.1 Principles
	3.2 Architecture Overview

	4 Embedded Domain-Specific Language
	4.1 Basic Components and Usages
	4.2 Syntax Tree Recording
	4.3 Advanced Features
	4.4 Dynamic Polymorphism
	4.5 Interactions with the Runtime

	5 Unified Runtime Layer
	5.1 Abstract Device Interfaces
	5.2 Resources and Their Wrappers
	5.3 Command Encoding and Submission

	6 Backend Implementation Details
	6.1 Native API Adaptation
	6.2 Code Generation
	6.3 Shader Compilation

	7 Applications and Extensions
	7.1 Physically-Based Offline Renderer
	7.2 Python Frontend

	8 Experiments
	8.1 Test Scenes and Platforms
	8.2 Comparisons
	8.3 Analysis

	9 Conclusion and Future Work
	Acknowledgments
	References

