Abstract
Computing biconnected components (BCC) of a graph is a fundamental graph problem. The canonical parallel BCC algorithm is the Tarjan-Vishkin algorithm, which has $O(n+m)$ optimal work and polylogarithmic span on a graph with n vertices and m edges. However, Tarjan-Vishkin is not widely used in practice. We believe the reason is the space-inefficiency (it uses $O(m)$ extra space). In practice, existing parallel implementations are based on breadth-first search (BFS). Since BFS has span proportional to the diameter of the graph, existing parallel BCC implementations suffer from poor performance on large-diameter graphs and can be slower than the sequential algorithm on many real-world graphs.

We propose the first parallel biconnectivity algorithm (FAST-BCC) that has optimal work, polylogarithmic span, and is space-efficient. Our algorithm creates a skeleton graph based on any spanning tree of the input graph. Then we use the connectivity information of the skeleton to compute the biconnectivity of the original input. We carefully analyze the correctness of our algorithm, which is highly non-trivial.

We implemented FAST-BCC and compared it with existing implementations, including GBBS, Slota and Madduri’s algorithm, and the sequential Hopcroft-Tarjan algorithm. We tested them on a 96-core machine on 27 graphs with varying edge distributions. FAST-BCC is the fastest on all graphs. On average (geometric means), FAST-BCC is $3.1\times$ faster than the best existing baseline on each graph.

CCS Concepts: • Theory of computation → Shared-memory algorithms; Graph algorithms analysis; Parallel algorithms.

Keywords: Parallel Algorithms, Graph Algorithms, Biconnectivity, Connectivity, Graph Analytics

1 Introduction
Graph biconnectivity is one of the most fundamental graph problems. Given an undirected graph $G = (V, E)$ with $n = |V|$ vertices and $m = |E|$ edges, a connected component (CC) is a maximal subset in V such that every two vertices in it are connected by a path. A biconnected component (BCC) (or blocks) is a maximal subset $C \subseteq V$ such that C is connected and remains connected after removing any vertex $v \in C$. In this paper, we use BCC (or CC) for both the biconnected (or connected) component in the graph and the problem of computing all BCCs (or CCs). BCC has extensive applications such as planarity testing [8, 24, 46], centrality computation [48, 59, 60], and network analysis [7, 56].

Sequentially, the Hopcroft-Tarjan algorithm [45] for BCC uses $O(n+m)$ work. However, this algorithm requires generating a spanning tree of G based on the depth-first search (DFS), which is considered hard to be parallelized [57]. Later, Tarjan and Vishkin proposed the canonical parallel BCC algorithm [65]. It uses an arbitrary spanning tree (AST) (a spanning tree with any possible shape) of the graph instead of the depth-first tree. Tarjan-Vishkin algorithm has $O(n+m)$ optimal work (number of operations) and polylogarithmic span (longest dependent operations), assuming an efficient parallel CC algorithm.

Although the Tarjan-Vishkin algorithm is theoretically considered “optimal” in work and span, significant challenges still remain in achieving a high-performance implementation in practice. The main issue in Tarjan-Vishkin is space-inefficiency. Tarjan-Vishkin generates an auxiliary graph $G' = (V', E')$ (which we refer to as the skeleton), where every edge $e \in E$ maps to a vertex in V'. Tarjan and Vishkin showed that computing CC on G' gives the BCC on G, and we refer to this step as the connectivity phase. This skeleton-connectivity framework is adopted in many later papers. Such algorithms first generate a skeleton using an auxiliary graph G' from G, and then finds the CCs on G' that reflect BCC information on the input graph G. Unfortunately, in Tarjan-Vishkin, generating the skeleton G' and computing CC on G' take $O(m)$ extra space, which greatly increases the memory usage and slows down the performance.

In practice, most existing parallel BCC implementations also follow the skeleton-connectivity framework but overcome the space issue by using other skeletons based on breadth-first search (BFS) trees [25, 26, 29, 31, 40, 64, 68]. These algorithms either use skeletons with $O(n)$ size [25, 26, 29, 40, 68] or maintain implicit skeletons with $O(n)$ auxiliary space [31, 64]. We say a BCC algorithm is space-efficient if it uses $O(n)$ auxiliary space (other than the input graph).

However, since computing BFS has span proportional to the graph, these BFS-based algorithms can be fast on small-diameter graphs (e.g., social and web graphs), but have poor performance on large-diameter graphs (e.g., k-nn and road
In this paper, we give the first space-efficient (O(n) auxiliary space) parallel biconnectedness algorithm that has efficient O(m + n) work and polylogarithmic span. Our skeleton G′ is based on an arbitrary spanning tree (AST). Unlike Tarjan-Vishkin, our G′ is a subgraph of G and can be maintained implicitly in O(n) auxiliary space. The key idea is to carefully identify some fence edges, which indicate the “boundaries” of the BCCs. At a high level, we categorize all graph edges into fence tree edges, plain (non-fence) tree edges, back edges, and cross edges. Our skeleton G′ contains the plain tree edges and cross edges. Using O(n) space, we efficiently determine the category of each edge in G. When processing the skeleton, we use the input graph G but skip the fence and back edges. We show that the BCC information of G can be constructed from the CC information of G′ plus some simple postprocessing. Since our algorithm is based on Fencing an Arbitrary Spanning Tree, we call our algorithm FAST-BCC. More details of FAST-BCC are in Fig. 2. We note that conceptually our algorithm is simple, but the correctness analysis is highly non-trivial.

We implement our theoretically-efficient FAST-BCC algorithm and compare it to the state-of-the-art parallel BFS-based BCC implementations GBBS [31] and SM′14 [64]. We also compare FAST-BCC to the sequential Hopcroft-Tarjan algorithm. We test 27 graphs, including social, web, road, k-NN, and synthetic graphs, with significantly varying sizes and edge distributions. The details of the graphs and results are given in Tab. 2. We also show the relative running time in Fig. 1, normalized to the sequential Hopcroft-Tarjan.

On a machine with 96 cores, FAST-BCC is the fastest on all tested graphs. We use the geometric means to compare the “average” performance across multiple graphs. Due to work- and space-efficiency, our algorithm running on one core is competitive with Hopcroft-Tarjan (2.8× slower on average). Polylogarithmic span leads to good parallelism for all types of graphs (15–66× self-relative speedup on average). On small-diameter graphs (social and web graphs), although GBBS and SM′14 also achieve good parallelism, FAST-BCC is still 1.2–2.1× faster than the best of the two, and is 5.9–39× faster than sequential Hopcroft-Tarjan. For large-diameter graphs (road, k-NN, grid, and chain graphs), existing BFS-based implementations can perform worse than Hopcroft-Tarjan. Due to low span, FAST-BCC is 1.7–295× faster than GBBS (10× on average), and 4.1–18.5× faster than sequential Hopcroft-Tarjan (9.2× on average). On all graphs, FAST-BCC is 3.1× faster on average than the best of the three existing implementations. Our code is publicly available [36]. We present more results and analyses in the full version of this paper [37].

2 Preliminaries

Computational Model. We use the work-span (or work-depth) model for fork-join parallelism with binary forking to analyze parallel algorithms [15, 30], which is recently used in many papers on parallel algorithms [3, 10, 11, 13, 14, 16–22, 33–35, 42, 43, 62, 71]. We assume a set of threads that share a common memory. A process can fork two child software threads to work in parallel. When both children complete, the parent process continues. The work of an algorithm is the total number of instructions and the span (depth) is the length of the longest sequence of dependent instructions in the computation. We say an algorithm is work-efficient if its work is asymptotically the same as the best sequential algorithm. We can execute the computation using a randomized work-stealing scheduler [6, 23] in practice. We assume unit-cost atomic operation compare_and_swap(p, vold, vnew) (or CAS), which atomically reads the memory location pointed to by p, and write value vnew to it if the current value is vold. It returns true if successful and false otherwise.

Notation. Given an undirected graph G = (V, E), we use n = |V|, m = |E|. Let diam(G) be the diameter of G, and x–y be an edge between x and y. CC and BCC are defined in Sec. 1. An articulation point (or cut vertex) is a vertex s.t. removing it increases the number of CCs. A bridge (or cut edge) is an edge s.t. removing it increases the number of CCs. A spanning tree T of a connected graph G is a spanning subgraph of G that contains no cycles. The spanning forest is defined similarly if G is disconnected. For simplicity, we assume G is connected, but our algorithm and implementation work on any graph. Given a graph G and a rooted spanning...
The Tarjan-Vishkin Algorithm generates a skeleton based on an connectivity phase because when an arbitrary spanning tree is categorized by how the skeleton framework determines the parent of any vertex, and whether an edge is tree edge, back edge, or cross edge in ETT to determine the directions of the edges. We can then books on parallel algorithms [47, 58] for more details on ETT. and runs list ranking on it. We refer the audience to the first constructs a linked list on the 2

\[T = (V, E_T) \] A spanning tree in \(G \)

\[x \rightarrow y \in E \] An edge in \(G \)

\[C, C' \] A BCC in \(G \)

\[T_u \] u's subtree in \(T \)

\[h_C \] The BCC head of \(C \)

\[p(u) \] u's parent in \(T \)

\[x \rightarrow y \] A tree path in \(T \)

\[P \] = \(x \rightarrow y \ldots \rightarrow \) A path

\[G' \] The skeleton

\[(p(v), v) \in E_T \] (no edge from \(v \)'s subtree escapes from \(p(v) \)'s subtree)

\[\text{Plain edge} \] (p(v), v) \in E_T, (p(v), v) is not a plain edge

\[\text{Cross edge} \] (p(v), v) \in E_T, (p(v), v) \notin T_{p(v)}

\[\text{Edge} \] (\(x, y \) \in \(E \), \(x \in T_v \) and \(y \notin T_{p(v)} \))

\[\text{Fence edge} \] (p(v), v) \in E_T, \(\bar{\delta}(x, y) \in E \), s.t. \(x \in T_v \) and \(y \notin T_{p(v)} \)

Table 1. Notations and terminologies in this paper.

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
</tr>
</thead>
</table>
| Tree | A non-tree edge is a **tree edge** if it is in \(T \). A non-tree edge is a **back edge** if one endpoint is the ancestor of the other endpoint, and a **cross edge** otherwise. Fig. 2 Step 3 shows an illustration. If \(T \) is a BFS tree, there are no back edges; if \(T \) is a DFS tree, there are no cross edges. We use \(x \rightarrow y \) to denote the tree path between \(x \) and \(y \) on \(T \). We denote the parent of vertex \(u \) as \(p(u) \), and the subtree of \(u \) as \(T_u \). The notation used in this paper is given in Tab. 1. We use \(O(f(n)) \) with high probability (whp) in \(n \) to mean \(O(cf(n)) \) with probability at least \(1 - n^{-c} \) for \(c \geq 1 \).
| Euler tour technique (ETT) | ETT is proposed by Tarjan and Vishkin [65] in their BCC algorithm to root a spanning tree. Later, ETT becomes a widely-used primitive in both sequential and parallel settings, including computational geometry [2], graph algorithms [5, 28, 67], maintaining subtree or tree path sums [30], and many others. ETT is needed in Tarjan-Vishkin because when an arbitrary spanning tree is generated for a graph (e.g., from a CC algorithm), it is not rooted, and thus we do not have the parent-child information for the vertices. Given an unrooted tree \(T \) with \(n - 1 \) edges, ETT finds an Euler tour of \(T \), which is a cycle traversing each edge in \(T \) exactly twice (once in each direction). ETT first constructs a linked list on the \(2n - 2 \) directed tree edges, and runs list ranking on it. We refer the reader to the textbooks on parallel algorithms [47, 58] for more details on ETT. Using the semisort algorithm from [15, 44] and list ranking from [15], ETT costs \(O(n) \) expected work and \(O(\log n) \) span whp. Given \(T \), we can set any vertex as the root of \(T \), and use ETT to determine the directions of the edges. We can then determine the parent of any vertex, and whether an edge is a tree edge, back edge, or cross edge in \(O(1) \) work.

3 Existing BCC Algorithms

This section reviews the existing BCC algorithms and implementations. We will use the skeleton-connectivity framework to describe the existing BCC algorithms. The skeleton phase generates a skeleton \(G' \) from \(G \), which is an auxiliary graph. Then the connectivity phase computes the connectivity on \(G' \) to construct the BCCs of \(G \). Existing BCC algorithms can be categorized by how the skeleton \(G' \) is generated. The Hopcroft-Tarjan algorithm uses DFS-based skeletons; the Tarjan-Vishkin Algorithm generates a skeleton based on an arbitrary spanning tree (AST); almost all other BCC algorithms (see Sec. 3.3) use BFS-based skeletons.

3.1 The Hopcroft-Tarjan Algorithm

Sequentially, Hopcroft-Tarjan BCC algorithm [45] has \(O(n + m) \) work using a depth-first search (DFS) tree \(T \). Based on \(T \), two tags \(\text{first}[\cdot] \) and \(\text{low}[\cdot] \) are assigned to each vertex. \(\text{first}[v] \) is the preorder number of each vertex in \(T \). \(\text{low}[v] \) gives the earliest (smallest preorder) vertex incident on any vertex \(u \) in \(T_u \) via a non-tree edge and \(u \) itself. More formally,

\[\text{low}[v] = \min\{\text{first}[u] \mid u \in V \text{ is in the subtree rooted at } v\} \]

\[\text{first}[u] = \min\{\text{first}[u]\} \cup \{\text{first}[u'] \mid (u, u') \notin T\} \]

To compute the BCCs, an additional stack is maintained. Each time we visit a new edge, it is pushed into the stack. When an articulation point \(p(u) \) is found by \(u \) \((\text{low}[u] \geq \text{first}[p(u)]) \), edges are popped from the stack until \(u - p(u) \) is popped. These edges and the relevant vertices form a BCC.

Conceptually, the skeleton in Hopcroft-Tarjan is the DFS tree without the “fence edges” of \(u - p(u) \) when \(\text{low}[u] \geq \text{first}[p(u)] \). This insight also inspires our BCC algorithm.

3.2 The Tarjan-Vishkin Algorithm

Hopcroft-Tarjan uses a DFS tree as the skeleton, but DFS is inherently serial and hard to be parallelized [57]. To parallelize BCC, the Tarjan-Vishkin algorithm [65] uses an arbitrary spanning tree (AST) instead of a DFS tree. This spanning tree \(T \) can be obtained by any parallel CC algorithm. The algorithm then uses ETT (which was also proposed in that paper) to root the tree \(T \) (see Sec. 2). Then the algorithm builds a skeleton \(G' = (E, E') \) and runs a connectivity algorithm on it. We describe \(G' \) in more details in the full paper [37], and only briefly review it here. The vertices in \(G' \) correspond to the edges in \(G \).

To determine the edges in \(G' \), the algorithm uses four tags \(\text{first}[\cdot], \text{last}[\cdot], \text{low}[\cdot], \) and \(\text{high}[\cdot] \) for each vertex. Here \(\text{first}[u] \) and \(\text{last}[u] \) are the first and last appearance of vertex \(u \) in the Euler tour (note that this is not the same \(\text{first}[\cdot] \) in Hopcroft-Tarjan, but conceptually equivalent). \(\text{low}[\cdot] \) is the same as defined in Hopcroft-Tarjan, and \(\text{high}[\cdot] \) is defined symmetrically:

\[\text{high}[v] = \max\{\text{last}[u] \mid u \in V \text{ is in the subtree rooted at } v\} \]

\[\text{last}[u] = \max\{\text{first}[u]\} \cup \{\text{first}[u'] \mid (u, u') \notin T\} \]

All tags can be computed in \(O(n + m) \) expected work and \(O(\log n) \) span whp using ETT. Tarjan-Vishkin then finds the CCs on \(G' \) to compute the BCCs of \(G \). However, \(G' \) in Tarjan-Vishkin can be large, making the algorithm less practical.

Assuming an efficient ETT and a parallel CC algorithm, Tarjan-Vishkin uses \(O(n + m) \) optimal expected work and polylogarithmic span. However, the space-inefficiency hampers the practicability of Tarjan-Vishkin since \(G' \) contains \(O(m) \) edges. In our experiments, Tarjan-Vishkin takes up to

1In a later paper [39], it was shown that the number of vertices in \(G' \) can be reduced to \(O(n) \), but \(|E'| \) is still \(O(m) \).

54
11× extra space than our FAST-BCC or GBBS. On our machine with 1.5TB memory, Tarjan-Vishkin ran out of memory when processing the Clueweb graph [54], although it only takes about 300GB to store the graph (see discussions in the full version [37]). The large space usage forbids running Tarjan-Vishkin on large-scale graphs on most multicore machines. Even for small graphs, high space usage can increase memory footprint and slow down the performance.

Some existing BCC implementations (e.g., GBBS [31] and TV-filter [29]) were also described as Tarjan-Vishkin algorithms, probably because they also use the skeleton-connectivity framework. We note that their correctness relies on BFS-based skeletons (i.e., sparse certificates [27]), and we categorized them below together with a few other algorithms.

3.3 Other Existing Algorithms / Implementations

Before Tarjan-Vishkin, Savage and Jálá [61] showed a parallel BCC algorithm based on matrix-multiplication with $O(n^2 \log n)$ work. Tsin and Chin [66] gave an algorithm that uses an AST-based skeleton. It is quite similar to Tarjan-Vishkin, but uses $O(n^3)$ work.

To achieve space-efficiency, many later parallel BCC algorithms use BFS-based skeletons [25, 26, 29, 31, 40, 50, 64, 68]. Many of them use the similar idea of sparse certificates [27]. BCC is much simpler with a BFS tree—all non-tree edges are cross edges with both endpoints in the same or adjacent levels. Cong and Bader’s TV-filter algorithm [29] uses the skeleton as the BFS tree T and an arbitrary spanning tree/forest for $G \setminus T$ ($O(n)$ total size). Slota and Madduri’s algorithms [64] and Dhulipala et al.’s algorithm [31] use the skeletons as the input graph G excluding $O(n)$ vertices/edges. The other algorithms [25, 26, 40, 68] use a BFS tree as the skeleton, and compute connectivity dynamically. All these algorithms are space-efficient. Their skeleton graphs either have $O(n)$ size [25, 26, 29, 40, 68] or can be implicitly represented using $O(n)$ information [31, 64]. However, the span to generate a BFS tree is proportional to the diameter of the graph, which is inefficient for large-diameter graphs.

3.4 Space-Efficient BCC Representation

Since some vertices (articulation points) appear in multiple BCCs (see Fig. 2 as an example), we need a representation of all BCCs in a space-efficient manner ($O(n)$ space). We use a commonly used representation [11, 31, 40] in our algorithm. Given a spanning tree T, we assign a label for each vertex except for the root of T, indicating which BCC this vertex is in. For all vertices with the same label, we find another vertex called the **component head** (see details in Sec. 4.1) attached to this label. All vertices with the same label and the corresponding component head form a BCC. An example of this representation is given in Fig. 2. It is easy to see that this representation uses $O(n)$ space since we have n labels for all vertices and at most $n−1$ component heads.

Algorithm 1: The FAST-BCC algorithm

Input: An undirected graph $G = (V, E)$

Output: The labels $l[\cdot]$ for vertices, and the component head for each BCC

1. Compute the spanning forest F of G \[First CC \]
2. Root all trees in F using the Euler tour technique \[Rooting \]
3. Compute tags (e.g., low, high) of each vertex based on the Euler tour \[Tagging \]
4. Compute the vertex label $l[\cdot]$ using connectivity on G with edges satisfying $\text{InSkeleton}(u, v) = true$ \[Last CC \]
5. **ParallelForEach** $u ∈ V$ with $l[u] ≠ l[p(u)]$
6. \[Set the component head of $l[\cdot]$ as $p(u)$ \]
7. **Function** $\text{InSkeleton}(u, v)$ \[Decide if u–v is in skeleton $G’$ \]
8. \[if (u, v) is a tree edge then \]
9. \[return $\sim\text{Fence}(u, v)$ and $\sim\text{Fence}(v, u)$ \]
10. \[else return $\sim\text{Back}(u, v)$ and $\sim\text{Back}(v, u)$ \]
11. **Function** $\text{Fence}(u, v)$ \[Decide if tree edge is fence edge \]
12. \[return $\text{first}(u) ≤ \text{low}[v]$ and $\text{last}(u) ≥ \text{high}[v]$ \]
13. **Function** $\text{Back}(u, v)$ \[Decide if non-tree edge is back edge \]
14. \[return $\text{first}(u) ≤ \text{first}(v)$ and $\text{last}(u) ≥ \text{first}(v)$ \]

4 The FAST-BCC Algorithm

In this section, we present our FAST-BCC algorithm with analysis. Our algorithm is the first parallel BCC algorithm that is work-efficient, space-efficient, and has polylogarithmic span. Recall that BFS-based algorithms are space-efficient, but BFS itself does not parallelize well. Tarjan-Vishkin is based on AST and is highly parallel, but generating the skeleton is space-inefficient. To achieve both high parallelism and space efficiency, we need novel algorithmic insights.

Interestingly, our key idea is to revisit the sequential DFS-based Hopcroft-Tarjan algorithm (Sec. 3.1). Although DFS is inherently sequential, the insights in Hopcroft-Tarjan inspire our parallel BCC algorithm. The (implicit) skeleton in Hopcroft-Tarjan is simple and the skeleton size is small ($O(n)$). Unlike many later parallel BCC algorithms with the high-level ideas to combine cycles (based on Fact 4.2), the idea in Hopcroft-Tarjan is the "fencing" condition as follows. When computing the CC on the skeleton $G’$ (the DFS tree) and traversing the edge from v to $p(v)$, the CC on $G’$ (BCC on G) is fenced if $\text{low}[v] ≥ \text{first}[p(v)]$. This condition partitions the DFS tree T into multiple CCs that correspond to BCCs in G. Note that $G’$ in Hopcroft-Tarjan only contains edges from the DFS tree, because there are no cross edges in DFS trees and all back edge information is captured by $\text{low}[\cdot]$.

Now we try to generalize this idea to an arbitrary spanning tree (AST). Directly using the "fencing" condition in Hopcroft-Tarjan does not work since we need to deal with cross edges. Note that a fence edge v–$p(v)$ in Hopcroft-Tarjan means that vertices in u’s subtree do not have an edge that escapes (i.e., the other endpoint is outside) $p(u)$’s subtree. We define our fence edges also based on this condition. More formally, we say a tree edge (u, v) where $u = p(v)$ is a fence edge...
if there is no edge \((x, y) \in E\) such that \(x \in T_u\) and \(y \notin T_u\). Intuitively, it means \(v\) ’s subtree \(T_u\) is “isolated” from other parts outside \(u\)'s subtree, and only interacts with the outside world through \(p(u)\). To get an equivalent condition for an AST, we borrow the idea from Tarjan-Vishkin and also compute four axillary arrays \(\text{first}[-]\), \(\text{last}[-]\), \(\text{low}[-]\), and \(\text{high}[-]\). The “fencing” condition then becomes \(\text{low}[u] \geq \text{first}[p(u)]\) and \(\text{high}[u] \leq \text{last}[p(u)]\). A non-fence tree edge is referred to as a \text{plain edge}. Note that the information for back edges is already captured by the \(\text{low}[-]\) and \(\text{high}[-]\) arrays, which will also be used to decide fence edges. Our algorithm will ignore back edges as in Hopcroft-Tarjan, and our skeleton isolates vertices below \(u\) with the other parts in the graph. Thus, we assign \(p(u)\) as the component head of \(u\)'s CC in \(G\). We prove the correctness of this step in Lem. 4.9 and 4.12. This step also only requires \(O(n)\) auxiliary space, which is needed by running CC on \(G\) but skip certain edges.

4.2 Correctness for the FAST-BCC Algorithm

We now prove the correctness of our algorithm. Note that our algorithm will identify the spanning forest in the first step and deal with each CC respectively. For simplicity, throughout the section, we focus on one CC in \(G\).

In the following, when we use the concepts about a spanning tree of the graph (e.g., root, parent, child, and subtree), we refer to the specific spanning tree identified in Step 1 of our algorithm, and use \(T\) to represent it. Recall that \(T_u\) denotes the subtree rooted at vertex \(u\), and \(u \sim v\) denotes the tree path on \(T\) from \(u\) to \(v\). Some other notation is given in Tab. 1. In a spanning tree, we say a node \(u\) is shallower (deeper) than \(v\) if \(u\) is closer (farther) to the root than \(v\). We use node and vertex interchangeably.

We note that although Alg. 1 is simple, the correctness proof is sophisticated. We show the relationship of facts, lemmas, and theorems in Fig. 2. Due to the space limit, the proofs for Fact 4.1 and 4.2 and Lem. 4.3 to 4.5 are given in the full version of the paper, and we mainly focus on the proofs that reflect some key ideas in our new algorithm.

Fact 4.1. Two BCCs share at most one common vertex.

Fact 4.2. For a cycle in a graph, all vertices on the cycle are in the same BCC.

Lemma 4.3. Given a graph \(G\), vertices in each BCC \(C \subseteq V\) must also be connected in an arbitrary spanning tree \(T\) for \(G\).

Since each BCC \(C\) must be connected in the spanning tree in \(T\), there must exist a unique shallowest node in this BCC on \(T\). We call this shallowest node the \text{BCC head} of the BCC \(C\), and denote it as \(h_C\).

Lemma 4.4. Each non-root BCC head is an articulation point. An articulation point must be a BCC head.

Lemma 4.5. The function \(\text{InSkeleton} (\text{Line} 7)\) in Alg. 1 can correctly skip the fence and back edges.
We will show two directions. First, if two vertices \(a \) and \(b \) are connected in the skeleton \(G \), then they are connected in the plain tree defined in Alg. 1.

Lemma 4.6. For a plain tree edge \(u \leadsto v \), let \(z \) be \(x \)'s parent, then \(x, y, z \) are in the same BCC.

Proof: Since \(x \leadsto y \) is not a fence edge, there must be an edge \(a \leadsto b \), s.t. \(a \in T_y \) and \(b \notin T_x \). The cycle \(y \leadsto z \leadsto x \leadsto y \) then contains \(x, y, \) and \(z \). Due to Fact 4.2, \(x, y, \) and \(z \) are in the same BCC. \(\square \)

Next, we show that Alg. 1 can correctly identify all BCCs. We will show two directions. First, if two vertices \(u \) and \(v \) are biconnected, Alg. 1 must put them in a BCC. Second, for any two vertices \(u \) and \(v \) in a BCC found by Alg. 1, they must be biconnected.

Theorem 4.7. For \(u, v \in V \), if they are biconnected, Alg. 1 assigns them to the same BCC.

To prove Thm. 4.7, we discuss two cases: 1) one of \(u \) and \(v \) is a BCC head, and 2) neither of them is a BCC head.

Lemma 4.8. For a BCC \(C \) and two vertices \(u, v \in C \setminus \{h_C\} \), they are connected in the skeleton \(G' \) and will get the same label in Alg. 1.

Proof: If all tree edges connecting \(C \setminus \{h_C\} \) are plain tree edges, \(u \) and \(v \) are already connected in \(G' \). Next, we show that the two endpoints of every fence edge are also connected in \(G' \). To do so, we first sort (only conceptually) all vertices in \(C \setminus \{h_C\} \) by their depth in \(T \). Then we inductively show from bottom up (deep to shallow) that, given a vertex \(v \in C \), \(T_v \cap C \) (\(v \)'s subtree in \(C \)) is connected in \(G' \).

The base case is the deepest vertices in \(\{h_C\} \). In this case, their subtree contains only one vertex so they are connected.

We now consider the inductive step—if for all vertices with depth \(\geq d \), their subtrees in \(C \) are connected in \(G' \), then for all vertices with depth \(d - 1 \), their subtrees in \(C \) are also connected in \(G' \). Consider a vertex \(u \in \{h_C\} \) with depth \(d - 1 \). If \(u \) has only one child \(v \) in \(C \), then \(u \leadsto v \) is a plain tree edge since otherwise \(v \)'s subtree cannot escape \(u \)'s subtree and \(u \) and \(v \) are in an articulation point (disconnecting \(v \) and \(p(u) \)), contradicting Lem. 4.4. Assume \(u \) has multiple children \(c_1, \ldots, c_k \) in \(C \). Let \(u \leadsto v \) be a fence edge that is not in \(G' \), where \(v = c_i \) is a child of \(u \). We will show that \(u \) and \(v \) are still connected in \(G' \).

Since \(u \) is not a BCC head, \(p(u) \) must also be in \(C \). Based on the definition of BCC, if we remove \(u \), \(v \) and \(p(u) \) are still connected in \(C \). Let the path be \(P = v \leadsto x_1 \leadsto x_2 \leadsto \ldots \leadsto x_j \leadsto p(u) \) where \(x_j \in C \) and \(x_j \neq u \). We will construct a path in \(G' \) from \(P \) that connects \(v \) and \(u \). Let \(x_j \) be the first vertex on path \(P \) that is not in \(T_u \). We will use the path \(P' = x_0 \leadsto x_1 \leadsto x_2 \leadsto \ldots \leadsto x_j \) all nodes in this path have depths \(\geq d \). Due to the induction hypothesis, if some of the edges are back or fence edges, we can replace them with the paths in \(G' \), and denote this path as \(P' \). Then, since \(x_j \notin T_u \) is connected to \(x_j \in T_u \), all edges on tree path \(x_j \leadsto u \) are plain tree edges. As a result, \(u \) and \(v \) are connected in \(G' \) using the path \(P' \) from \(v \) to \(x_j \), and the tree path from \(x_j \) to \(u \) (all edges are in \(G' \)). By the induction, all vertices in \(C \setminus \{h_C\} \) are connected in \(G' \), and hence get the same label after Line 4. \(\square \)

Lemma 4.9. Any BCC head will be correctly identified as a component head in Alg. 1.

Proof: Consider a BCC \(C \) and its BCC head \(h_C \). Among all the children of \(h_C \), a subset \(S \) of them are in the same BCC \(C \). Consider any \(c \in S \). We will show that the edge \(c \leadsto h_C \) must be identified correctly in Line 5.
We first show that $c - h_C$ must be a fence. If h_C is the root of T, and in this case, all tree edges connecting to h_C are fence edges. Otherwise, this can be inferred from the contrapositive of Lem. 4.6. If $c - h_C$ is a plain tree edge, c, h_C, and $p(h_C)$ must be biconnected, which means $p(h_C)$ is also in the BCC C. This contradicts the assumption that h_C is the shallowest node (BCC head) in the BCC.

We then show that after we run the CC on the skeleton G' (Line 4), h_C and c have different labels (i.e., h_C and c are not connected in G'). Assume to the contrary that there exists a path P from c to h_C on G'. Consider the last node t on the path before h_C. Because $h_C - c$ is a fence edge and is ignored in G', $c \neq t$. We discuss three cases. (1) t is not in the h_C's subtree T_{h_C}. Consider the first edge $x - y$ on the path P such that $x \in T_{h_C}$ and $y \notin T_{h_C}$. Since $x - y$ escapes h_C's subtree, the tree path $P'' = x - h_C$ only contains plain tree edges. Let c' be h_C's child on the path P''. From Lem. 4.6, c', h_C, and $p(h_C)$ are biconnected. In this case, $h_C - c - x - c' - h_C$ is a cycle, and Fact 4.2 shows that c', h_C and c are biconnected. The contrapositive of Fact 4.1 indicates that c', h_C, c, and $p(h_C)$ are all biconnected, contradicting the assumption that h_C is the BCC head (the shallowest node in the BCC). (2) $t \in T_{h_C}$, but t is not h_C's child. This is impossible because $t - h_C$ is a back edge, which is not in G'. (3) t is a child of h_C. This case is similar to (1). By replacing c' in the previous proof by t, we can get the same contradiction. Combining all cases proves that there is no path in G' between h_C and its children in C, so $l[h_C]$ is different from the labels of its children in C.

Combining Lem. 4.8 and 4.9, we can prove Thm. 4.7.

We then show the other direction—all the BCCs computed by Alg. 1 are indeed biconnected.

Theorem 4.10. If two vertices u and v are identified as in the same BCC by Alg. 1, they must be biconnected.

Similar to the previous proof, we consider two cases: (1) none of the two vertices is a component head (they are connected in G'), proved in Lem. 4.11, and (2) one of them is identified as a component head in Line 6, proved in Lem. 4.12.

Lemma 4.11. If two vertices u and v are connected in the skeleton G', they are biconnected.

Proof. Since u and v are connected in G', there exists a path P from u to v only using edges in G'. Let $P = u = p_0 - p_1 - \ldots - p_k - v$. We will show that after removing any vertex p_i where $1 \leq i < k$ on P, p_{i-1} and p_{i+1} are still connected, meaning that u and v are biconnected. We summarize all possible local structures in three cases, based on whether p_{i-1} and p_{i+1} are a child of p_i in T.

Case 1: both p_{i-1} and p_{i+1} are p_i's children. Since $p_{i-1} - p_i$ is not a fence edge, there must be an edge $x - y$ s.t. $x \in T_{p_{i-1}}$ and $y \notin T_p$. Similarly, for $p_{i-1} - p_{i+1}$, there exists an edge (x', y') s.t. $x' \in T_{p_{i+1}}$, and $y' \notin T_p$. Hence, without using p_i, p_{i-1} and p_{i+1} are still connected by the path $p_{i-1} - x - y - y' - x' - p_{i+1}$. Here since $y, y' \notin T_p$, $y - y'$ does not contain p_i.

Case 2: one of p_{i-1} and p_{i+1} is p_i's child. WLOG, assume p_{i-1} is the child. Since $p_{i-1} - p_i$ is not a fence edge, there must be an edge $x - y$ such that $x \in T_{p_{i-1}}$ and $y \notin T_p$. Also, since p_{i+1} is either the parent of p_i or connected to p_i using a cross edge, $p_{i+1} \notin T_p$. Hence, without using p_i, p_{i-1} and p_{i+1} are still connected using the path $p_{i-1} - x - y - p_{i+1}$.

Case 3: neither p_{i-1} nor p_{i+1} is a child of p_i, and neither of them is in T_p (otherwise they are connected by a back edge). Without using p_i, p_{i-1} and p_{i+1} are still connected using the tree path $p_{i-1} - p_{i+1}$.

Since removing any vertex on the path P does not disconnect the path, all vertices in the same CC of the skeleton are biconnected.

Lemma 4.12. If Line 6 in Alg. 1 assigns h as the component head of a connected component (CC) C in the skeleton G', then h is biconnected with C.

Proof. First of all, assume h is assigned as the component head because of its child c, where $h - c$ is a fence edge. We will show that the connected component C in G' containing c is biconnected with h. There are two cases.

Case 1: C only contains vertices in T_c. This means that no vertices in T_c have a cross edge to another vertex outside T_c. Therefore, either all edges incident on c' in T_c do not escape from T_c, or some node $c' \in T_c$ is connected to nodes outside T_c via back edges. In the former case, all the edges connecting c and its children are fence edges, and thus C only contains c. In this case, h is trivially biconnected with C. In the latter case, assume $x \in T_c \cap C$ has a back edge connected to $y \notin T_c$. Note that y can only be h—if y is h's ancestor, then edge $x - y$ escapes T_h, so $h - c$ is a plain tree edge (contradiction). Therefore, we can find a cycle $h - c - x - y$. From Fact 4.2, h, c, x are biconnected, and h is in the same BCC as c and x, and thus all vertices in C (Lem. 4.11 and Fact 4.1).

Case 2: C contains both vertices in T_c and some vertices in $T_h \setminus T_c$. Hence, there exists a cross edge $x - y$, where $x \in T_c$ and $y \notin T_c$. We can find a cycle $h - x - y - h$. From Fact 4.2, h, c, u are biconnected. h is in the same BCC as c and u.

Combining Lem. 4.11 and 4.12 proves Thm. 4.10.

Thm. 4.7 shows that if two vertices are put in the same BCC by Alg. 1, they are biconnected in G. Thm. 4.10 indicates that two vertices biconnected in G will be put in the same BCC by Alg. 1. Lem. 4.5 indicates back edges and fence edges are identified correctly by Alg. 1. Combining them together indicates that Alg. 1 is correct.

4.3 Cost Bounds for the FAST-BCC Algorithm

We now analyze the cost bounds of the algorithm.

Theorem 4.13. Alg. 1 computes the BCCs of a graph G with n vertices and m edges using $O(n + m)$ expected work, $O(\log^2 n)$ span whp, and $O(n)$ auxiliary space (other than the input).
Proof. The first and last steps compute the graph connectivity twice. Graph connectivity can be computed in $O(n + m)$ expected work and $O(\log^3 n)$ span whp [63]. In Step 2, ETT can be performed $O(n)$ expected work and $O(\log n)$ span whp (see Sec. 2). In Step 3, computing low[·] and high[·] arrays based on RMQ takes $O(m)$ work and $O(\log n)$ span [15]. Adding all pieces together gives the work and span bounds.

For the space, all arrays for the tags have size $O(n)$. As mentioned, we do not generate the skeleton explicitly. In the last step, we try all the edges in G but skipping the back and fence edges. In all, the auxiliary space needed is $O(n)$.

5 Implementation Details

We discuss some implementation details of FAST-BCC in this section.

Connectivity. Connectivity is used twice in FAST-BCC. The only existing parallel CC implementation with good theoretical guarantee we know of is the SDB algorithm [63] (an initial version of GBBS is based on this algorithm). A recent paper by Dhulipala et al. [32] gave 232 parallel CC implementations, many of which outperformed the SDB algorithm, but no analysis of work-efficiency was given. A more recent version of GBBS uses the UF-Async algorithm in [32] to compute CC. To achieve efficiency both in theory and in practice, FAST-BCC uses the LDD-UF-JTB algorithm from [32] and we provide a new analysis for this algorithm to prove its theoretical efficiency.

LDD-UF-JTB consists of two steps. It first runs a low-diameter decomposition (LDD) algorithm [55] to find a decomposition (partition of vertices) of the graph such that each component has a low diameter and the number of edges crossing different components is bounded. The second step is to use a union-find structure by Jayanti et al. [49] to union components connected by cross-component edges. We now show the bounds of this algorithm.

Theorem 5.1. The LDD-UF-JTB algorithm computes the CC's of a graph G with n vertices and m edges using $O(n + m)$ expected work and $O(\log^3 n)$ span whp.

Therefore, using LDD-UF-JTB for CC preserves the cost bounds in Thm. 4.13. We prove Thm. 5.1 in the full version of this paper.

We optimized LDD-UF-JTB using the hash bag and local search techniques proposed from [69]. These optimizations are only used in computing CCs in our algorithm, and we do not claim them as contributions of this paper. In our tests, these optimizations improve the performance of FAST-BCC by 1.5x on average (up to 5x). Some results are shown in the full version of this paper. We note that among all 232 CC algorithms in [32], no one is constantly faster, and the relative performance is decided by the input graph properties. In FAST-BCC, we currently use the same CC algorithm for all graphs, and we acknowledge that using the fastest CC algorithm on each graph can further improve the performance of FAST-BCC. We choose LDD-UF-JTB mainly because it is theoretically-efficient, and also can generate CC as a by-product efficiently.

Spanning Forest. The spanning forest of G is obtained as a by-product of Step 1, which saves all edges to form the CCs. We then re-order the vertices in the compressed sparse row (CSR) format to let each CC be contiguous.

Euler Tour Technique (ETT). We use the standard ETT to root the spanning trees (see Sec. 2). We replicate each undirected edge in T into two directed edges and semisort them [44], so edges with the same first endpoint are contiguous. Then we construct a circular linked list as the Euler circuit. Assume a vertex v has k incoming neighbors u_1, u_2, \cdots, u_k. For every incoming edge of v except for the last one, we link it to its next outgoing edge (i.e., $u_i \sim v$ is linked to $v \sim u_{i+1}$ for $1 \leq i < k$). For the last incoming edge, we link it to the first outgoing edge of v (i.e., $u_k \sim v$ is linked to $v \sim u_1$).

After we obtain the Euler circuit of the tree, we flatten the linked list to an array by list ranking, and acquire the Euler tour order of each vertex. For list ranking, we coarsen the base cases by sampling \sqrt{n} nodes. We start from these nodes in parallel, with each node sequentially following the pointers until it visits the next sample. Then we compute the offsets of each sample by prefix sum, pass the offsets to other nodes by chasing the pointers from the samples, and scatter all nodes into a contiguous array.

Computing Tags. We use several tags $w_1, w_2, first, last, low, and high$ for each vertex, defined the same as Tarjan-Vishkin [65] (see Sec. 3). We use CAS operations to compute first and last as they represent the first and last appearances of a vertex in the Euler tour order. For each tree edge (u, v), if $first[u] < first[v]$, we set $p(v) = u$, or vice versa. Computing low and high are similar, so we only discuss low here. We first initialize $w_1[v]$ with $first[v]$ for each $v \in V$. Then it traverses all non-tree edges $u \sim v$ and updates $w_1[u]$ and $w_1[v]$ with the minimum of $first[u]$ and $first[v]$. We build a parallel sparse table [15] on w_1 to support range minimum queries. Note that $first[v]$ and last[v] reflect the range of v’s subtree in the Euler tour order. Thus, low[v] can be computed by finding the minimum element in $w_1[\cdot]$ in the range between first[v] and last[v]. high[·] can be computed similarly.

6 Experiments

Setup. We run our experiments on a 96-core (192 hyperthreads) machine with four Intel Xeon Gold 6252 CPUs, and 1.5 TB of main memory. We implemented all algorithms in C++ using ParlayLib [12] for fork-join parallelism and some parallel primitives (e.g., sorting). We use numactl -1 all in experiments with more than one thread to spread the memory pages across CPUs in a round-robin fashion. We run each test for 10 times and report the median.

We tested on 27 graphs, including social networks, web graphs, road graphs, k-NN graphs, and synthetic graphs.
Table 2. Graph information, running times (in seconds), and speedups. $T_{best/ours}$ (highlighted in yellow) is the fastest time of the other implementations / our time, both using all cores. "n" = number of vertices. "m" = number of edges. "D" = approximate diameter. "#BCC" = number of BCCs. "[BCC_%]" = percentage of the largest BCCs. "GBBS" = GBBS’s implementation [31]. "SM’14" = Slota and Madduri’s algorithm [64] (the faster of the two proposed algorithms). Since SM’14 has scalability issues (see Fig. 4), we report the 16-core time if it is faster, and denote as (*). "SEQ" = Hopcroft-Tarjan BCC algorithm [45]. Details about the baselines are introduced in Sec. 6. The fastest runtime for each graph is underlined. Red numbers are parallel runtime slower than the sequential algorithm. "par." = parallel running time (on 192 hyper-threads). "seq." = sequential running time (on 1 thread). "spd." = self-relative speedup. "n" = no support, because SM’14 only works on connected graphs.

The information of the graphs is given in Tab. 2. In addition to commonly-used benchmarks of social, web and, road graphs, we also use k-NN graphs and synthetic graphs. k-NN graphs are widely used in machine learning algorithms (see discussions in [70]). In k-NN graphs, each vertex is a multi-dimensional data point and has k edges pointing to its k-nearest neighbors (excluding itself). We also create six synthetic graphs, including two grids (SQR and REC), two sampled grids (SQR’ and REC’), each edge is created with probability 0.6), and two chains (Chn7 and Chn8). SQR and SQR’ have sizes $10^3 \times 10^4$. REC and REC’ have sizes $10^3 \times 10^5$. Each row and column in grid graphs are circular. Chn7 and Chn8 have sizes 10^2 and 10^8. The tested graphs cover a wide range of sizes and edge distributions.

For directed graphs, we symmetrize them to test BCC. We call the social and web graphs low-diameter graphs as they have diameters mostly within a few hundreds. We call the road, k-NN, and synthetic graphs large-diameter graphs as their diameters are mostly more than a thousand. When comparing the average running times across multiple graphs, we always take the geometric mean of the numbers.

Baseline Algorithms. We call all existing algorithms that we compare to the baselines. We implement sequential Hopcroft-Tarjan [45] algorithm for comparison, referred to as SEQ. We compare the number of BCCs reported by each algorithm with SEt with verify correctness.

We also compare to two most recent available BCC implementations GBBS [31], and Slota and Madduri [64]. We use SM’14 to denote the better of the two BCC algorithms in Slota and Madduri [64]. On many graphs, we observe that SM’14 is faster on 16 threads than using all 192 threads, in which case we report the lower time of 16 and 192 threads.
We present the running time of all algorithms in Tab. 2. Updated the numbers using their latest version (Nov. 2022). Some new features in the latest version greatly improved their BCC performance.

Through correspondence with the authors, we understand that SM’14 requires the input graph to be connected, so we only report the running time when it gives the correct answers. As few graphs we tested are entirely connected, we focus on comparisons with GBBS and SEQ. We also compare our breakdown and sequential running times with GBBS since GBBS can process most of the tested graphs.

Unfortunately, we cannot find existing implementations for Tarjan-Vishkin to compare with. We are aware of two papers that implemented Tarjan-Vishkin [29, 39]. Edwards and Vishkin’s implementation [39] is on the XMT architecture and they did not release their code. Cong and Bader’s code [29] is released, but it was written in 2005 and uses some system functions that are no longer supported on our machine. For a full comparison, we implemented a faithful Tarjan-Vishkin from the original paper [65]. As engineering Tarjan-Vishkin is not the main focus of this paper, we provide the details in the full paper.

We note that both GBBS and SM’14 exclude the postprocessing to compute the actual BCCs, but only report the number of BCCs at the end of the algorithm. We include this step in FAST-BCC, although this postprocessing only takes at most 2% of the total running time in all our tests.

6.1 Overall Performance
We present the running time of all algorithms in Tab. 2. Our FAST-BCC is faster than all baselines on all graphs, mainly due to the theoretical efficiency—work- and space-efficiency enables competitive sequential times over the Hopcroft-Tarjan sequential algorithm, and polylogarithmic span ensures good speedup for all graphs.

Sequential Running Time. We first compare the sequential running time of SEQ, GBBS, and FAST-BCC. SEQ and FAST-BCC use $O(n + m)$ work. To enable parallelism, both FAST-BCC and GBBS traverse all edges multiple times (running CC twice in Steps 1 and 4, and computing low/high for the skeleton in Step 3). We describe more details about GBBS implementation in Sec. 6.2. On average, our sequential time is 2.8× slower than SEQ, but is 10% faster than GBBS.

Scalability and Parallelism. We report the scalability curves for FAST-BCC, GBBS and SM’14 on five graphs (Fig. 4). For fair comparison, the speedup numbers in Fig. 4 are normalized to the running time of SEQ. On these graphs, FAST-BCC is the only algorithm that scales to all processors. It outperforms GBBS and SM’14 on all graphs with different numbers of threads (except REC on 2 cores). We noticed that SM’14 suffers from scalability issues, and the best performance can be achieved at around 16 threads. Hence, we report SM’14’s running time for 16 and 192 threads in Tab. 2. GBBS has similar issues on a few graphs. However, as GBBS’s performance does not drop significantly as core count increases, we consistently report GBBS’s time on 192 threads in Tab. 2.

Our average self-relative speedups on both low-diameter graphs and large-diameter graphs are 36×. On large-scale low-diameter graphs with sufficient parallelism, the self-relative speedup can be up to 66×. Even on large-diameter graphs, FAST-BCC achieves up to 47× self-relative speedup. In comparison, the self-relative speedup of GBBS’s BFS-based algorithm is 29× on low-diameter graphs and 3.7× on large-diameter graphs. This makes GBBS only 11% faster than SEQ on large-diameter graphs (and can be slower on some graphs), while ours is 5.1–18.5× better. Overall, our parallel running time is 10× faster on large-diameter graphs and 1.6× faster on low-diameter graphs than GBBS. On some graphs, SM’14 achieves better performance than GBBS, but FAST-BCC is 1.7–11.1× faster than SM’14 on all the graphs.

To verify that GBBS’s performance is bottlenecked by BFS, we created k-NN graphs GL2–20 from the set of points but with different values of k. When increasing k over 5, the graphs have more edges but smaller diameters. For both FAST-BCC and SEQ, the running times increase when k grows due to more edges (and thus more work), but the trend of GBBS’s running time is decreasing. This indicates that the BFS is the dominating part of running time for GBBS, and the performance on GBBS is bottlenecked by the $O(Diam(G) \log n)$ span.

6.2 Performance Breakdown
To understand the performance gain of FAST-BCC over prior parallel BFS-based BCC algorithms, we compare our performance breakdown with GBBS in Fig. 5. We choose GBBS because it can process all graphs. Since GBBS is also in the skeleton-connectivity framework, we use the same four step names for GBBS as in FAST-BCC, but there are a few differences. (1) For First-CC, FAST-BCC generates a spanning forest while GBBS only finds all CCs. (2) For Rooting, FAST-BCC uses ETT to root the tree while GBBS applies BFS on all CCs to find the spanning trees. (3) The task for Tagging is almost the same, but GBBS computes fewer tags than FAST-BCC since it is based on BFS trees. FAST-BCC uses 1D RMQ queries that are theoretically-efficient, while GBBS uses a bottom-up traversal on the BFS tree. (4) For Last-CC, both algorithms run CC algorithms on the skeletons to find BCCs.
We first discuss the two steps First-CC and Last-CC that use connectivity. GBBS can be faster than FAST-BCC in First-CC on some graphs. The reason is that our algorithm also constructs the spanning forest in First-CC, while GBBS has to run BFS in Rooting to generate the BFS spanning forest. In Last-CC, the two algorithms achieve similar performance, and in many cases, FAST-BCC is faster. We note that the CC algorithm is independent with the BCC algorithm itself. Both the CC algorithm used in our implementation and GBBS is based on algorithms in an existing paper [32]. As mentioned, based on the results in [32], the “best” CC algorithm can be very different for different types of graphs. One can also plug in any CC algorithms to FAST-BCC or GBBS BCC algorithm to achieve better performance for specific input graphs.

In the Rooting step (generate rooted spanning trees, the red bar), FAST-BCC is significantly faster than GBBS. GBBS is based on a BFS tree, and after computing the CCs of input graph G, it has to run BFS on G again, which results in \(O(m+n)\) work and \(O(D(G)\log n)\) span. In comparison, FAST-BCC obtains the spanning trees from the First-CC step, and only uses ETT in the Rooting step with \(O(n)\) expected work and \(O(\log n)\) span whp. As shown in Fig. 5, this step for GBBS is the dominating cost for large-diameter graphs, and this is likely the case for other parallel BCC algorithms using BFS-based skeletons. FAST-BCC almost entirely saves the cost in this step (13× faster on average on large-diameter graphs). For low-diameter graphs, the two algorithms perform similarly—FAST-BCC is about 1.1× faster in this step.

In the Tagging step (the green bars), both FAST-BCC and GBBS compute the tags such as low and high. Since FAST-BCC uses an AST, the values of the arrays are computed using 1D range-minimum query (see Sec. 4.1) with \(O(\log n)\) span. GBBS computes them by a bottom-up traversal on the BFS tree, with \(O(D(G)\log n)\) span. Hence, on large-diameter graphs, GBBS also consumes much time on this step, and FAST-BCC is 1.2–830× faster than GBBS. On low-diameter graphs, GBBS also gets sufficient parallelism, and the performance for both algorithms is similar.

In summary, on all graphs, FAST-BCC is faster than GBBS mainly due to the efficiency in the Rooting and Tagging step, and the reason is that our algorithm has polylogarithmic span, while GBBS relies on the BFS spanning tree and requires \(O(D(G)\log n)\) span.

6.3 The Tarjan-Vishkin Algorithm

Although engineering Tarjan-Vishkin (TV) [65] is not the focus of this paper, for completeness, we also implemented a faithful TV algorithm. Due to space limit, we give more details and report the numbers in the full paper, and summarize our findings here. Due to space inefficiency, our TV implementation cannot run on the three largest graphs (CW, HL14, and HL12) on our machines with 1.5TB memory. We note that the smallest among them (CW) only takes about 300GB to store the graph, and our algorithm uses 572GB memory to process it. On all graphs, TV uses 1.2–10.8× more space than FAST-BCC. GBBS is about 20% more space-efficient than FAST-BCC. The reason is that they need to compute fewer number of tags than FAST-BCC.

Regarding running time, we report the running time of TV on all graphs in the full paper, and summarize the results here. Due to the cost of explicitly constructing the skeleton, TV performs slowly on small-diameter graphs, and is slower than GBBS even on k-NN graphs. On all these graphs, the speedup for TV on 96 cores over SEQ is only 1.4–3×. This is consistent with the findings in prior papers [29, 64]. TV works well on road and synthetic graphs due to small edge-to-vertex ratio, so the \(O(m)\) work and space for generating the skeleton does not dominate the running time. In this case, polylogarithmic span allows TV to perform consistently better than GBBS. TV is faster than SEQ on 96 cores on all graphs, but slower than FAST-BCC.

7 Conclusion

In this paper, we propose the FAST-BCC (Fencing on Arbitrary Spanning Tree) algorithm for parallel biconnectivity. FAST-BCC has \(O(m+n)\) expected optimal work, polylogarithmic span (high parallelism), and uses \(O(n)\) auxiliary space (space-efficient). The theoretical efficiency also enables high performance. On our machine with 96 cores and a variety of graph types, FAST-BCC outperforms all existing BCC implementations on all tested graphs.

Acknowledgement

This work is supported by NSF grants CCF-2103483 and IIS-2227669, and UCR Regents Faculty Fellowships. We thank anonymous reviewers for the useful feedbacks.
References

[29] Gaojing Cong and David Bader. 2005. An experimental study of parallel biconnected components algorithms on symmetric multiprocessors (SMPs). In IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE.

A Artifact Description

A.1 Availability
Our artifact is available on Zenodo: https://doi.org/10.5281/zenodo.7445964. Our code is also released on GitHub: https://github.com/ucrparlay/FAST-BCC. Scripts for downloading the dataset and running the code, including a README file on how to use them are given on the GitHub repo.

A.2 Requirements
- Hardware: any modern (2010+) x86-based multi-core (ideally more than 32 physical cores) Intel machines. 64GB memory is required for the basic datasets (without the three largest graphs). Running the complete dataset requires about 1.5TB main memory.
- Software: Linux machines with gcc or clang supporting C++17 features.

A.3 Getting the Artifact
Our code is also publicly available on GitHub: https://github.com/ucrparlay/FAST-BCC. Our source code can be acquired using:

```
git clone --recurse-submodules https://github.com/ucrparlay/FAST-BCC.git
```

A.4 Download the Dataset
We provide the basic datasets on our Google Drive: https://tinyurl.com/FAST-BCC-Dataset. We also provide a script to download the graphs.

```
$ cd scripts/
$ ./download_dataset.sh
```

Our complete dataset contains some large graphs, which is about 2TB data in total. Due to storage limit, we cannot provide the largest three graphs tested in the paper. They are available on Web Data Commons [54].

A.5 Running the benchmark
To run the FAST-BCC and Hopcroft-Tarjan, simply run:

```
$ cd scripts/
$ ./run_fastbcc.sh
$ ./run_fastbcc_sequential.sh
$ ./run_hopcroft_tarjan.sh
$ ./run_tarjan_vishkin.sh
```

The scripts will generate the results in CSV format in the results/ folder. The running times and the number of biconnected components are reported in these files.

A.6 Graph Formats
The application can auto-detect the format of the input graph based on the suffix of the filename. Here is a list of supported graph formats:
- .bin: The binary graph format from GBBS. It uses compressed sparse row (CSR) format and organizes as follows:
 - n: the number of vertices (64-bit variable);
 - m: the number of edges (64-bit variable);
 - size: the size of this file in bytes, which equals to 3 × 8 + (n − 1) × 8 + m × 4 (64-bit variable);
 - offset[]: offset[i] (inclusive) and offset[i+1] (exclusive) represents the range of neighbors list of the i-th vertex in the edges array (64-bit array of length n + 1);
 - edges[]: the edges list (32-bit array of length m) and edges[i] is a vertex id representing the other endpoint of an edge.
- .adj: The adjacency graph format from Problem Based Benchmark Suite (PBBS) [4].

Some graphs in binary format can be found in our Google Drive folder. See more details in Section A.4. The input graphs need to be undirected, i.e., each edge should appear twice in the input in both directions.