
PaC-trees: Supporting Parallel and Compressed
Purely-Functional Collections

Laxman Dhulipala
University of Maryland

laxman@umd.edu

Guy E. Blelloch
Carnegie Mellon University

guyb@cs.cmu.edu

Yan Gu
UC Riverside

ygu@cs.ucr.edu

Yihan Sun
UC Riverside

yihans@cs.ucr.edu

Abstract
Many modern programming languages are shifting toward
a functional style for collection interfaces such as sets, maps,
and sequences. Functional interfaces offer many advantages,
including being safe for parallelism and providing simple and
lightweight snapshots. However, existing high-performance
functional interfaces such as PAM, which are based on bal-
anced purely-functional trees, incur large space overheads
for large-scale data analysis due to storing every element in
a separate node in a tree.
This paper presents PaC-trees, a purely-functional data

structure supporting functional interfaces for sets, maps, and
sequences that provides a significant reduction in space over
existing approaches. A PaC-tree is a balanced binary search
tree which blocks the leaves and compresses the blocks us-
ing arrays. We provide novel techniques for compressing
and uncompressing the blocks which yield practical parallel
functional algorithms for a broad set of operations on PaC-
trees such as union, intersection, filter, reduction, and range
queries which are both theoretically and practically efficient.

Using PaC-trees we designed CPAM, a C++ library that im-
plements the full functionality of PAM, while offering signifi-
cant extra functionality for compression. CPAM consistently
matches or outperforms PAM on a set of microbenchmarks
on sets, maps, and sequences while using about a quarter
of the space. On applications including inverted indices, 2D
range queries, and 1D interval queries, CPAM is competitive
with or faster than PAM, while using 2.1–7.8x less space.
For static and streaming graph processing, CPAM offers 1.6x
faster batch updates while using 1.3–2.6x less space than the
state-of-the-art graph processing system Aspen.

ACM Reference Format:
Laxman Dhulipala, Guy E. Blelloch, Yan Gu, and Yihan Sun. 2022.
PaC-trees: Supporting Parallel and Compressed Purely-Functional

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’22, June 13–17, 2022, San Diego, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9265-5/22/06. . . $15.00
https://doi.org/10.1145/3519939.3523733

Collections. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation
(PLDI ’22), June 13–17, 2022, San Diego, CA, USA. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3519939.3523733

1 Introduction
Almost all modern programming languages include exten-
sive support for collections, such as sets, maps, and sequences
either as libraries or built-in data types. Support for such col-
lections has become the cornerstone of large-scale data pro-
cessing, as exemplified by systems such as Apache Spark [47].
Among the interfaces for collections, there has been a trend
towards a functional style, shying away from mutation (e.g.,
Spark is functional). Functional interfaces have several ad-
vantages over mutating ones, including being safe for paral-
lelism, allowing safe composition, permitting flexible imple-
mentations (e.g., using copies when helpful), and supporting
snapshots. Supporting snapshots is particularly useful in sce-
narios in which a stream of updates is being made to a col-
lection which is concurrently being analyzed [19, 21, 32, 35].

Recent work [45] has developed a purely functional library,
PAM, for representing sequences, ordered sets, ordered maps,
and augmented maps (defined in [45]) using balanced trees,
called P-trees. P-trees use path copying to perform updates,
supporting functional updates at a reasonably low cost (e.g.,
𝑂 (log𝑛) per point update). However they come at a cost of
high space usage—every element requires a node in the tree.
This is particularly problematic for large-scale data analysis,
since in large-systems memory is often the dominating cost.

In this paperwe presentParallel Compressed trees (PaC-
trees): a purely-functional data structure for supporting a
similar functionality as P-trees but with significant reduc-
tion in space—up to an order of magnitude (see Fig. 1). Our
approach is based on blocking the leaves and compressing
the blocks using arrays (see Fig. 4). We present innovative
techniques for compressing and uncompressing the blocks
without needing to re-implement the full functionality of
P-trees. Importantly, in the paper we analyze the cost of all
the operations as a function of the block size 𝐵 as well as the
collection size. This is analyzed both in terms of the work
(runtime sequentially) and span (longest dependent path in
parallel). The costs for a sample of the supported functions
are given in Table 1. These costs can help the user decide
on a block size for their particular application—a parameter
that can be specified when creating a collection.

https://doi.org/10.1145/3519939.3523733
https://doi.org/10.1145/3519939.3523733

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Laxman Dhulipala, Guy E. Blelloch, Yan Gu, and Yihan Sun

Interval tree Range tree Wikipedia Friendster Twitter
0

2

4

6

8

10

12

14

16

S
iz

e
R

el
at

iv
e

to
S

m
al

le
st

0.
81

21

40
.3

3 8.
30

6

15
.4

3

10
.3

4

4.
08

3

14
.6

7.
59

8

3.
54

8

89
.6

9

31
.9

9

11
0.

6

73
.5

4

18
.5

3

9.
03

4

10
.7

4.
87

1

PaC-tree (CPAM)

PaC-tree-diff (CPAM)

P-tree (PAM)

Aspen

GBBS

Figure 1. Relative sizes of the interval tree, range tree, inverted in-
dex (Wikipedia corpus), and graph representations (Twitter, Friend-
ster) studied in this paper using PaC-trees from CPAM (using
𝐵 = 128) and other systems. Lower is better. The numbers shown
on top of the bars are the sizes of each representation in GiB. PaC-
tree-diff compresses integer keys using difference encoding. The
C-trees from Aspen [21] also support difference encoding. GBBS is
the static compressed graph representation from the Graph Based
Benchmark Suite [22] which uses difference encoding, and serves
as a baseline for the tree-based graph representations.

Primitive Work Span

Se
qu

en
ce

Build 𝑂 (𝑛) 𝑂 (log𝑛)
Map 𝑂 (𝑛) 𝑂 (log𝑛)
Filter 𝑂 (𝑛) 𝑂 (log𝑛)
Reduce 𝑂 (𝑛) 𝑂 (log𝑛)
Take 𝑂 (log𝑛 + 𝐵) 𝑂 (log𝑛)
𝑛-th 𝑂 (log𝑛 + 𝐵) 𝑂 (log𝑛)
FindFirst 𝑂 (𝑘) 𝑂 (log𝑛)
Append† 𝑂 (log𝑛 + 𝐵) 𝑂 (log𝑛)
Reverse† 𝑂 (𝑛) 𝑂 (log𝑛)

Se
ta

nd
M
ap

Build 𝑂 (𝑛 log𝑛) 𝑂 (log𝑛)
Next/Previous 𝑂 (log𝑛 + 𝐵) 𝑂 (log𝑛)
Rank 𝑂 (log𝑛 + 𝐵) 𝑂 (log𝑛)
Range 𝑂 (log𝑛 + 𝐵) 𝑂 (log𝑛)
Insert 𝑂 (log𝑛 + 𝐵) 𝑂 (log𝑛)
Union 𝑂 (𝑚 log 𝑛

𝑚
+min(𝑚𝐵,𝑛)) 𝑂 (log𝑛 log𝑚)

Intersect 𝑂 (𝑚 log 𝑛
𝑚

+min(𝑚𝐵,𝑛)) 𝑂 (log𝑛 log𝑚)
Difference 𝑂 (𝑚 log 𝑛

𝑚
+min(𝑚𝐵,𝑛)) 𝑂 (log𝑛 log𝑚)

Table 1. Primitives from the Sequence, Set, and Map inter-
faces in CPAM, including the work and span bounds. Note
that primitives marked with † are specific to Sequences, and Set
and Map primitives cannot be applied to Sequences.𝑚,𝑛 are de-
fined to be the size of the smaller and larger sets, respectively. 𝐵 is
the block size (the size of a blocked leaf in a PaC-tree). We assume
a parallelizable encoding for the span bounds.

Using PaC-trees we have implemented CPAM: a C++ li-
brary which implements the full functionality of PAM, along
with significant extra functionality involving compression.
By default CPAM supports difference (or delta) encoding [36]
within the blocked leaves. In such an encoding, each element
is encoded based on the value of the previous element in
the collection. This can greatly reduce space when elements
that are close in the ordering of the collection are related.

reduce filter is sorted reverse find select subseq append
0

5

10

15

20

25

30

35

40

R
el

at
iv

e
P

er
fo

rm
an

ce

8
.6

5

1
5
.4

8.
87

1
9
.9

9
.9

1

8
.7

86
e−

4

0
.0

10
1

0.
01

11

2
5
.5

4
4
.1

2
4.

4

6
2
.8 39

.9

1.
47

5
e−

3

8
.3

82
e−

3

0
.0

10
7

7
.3

7
5
.2

7
.0

1

1
1
.5

4
.2

1

5
.4

31
e−

5

0
.2

94CPAM

PAM

ParallelSTL

Figure 2. Relative performance of sequence primitives in CPAM
(using 𝐵 = 128), PAM, and ParallelSTL [29] on a 72-core machine
with 2-way hyper-threading enabled. The numbers shown on top of
the bars are the parallel (144-thread) running times in milliseconds.
Lower is better. All benchmarks are run on sequences of length
108 containing 8-byte elements. For append, ParallelSTL takes
17.7 milliseconds on average (1594x larger than append in CPAM).
CPAM and PAM represent sequences using purely-functional trees,
whereas ParallelSTL uses arrays (hence static).

For example, if a graph is numbered so that neighboring ver-
tices have similar indices, then the neighbors in a neighbor
list will have small differences. These small numbers can
then be encoded in a handful of bits each [42]. Similarly in
an inverted index where each word points to a sequence of
documents it appears in, if the documents are sorted, the dif-
ferences between adjacent document identifiers can be small.
This is especially true for common words, which take up
the bulk of the space. In the paper we bound the extra space
needed (due to the index using the tree structure) for PaC-
trees compared to a static representation of the data (i.e., an
array) directly using difference encoding (see Theorem 4.2).
In our default blocked representation, the first element

of a block is represented uncompressed, and the rest of the
elements are compressed relative to the previous element. In
addition to delta-encoding, CPAM also supplies an interface
for the user to define their own form of compression for
each block. For example, they can quantize values, or use
other variable length codes when keys are known to be small.
CPAM uses a reference counting garbage collector to manage
the memory for both the internal nodes and the compressed
leaf nodes, which can be of variable size due to compression.
CPAM supports augmentation in which each tree node

maintains an aggregate of the values of its subtree (see more
details in Section 3). The aggregation function is declared as
part of the type of the tree. Augmentation is useful in many
applications, and indeed we use it in all of the applications
we describe later. PaC-trees store an augmented value per
internal node, and one for each block at the leaves. Storing
one value per block significantly reduces space relative to
P-trees in PAM, which store a value for every element.
To demonstrate the effectiveness of PaC-trees, and their

implementation in CPAM, we measure performance and
space usage on (1) a collection of microbenchmarks that
directly use some of the functions supported by the library,
and (2) a handful of real-world applications.

PaC-trees: Supporting Parallel and Compressed Purely-Functional Collections PLDI ’22, June 13–17, 2022, San Diego, CA, USA

For the microbenchmarks, we compare the performance of
CPAM to PAM, and for sequences to the Intel implementation
of the C++17 parallel STL library [29] (ParallelSTL). Parallel-
STL is a highly optimized library supporting only sequences
based on arrays. A summary of the results for sequences is
given Fig. 2, and details including performance of ordered
maps, and augmented maps are given in Section 9. Compared
to PAM, CPAM achieves significantly better performance due
to the reduced memory footprint, and hence reduced number
of cache misses, while only requiring about 1/4-th as much
space even without compression. Compared to ParallelSTL,
CPAM has similar performance on operations that visit the
whole sequence, like reduce, but is significantly slower on
nth since it requires 𝑂 (log𝑛 + 𝐵) work as opposed to 𝑂 (1)
for a random array access for ParallelSTL. On append CPAM
is significantly faster since it requires 𝑂 (log𝑛 + 𝐵) work to
join two trees instead of 𝑂 (𝑛) required by ParallelSTL to
copy the input arrays into the output array.
We consider four applications: graphs, inverted indices,

2D range queries and 1D interval queries. For inverted in-
dices, 2D range query and 1D interval query, CPAM achieves
competitive performance to PAM while using 2.1x–7.8x less
space. For graph processing, we compare to an existing sys-
tem Aspen [21] that represents graphs using trees. CPAM
uses 1.3–2.6x less space compared to Aspen, and is almost
always faster than Aspen in all tested graph algorithms.

The main contributions of this paper are:
• A new functional data structure, PaC-trees, and associ-
ated parallel algorithms that support compression for se-
quences, sets, maps and augmented maps.

• Theoretical bounds on the costs (work and span) and the
space of the data structure and associated algorithms.

• An implementation of PaC-trees as a library, CPAM, sup-
porting the full functionality of PAM in addition to sup-
porting default and user defined compression schemes.1

• An experimental evaluation of the ideas and implementa-
tion on microbenchmarks and non-trivial applications.

2 Related Work
Our work extends P-trees and their C++ implementation in
PAM [45]. Our key contribution is the ability to compress
the trees achieving up to an order-of-magnitude reduction
in space. This is achieved while being able to present cost
bounds both in terms of time and space. These bounds are a
function of a block size the user can select.

B-trees [6] and their variants block not just the leaves but
all nodes of a tree, such that internal nodes can have a high
fan-out. They are widely used in practice, especially for disk
based data structures since nodes are on the scale of a page
on disk and can be retrieved efficiently. However they are
less relevant in the context of purely functional in-memory
trees. In particular, path copying requires that an update

1We have made CPAM publicly available: https://github.com/ParAlg/CPAM.

copy all nodes on the path from the root to the leaf. If the
nodes are large (e.g. 128+ elements each, as in our leaves)
this copying would be very expensive both in terms of space
and time. Various work has suggested blocking the leaves
of a binary tree to represent sequences [1, 8, 15, 26, 33]. The
idea is to reduce the cost of operations such as append or
subsequence relative to array representations. As far as we
know, these ideas have never been applied to ordered sets
or ordered maps.2 We also do not know of work that then
compresses within the blocks.
Aspen [21] is a system for graph processing, based on

purely functional trees and uses compression for the neigh-
bor lists. At a high-level, our goals are shared with Aspen
(e.g., non-mutating updates), but Aspen has several limita-
tions. Importantly it is only designed for graphs, supporting
only a small part of the functionality of CPAM. The tree
representation in Aspen is also very different. It randomly
selects elements from the collection to be heads. It then at-
taches a block of nodes to each head corresponding to the
keys between the head and the next head, and puts the heads
into a binary tree. PaC-trees do not require randomization,
and have stronger theoretical bounds for primitive opera-
tions such as union than the bounds provided by C-trees in
Aspen. We use CPAM to implement the full functionality of
Aspen and compare to Aspen in Section 9.4.

Fig. 3 compares P-trees from PAM, functional B-trees, C-
trees from Aspen, and PaC-trees. The comparison illustrates
how they differ when inserting a new key.
Like CPAM, the Apache Spark [47] system supports a

functional interface for collections. However it has several
significant differences. First, it only supports unordered sets.
Second, although it has a shared-memory parallel implemen-
tation, it is primarily designed for a distributed setting. This
means its shared-memory implementation is not ideal.3

There is extensive research on concurrent tree data struc-
tures [3, 4, 16, 18, 24, 34, 37]. This work is mostly orthogonal
to our work. Such trees support a fraction of the functional-
ity of CPAM, typically just supporting linearizable inserts,
deletes, updates and finds. Some recent works support range
queries [5, 25], or arbitrary queries on a snapshot [46]. On
the other hand concurrent trees support asynchronous up-
dates, which PaC-trees do not—such updates are inherently
non-functional. To support multiple concurrent updates,
PaC-trees would require batching the update and applying
them as a batch in parallel (fairly comparing concurrent and
batched structures like PaC-tree seems challenging for this
reason). We expect the use cases would be quite different.

2We note that the design of the chunked sequence datatype [1] could in
principle be extended to support sets, maps, and augmented maps, although
the implementation is specialized for ephemeral sequences.
3Their shared-memory implementation is between 3.2–4.9x slower than
CPAM for a map, reduce, and group-by style example taken from their user
guide. For primitives such as map and reduce, their implementation per-
forms up to 2 orders of magnitude worse than CPAM (see the full version).

https://github.com/ParAlg/CPAM

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Laxman Dhulipala, Guy E. Blelloch, Yan Gu, and Yihan Sun

3

1

0 2

7

5 9

4 6

0 1

prefix
4

2 7

5

3 9

tree

3

6

4 5 7 9

0 1 2

P-tree in PAM (regular BST)

C-tree in Aspen (Compressing nodes in BST)

2 5

0 1 3 4 7 96
B-tree (multi-way search tree)

PaC-tree (Compressing leaves in BST)

3’

7’

9’

8

2’ 5’

8 9’7’6’

4’

7’ 8 9’

3’

6

7’ 8 9’

Nodes copied:
𝑂(log 𝑛)

Nodes copied:
𝑂(𝐵 log𝐵 𝑛)

Nodes copied:
𝑂(𝐵 + log𝑛/𝐵)
(in expectation)

Nodes copied:
𝑂(𝐵 + log𝑛/𝐵)

(a)

(b)

(c)

(d)

6’

Figure 3. An illustration of (a) P-tree in PAM [11, 45] (regular
BST), (b) B-tree (multi-way search tree), (c) C-tree [21] in Aspen
(compressing all nodes in a BST) and (d) our PaC-tree (compressing
all leaves in a BST) in CPAM. The orange nodes show a tree with
keys 0-7 and 9. We then consider inserting a key 8. Blue nodes are
what we need to create (copy or new) due to path-copying. Round
nodes are tree nodes each storing a single key, and square nodes
are organized in blocks of size 𝑂 (𝐵) (expected for C-trees). Letting
𝑛 be the tree size, an insertion needs to copy 𝑂 (log𝑛) nodes in
P-tree, 𝑂 (𝐵 log𝐵 𝑛) in B-tree, and 𝑂 (𝐵 + log(𝑛/𝐵)) in C-tree (in
expectation) on a PaC-tree.

Blandford and Blelloch developed tree structures for or-
dered sets that support compression [9]. They present space
bounds that are similar to ours, in terms of relating the space
of a difference encoded sequence to the space of the data
structure. However they support a small fraction of the func-
tionality described in our work.
Functional trees using path-copying date back to at least

the early 1990s [2], and in the sequential setting have been
studied by Kaplan and Tarjan [31] and Okasaki [40].

3 Preliminaries

Binary search trees. A binary search tree (BST) is either an
empty node, denoted as nil, or a node consisting of a left BST
𝑇𝐿 , a key 𝑘 (or with an associated value), and a right BST 𝑇𝑅 ,
denoted node(𝑇𝐿, 𝑘,𝑇𝑅), where 𝑘 is larger than all keys in𝑇𝐿
and smaller than all keys in 𝑇𝑅 . We use lc(𝑇) and rc(𝑇) to
extract the left and right subtrees of 𝑇 , respectively, and use
𝑘 (𝑇) to denote the key stored at 𝑇 ’s root. The size of a BST
𝑇 , or |𝑇 |, is the number of nodes in𝑇 . The weight of a BST𝑇 ,
or𝑤 (𝑇), is 1+ |𝑇 |. The height of a BST𝑇 , or ℎ(𝑇), is 0 for nil,
and max(ℎ(lc(𝑇)), ℎ(rc(𝑇))) + 1 otherwise. A tree node is a

leaf if it has no children, and a regular node otherwise. The
left (right) spine of a binary tree is the path of nodes from
the root to a nil node, always following the left (right) tree.

A weight-balanced tree, or BB[𝛼] trees [39] is a BST where
for every 𝑇 = node(𝑇𝐿, 𝑣,𝑇𝑅), 𝛼 ≤ 𝑤 (𝑇𝐿)

𝑤 (𝑇) ≤ 1 − 𝛼 . We omit
the parameter 𝛼 with clear context. A weight-balanced tree
𝑇 has height at most log 1

1−𝛼
𝑤 (𝑇).

Parallelism. Our implementation of PaC-trees is based on
nested fork-join parallelism [20, 27, 30]. We analyze our al-
gorithms use work-span model based on binary-forking [12].
The work𝑊 of a parallel algorithm is the total number of
operations, while the span is the critical path length of its
computational DAG. We use 𝑠1 | | 𝑠2 to indicate that state-
ments 𝑠1 and 𝑠2 can run in parallel. Almost all algorithms use
divide-and-conquer to enable parallelism. Any computation
with𝑊 work and 𝑆 span will run in time 𝑇 < 𝑊

𝑃
+ 𝑆 on 𝑃

processors assuming shared memory and a greedy scheduler
[14, 17]. We use log𝑛 to denote log2 (𝑛+1) in the cost bounds.
Encoding schemes.We use Difference Encoding (DE) to
encode integer keys. Given a sorted set of keys, 𝐾 , the differ-
ence encoding scheme stores the differences between con-
secutive keys using an integer code, such as byte or 𝛾 codes.
We only consider byte codes in this paper since they are
cheap to encode and decode and do not waste much space
compared to using 𝛾 codes [42].
Functional data structures. PaC-trees are purely func-
tional data structures. In functional data structures values
are immutable, so updates must be made by copying parts
of the structure. For search trees, only the path to the up-
date location needs to be copied. Hence for balanced trees
of size 𝑛, single point updates such as inserts and deletes
involve copying 𝑂 (log𝑛) nodes (Fig. 3(a)). This also applies
to multi-point updates. For example, if a filter ends up
removing a single element, only 𝑂 (log𝑛) nodes need to be
copied. Functional trees can also easily support multiversion-
ing with low time and space overhead [7, 44]. Because the
data are immutable, any operation accesses the tree in an
isolated version. Updates can be applied in batches in parallel
and yield a new version. This enables all read-only queries to
be performed at the same time without being affected by on-
going (concurrent) updates. In addition to multiversioning,
functional data structures also allow for multiple histories.
Join-based algorithms. PaC-trees are implemented using
the join-based approach [11, 13, 28, 43–45] first implemented
in PAM [45]. In the framework, a variety of tree algorithms
are implemented based on two primitives, join and expose.4
Given a balancing scheme S, the join(𝑇𝐿, 𝑒,𝑇𝑅) function re-
turns a balanced tree 𝑇 satisfying S which has the same
in-order values as node(𝑇𝐿, 𝑒,𝑇𝑅). In other words, it concate-
nates𝑇𝐿 and𝑇𝑅 by an entry 𝑒 in the middle while preserving

4PAM did not explicitly use expose as a primitive, but only conceptually
treated it as a primitive.

PaC-trees: Supporting Parallel and Compressed Purely-Functional Collections PLDI ’22, June 13–17, 2022, San Diego, CA, USA

the balancing invariants (see Fig. 7 as an example of joining
two PaC-trees). The expose(𝑇𝐿) function returns a triple
(𝑇𝐿, 𝑒,𝑇𝑅), where 𝑒 ∈ 𝑇 is an entry, 𝑇𝐿 and 𝑇𝑅 are two bi-
nary trees such that both 𝑇𝐿 and 𝑇𝑅 satisfy S, are balanced
with each other under S, and 𝑇𝐿 (𝑇𝑅) contains all keys in
𝑇 that go before (after) 𝑒 in 𝑇 ’s in-order value. It has been
shown that on weight-balance trees with 𝛼 ≤ 1 − 1/

√
2, a

join operation can be done in 𝑂
(
log 𝑛

𝑚

)
work [11], where

𝑛 = max(|𝑇𝐿 |, |𝑇𝑅 |) and𝑚 = min(|𝑇𝐿 |, |𝑇𝑅 |).
Based on join and expose, many parallel tree algorithms

can be expressed in a simple and elegant recursive style (see
Fig. 5 and Fig. 6 for examples). We adopt the join-based ap-
proach in our implementation, and in particular carefully de-
signed join and expose functions for PaC-trees. This greatly
simplifies the implementation and correctness arguments of
our algorithms. We give more details in Sections 5 and 6.
Augmentation. An augmented tree is a search tree where
each nodemaintains an aggregated value (called augmented
values) of all entries in its subtree. Typical examples would
be a weighted sum, minimum or maximum of values, where
we can obtain the augmented value in a node by combining
augmented values of the children and itself. This generalizes
to all associative operations. PaC-trees support generic user-
defined augmentation for any associative operations. An
example of PaC-tree with augmentation is shown in Fig. 4.

4 PaC-Trees
In this paper, we propose PaC-trees to support purely func-
tional collections, which support parallelism, determinism,
compression, augmentation, strong theoretical bounds, and
multi-versioning. PaC-trees are purely functional. The base
data structure of a PaC-tree is a weight-balanced BST. The
internal nodes remain binary so they are cheap to copy. The
leaves in a PaC-tree are organized in blocks of size 𝐵 to 2𝐵
for some parameter 𝐵. An illustration is shown in Fig. 3. If
the blocks grow too large, they are split, and if they become
too small they are merged with a neighboring node.

Definition 4.1 (PaC-tree). A PaC-tree PaC (𝛼, 𝐵, C), param-
eterized by the balancing factor 𝛼 , block size 𝐵, and encoding
scheme C satisfies the following invariants:
• (Weight Balance) For any tree node 𝑣 ∈ 𝑇 , 𝛼 ≤ 𝑤 (𝑣∗)

𝑤 (𝑣) ≤
1−𝛼 , where 𝛼 ≤ 1− 1√

2
is a constant, and 𝑣∗ is either lc(𝑣)

or rc(𝑣). Unless mentioned otherwise, we use 𝛼 = 0.29.
• (Blocked Leaves) If |𝑇 | ≥ 𝐵, each leaf 𝑢 ∈ 𝑇 maintains 𝐵
to 2𝐵 entries in an array (called a block) using the encoding
scheme C. Unless mentioned otherwise, we assume C
is empty, which means the entries are blocked without
additional compression of the entries.

When the context is clear, we omit 𝛼 , 𝐵 and C in the
definition and simply call it a PaC-tree. We call a leaf node
containing multiple entries in a PaC-tree a flat node, and
a node containing a single entry a regular node. We say a

4 5 7 8

0 1 2

9

10 11 13 15

3 12

6 14

6

9

1

0 2

4

5

7

8

14

13 1511

10

𝐵 = 2, 𝛼 = 0.29

𝑇 =

Expanded version of 𝑇

aug = 120

aug = 36

aug = 3

aug = 9 aug = 15

aug = 30

aug = 21 aug = 42

aug = 75

3 12

Figure 4. (a). An illustration of a PaC-tree with keys {0, 1, . . . , 15},
and augmentation as sum of keys. All nodes are weight-balanced.
All leaves are blocked as arrays of size 𝐵 to 2𝐵. (b) The expanded
version of the PaC-tree in (a).

PaC-tree (or a subtree) 𝑇 is a simplex tree if |𝑇 | < 𝐵, and
thus 𝑇 only contains regular nodes. We say a PaC-tree (or
a subtree) 𝑇 is a complex tree if 𝑇 contains both regular
nodes and flat nodes. We define the expanded version of
a PaC-tree 𝑇 (or a flat node 𝑣) to be a regular binary tree
(without flat nodes), where all flat nodes in𝑇 (or 𝑣 itself) are
fully expanded as perfectly-balanced binary trees. In Fig. 4,
we show an example of an expanded tree.

We now present the space bound of a PaC-tree. For integer
keys, we can use difference encoding to bound the space.

Theorem 4.2. The total space of a PaC-tree PaC(𝛼, 𝐵, C𝐷𝐸)
maintaining a set 𝐸 of integer keys is 𝑠 (𝐸) + 𝑂 (|𝐸 |/𝐵 + 𝐵),
where C𝐷𝐸 is difference encoding, and 𝑠 (𝐸) is the size needed
for 𝐸 using difference encoding.

Proof. The space needed for a PaC-tree includes the regular
nodes and the leaf nodes. First of all, when |𝐸 | < 𝐵, all entries
are maintained in a simplex tree, taking 𝑂 (𝐵) space. When
|𝐸 | ≥ 𝐵, there are 𝑂 (|𝐸 |/𝐵) regular nodes, each taking 𝑂 (1)
space for meta-data (pointers, size, etc.). The total space
used by regular nodes is 𝑂 (|𝐸 |/𝐵). All the leaf nodes are
organized in blocks. Let𝐴 be an array that stores all keys in 𝐸
using difference encoding. Comparing the total size of all the
blocks and𝐴, the only extra space is the first element of each
block (which cannot be compressed). There are 𝑂 (|𝐸 |/𝐵)
such blocks, and thus the extra space used is 𝑂 (|𝐸 |/𝐵). □

We note that this bound is deterministic, as opposed to
the bound for C-trees (which only holds in expectation).
Furthermore, using known facts about difference encoding
yields the following result, showing that PaC-trees yield a
compact parallel representation of ordered sets [9].

Corollary 4.3. Given any set from𝑈 = {0, . . . ,𝑚 − 1} with
|𝑆 | = 𝑛, the total space of a PaC-tree PaC(𝛼, 𝐵, C𝐷𝐸) maintain-
ing 𝑆 is 𝑂 (𝑛 log 𝑛+𝑚

𝑛
) bits for 𝐵 = Ω(log𝑛).

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Laxman Dhulipala, Guy E. Blelloch, Yan Gu, and Yihan Sun

5 Algorithms
We now describe join-based algorithms on PaC-trees. To

enable a general ordered map interface, we implement PaC-
trees based on the PAM interface. PAM supports dozens of
operations on sequences, sets, maps, and augmented maps,
and it would require significant work to re-implement them
all. Instead, we carefully redesigned join and expose such
that all the other algorithms can remain the same as in PAM.
In particular, none of the other algorithms have to deal with
the blocked leaves or compression, which greatly simplifies
the algorithm design and correctness arguments. We found
that the overhead of this approach is not large, but for many
frequently-used operations, we design special base cases
for dealing with compressed nodes. These base cases can
improve the performance by up to 6x (see Section 7). Some
of the theoretical results also require special base cases (see
??).
At a high-level, when exposing a flat node, the node is

automatically expanded (using unfold), and similarly when
join obtains a complex tree of size 𝐵 to 2𝐵, it is flattened
(fold). An illustration of unfold and fold is shown in Fig. 7.
We start with the join and expose algorithms. We then
present the union algorithm as an example to illustrate join-
based algorithms, and give the code for other functions in
Fig. 6 and the full version of this paper. We focus on union
as it is the core sub-routine used in applications such as
inserting or deleting batches of vertices and edges in graphs,
combining inner trees when constructing range trees, and
updating sets of documents in an inverted index, among
others.

Expose. This function returns the left subtree, root data and
the right subtree of a node𝑇 . For a regular node, this function
just reads the child pointers and the root. For a flat node, this
function first unfolds the tree into a perfectly balanced tree
and then reads the corresponding data.

Join. Recall that the join function takes two trees𝑇𝐿 and𝑇𝑅 ,
and a key 𝑘 (or a key-value) as input, and returns a balanced
tree concatenating entries in𝑇𝐿 , 𝑘 and𝑇𝑅 in order (see Fig. 7).
In other words, when trees are used for ordered sets or maps,
𝑘 should be larger than all keys in 𝑇𝐿 and smaller than all
keys in 𝑇𝑅 . Pseudocode for join is shown in Fig. 5.
The algorithm first compares the weights of 𝑇𝐿 and 𝑇𝑅 .

When balanced, they are directly connected by 𝑘 . The other
two cases are symmetric so WLOG we assume |𝑇𝐿 | > |𝑇𝑅 |.
In this case, the algorithm must attach 𝑇𝑅 in the right spine
of 𝑇𝐿 , which will be handled by join_right(𝑇𝐿, 𝑘,𝑇𝑅). This
algorithm first checks if𝑇𝐿 and𝑇𝑅 are balanced and connects
them if so. Otherwise, it recursively calls join_right on
rc(𝑇𝐿) and𝑇𝑅 , getting𝑇 ′. If we re-attach𝑇 ′ as𝑇𝐿’s right child,
we will get a “correct” output tree (modulo balance). We then
use a single or double rotation to rebalance if necessary. It is
known that either a single or double rotation can rebalance a

weight-balanced tree in this situation [11]. This guarantees
the weight balance invariant of PaC-trees.

To also guarantee the blocked leaves invariant, we add two
conditions when calling node to create a new node with its
left and right subtrees. Whenever a node with size 𝐵 to 2𝐵 is
created, we fold the tree into a flat node. Whenever a node
with size 2𝐵 to 4𝐵 is created, we extract the median of the
tree as the root to re-distribute its two subtrees, such that
both subtrees are flat nodes with (almost) the same size.

Lemma 5.1. The join function maintains the invariants of
PaC-trees.

Split. For a PaC-tree 𝑇 and key 𝑘 , split(𝑇, 𝑘) returns a
triple (𝑇𝐿, 𝑏,𝑇𝑅), where 𝑇𝐿 (𝑇𝑅) is a tree containing all keys
in 𝑇 that are less (greater) than 𝑘 , and 𝑏 the entry of key 𝑘
if 𝑘 ∈ 𝑇 (see Fig. 7). We first use expose(𝑇) to get its left
(right) subtrees lc(𝑇) (rc(𝑇)) and root key 𝑘 (𝑇), and compare
𝑘 with 𝑘 (𝑇). If 𝑘 = 𝑘 (𝑇), we simply return (lc(𝑇), 𝑘, rc(𝑇)).
Otherwise WLOG we assume 𝑘 is smaller. In that case, the
entire right subtree rc(𝑇) and the root 𝑘 (𝑇) belong to 𝑇𝑅 .
We then split lc(𝑇) by 𝑘 , getting (𝐿𝐿, 𝑏, 𝐿𝑅). By definition, all
keys smaller than 𝑘 should be in 𝐿𝐿 , and all keys larger than
𝑘 can be obtained by join(𝐿𝑅, 𝑘 (𝑇), rc(𝑇)).
Union. Using join and split, we can implement set algo-
rithms on two PaC-trees, such as union, intersection and
difference. We describe union as an example (the other
two are similar). This algorithm uses divide-and-conquer. At
each level of recursion, 𝑇1 is split by the root of 𝑇2, breaking
𝑇1 into two subsets with all keys smaller (larger) than 𝑘 (𝑇2),
denoted as 𝐿1 (𝑅1). Then two recursive calls to union are
made in parallel. One unions 𝐿(𝑇2) with 𝐿1 (all keys smaller
than 𝑘 (𝑇2)), returning 𝑇𝐿 , and the other one unions 𝑅(𝑇2)
with 𝑅1 (all keys larger than 𝑘 (𝑇2)), returning 𝑇𝑅 . Finally the
algorithm combines the results with join(𝑇𝐿, 𝑘 (𝑇2),𝑇𝑅).
Other algorithms.We show the pseudocode of other par-
allel algorithms in Fig. 6 and more in the full version of the
paper. We omit the details as they are self-explanatory and
all of them are exactly the same as in PAM, just by plugging
in the new version of join and expose functions for PaC-
tree. Almost all of them use divide-and-conquer to enable
parallelism. We refer the reader to [45] for more details.

Importantly, all of our PaC-tree algorithms are theoreti-
cally efficient. We present the work-span bound in Table 1
and give a proof for union as an example in Section 6. Note
that Lemma 5.1 ensures the correctness of the other algo-
rithms, as their return values are always obtained by a join.

Theorem 5.2. All join-based algorithms on PaC-tree main-
tains the invariants of PaC-trees.

6 Theoretical Guarantees
In the following section we show work and span bounds for
operations on PaC-trees. We assume the encoding scheme

PaC-trees: Supporting Parallel and Compressed Purely-Functional Collections PLDI ’22, June 13–17, 2022, San Diego, CA, USA

1 fold(𝑇) {

2 flatten 𝑇 into array 𝐴

3 (encoding if needed)

4 return A; }

5 unfold(𝐴) {

6 /∗ return a perfectly balanced tree
7 from sorted array A ∗/ }

8 expose(𝑇) {

9 if (isflat(𝑇)) {

10 𝑇 ′ = unfold(𝑇);

11 return (lc(𝑇 ′), 𝑘 (𝑇 ′), rc(𝑇 ′)); }

12 else return (lc(𝑇), 𝑘 (𝑇), rc(𝑇));}
13 join(𝑇𝐿, 𝑘,𝑇𝑅) {

14 if (heavy(𝑇𝐿,𝑇𝑅))

15 return join_right(𝑇𝐿, 𝑘,𝑇𝑅);
16 if (heavy(𝑇𝑅,𝑇𝐿))

17 return join_left(𝑇𝐿, 𝑘,𝑇𝑅);
18 return node(𝑇𝐿, 𝑘,𝑇𝑅); }

19 /∗ join_left is symmetric ∗/
20 join_right(𝑇𝐿, 𝑘,𝑇𝑅) {

21 (𝑙, 𝑘 ′, 𝑐)=expose(𝑇𝐿);
22 if (balance(|𝑇𝐿 |, |𝑇𝑅 |)
23 return node(𝑇𝐿, 𝑘,𝑇𝑅));
24 𝑇 ′ = join_right(𝑐, 𝑘,𝑇𝑅);
25 (𝑙1, 𝑘1, 𝑟1) = expose(𝑇 ′);
26 if (balance(|𝑙 |, |𝑇 ′ |))
27 return node(𝑙, 𝑘 ′,𝑇 ′);
28 if ((balanced(|𝑙 |, |𝑙1 |)) and
29 (balanced(|𝑙 | + |𝑙1 |, 𝑟1)))
30 return rotateleft(node(𝑙, 𝑘 ′,𝑇 ′));
31 else return rotateleft(node(𝑙, 𝑘 ′,
32 rotateright(𝑇 ′))); }

33 join2(𝑇𝐿,𝑇𝑅) {

34 if (𝑇𝐿 = nil) return 𝑇𝑅;

35 (𝑇 ′
𝐿
,𝑚, _) = split(𝑇𝐿,last(𝑇𝐿));

36 return join(𝑇 ′
𝐿
,𝑚,𝑇𝑅); }

37 node(𝑙, 𝑘, 𝑟) {

38 /∗ create node 𝑥 with left subtree 𝑙 ,
39 root key 𝑘 and right subtree 𝑟 ∗/
40 if (|𝑥 | > 4𝐵) return 𝑥;

41 if (𝐵 ≤ |𝑥 | ≤ 2𝐵) return fold(𝑥);
42 else { // 2𝐵 < |𝑥 | ≤ 4𝐵
43 /∗ redistribute 𝑥 's both subtrees to
44 be flat nodes with |𝑥 |/2 entries ∗/
45 return 𝑥;}}

46 split(𝑇, 𝑘) {

47 if (|𝑇 | = 0) return (nil,nil,nil);
48 (𝐿,𝑚, 𝑅) = expose(𝑇);
49 if (𝑘 == 𝑘 (𝑚)) return (𝐿,m,𝑅);

50 if (𝑘 < 𝑘 (𝑚)) {

51 (𝐿𝐿, 𝑏, 𝐿𝑅) = split(𝐿, 𝑘);
52 return (𝐿𝐿, 𝑏, join(𝐿𝑅,𝑚, 𝑅));
53 } else {

54 (𝑅𝐿, 𝑏, 𝑅𝑅) = split(𝑅, 𝑘);
55 return (join(𝐿,𝑚, 𝑅𝐿), 𝑏, 𝑅𝑅); } }

Figure 5. Primitives on PaC-trees. All codes are functional (e.g. rotates copy nodes).

1 from_sorted(A,n) {

2 if (𝑛 = 0) return nil;
3 if (𝑛 = 1) return node(nil,A[0],nil);
4 𝐿 = from_sorted(A,n/2) ||

5 𝑅 = from_sorted(A+n/2,n-n/2);

6 return node(L,A[n/2],R); }

7 build(A,n) {

8 parallel_sort(A,n);

9 return from_sorted(A,n); }

10 union(𝑇1,𝑇2) {

11 if (𝑇1 == nil) return 𝑇2;
12 if (𝑇2 == nil) return 𝑇1;
13 (𝐿2,𝑘2,𝑅2) = expose(𝑇2);
14 (𝐿1,𝑏,𝑅1) = split(𝑇1,𝑘2);
15 𝑇𝐿 = union(𝐿1,𝐿2) ||

16 𝑇𝑅 = union(𝑅1,𝑅2);
17 return join(𝑇𝐿,𝑘2,𝑇𝑅); }

18 // keep a key in 𝑇 only when it satisfies 𝑓
19 filter(𝑇,𝑓) {

20 if (𝑇 == nil) return nil;
21 (𝐿,𝑘,𝑅) = expose(𝑇);
22 𝑇𝐿 = filter(𝐿,𝑓) ||

23 𝑇𝑅 = filter(𝑅,𝑓);

24 if (𝑓 (𝑘))
25 return join(𝑇𝐿,𝑘,𝑇𝑅);

26 else return join2(𝑇𝐿,𝑇𝑅); }

Figure 6. Examples of parallel algorithms on PaC-trees. “||” indicates calls that are made in parallel.

3

4 5 60 1 2

8

9 10 11 12 8, , 0 1 2 3 4

21

0

4

3

, ,(a) (b)
1

0 2

3
4 0 1 2 3 4

(d)
3

4 5 60 1 2

9 10 11 12⇒
expose

⇐
node

⇒
fold

⇐
unfold

⇒
expose

⇐
node

3

6

4 5 7 8

0 1 2

9
12

10 11 13 14
⇒
join

⇐
split(15)

16 17 19 20

18
15

3

6

4 5 7 8

0 1 2

9

10 11 13 14

12

16 17 19 20

15

6

4 5 7 8

0 1 2

9

10 11 13 14
16 17 18 19

15

⇒
join

⇐
split(15)

3

6

4 5 7 8

0 1 2

9

10 11

13

12

17 1918

16

18

(e)

(f)

(c)

0 1 2 3

4
6

5

⇓node

0 1 2 4 5 6

3 3 12

14 15

Figure 7. Illustration of primitives on PaC-trees. For Figures (a)–(d), 𝐵 = 3. For Figures (e)–(f), 𝐵 = 2. Fig. (a): the expose function on
a regular node and the node function to obtain a regular node when the output tree size is larger than 4𝐵. Fig. (b): the expose function on a
flat node and the node function to obtain a flat node when the output tree weight is between 𝐵 and 2𝐵. Fig. (c): the node function to obtain a
flat node when the output size is between 2𝐵 and 4𝐵. Fig. (d): fold and unfold functions. Fig. (e): join function on two regular nodes and
its corresponding split function. Fig. (f): join function on a regular node and a flat node and its corresponding split function.

is empty, which means that to flatten or expand a block of
size 𝑛 costs 𝑂 (𝑛) work and 𝑂 (log𝑛) span. If the encoding
scheme is not parallelizable (e.g., for difference encoding),

the span bound of the algorithms will be affected. We present
more details in the full version of the paper.

We start with the cost of the join and split algorithms.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Laxman Dhulipala, Guy E. Blelloch, Yan Gu, and Yihan Sun

Theorem 6.1. Consider a join algorithm on two PaC-trees
𝑇𝐿 ,𝑇𝑅 and an key𝑘 . Let𝑛 = max(|𝑇𝐿 |, |𝑇𝑅 |) and𝑚 = min(|𝑇𝐿 |, |𝑇𝑅 |).
If both𝑇𝐿 and𝑇𝑅 are complex trees, the algorithm takes𝑂

(
log 𝑛

𝑚

)
work and span. If both 𝑇𝐿 and 𝑇𝑅 are simplex trees, the algo-
rithm takes 𝑂 (𝐵) work and 𝑂 (log𝐵) span. Otherwise, the
algorithm takes 𝑂 (𝐵 + 𝑛/𝐵) work and 𝑂 (log𝑛) span.

Theorem 6.2. Consider a split algorithm on a PaC-tree
𝑇 . If 𝑇 is a complex tree, the work and span of split are
𝑂 (log |𝑇 |

𝐵
+ 𝐵) and 𝑂 (log |𝑇 |), respectively. If 𝑇 is an simplex

tree, the work and span of split is 𝑂 (log |𝑇 |).

Due to page limit, we provide the proofs of Theorems 6.1
and 6.2 in the full version of this paper. Based on these results,
we now analyze the cost of the set operations.

Theorem 6.3. Consider the union algorithm (and the closely
related intersection and difference algorithms in the Ap-
pendix) in Fig. 5 on two PaC-trees of sizes𝑚 and 𝑛 ≥ 𝑚. The
work and span for these algorithms are𝑂

(
𝑚 log 𝑛

𝑚
+𝑚𝐵

)
and

𝑂 (log𝑛 log𝑚) respectively.

To prove the theorem, we first present some definitions
and lemmas. First, note that all the work can be asymptoti-
cally bounded by the three categories below:
(1). split work: all work done by split (Line 14),
(2). join work: all work done by join (Line 17) or join2

in intersection and difference,
(3). expose work: all work done by expose (Line 13).
One observation is that the split work is identical among

the three set algorithms. This is because the three algorithms
behave the same on the way down the recursion when doing
splits, and only differ in what they do at the base case and
on the way up the recursion when building the output tree
(see the other two set algorithms in ??).

We use op to denote the set operation (one of union,
intersection or difference). In these algorithms, the tree
𝑇1 is split by the keys in 𝑇2. We call 𝑇1 the decomposed tree
and 𝑇2 the pivot tree, denoted as 𝑇𝑑 and 𝑇𝑝 respectively. Let
𝑚 = min(|𝑇𝑝 |, |𝑇𝑑 |) and 𝑛 = max(|𝑇𝑝 |, |𝑇𝑑 |).

Lemma 6.4. For each function call to op on trees 𝑃 ⊆ 𝑇𝑝 and
𝐷 ⊆ 𝑇𝑑 , the work done by join (or join2) is asymptotically
bounded by the work done by split.

We present the proof in the full version of this paper.
Next, we prove the bounds for split work and expose work,
respectively.

Lemma 6.5. The expose work is 𝑂 (min(𝑚𝐵,𝑛)).

Proof. expose costs Θ(𝐵) when the subtree is a flat node,
and 𝑂 (1) otherwise. At most 𝑂 (𝑚) nodes in 𝑇𝑝 will split
𝑇𝑑 , so the total cost is 𝑂 (𝑚𝐵). The cost is also no more than
𝑂 (𝑛) since each node is involved in at most one expose, after
which the flat node will be fulled expanded. In summary the
cost is 𝑂 (min(𝑚𝐵,𝑛)). □

Lemma 6.6. The total split work is 𝑂
(
𝑚 log 𝑛

𝑚
+𝑚𝐵

)
.

Proof. The total split work can be viewed as two parts: the
total work to done by split functions to traverse and split
non-flat nodes, and the work to expose and split the flat
nodes. Note that here “non-flat nodes” include both regular
nodes in complex trees, and all the nodes in expanded trees.

First of all, the total work to traverse and split all non-flat
nodes can be asymptotically bounded by the split work when
both𝑇𝑝 and𝑇𝑑 are considered to be fully expanded. This cost
is 𝑂

(
𝑚 log 𝑛

𝑚

)
from the result for P-trees [11].

We then consider all work done by split functions on flat
nodes. The only extra cost is the cost of unfold. Every node
in 𝑇𝑝 will be used at most once to split 𝑇𝑑 , which involves
at most one unfold function with cost𝑂 (𝐵). There can be at
most𝑂 (𝑚) nodes in𝑇𝑝 used to split𝑇𝑑 . Thus the total unfold
work in split is 𝑂 (𝑚𝐵).

Therefore in total the split work is 𝑂
(
𝑚 log 𝑛

𝑚
+𝑚𝐵

)
. □

We can now prove Theorem 6.3.

Proof. (Theorem 6.3) Combining Lemmas 6.4 to 6.6 proves the
work bound in Theorem 6.3. For the span, note that the algo-
rithms need𝑂 (log |𝑇𝑝 |/𝐵) rounds to reach a flat node, where
the flat node will be expanded, taking 𝑂 (log𝐵) span. Then
the algorithm keeps recursing until a nil node is reached,
which takes 𝑂 (log𝐵) rounds. In each of the recursive calls,
we need 𝑂 (log |𝑇𝑑 |) span to deal with split and join. In
total the span is 𝑂 (log𝑚 log𝑛). □

Note that the 𝑂 (𝑚𝐵) term can be expensive when 𝑚 is
large. In fact, we can show a tighter bound using a more
efficient (but more complicated) base case. We show the
bound in Theorem 6.7, and defer the algorithm and proof to
the full version. In our implementation, we use the version
in Fig. 5, which has good performance in practice.

Theorem6.7. There exist algorithms for union, intersection
and difference on two PaC-trees of sizes𝑚 and 𝑛 (𝑛 ≥ 𝑚)
with work𝑂

(
𝑚 log

𝑛

𝑚
+min(𝑛,𝑚𝐵)

)
and span𝑂 (log𝑛 log𝑚).

7 Implementation
In this section, we describe CPAM, our implementation of
PaC-trees. CPAM is built in C++, based on the PAM frame-
work [45]. Our implementation of sequence and map primi-
tives are mostly unchanged. Most of the changes are to intro-
duce flat nodes, to handle folding and unfolding in join, to
express the recursive functions using the expose primitive,
and in some cases to add optimized base cases.
Optimized Base Cases.We first implemented union as in
Fig. 5, which recursively calls expose to access the left and
right subtrees. Although simple and theoretically efficient, in
practice unfolding flat nodes into expanded trees and recurs-
ing on these trees requires additional memory allocations,
and potentially more cache-misses. We therefore designed

PaC-trees: Supporting Parallel and Compressed Purely-Functional Collections PLDI ’22, June 13–17, 2022, San Diego, CA, USA

a new sequential base-case for union when |𝑇1 | + |𝑇2 | < 𝜅,
where𝜅 is a configurable base-case granularity. Our base-case
works by writing both𝑇𝐿 and𝑇𝑅 into a pre-allocated array𝐴
of size 𝜅 and merging them in-place to perform the union. It
then constructs a PaC-tree from the result in𝐴. Compared to
the original version of union that only uses expose, using
the special base-case with 𝜅 = 4𝐵 is 4.4x faster, and using
𝜅 = 8𝐵 is 6.7x faster (𝐵 = 128). We observed similar im-
provements for some other commonly-used primitives such
as filter, map_reduce, multi_insert, multi_delete, and
intersection. We use 𝜅 = 8𝐵 in our experiments. We use a
parallel granularity of 4𝐵, which is the threshold for forking
parallel tasks in algorithms such as filter and union.
Persistence andMemoryManagement.CPAMuses a ref-
erence counting garbage collector for memory management.
CPAM provides functional ordered maps, and thus by de-
fault does not modify the input trees. However, in certain
cases an application may wish to modify a tree in-place to
save memory, e.g., when updates and queries are separated.
Although one could deal with in-place and functional up-
dates separately, this is not attractive. Instead, we designed
a simple approach to handle both cases using the same code,
which we describe in Appendix ?? due to space constraints.
Compression on Blocks. CPAM makes it easy to apply
user-specified encoding schemes. Our data structure is tem-
plated over a type representing a block encoding scheme
(no encoding by default). To add a new encoding scheme,
users provide a structure with methods that calculate the
encoded size for a block, encode the elements into a buffer,
and decode elements from an encoded buffer. This design
allows users to specify encoding schemes based on the un-
derlying data type or application, such as text compression.
For example, it is easy to add new types of difference coding,
e.g., using 𝛾-coding, which would obtain better space usage
at the expense of worse running time [42].

8 Applications
In this section we describe four applications that we im-
plement using CPAM. Our inverted index, and range and
interval tree applications are based on the implementations
from PAM [45]. Our graph processing application is based on
Aspen [21]. We focus on the key features of the applications
in the context of PaC-trees here.
Inverted Index. We implement a weighted inverted index,
similar to those used in search engines. The inverted index
maintains a top-level map from words to document lists
(𝐵 = 128). Each document list is a map from document id
to an importance score (𝐵 = 128). The document lists are
augmented to maintain the highest importance score. The in-
verted index supports standard AND/OR queries over words,
returning results by rank, and top-𝑘 (based on importance)
queries. The document ids are compressed using difference
encoding, requiring less than two bytes per document.

2D Range Tree. The two-dimensional range tree is a top-
level map from 𝑥-coordinate to 𝑦-coordinate (𝐵 = 128). The
tree is augmented so that every internal node stores all 𝑦-
coordinates in its subtree (this is itself a set represented
as a PaC-tree with 𝐵 = 16). Updates can add and delete
points, and queries can list of or count the points in a given
rectangular range. The range tree supports count queries in
𝑂 (log2 𝑛) time, which can be batched to run in parallel.

Interval Tree. The interval tree maintains intervals over
the number line, for example, representing the time of a TCP
connection, or the time a user is logged into some service.
A stabbing query can report all or any intervals that cross a
given point. The intervals are represented as an augmented
tree from left-coordinate to right-coordinate with 𝐵 = 32.
The augmentation maintains the maximum right-coordinate
in the subtree. This allows stabbing queries in time𝑂 (𝑘 log𝑛)
where 𝑘 is the number of intervals requested or returned
(whichever is less). Intervals can be inserted or deleted in
𝑂 (log𝑛) time and can be batched to run in parallel.

Graph Processing. Graphs are represented as a two-level
structure similar to the inverted index, with a top-level aug-
mented tree (the vertex tree) from vertices to edge lists (𝐵 =

64). Each edge list is a map from neighbor-id to an edge-
weight (or empty when unweighted) called an edge tree
(𝐵 = 64). The augmentation on the vertex tree maintains the
total number of edges in the graph. We focus on unweighted
graphs in this paper but note that our implementation also
supports weights. As with inverted indices, using difference
encoding allows us to store an edge using just 2–3 bytes on
average including the bytes used for regular nodes.
On top of this representation, we implement graph al-

gorithms using the Ligra interface [41], including breadth-
first search, maximal independent set, and single-source be-
tweenness centrality. Our implementations are based on
the ones in Aspen and GBBS [22, 23]. We design parallel
batch-updates for our representation, which are applicable
in graph-streaming and batch-dynamic graph algorithms.

9 Experiments

Experimental Setup. We run experiments on a 72-core
Dell PowerEdge R930 (with two-way hyper-threading) with
4 × 2.4GHz Intel 18-core E7-8867 v4 Xeon processors (with
a 4800MHz bus and 45MB L3 cache) and 1TB of main mem-
ory. Our programs use a work-stealing scheduler for paral-
lelism [10]. We use numactl -i all to balance the memory
allocations across the sockets for parallel executions. Unless
otherwise mentioned, all of the reported numbers are run
on 72 cores with hyper-threading.

Overview of Results We show the following experimental
results in this section.
• PaC-trees are competitive with PAM for microbenchmarks
(Section 9.1) and applications including inverted indices

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Laxman Dhulipala, Guy E. Blelloch, Yan Gu, and Yihan Sun

(Section 9.2) and 2D range queries and 1D interval queries
(Section 9.3) while using 2.1x–7.8x less space.

• Varying the block size 𝐵 for an PaC-tree trades off off
performance for space efficiency (Section 9.1). For even
a modest value of 𝐵 = 128, PaC-trees use only 1% more
space than a (static) compressed array.

• For graph processing and streaming, CPAM uses 1.3–2.6x
less space compared to Aspen, and is almost always faster
than Aspen in all tested graph algorithms (Section 9.4).

9.1 PaC-Tree Performance
We begin by studying the performance and space of PaC-
trees on a set of microbenchmarks and compare with P-trees
from PAM. All experiments in this section use maps and
augmented maps where the keys and values are both 64-bit
integers. Unless otherwise mentioned PaC-trees use 𝐵 = 128.
Microbenchmark Performance. Table 2 shows the results
on PaC-trees, PaC-trees with difference-encoding (DE), and
P-trees for a representative subset of the map and sequence
primitives. The speedups for both types of PaC-trees range
from 28.7–101x and are largest for the version using DE
due to additional work for difference encoding. In absolute
running time, PaC-trees with DE are usually slower than
PaC-trees due to compression and decompression costs, but
the overhead is mostly within 10%.

In most of the primitives tested, PaC-trees are faster than
P-trees while also using 2.5x less space. For example, PaC-
trees are 1.68x faster than P-trees in union on two trees of
sizes 108. We note that in this case, the union processes the
entirety of both input trees, and so the more cache-friendly
processing of blocks in PaC-trees results in lower time. How-
ever, if sizes of the two trees are different, the work for union
only depends on the smaller size. In this case, since the cost
of union using PaC-trees has an additional𝑂 (𝑚𝐵) term com-
pared with P-trees, PaC-trees are 5.5x slower than P-trees.
However, we expect better performance for smaller block
sizes (𝐵 < 128), which we discuss next.
Effect of Varying 𝐵 on Performance. Fig. 9 shows the
results of varying the block size 𝐵, on the performance of
various operations. Most operations obtain speedups as 𝐵 is
increased up until 𝐵 = 16. For the sequential operations, such
as find and range, we see a steady increase in the running
time for 𝐵 > 16 and see a similar trend for Union-Imbal,
which takes the union of trees with 108 and 105 elements.
This slowdown with increasing 𝐵 is due to the extra 𝑂 (𝑚𝐵)
term in the work of union. For the smallest block size (𝐵 = 1),
our running time matches that of P-trees on this operation.
Space Usage. For 𝐵 = 128, PaC-trees obtain a 2.48x reduc-
tion in space usage compared to using P-trees, and a further
1.73x reduction in space usage by using difference encoding.
The 108 pairs stored in the experiments require 1.6GB of
memory to represent as a single flat array, which is also a
lower bound for the space usage of a search tree structure. To

understand how close PaC-trees come to this lower bound,
we study the space usage of unaugmented maps using PaC-
trees as a function of the block size 𝐵 (Fig. 10). Using 𝐵 = 32,
PaC-trees are only 1.05x larger than the lower bound and
using 𝐵 = 128, it is just 1.01x larger than the lower bound.
For 𝐵 = 128, just 1.1% of the allocated memory is used for
regular nodes and metadata in the flat nodes. These savings
are obtained without using any additional encoding. Apply-
ing difference encoding improves the space by 1.77x over
the unencoded trees and the array lower bound, and is only
1.03x larger than the space used to difference encode all of
the keys in a single array, leaving the values uncompressed,
which is a lower bound for a search tree structure using
difference encoding for such input.

Using PaC-trees requires much lower space overhead for
augmentation compared to P-trees (Fig. 10). For P-trees,
adding 8 byte augmented values increases the size of the
maps by 20%, whereas PaC-trees (both with and without
difference encoding) using 𝐵 = 128 incurs only a 1% increase
in space for the augmented values. The savings comes from
only storing a single augmented value per flat node, which
only uses extra space proportional to 𝑛/𝐵 augmented values.

9.2 Inverted Index
Next, we study our performance on the inverted index appli-
cation. We run the application on documents derived from a
large Wikipedia dataset also used by PAM for a fair compar-
ison. The dataset is processed by removing all markup, con-
verting characters that are not alphanumeric to whitespace
and making all words case insensitive [45]. The processed
dataset contains 1.94 billion words over 8.13 million docu-
ments. Like PAM, our evaluation measures the performance
of (1) building an index over (words, doc_id, weight) triples
and (2) running queries that fetch the posting lists for two
words, compute the intersection of the lists, and select the
top 10 documents by weight.

Table 3 shows the results of the experiment. For building
the index, our implementation achieves 76x speedup and
our parallel running times are comparable with those of
PAM (at most 1.1x slower). For the queries, we observe that
the unencoded trees achieve essentially the same parallel
time as PAM, whereas the difference encoded trees are 1.18x
slower due to the higher cost of intersection operations in
our difference encoded implementation. The space usage
using PaC-trees is much smaller than that of PAM, being
3.84x smaller without encoding and 7.81x smaller using a
custom encoder that combines difference encoding for the
keys with byte-encoding for the integer values (weights).

9.3 Interval and Two-Dimensional Range Trees
We benchmark our interval and two-dimensional range trees
as in PAM [43]. We build our interval tree on 108 inter-
vals, and for queries run stabbing queries over 108 points
in parallel. We observe that both building and querying the

PaC-trees: Supporting Parallel and Compressed Purely-Functional Collections PLDI ’22, June 13–17, 2022, San Diego, CA, USA

𝑛 𝑚
PaC-tree PaC-tree (Diff) P-tree (PAM)
𝑇1 𝑇144 Spd. 𝑇1 𝑇144 Spd. 𝑇1 𝑇144 Spd.

No augmentation

Size (GB) 108 — 1.61 — — 0.926 — — 4.00 — —
Build 108 — 5.55 0.186 29.8 5.71 0.180 31.7 5.94 0.221 26.8
Union 108 108 5.33 0.088 60.5 6.29 0.089 70.6 8.97 0.168 53.3
Union 108 105 1.09 0.021 51.9 1.28 0.022 58.1 0.206 0.0038 54.2
Intersect 108 108 4.35 0.065 66.9 5.68 0.081 70.1 9.50 0.139 68.3
Difference 108 108 3.00 0.055 54.4 3.55 0.056 63.3 8.17 0.123 66.4
Map 108 108 0.859 0.037 22.9 1.14 0.023 49.5 1.32 0.091 14.5
Reduce 108 — 0.306 0.018 17.0 0.308 0.0092 33.4 1.60 0.034 47.0
Filter 108 — 0.997 0.028 35.6 1.24 0.018 68.8 1.90 0.0524 36.2
Find 108 108 103 1.17 88.0 125 1.23 101.6 105.5 1.05 100.4
Insert 108 106 0.829 — — 1.42 — — 0.773 — —
Multi-Insert 108 108 18.8 0.332 56.6 19.9 0.323 61.6 9.67 0.338 28.6
Range 108 106 11.5 0.318 36.1 13.1 0.226 57.9 3.77 0.0738 45.6

With augmentation

Size (GB) 108 — 1.63 — — 0.936 — — 4.80 — —
Build 108 — 5.66 0.197 28.7 5.84 0.186 31.3 6.48 0.246 26.3
Union 108 108 5.52 0.098 56.3 6.52 0.090 72.4 10.13 0.196 51.6
AugRange 108 107 12.3 0.331 37.1 13.9 0.234 59.4 4.80 0.082 58.5
AugFilter 108 — 12.2 0.333 36.6 13.6 0.234 58.1 4.95 0.081 61.1

Table 2. Microbenchmark results. We fix 𝐵 = 128 for PaC-trees. 𝑛 is the
tree size. For set functions and multi-insert,𝑚 ≤ 𝑛 is the size of the other
set (batch). For other functions,𝑚 is the number of queries tested. 𝑇1 is the
sequential running time. 𝑇144 is parallel running time using 72 cores (144
hyperthreads). Diff means difference encoding. We highlight the best parallel
running time (or size) per experiment in green and underlined.

DB YT RU LJ OK FS TW
0

2

4

6

8

10

12

14

16

S
iz

e
R

el
at

iv
e

to
S

m
al

le
st

0
.0

1
08

0
.0

2
88

3

0
.4

8
17

0
.2

3
96

0
.4

8
46

1
0
.7

4
.8

7
1

0.
0
13

01

0.
04

1
24

0
.6

83
2

0
.3

4
61

0
.7

2
72

1
4.

6

7
.5

9
8

0
.0

1
63

0
.0

5
30

1

0
.8

5
31

0
.4

50
7

0.
9
63

6

15
.4

3

1
0.

3
40
.0

3
37

2

0
.0

9
26

1

1
.8

3
3

0.
56

83

0.
8
52

2

1
8
.5

3

9
.0

3
4

0
.0

7
67

5

0
.2

2
91

2.
7
9

2
.7

7
1

7
.1

2
2

1
10
.6

7
3.

5
4

GBBS (Diff)

PaC-tree (Diff)

PaC-tree

Aspen

P-tree (PAM)

Figure 8. Relative space usage of different graph
representations. GBBS (Diff) is our static baseline com-
pressed graph representation. PaC-tree uses PaC-trees
for vertex and edge trees, and PaC-tree (Diff) difference
encodes both trees. Aspen uses P-trees for the vertex tree
and C-trees with difference encoding for edge trees. P-
tree (PAM) uses P-trees for the vertex and edge trees. The
values on top of each bar are the memory usage in GiB.

Library Space Method 𝑛 𝑚 𝑇1 𝑇144 Spd.

In
ve

rt
ed

In
de

x PaC-tree 8.29 Build 108 — 746 9.73 76.6
Query 108 108 341 4.46 76.4

PaC-tree (D) 4.07 Build 108 — 754 9.81 76.8
Query 108 108 367 5.32 68.9

P-tree (PAM) 31.9 Build 108 — 575 8.86 64.9
Query 108 108 313 4.48 69.8

In
te
rv
al PaC-tree 0.812 Build 108 — 10.9 0.179 60.8

Query 108 108 60.8 0.525 115.8

P-tree (PAM) 3.54 Build 108 — 11.6 0.271 42.8
Query 108 108 54.3 0.628 86.4

R
an

ge

PaC-tree 40.3
Build 108 — 164 2.71 60.7
Q-Sum 108 106 54.2 0.629 86.1
Q-All 108 103 7.20 0.266 27.0

P-tree (PAM) 89.6
Build 108 — 169 2.84 59.6
Q-Sum 108 106 60.7 0.735 82.5
Q-All 108 103 21.6 0.552 39.1

Table 3. Build and query times and space usage in GiB for
inverted index, interval tree, and range tree applications. 𝑇1
is the single-thread time, 𝑇144 is the 72-core time using hyper-
threading, and Spd. is the parallel speedup. The best parallel running
time (or size) is highlighted in green and underlined per experiment.

trees achieves good parallel speedup (60–115x). PaC-trees
are 1.51x faster than PAM in construction, and is 1.19x faster
for queries. Overall we find that PaC-trees enable better
performance than PAM while using 4.37x less space.

We build our range trees on 108 uniformly random points
in the plane between (0, 0) and (1𝑒8, 1𝑒8). We run two types
of queries: the first count the number of points in the range
(Q-Sum), and the second returns all points in the range. We
tuned the window sizes used in our queries to match the
settings evaluated by PAM (around 106 points returned per
query). Both PaC-trees and P-trees build the data structure
in a similar amount of time. PaC-trees achieve better per-
formance than P-trees for both queries, being 1.16x faster
for Q-Sum and 1.96x faster for Q-All queries, likely due to
requiring fewer cache-misses when processing the tree to
output the points within a given range. The range tree appli-
cation using PAM has previously been compared with range
trees in CGAL [38] and was shown to outperform it [43].

For space usage, PaC-trees result in 2.18x less space com-
pared to PAM. We note that 95% of the space used in PAM
is for the P-trees stored as augmented values in each node
(representing the union of the 𝑦-coordinates in the subtree).
The majority of our savings come from compressing the aug-
mented trees using PaC-trees which results in a 2.53x less
space for the inner trees, and 2.18x less space overall.

9.4 Graph Processing and Graph Streaming
Our last set of experiments study the performance of PaC-
trees for a set of standard benchmarks from the graph pro-
cessing and graph streaming literature. Our evaluation roughly

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Laxman Dhulipala, Guy E. Blelloch, Yan Gu, and Yihan Sun

100 101 102 103

Block Size (B)

0

10

20

30

40

R
un

ni
ng

ti
m

e
(s

ec
on

ds
)

Build

Filter

Insert

Range

Union

Union-Imbal

100 101 102 103

Block Size (B)

1

2

3

4

5

M
ap

S
iz

e
(N

um
.

by
te

s)

×109

Array

Array (Diff)

P-Tree

P-Tree-Aug

PaC-tree

PaC-tree-Aug

PaC-tree (Diff)

PaC-tree-Aug (Diff)

0 10 20 30 40 50

Elapsed Time (seconds)

10−4

10−3

10−2

10−1

O
p

er
at

io
n

R
un

ni
ng

T
im

e
(s

ec
on

ds
)

BFS (Concurrent)

Update (Concurrent)

BFS (Solo)

Update (Solo)

Figure 9. Primitive running times
for PaC-trees vs. block size 𝐵. We
use 108 key-value pairs (8 bytes each).
Union, Intersection and Difference all
work on two trees with 108 elements.
Union-Imbal takes the union of trees
with 108 and 105 elements.

Figure 10. Size of PaC-trees (with or with-
out DE) as a function of block size 𝐵. We use
108 key-value pairs (8 bytes each). For augmented
maps (-Aug), augmented values are 8 bytes each.
The grey line shows the number of bytes to store
the 108 elements in an array and the purple line
shows the bytes used to store the difference en-
coded keys in a single array using byte encoding.

Figure 11. Performance of concurrent
updates and queries. The time series plot
illustrates running times when running BFS
queries with batch-insertions of edges con-
currently (Concurrent), and when queries
and updates are run individually (Solo) on
the LiveJournal graph.

Graph Vertices Edges Ours Aspen Aspen
Ours

DBLP (DB) 425,957 2,099,732 0.0130 0.03409 2.62x
YouTube (YT) 1,138,499 5,980,886 0.0412 0.0934 2.26x
USA-Road (RU) 23,947,348 57,708,624 0.683 1.843 2.69x
LiveJournal (LJ) 4,847,571 85,702,474 0.346 0.527 1.52x
com-Orkut (CO) 3,072,627 234,370,166 0.727 0.893 1.22x
Twitter (TW) 41,652,231 2,405,026,092 7.59 9.42 1.23x
Friendster (FS) 65,608,366 3,612,134,270 14.6 19.1 1.30x

Table 4. Statistics about tested graphs andmemory usage of
PaC-tree and Aspen in GiB.

follows Aspen’s and we compare our performance and space
usage with that of Aspen and its C-tree implementation.

GraphData and Space Usage.Most of the graphs we study
are Web graphs and social networks which are low-diameter
graphs that are frequently used in practice. To also test on
high-diameter graphs, we ran our implementations on a road
network. Complete details about our inputs are in the full
version of the paper. Table 4 shows information about our
graph inputs, including the number of vertices, edges, and
space used.
We evaluate five graph representations including using

PAM, Aspen, PaC-tree with or without difference encoding,
and GBBS. Aspen uses C-trees as edge trees and leaves vertex
trees uncompressed using P-trees. GBBS is a state-of-the-art
static graph processing library which represents graphs as
static arrays using difference encoding, which serves as our
baseline of graph representation. Fig. 8 shows the relative
size of each graph format. We see that the smallest format
in all cases is PaC-tree (Diff), which applies PaC-trees with
difference encoding for both vertex and edge trees. Using this
format yields a space improvement of between 4–9.7x over
just using P-trees. For the graphs with high average-degree,
most of the savings come from using PaC-trees for the edge

Aspen Ours

Graph FS FS Time No-FS FS FS
No-FS FS Time Aspen

Ours
B
FS

LiveJournal 21.7 3.82 19.8 17.5 1.13x 1.38 1.24x
com-Orkut 15.3 2.35 14.5 12.4 1.16x 1.12 1.23x
Twitter 138 37.8 125 112 1.11x 12.5 1.23x

M
IS

LiveJournal 55.3 3.82 72.0 45.7 1.57x 1.38 1.21x
com-Orkut 70.2 2.35 96.9 69.2 1.40x 1.12 1.01x
Twitter 1022 37.8 1190 971 1.22x 12.5 1.05x

B
C

LiveJournal 74.6 3.82 82.1 72.3 1.13x 1.38 1.03x
com-Orkut 76.3 2.35 88.6 78.2 1.13x 1.12 0.975x
Twitter 1150 37.8 2735 1030 2.65x 12.5 1.11x

Table 5. Parallel running times (in milliseconds) for Aspen
and our implementation. We show the algorithm performance
without flat snapshots (No-FS), with flat snapshots (FS), and the
time to computing the flat snapshot (FS Time).

trees. Adding difference encoding to both trees yields be-
tween 1.05–1.32x space improvement. PaC-trees are also
1.3–2.6x more space-efficient than Aspen. Note that C-trees
in Aspen are also difference encoded, so the main difference
between the two representations is that PaC-tree (Diff) also
uses PaC-trees to chunk the vertex tree, and that PaC-trees
employ a deterministic strategy for chunking. PaC-trees with
difference encoding achieves consistently lower space com-
pared with Aspen, ranging between 1.3x for Friendster, our
largest graph, to a maximum space improvement for 2.62x on
USA-Road, our sparsest graph. The space savings come from
chunking the vertex trees, which is not possible in Aspen,
since the C-tree implementation is specialized for edge trees.
GraphAlgorithmPerformance.We study the performance
of three fundamental graph kernels: breadth-first search
(BFS), single-source betweenness centrality (BC), and maxi-
mal independent set (MIS). Our implementations are based
on those in Aspen. We study performance using our most

PaC-trees: Supporting Parallel and Compressed Purely-Functional Collections PLDI ’22, June 13–17, 2022, San Diego, CA, USA

space-efficient version (PaC-tree (Diff)). Following Aspen,
our implementation also supports the flat snapshot object,
which is an array storing all vertices in the current graph. The
idea is that instead of accessing edges for a vertex through the
vertex tree (performing tree traversal), algorithms directly
access edge trees through the flat snapshot.

Table 5 shows performance results for three of our graph
datasets. Across all three kernels our implementations are
1.12x faster than Aspen’s implementations on average. We
observe that flat snapshots can be generated 2.09–3.02x faster
in CPAM due to PaC-trees requiring fewer cache-misses to
traverse than P-trees when creating flat snapshot array. We
note that the implementation of edgeMap and other primi-
tives from Ligra (including constants and other tuning pa-
rameters) are exactly the same in both CPAM and Aspen.
Aspen also difference encodes in its edge trees (represented
using C-trees). The performance improvements that we ob-
serve are therefore a result of PaC-trees providing faster flat
snapshots, and having better balance in chunk sizes com-
pared to the randomized approach used in C-trees.

Concurrent Updates and Queries. Our last experiment
concurrent updates and queries on graphs. The experiment
performs 𝑛 undirected edge insertions drawn from the rMAT
generator (details provided in the full version). We use a
batch size of 5 in the updates (10 directed edges are inserted
per batch). We then spawn two parallel jobs, one performing
the updates one batch after the other, and the other per-
forming BFS queries, one after the other. Both the updates
and queries are parallel (i.e., they internally make use of
parallelism).
Fig. 11 shows the result of the experiment. We find that

the concurrent queries are 1.85x slower on average than
the queries in isolation, and that the concurrent updates are
1.07x slower on average than updates in isolation. In the
concurrent setting, the average latency to make one of the
update batches visible is 100 microseconds, and the updates
achieve a throughput of 94,000 undirected edge updates per
second. We leave further optimizations and a more in depth
study of the graph setting for future work with our system.

10 Conclusion
We have presented PaC-tree, a deterministic compressed
ordered map data structure and an implementation of the
structure in a library CPAM. The important features of PaC-
trees and its implementation in CPAM include the following.
• It is purely functional allowing for persistent snapshots
while updates are being made, and safe for parallelism.

• It supports sequences, ordered sets, ordered maps, and
augmented maps, with a wide variety of functions on them.

• It provides theoretical bounds on work, span, and space.
• It achieves fast sequential time and gets up to 100x speedup
on 72 cores with 144 hyperthreads.

• It achieves memory usage that is close to a compressed
array and up to an order of magnitude smaller than PAM.

• It is internally memory manged using reference counting.
• It is backward compatible with PAM.
• It has been used to implement the full functionality of
Aspen while improving runtime and/or space.

For future work, we are interested in extending PaC-trees
to support higher-fanout internal nodes, similar to 𝐵-trees,
which would allow users to improve query latency at the
expense of increased work when performing updates. Other
future work includes applying PaC-trees to improve space
utilization in databases, and to improve the performance of
collection-based applications using non-volatile memory.

Acknowledgement
This work was supported by the National Science Founda-
tion grants CCF-1901381, CCF-1910030, CCF-1919223, CCF-
2103483, and CCF-2119352.

References
[1] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. 2014. The-

ory and Practice of Chunked Sequences. In European Symposium on
Algorithms (ESA).

[2] Stephen Adams. 1993. Efficient sets—a balancing act. Journal of
functional programming 3, 04 (1993).

[3] Vitaly Aksenov, Vincent Gramoli, Petr Kuznetsov, Anna Malova, and
Srivatsan Ravi. 2017. A concurrency-optimal binary search tree. In
European Conference on Parallel Processing (Euro-Par). Springer.

[4] Maya Arbel-Raviv, Trevor Brown, and Adam Morrison. 2018. Getting
to the Root of Concurrent Binary Search Tree Performance. In USENIX
Annual Technical Conference.

[5] Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-
Gueta, Eshcar Hillel, Idit Keidar, and Moshe Sulamy. 2017. KiWi: A
key-value map for scalable real-time analytics. In ACM Symposium on
Principles and Practice of Parallel Programming (PPOPP).

[6] R. Bayer and E. M. McCreight. 1972. Organization and maintenance
of large ordered indexes. Acta Informatica 1, 3 (01 Sep 1972).

[7] Naama Ben-David, Guy E. Blelloch, Panagiota Fatourou, Eric Ruppert,
Yihan Sun, and Yuanhao Wei. 2021. Space and Time Bounded Multi-
version Garbage Collection. In International Symposium on Distributed
Computing (DISC). https://doi.org/10.4230/LIPIcs.DISC.2021.12

[8] Jean-Philippe Bernardy. 2008. The Haskell Yi package. http://hackage.
haskell.org/package/yi-0.6.2.3/docs/src/Data-Rope.html.

[9] Daniel K. Blandford and Guy E. Blelloch. 2004. Compact Representa-
tions of Ordered Sets. In ACM-SIAM Symposium on Discrete Algorithms
(SODA).

[10] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. Par-
layLib - A Toolkit for Parallel Algorithms on Shared-Memory Multi-
core Machines. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA).

[11] Guy E. Blelloch, Daniel Ferizovic, and Yihan Sun. 2016. Just Join for
Parallel Ordered Sets. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA).

[12] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. 2020.
Optimal Parallel Algorithms in the Binary-Forking Model. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA).

[13] Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2018. Parallel
Write-Efficient Algorithms and Data Structures for Computational
Geometry. In ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA).

https://doi.org/10.4230/LIPIcs.DISC.2021.12
http://hackage.haskell.org/package/yi-0.6.2.3/docs/src/Data-Rope.html
http://hackage.haskell.org/package/yi-0.6.2.3/docs/src/Data-Rope.html

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Laxman Dhulipala, Guy E. Blelloch, Yan Gu, and Yihan Sun

[14] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling multi-
threaded computations by work stealing. J. ACM 46, 5 (1999).

[15] Hans-J. Boehm, Russ Atkinson, and Michael Plass. 1995. Ropes: An
Alternative to Strings. Softw. Pract. Exper. 25, 12 (1995).

[16] Anastasia Braginsky and Erez Petrank. 2012. A lock-free B+ tree.
In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

[17] Richard P. Brent. 1974. The Parallel Evaluation of General Arithmetic
Expressions. J. ACM 21, 2 (April 1974), 201–206.

[18] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun.
2010. A Practical Concurrent Binary Search Tree. In ACM Symposium
on Principles and Practice of Parallel Programming (PPOPP).

[19] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng,
Ming Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. 2012.
Kineograph: taking the pulse of a fast-changing and connected world.
In ACM European Conference on Computer Systems (EuroSys).

[20] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. 2009. Introduction to Algorithms (3rd edition). MIT Press.

[21] Laxman Dhulipala, Guy E Blelloch, and Julian Shun. 2019. Low-
latency graph streaming using compressed purely-functional trees. In
ACMConference on Programming Language Design and Implementation
(PLDI).

[22] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2021. Theo-
retically Efficient Parallel Graph Algorithms Can Be Fast and Scal-
able. ACM Transactions on Parallel Computing (TOPC) 8, 1 (2021).
https://doi.org/10.1145/3434393

[23] Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Julian
Shun. 2020. The Graph Based Benchmark Suite (GBBS). In Intl. Work-
shop on Graph Data Management Experiences and Systems (GRADES).

[24] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel.
2010. Non-blocking binary search trees. In ACM Symposium on Princi-
ples of Distributed Computing (PODC).

[25] Panagiota Fatourou, Elias Papavasileiou, and Eric Ruppert. 2019. Per-
sistent non-blocking binary search trees supporting wait-free range
queries. In ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA).

[26] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. 2008.
Implicitly-threaded Parallelism in Manticore. In ACM SIGPLAN In-
ternational Conference on Functional Programming (ICFP).

[27] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The
implementation of the Cilk-5 multithreaded language. ACMConference
on Programming Language Design and Implementation (PLDI).

[28] Yan Gu, Yihan Sun, and Guy E. Blelloch. 2018. Algorithmic Building
Blocks for Asymmetric Memories. In European Symposium on Algo-
rithms (ESA).

[29] Switzerland International Organization for Standardization, Geneva.
2018. ISO/IEC TS 19570:2018: Programming Languages – Technical
Specification for C++ Extensions for Parallelism. https://www.iso.org/
standard/70588.html.

[30] Java Fork-Join, Oracle Java Documentation [n.d.].
http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html.

[31] Haim Kaplan and Robert Endre Tarjan. 1996. Purely Functional Repre-
sentations of Catenable Sorted Lists. In ACM Symposium on Theory of
Computing (STOC).

[32] Alfons Kemper, Thomas Neumann, Jan Finis, Florian Funke, Viktor
Leis, Henrik Mühe, Tobias Mühlbauer, and Wolf Rödiger. 2013. Pro-
cessing in the Hybrid OLTP & OLAP Main-Memory Database System
HyPer. IEEE Data Eng. Bull. 36, 2 (2013).

[33] Edward A. Kmett. 2010. The Haskell Rope package.
[34] H. T. Kung and Philip L. Lehman. 1980. Concurrent Manipulation of

Binary Search Trees. ACM Trans. Database Syst. 5, 3 (1980).
[35] Peter Macko, Virendra J Marathe, Daniel WMargo, andMargo I Seltzer.

2015. LLAMA: Efficient graph analytics using large multiversioned

arrays. In IEEE International Conference on Data Engineering (ICDE).
[36] Colt McAnlis and Aleks Haekey. 2016. Understanding Compression.

O’Reilly Media, Inc.
[37] Aravind Natarajan and Neeraj Mittal. 2014. Fast Concurrent Lock-Free

Binary Search Trees. In ACM Symposium on Principles and Practice of
Parallel Programming (PPOPP).

[38] Gabriele Neyer. 2017. dD Range and Segment Trees. In CGAL User
and Reference Manual (4.10 ed.). CGAL Editorial Board. http://doc.
cgal.org/4.10/Manual/packages.html

[39] Jürg Nievergelt and Edward M Reingold. 1973. Binary search trees of
bounded balance. SIAM J. on Computing 2, 1 (1973).

[40] Chris Okasaki. 1999. Purely functional data structures. Cambridge
University Press.

[41] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph
Processing Framework for Shared Memory. In ACM Symposium on
Principles and Practice of Parallel Programming (PPOPP).

[42] Julian Shun, Laxman Dhulipala, and Guy E Blelloch. 2015. Smaller and
faster: Parallel processing of compressed graphs with Ligra+. In IEEE
Data Compression Conference (DCC).

[43] Yihan Sun and Guy E Blelloch. 2019. Parallel Range, Segment and
Rectangle Queries with Augmented Maps. In Algorithm Engineering
and Experiments (ALENEX).

[44] Yihan Sun, Guy E Blelloch, Wan Shen Lim, and Andrew Pavlo. 2019.
On supporting efficient snapshot isolation for hybrid workloads with
multi-versioned indexes. Proceedings of the VLDB Endowment (PVLDB)
13, 2 (2019).

[45] Yihan Sun, Daniel Ferizovic, and Guy E Blelloch. 2018. PAM: Parallel
Augmented Maps. In ACM Symposium on Principles and Practice of
Parallel Programming (PPOPP).

[46] Yuanhao Wei, Naama Ben-David, Guy E. Blelloch, Panagiota Fatourou,
Eric Ruppert, and Yihan Sun. 2021. Constant-time snapshots with
applications to concurrent data structures. In ACM Symposium on
Principles and Practice of Parallel Programming (PPOPP).

[47] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shiv-
aram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez,
Scott Shenker, and Ion Stoica. 2016. Apache Spark: a unified engine
for big data processing. Commun. ACM 59, 11 (2016).

https://doi.org/10.1145/3434393
https://www.iso.org/standard/70588.html
https://www.iso.org/standard/70588.html
http://doc.cgal.org/4.10/Manual/packages.html
http://doc.cgal.org/4.10/Manual/packages.html

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 PaC-Trees
	5 Algorithms
	6 Theoretical Guarantees
	7 Implementation
	8 Applications
	9 Experiments
	9.1 PaC-Tree Performance
	9.2 Inverted Index
	9.3 Interval and Two-Dimensional Range Trees
	9.4 Graph Processing and Graph Streaming

	10 Conclusion
	References

