
Pacific Graphics 2015
N. J. Mitra, J. Stam, and K. Xu
(Guest Editors)

Volume 34 (2015), Number 7

Ray Specialized Contraction on Bounding Volume
Hierarchies

Yan Gu Yong He Guy E. Blelloch

Carnegie Mellon University

Abstract
In this paper we propose a simple but effective method to modify a BVH based on ray distribution for improved ray
tracing performance. Our method starts with an initial BVH generated by any state-of-the-art offline algorithm.
Then by traversing a small set of sample rays we collect statistics at each node of the BVH. Finally, a simple but
ultra-fast BVH contraction algorithm modifies the initial binary BVH to a multi-way BVH. The overall acceleration
for ray-primitive testing is about 25% for incoherent diffuse rays and 30% for shadow rays, which is significant
as a data structure optimization. Similar results are also presented for packet ray tracing, and for Quad-BVHs the
improvement is 10% to 15%. The approach has the advantages of being simple, and compatible with almost any
existing BVH and ray tracing techniques, and it require very little extra work to generate the modified tree.

Keywords: ray tracing, bounding volume hierarchy, ray distribution, data-driven optimization

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Ray tracing

1. Introduction

The pursuit of high performance in ray tracing systems has
lead to a rapid evolution in acceleration structures, such as
KD-trees and bounding volume hierarchies (BVHs), and in
architectural optimizations for these structures on many-core
CPUs and modern GPUs. BVH techniques are widely used
in a number of ray tracing engines [PBD∗10,WWB∗14] be-
cause of its simplicity, flexibility and construction parallelis-
m [KKW∗13].

State-of-the-art ray tracers usually build BVHs offline—
after the model is loaded, the BVH is fully constructed us-
ing surface-area heuristics that approximates the probabil-
ity of a ray intersecting a volume. Building an optimal B-
VH based on these heuristics is believed to be NP-hard
[Hav00, PGDS09], so in practice a BVH is constructed us-
ing a variety of greedily approaches (top-down, bottom-up,
post-optimization, spatial splits, or a combination of them).
These approaches trade off among BVH quality, construc-
tion speed and parallelism. However, all of these approach-
es assume that rays are distributed uniformly, approaching
from all directions at equal frequency. Therefore, the con-
structed BVH depends only on the mesh geometry, without
consideration of the actual ray distribution in a scene.

BVH quality can be greatly improved by considering a spe-
cific ray distribution. However, as the actual ray distribu-
tion depends heavily on run-time settings such as the po-
sitioning of camera and lights, the BVH shall be updated
whenever these parameters change. This requires any ray-
distribution-aware system to collect ray distribution and re-
construct a new BVH in very short amount of time. Previ-
ously, [BH09, FLF12] have proposed techniques to incorpo-
rate ray distribution into BVH construction, but all of these
algorithms reconstruct the entire BVH to adapt for new ray
distribution every frame, offsetting the benefit of a more op-
timized tree. Meanwhile, their BVH qualities are also no bet-
ter than the newest offline algorithms [GHFB13, KA13].

In this paper, we propose an algorithm to leverage ray dis-
tribution with very little overhead. Our approach (refer to
RDTC, in Section 4.2.2) starts with an arbitrary binary BVH
tree that can be built very quickly using any of existing meth-
ods, and restructures the initial tree into a multi-way BVH
optimized for the given ray distribution. The ray distribu-
tion is collected through a fast and light-weight process that
involves tracing a sample set of input rays to estimate how
often each node is visited. We show that our new BVHs have
achieved 25-35% performance improvement in terms of both
the number of ray-box tests and actual rendering time (in-

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Yan Gu et al. / Ray Specialized BVH Contraction

cluding both tree-restructuring and ray-tracing process) over
the standard SAH-based binary BVHs, and a 10% to 15%
speedup (refer to CBTC-RD in Section 4.4) on Quad-BVHs
over CBTC-SA [WBB08] in ten typical test scenes.

Our method is compatible with almost all of the existing
ray tracing techniques: packet traversal [WSBW01], treelet
reorganization [AK10], reordering for expensive computa-
tion materials [LKA13], multi-branch BVH traversal [WB-
B08, DHK08], etc. The algorithm can be easily integrated
into any ray tracing systems with very little change to exist-
ing system architecture.

2. Related Work

Top-down BVH construction using the Surface Area Heuris-
tic (SAH) [GS87] is widely considered as the “gold stand-
ard”, because it results relatively high BVH quality (in re-
ducing ray-box testing in traversal). Further research focused
on accelerating construction time by approximation and bet-
ter parallelism. We refer the readers to [Wal07] and [GP-
BG11] for excellent summaries for modern approaches.

While some GPU-based BVH construction algorithms
[LGS∗09, PL10, GPM11, Kar12] abandon SAH to trade of-
f BVH quality for faster BVH construction of deformable
objects, other algorithms that attempt to improve BVH qual-
ity use SAH to guide tree building. Agglomerative cluster-
ing [WBKP08] builds BVH bottom-up, and an approximate
version [GHFB13] greatly reduces the construction time.
Post-optimization BVH constructions [Ken08,BHH13] start
with an initial BVH, and iteratively modifies it by applying
rotation, deletion and re-insertion operations. Alternative-
ly, BVH constructions with spatial splits [SFD09, PGDS09]
build BVHs top-down, and consider object and spatial split-
s together. Karras et al. [KA13] efficiently combine post-
optimization and spatial splits. In summary, significant re-
search has done on improving the BVH quality or construc-
tion speed. Our algorithm relies on these state-of-the-art
techniques in constructing an initial BVH, and further im-
proves its quality using a BVH contraction algorithm.

A variety of papers attempted to combine ray distribution
into BVH construction. Early works [Hav00, HM08] (not
only with BVHs) have sought to analytically modify the
heuristic for common non-uniform ray distribution. Lat-
er works [BH09, FLF12] directly compute new heuristic-
s by testing a few sample rays, generated by a first-pass
of ray tracing. However, these solutions suffer from sev-
eral unsolved problems that make it less effective. First-
ly, an whole BVH is constructed when camera position or
view direction is changed, which is inefficient since their
constructions are slow and not compatible with other of-
fline algorithms. Secondly, insufficient improvement (almost
none for non-shadow rays) is acquired comparing to SAH
[GS87]. Nabata et al.’s idea [NIDN13] is similar to Feltman
et al.’s [FLF12] and accelerate divide-and-conquer ray trac-

ing (DACRT [Mor11]), but it is hard to integrate to standard
ray tracer since DACRT uses a completely different pipeline,
and also its performance is not competitive with the stand-
ard approaches. In conclusion, the extra work spent in these
algorithms is hard to trade off for the improvement in traver-
sal, comparing with the best offline BVH construction algo-
rithms (e.g. [GHFB13, KA13]). We will show how our new
algorithm overcomes these problems in the this paper.

It is also worth to be pointed out that accurately analyzing
and predicting the performance of a BVH is an interesting
but open problem [AKL13]. Although we have not given an
exact answer in this paper, some algorithmic analysis could
provide useful insights to this problem.

The idea of skipping ray-box testing when traversing a B-
VH has appeared in previous papers. CPU-based ray trac-
ing techniques [WBB08, DHK08] tried to utilize SIMD in-
structions. Dammertz et al.’s technique [DHK08] contract-
s every other level to generate a 4-way BVH. Wald et al.’s
method [WBB08] contracts BVH by surface area, which is
a special case in our algorithm. Nabata et al.’s approach on
DACRT [NIDN13] decides whether a packet of rays skips
ray-box testing or not by testing a sample set. Unfortunately,
such an approach is incompatible with a standard ray tracer.
They also use a similar criterion as Eqn. 2, but we use it in
a different way: they implicitly generate a BVH every time
for a set of rays and use this criterion to skip testing for these
rays, while we combine it with other heuristics (e.g. surface
area and ray distribution) to generate general high-quality
BVHs that can be used to trace any rays.

3. Binary BVH Traversal

For completeness, we review the standard BVH ray-traversal
algorithms. Algorithm 1 shows the pseudocode for first-hit
ray traversal, which returns the first ray-scene intersection
(used for primary, specular-reflection, ambient-occlusion
and diffuse inter-reflection rays). Algorithm 2 provides the
pseudocode for any-hit ray traversal, and its goal is to de-
cide if a ray occluded by any scene objects, usually called
by shadow ray queries. Notice that instead of running ray-
box test immediately in line 4 in Algorithm 1, the test is
postponed to the next level in any-hit traversal (line 1 in Al-
gorithm 2). The reason is that, when an intersection is found
in any-hit traversal, the function will return “yes”, and the
rest ray-box tests can be skipped and saved. Efficient im-
plementations of these algorithms can be found in [WBS07]
and [AL09].

4. The BVH Contraction Algorithm

4.1. The Definition of BVH Contraction

In this section, we propose a novel BVH contraction algo-
rithm that reduces unnecessary ray-box tests. To begin with,
we first cover some basic concepts.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Yan Gu et al. / Ray Specialized BVH Contraction

Algorithm 1: FirstHitTraverse(R, N) // for primary and
diffuse rays

Input: Ray R, BVHNode N
Output: First intersection (can be empty)

1 if N.isLeaf then
2 Check all triangles;
3 else
4 Ray-box tests for all children;
5 foreach intersected child C in front-to-end order do
6 if Distance(R,C)< R.FirstInter then
7 FirstHitTraverse(R, C);
8 return first intersection;

Algorithm 2: AnyHitTraverse(R, N) // for shadow rays
Input: Ray R, BVHNode N
Output: Boolean hit

1 if not Ray-box tests(R,N.bbox) then
2 return false;
3 if N.isLeaf then
4 Check all triangles;
5 else
6 foreach child C ∈ N.children do
7 if AnyHitTraverse(R, C) then
8 return true;
9 return false;

We define the set of nodes whose bounding box is actually
tested to the input ray (or packet) in Algorithms 1 and 2 to
be a “traversed subset-tree” of that ray (or packet). Ray-box
tests of nodes in a “traversed subset-tree” can be classified
into two categories:

• “Pass-test”: at least one child or primitive (i.e. triangle)
of this node is explored, which indicates that line 7 in
FirstHitTraverse is called, or test on line 1 in AnyHitTra-
verse returns “hit”. This node is either an interior node of
the traversed subset-tree, or a leaf node that directly con-
tains primitives.

• “Prune-test”: none of its children or primitives are further
traversed. This node is a leaf node in traversed subset-tree.

Notice that the categorization has no relationship with the
result of a ray-box test (either a hit or a miss).

BVH traversal is usually considered to cost logarithmic time
for a first-hit ray query. This is because when a Prune-test oc-
curs, the whole subtree is skipped. Hence, the total number
of ray-box tests are much less than the number of nodes in a
BVH. However, a Pass-test cannot provide any extra infor-
mation more than “there might be an intersection in this sub-
tree”. Thus, the key observation for faster BVH traversal is
to reduce the number of Pass-tests. For a shadow ray query,
traversal can also terminate when an occlusion is found, and
corresponding optimization can be found in Section 4.2.2.

Figure 1: Two cascade node-“contraction” operations: first
the red node, then the green node are removed from the tree.

Algorithm 3: BVHContract(N)

Input: BVHNode N

1 if N.isLeaf or StopCriterion(N) then
2 return;
3 else
4 S←{N.left,N.right};
5 while ContractionCriterion(S) do
6 s← Select(S);
7 S← S−{s}+{s.left+ s.right};
8 N.child← S;
9 foreach s ∈ S do

10 BVHContract(s);

We now analyze the traversed subset-tree of a standard bi-
nary BVH in FirstHitTraverse. The traversed subset-tree is a
binary tree (two children are tested together in line 4), which
means that the number of interior nodes of this tree always
equals to the number of leaves minus one. Note that the tests
in all interior nodes are Pass-tests, which are almost half of
the overall tests. Ideally, if we can skip all of these interior
nodes and directly check their children (recurse if they are
still interior nodes), half of the ray-box tests can be saved.

Since the traversed subset-trees varies for different rays (or
ray packets), no oracle exists to determine a test to be Pass-
test or Prune-test ahead of time. We propose a novel sta-
tistical method to produce an approximate prediction of the
category of a ray-box test, in order to reduce the number of
Pass-tests. This is done by the node “contraction” operation:

Definition 1. A “contraction” operation for an interior B-
VH node is to hoist all its children to its parent, and remove
this node from the tree.

An example of contraction is shown in Figure 1. In this case,
if a ray hits both colored nodes, the two Pass-tests are elimi-
nated when traversing the contracted BVH.

To decide whether a BVH node should be contracted or not,
we define a cost function δ(N) to return cost of using a con-
tracting node N versus keeping the original BVH unchanged.
If a Pass-test happens, (1+nN.child)CB is paid where CB is
the cost of a ray-box testing and nN.child is the number of
children for node N; otherwise, CB is spent and a Prune-test
happens. If node N is contracted, nN.child ·CB is the cost to test
all children. Hence, if the probability for Pass-test in node N
is αN ,

δ(N) = nN.child ·CB− (αN (1+nN.child)+(1−αN))CB

= ((1−αN) ·nN.child−1) ·CB (1)

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Yan Gu et al. / Ray Specialized BVH Contraction

A contraction operation holds beneficial if δ(N)< 0 , which
is equivalent to:

αN > 1− 1
nN.child

(2)

We propose a cascade BVH contraction algorithm (Algorith-
m 3) that greedily optimizes a BVH by applying node con-
traction guided by the cost function. The basic idea is that
for each node, check its children to see whether there exist a
child skipping whose ray-box test is beneficial (as defined by
the cost function), and contract that node if so. Then the al-
gorithm iteratively check again until no such child is found.
We keep a set S to be the candidate children of node N;
the function ContractionCriterion (line 5) guides the pro-
cess of cascade contraction and decide whether there exist
nodes to be further contracted; in each iteration, one child
node s is selected from S by function Select; finally, function
StopCriterion determines when to terminate the recursion so
we only modify the top levels of the BVH (which are a s-
mall fraction of the entire BVH but has large impact on ray
tracing performance) for faster contraction process (see an
example in Section 4.2.2).

Although contractions can be operated in any order, we im-
plement our algorithm in a top-down approach, which has
two advantages: first, when the iteration finished after line
7, all children are kept in a continuous memory, which
optimizes data locality when traversing; second, function
StopCriterion is able to control the number of nodes to be ex-
ecuted, which guarantees a fast modification. Note that the
pseudocode in Algorithm 3 is a high-level abstraction that
parameterizes a set of functions and simplifies the descrip-
tion in Section 4.2. In practice, a careful implementation of
BVHContract takes linear time regarding to the number of
visited nodes, since each node N is only checked once: if
δ(N) < 0 then it will be contracted immediately; otherwise,
they node will stay and never be checked again.

A combination of ContractionCriterion, Select and
StopCriterion is called the parameters of BVH contraction.

4.2. Parameters of BVH Contraction

Now we introduce the way to select appropriate parameters
for better ray-scene test performance.

Basic data structure intuition indicates that an ideal binary
tree data structure will split the range of space in half each
time, and thus for each check, the probability to traverse each
subtree is approximately the same and close to half, which
maximizes the information gain (entropy) for this check. N-
evertheless, this property does not always hold for BVHs
built by many commonly-used algorithms for the following
two reasons:

• The bias in the data structure (structural imbalance).
Objects do not distribute in the space evenly, and a com-
mon BVH construction heuristic, like SAH, usually bi-

sects the space so that the smaller subspace contains more
primitives and vice versa. This can lead to a large differ-
ence in the probability of visiting each child.

• The bias in the queries (ray-distribution imbalance).
Even for incoherent rays, like diffuse inter-reflection rays
with multiply bounces from a given camera position, parts
of the scene are much harder to reach than the rest. More-
over, this imbalance is very hard to measure analytically.

4.2.1. Surface-Area Guided Contraction

A common way (i.e. [WBB08]) to measure the probability to
traverse a child is by the ratio of the surface area of the child
to that of the parent. This is based on the assumption that
rays are infinitely long and their distribution is completely
random. Therefore, the corresponding parameters (surface-
area guided tree contraction, SATC) for Algorithm 3 are:

αN =
SA(N)

SA(N.parent)

ContractionCriterion(S) =

{
True ,∃s ∈ S,δ(s)< 0
False,∀s ∈ S,δ(s)≥ 0

Select(S) = any s ∈ S s.t. δ(s)< 0

StopCriterion(N) = False

where SA(N) is the surface area of the bounding box for
node N. SATC only captures the structural imbalance of B-
VH itself caused by the heuristic.

Since BVHContract is executed top-down and nN.child in E-
qn. 2 is unknown at the moment, we empirically set 1−
1/nN.child to be 0.6. (A bottom-up approach with the exact
threshold for αN provides similar BVH quality.) Therefore,
the checking for δ(s)< 0 is equivalent to αN > 0.6, so that a
BVH node with surface area larger than 0.6 times its parent’s
surface area will be contracted.

SATC does not involve any information of ray distribution,
but it is a good example to understand the BVH contraction
algorithm, and useful in further analysis in the experiment
section. Experimental results using SATC can be found in
Table 1 and discussion in Section 5.2.

4.2.2. Ray-Distribution Guided Contraction

To explore the bias in queries, we introduce our ray-
distribution guided BVH contraction. Feltman et al. [FLF12]
found that a small set of sample rays are able to sufficiently
represent a ray distribution. However, their implementation
stores the sample rays and and checks them with all possible
bounding boxes in BVH construction, which makes it very
inefficient. Instead, our algorithm focuses on the probabil-
ity of traversing both children directly. We keep a counter
named “visitCount” in each BVH node, indicating the num-
ber of times this node is traversed by sample rays. Every time
a Pass-test occurs on a node, its counter will increase by one.

The new structure to store a BVH node is shown below,

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Yan Gu et al. / Ray Specialized BVH Contraction

which has a total size of 32 bytes, so a standard CPU cache
line fits two BVH nodes. Four elements including number
of children (4 bits, since the new generated BVH nodes are
forced to have at most 16 children), leaf flag (1 bit), con-
tracted flag (1 bit, for implementation purpose) and pointer
to the first child (26 bits, supporting at most 64M triangles),
are stored together using 32 bits.

struct Node {
BoundingBox bbox;
Int numChild :4;
Boolean isLeaf :1;
Boolean ContrFlag :1;
Pointer ptr :26;
Int visitCount;

}

Using the statistical data provided by the counter in each
BVH node, we now estimate the probability that a ray-box
test of a node is a Pass-test to be the ratio of the numbers in
its parent’s counter and its own counter. For example, if the
counter for node A is 400 and the counter for A’s parent is
500, then the probability that a Pass-test for node A is 80%
for this ray distribution.

It is worth to point out that this method provides a much
more accurate estimation for tree imbalances. An extra us-
age of the counters in the tree nodes is to constrain the con-
traction process on the “important” part on the BVH. This
is because the importance of a node is proportional to the
number in the counter, and a good parameter of contraction
is able to neglect “less” important parts and only reconstruc-
t a small fraction of tree nodes (usually a few thousands of
tree nodes). Therefore, the time spent for this whole proce-
dure can be negligible (no more than 1ms).

The new parameters (aka. ray-distribution guided tree con-
traction, RDTC) for Algorithm 3 are (the rest is the same as
previous):

αN =
visitCount(N)

visitCount(N.parent)
StopCriterion(N) = visitCount(N)< t

where t is a constant threshold. RDTC captures both struc-
tural and ray-distribution imbalances by directly acquiring
the probability to different subtrees. In practice, sampling
about 0.1%− 0.5% of rays or tracing a few thousand pixels
are sufficient for high-quality BVH contraction.

4.2.3. Pipeline for Sampling-Based Ray Tracing

Since our new algorithm requires statistical information
from sample rays, the process of ray sampling needs to be
integrated, and the ray tracing pipeline needs to be slightly
modified. The new procedure is:

1. Create a BVH using any BVH construction algorithm.

2. Pre-render a small sample of pixels and track the counters
for each node.

3. Apply BVHContract (Algorithm 3).

4. Render the rest of pixels.

The extra work introduced in step 2 and 3 has negligible im-
pact on run-time performance. In step 2, the algorithm traces
and stores the intersection result of a sub-set of input rays,
which will be traced anyway by the system. In some paral-
lel systems, the overhead of atomic operations on counters
can be high. However, an approximate estimation is suffi-
cient for our algorithm, and we find that removing atomicity
boosts performance without impacting output BVH quality.
For GPU implementations that atomic operations are expen-
sive, an alternate solution is to trace less sample rays. Based
on our experiment, tracing only 0.02% of rays to be samples
only affect the overall performance for less than 2% com-
paring to the setting tracing 0.4% sample rays. In step 3, our
RDTC algorithm modifies only a few thousand BVH nodes.
This extra cost is very small compared to the entire work of
tracing hundreds of millions of rays. In Section 5.3, we will
show that tracing the new BVH in step 4 is also efficient.

4.3. Ray-Distribution Order for Shadow Ray Traversal

Some previous papers [IH11, FLF12, NM14] tried to design
specialized traversal order or BVH to accelerate shadow-ray
traverse, since instead of finding the first intersection along
the ray, their algorithms use some heuristics to decide the
probability of having occlusions for a random ray in a sub-
tree, and first traverse the subtree based on this priority.

In our approach, we already know an approximate probabil-
ity for a ray to traverse all children. Thus the traversal order
for shadow rays is to always test and traverse the subtree
with larger number in node counter first, and keep this order
for cascade contraction in BVHContraction.

4.4. Extension to Packet Ray Tracing and n-ary BVHs

To utilize the SIMD units, two major directions for bet-
ter parallelism in ray tracing are ray parallelism (pack-
et ray tracing) [WSBW01] and box-test parallelism [WB-
B08, DHK08].

Extension to packet ray tracing is straightforward and no
change to RDTC is required. The only difference is that the
probability to traverse a certain child (αN) will increase, be-
cause the node will be visited if any rays in the packet hit
its bounding box. This will lead to better contraction results.
However, in packet ray tracing, the ratio of execution time
spending in ray-triangle testing increases, and our contrac-
tion will not reduce the cost in this part. Our experiment
shows that the overall acceleration is almost the same com-
pared to trace a single ray every time, and the detailed results
are shown in Table 1.

n-ary (n = 2k, k = 2,3) BVHs, or Quad-BVHs when n = 4,

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Yan Gu et al. / Ray Specialized BVH Contraction

was proposed in [WBB08, DHK08], where multiple bound-
ing boxes are tested simultaneously using vector units AVX
and SSE on CPUs. To apply the new BVH contraction algo-
rithm in this case, we only need to fix the maximum number
of branches to a certain number (4 or 8).

Intuitively, nodes with a higher probability of being tra-
versed should be contracted first [WBB08]. In our setting,
this priority is indicated by higher Pass-test rate, provided by
the ratio of numbers in the counters. We estimate the prob-
ability directly using the numbers in the counter if many (at
least t) rays hit this node; otherwise, we use the surface area
to estimate the probability. Hence, parameters for n-ary B-
VH (constant branches tree contraction, CBTC) is:

αN =

SA(N)

SA(N.parent) ,visitCount(N)< t

visitCount(N)
visitCount(N.parent) ,visitCount(N)≥ t

ContractionCriterion(S) = |S|< 2k and Nl(S) 6=∅
Select(S) = argmax

s∈Nl(S)
αs

StopCriterion(N) = False

whereas Nl(S) maps non-leaf nodes in S into a new set, and
t is still a constant threshold as previously mentioned. It is
interesting to point out that Wald et al.’s method [WBB08]
generate the same BVH as CBTC if t is set to be +∞. We
name this special case as CBTC-SA because it only relies on
surface area, and the rest setting as CBTC-RD, because ray
distribution is integrated in the contraction process.

5. Evaluation

Due to the page limit, we provide a brief version of our ex-
periment in this section. We refer the reader to the supple-
mental material for a comprehensive algorithm analysis.

5.1. Experiment Setup

The evaluation in our paper focuses on both the number of
ray-box tests, and the actual execution time on a many-core
CPU. The number of ray-box tests is a good indicator for B-
VH quality, because this number does not depend on details
of the hardware or implementation, and can be easily repro-
duced. Since we cannot implement all of the state-of-the-art
ray tracers on different platforms, we report our actual run-
ning time on a 40-core machine consists of four 10-core Intel
E7-8870 Xeon processors (1066 MHz bus). Parallel imple-
mentations were compiled with CilkPlus, which is included
in G++. Our ray tracing code borrows the ideas from some
of the recent works [BWB08, Tsa09], but we implement it
separately. The performance of our ray tracer is competitive
since the test scenes we used are relatively complex, and the
tracing speed for each scene is provided in the supplemental
material. More implementation details and analysis can be
found in Section 5.3. Notice that tree structure needs to be
rearranged for tracing n-ary BVH to utilize the SIMD units.

We use 15 test scenes in our experiments, which contain sig-
nificant scene-to-scene variations. Our method tends to re-
duce ray-box tests due to BVH imbalances in complex ge-
ometry models, so we mainly focus on 10 real-world scenes,
which include: 3 widely used architectural models CON-
FERENCE, CRYTEK-SPONZA and SAN-MIGUEL; a com-
plex building SODA-HALL to be rendered separately inside
and outside; 2 city models ARABIC and BABYLONIAN from
the Mitsuba distribution [Jak10] showing large spatial ex-
tends; and 3 game scenes TRAIN-STATION, EPISODE2 and
WAREHOUSE from HalfLife2, with complex geometry. Ex-
perimental results for the other 5 scenes are given in the sup-
plemental material.

We show the benefits of our method by studying the perfor-
mance improvement based on starting with the BVH con-
structed by three different algorithms: a top-down full-sweep
SAH build (short for SAH) [GS87], a bottom-up build us-
ing approximate agglomerative clustering with HQ param-
eters (short for AAC) [GHFB13], and a top-down build us-
ing spatial splits with default parameters (short for SBVH)
[SFD09]. These algorithms generate high-quality BVHs us-
ing different approaches, so the evaluation results are repre-
sentative. Renderings use 32 sample rays per pixel and one
to several area light sources depending on scene complex-
ity. More than 5 camera positions for outdoor scenes and
3-5 for indoor scenes are used, with the results averaged.
We pre-render 1 pixel per 16× 16 block in screen space,
and use these sample rays to generate statistics on the BVH.
Our experiment shows that the threshold t in StopCriterion
in RDTC is insensitive, and in the experiments we use the
maximum number of rays for a single sample pixel. More
details are provided in the supplemental material.

In our experiment, we extensively use the “relative ratio” or
“relative performance” to show the acceleration of our ap-
proach, and here it is defined as the total amount of work
(number of ray-box tests or wall clock time) on the contract-
ed BVH divided by that on the original binary BVH.

5.2. Scene-by-Scene Acceleration

To start with, we first analyze the improvement of perfor-
mance by BVH contraction on different scenes. Table 1 com-
pares the relative performance based on different parameter-
s, with both number of ray-box tests (for SATC and RDTC)
and wall clock time (for RDTC). The table also provides the
tree imbalance, number of contracted nodes for RDTC, rel-
ative node depth, and average number of branches for new
generated node. All data are generated by single ray tracing,
but the running time for packet ray tracing is also provided,
which shows a similar speedup.

The SATC heuristic (introduced in Section 4.2.1), which
tries to avoid unnecessary ray-box tests caused by structural
imbalance, can reduce the tests by up to 25% on diffuse
rays and 45% on shadow rays (column SATC in “Rel. # ray-

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Yan Gu et al. / Ray Specialized BVH Contraction

Scene
Initial # ray-box tests Rel. # ray-box tests Relative runtime BVH Contracted Rel. Ave.
BVH non-opt BVH SATC RDTC Single Packet imbalance nodes node num. of
type diff / shad diff / shad diff / shad diff / shad diff / shad SATC RDTC num. pct. depth branch / pass

SAH 42.9 / 31.3 0.75 / 0.72 0.71 / 0.67 0.74 / 0.69 0.76 / 0.70 0.51 0.58 1.9K 1.1% 0.31 5.2 / 1.3
AAC 35.0 / 24.9 0.76 / 0.72 0.73 / 0.71 0.76 / 0.75 0.79 / 0.77 0.24 0.39 1.8K 1.5% 0.36 4.6 / 1.2

SBVH 37.4 / 28.9 0.79 / 0.73 0.75 / 0.66 0.78 / 0.69 0.80 / 0.69 0.49 0.61 2.3K 1.1% 0.30 5.3 / 1.5

SAH 105.4 / 86.1 0.80 / 0.56 0.72 / 0.50 0.75 / 0.56 0.77 / 0.54 0.37 0.49 5.6K 3.6% 0.30 6.1 / 1.5
AAC 87.5 / 54.8 0.82 / 0.66 0.74 / 0.55 0.71 / 0.61 0.70 / 0.59 0.21 0.44 5.2K 4.8% 0.25 5.2 / 1.3

SBVH 71.6 / 51.7 0.88 / 0.85 0.81 / 0.57 0.83 / 0.65 0.85 / 0.61 0.30 0.45 5.9K 2.8% 0.34 4.6 / 1.2

SAH 68.5 / 40.3 0.90 / 0.70 0.69 / 0.46 0.70 / 0.54 0.73 / 0.53 0.32 0.65 1.2K 0.1% 0.15 6.6 / 1.2
AAC 139.9 / 65.3 0.76 / 0.77 0.46 / 0.48 0.43 / 0.55 0.42 / 0.57 0.20 0.45 4.7K 0.6% 0.15 7.0 / 1.2

SBVH 67.0 / 50.1 0.95 / 0.78 0.70 / 0.58 0.66 / 0.65 0.73 / 0.65 0.26 0.61 1.4K 0.1% 0.23 5.3 / 1.1

SAH 44.9 / 30.7 0.87 / 0.76 0.76 / 0.68 0.83 / 0.69 0.76 / 0.70 0.37 0.56 3.2K 0.2% 0.30 4.9 / 1.1
AAC 54.0 / 36.7 0.83 / 0.82 0.75 / 0.73 0.73 / 0.68 0.73 / 0.74 0.20 0.42 3.7K 0.4% 0.33 4.2 / 1.2

SBVH 34.8 / 27.6 0.97 / 0.86 0.80 / 0.68 0.90 / 0.68 0.83 / 0.71 0.21 0.50 3.6K 0.2% 0.43 3.8 / 1.0

SAH 88.5 / 53.7 0.97 / 0.98 0.76 / 0.69 0.83 / 0.77 0.80 / 0.72 0.36 0.49 4.7K 1.7% 0.33 4.5 / 1.3
AAC 75.0 / 44.6 0.85 / 0.85 0.76 / 0.73 0.82 / 0.81 0.84 / 0.81 0.20 0.45 3.8K 2.1% 0.35 4.4 / 1.3

SBVH 50.9 / 38.3 0.92 / 0.87 0.79 / 0.75 0.84 / 0.82 0.86 / 0.84 0.24 0.48 5.8K 1.5% 0.37 4.0 / 1.1

SAH 61.0 / 39.2 0.88 / 0.84 0.77 / 0.68 0.79 / 0.73 0.85 / 0.76 0.34 0.51 2.2K 0.7% 0.34 4.2 / 1.1
AAC 65.4 / 43.9 0.83 / 0.72 0.77 / 0.76 0.73 / 0.77 0.80 / 0.74 0.20 0.46 2.3K 1.0% 0.24 5.8 / 1.4

SBVH 45.1 / 30.0 0.92 / 0.93 0.80 / 0.71 0.78 / 0.78 0.78 / 0.80 0.26 0.57 2.5K 0.5% 0.34 4.1 / 1.0

SAH 64.1 / 39.2 0.89 / 0.86 0.79 / 0.71 0.75 / 0.77 0.80 / 0.70 0.29 0.49 2.0K 1.7% 0.34 4.0 / 1.2
AAC 65.1 / 37.3 0.93 / 0.96 0.78 / 0.68 0.77 / 0.75 0.82 / 0.81 0.17 0.41 1.8K 2.3% 0.31 4.1 / 1.2

SBVH 57.1 / 37.2 0.91 / 0.76 0.80 / 0.69 0.84 / 0.72 0.79 / 0.72 0.25 0.48 2.4K 1.7% 0.39 3.9 / 1.1

SAH 72.9 / 47.8 0.91 / 0.91 0.74 / 0.64 0.67 / 0.59 0.72 / 0.62 0.27 0.56 2.9K 0.4% 0.21 5.3 / 1.3
AAC 74.3 / 48.2 0.93 / 0.93 0.74 / 0.72 0.75 / 0.70 0.76 / 0.68 0.17 0.56 2.6K 0.6% 0.17 5.5 / 1.3

SBVH 68.4 / 42.6 0.95 / 0.95 0.74 / 0.66 0.78 / 0.71 0.82 / 0.68 0.25 0.62 3.1K 0.4% 0.20 5.1 / 1.2

SAH 73.5 / 57.5 0.93 / 1.08 0.68 / 0.65 0.67 / 0.58 0.65 / 0.64 0.30 0.59 3.0K 2.2% 0.29 4.9 / 1.3
AAC 72.1 / 55.8 0.84 / 0.84 0.67 / 0.63 0.68 / 0.66 0.68 / 0.68 0.20 0.57 2.4K 3.1% 0.23 5.0 / 1.3

SBVH 58.5 / 54.7 0.94 / 0.92 0.75 / 0.68 0.82 / 0.70 0.80 / 0.69 0.28 0.58 3.6K 2.1% 0.35 4.0 / 1.2

SAH 142.7 / 67.0 0.89 / 0.72 0.80 / 0.75 0.87 / 0.74 0.90 / 0.70 0.28 0.37 14.4K 0.3% 0.46 3.9 / 1.2
AAC 143.0 / 60.8 0.85 / 0.88 0.79 / 0.81 0.82 / 0.87 0.88 / 0.78 0.18 0.32 14.9K 0.4% 0.43 3.9 / 1.2

SBVH 106.2 / 55.9 0.94 / 0.75 0.83 / 0.67 0.91 / 0.71 0.90 / 0.69 0.25 0.37 13.1K 0.2% 0.51 3.7 / 1.2

SAH 0.88 / 0.81 0.75 / 0.64 0.76 / 0.66 0.77 / 0.66 0.30 4.9 / 1.2
Average 10 AAC 0.84 / 0.82 0.72 / 0.68 0.71 / 0.71 0.74 / 0.72 0.28 5.0 / 1.3

SBVH 0.92 / 0.85 0.78 / 0.66 0.80 / 0.70 0.81 / 0.70 0.35 4.4 / 1.2

Table 1: Detail experiment results for different scenes with various initial BVHs. Results for numbers of ray-box tests for non-optimized BVHs,
relative ratios of ray-box test for both SATC and RDTC comparing to non-optimized BVHs, relative ratios on actual wall-clock time for ray-
primitive testing for RDTC on both single and packet ray tracing (actual running time in supplemental material), BVH imbalance descriptors
for both SATC and RDTC, reconstructed BVH nodes for RDTC, relative node depth to reach triangles for ray-box testing between RDTC and
initial BVH, and average numbers of branches and Pass-tests for new contracted node are provided. The data in the last column are averaged
on the weight of the VisitCount in each node. “diff / shad” means diffuse rays (and other rays querying for first intersection) / shadow rays.

box tests”). However, this number varies significantly across
the scenes and BVH construction methods, and can even be
negative. The RDTC heuristic (introduced in Section 4.2.2),
however, captures inefficiencies due to both structural and
ray-distribution imbalance, gets a consistent improvemen-
t of 20-30% (average 25%) for diffuse rays, and 25-55%
(average 35%) for shadow rays (column RDTC in “Rel. #
ray-box tests”). Similar improvements in runtime are also
observed. Moreover, these improvements are less related to
BVH construction approaches, but are more scene depend-
ed. Such reductions in the number of ray-box tests for ray
tracing are significant since the ray-primitive testing has log-
arithmic time complexity.

We also use the “imbalance descriptor” (Imb) from 0 to 1 to
measure the imbalance of a BVH:

Imb(S) =
∑s∈S (visitCount(s) |αs.left−αs.right|)

∑s∈S visitCount(s)
(3)

where α is measured by different parameters of the BVH
contraction (introduced in Section 4.2). The argument S can
be the set of all the nodes in a BVH in Table 1, or the nodes
in a specific level in Figure 2. We claim that this function
predicts the improvement by our method very well, and the
linear regression between them are also shown in the supple-
mental material.

The number of contracted nodes for RDTC is provided, and

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Yan Gu et al. / Ray Specialized BVH Contraction

usually only a few thousand tree nodes (1.2K to 5.9K, ex-
cept for San-Miguel which contains 8M triangles) are re-
constructed in our methods. The consumed time for BVH
contraction is very short (usually less than 1ms), and about
the computations to trace a few hundred rays. Therefore, it
is affordable to run the BVH contraction algorithm on every
frame. We tested the hybrid parameters for SATC and RDTC
to a full BVH contraction (i.e. to use αN in CBTC in Sec-
tion 4.4), and the difference between the hybrid parameters
and RDTC in relative ratio in ray-box tests is less than 1%
in all scenes with any initial BVH. Hence, we believe that
only this small fraction of the tree (the contracted part, 0.1%
to 3% of overall tree nodes) covers most of the structure and
ray distribution imbalance. Meanwhile, Table 1 also shows
that an average of 8-15% improvement on diffuse rays and
13-18% on shadow rays is caused by structural imbalance
and caught by SATC, and an extra 12-14% and 13-20% im-
provement is caused by extra ray-distribution imbalance and
caught by RDTC.

We investigate the benefits of our method by further looking
at four representative scenes in Figure 2, which are archi-
tectural model CONFERENCE with mainly structural imbal-
ance, building SODA-HALL with imbalance in ray distribu-
tion, game scene TRAIN-STATION with imbalance on both,
and finely tessellated objects HAIRBALL that has a balanced
initial BVH. All their traversal details are computed with an
initial BVH generated by top-down SAH.

In column (a), bars indicate the number of Pass-tests in each
level. Pass-tests should be avoided in ray-primitive testing
because they cannot provide useful pruning during traversal
and creates extra data accesses. As we anticipated, this num-
ber reduce by a factor of 60% to 80% on the first 3 scenes,
and about 40% for balanced initial BVH.

Figure 2, Column (b) shows structural and ray distribution
imbalances by levels, which are computed by the imbalance
descriptor with α separately from SATC and RDTC. These
figures show that most significant imbalance happens at the
top (around 10) levels in the BVH, which is where our algo-
rithm focuses on. This is further shown by column (c), which
indicates that few contractions happen beyond the top levels
since the average branches drop down to 2 quickly. More-
over, even if we have a multi-branch (up to 16 branches) B-
VH at the first several levels, the actual number of Pass-tests
is relatively low (≤3.3 at root node, ≤1.6 in 2 to 10 levels,
average 1.2 to 1.3 for contracted node as shown in Table 1),
which means our BVH contraction will not require sorting
many boxes to order them from front to back.

5.3. Implementation Details on Traverse

The code to traversing binary BVH is usually highly op-
timized, including hand-tune operations, dedicate register
allocation, etc. For contracted BVH, only the top levels
are reconstructed, and the contracted flag of these nodes

are marked as True. For non-contracted node, the highly-
optimized code for binary BVH traversing is still able to
use, because the whole subtree is not changed. For contract-
ed node, an extra loop variable and a more complex sorting
process are needed. However, we claim that the extra steps
will not affect the running speed.

For non-contracted nodes, multiple box-tests occur togeth-
er (average 4.4-5.0 shown in Table 1). Nevertheless, since
the contraction reduces Pass-tests, only average 1.2 to 1.3
Pass-tests occur on each node. Since only a small fraction
(about 25%) of Pass-tests are on each node, sorting the chil-
dren from-to-end is cheap, since we are usually sorting no
more than 2 elements except for the root node (Column (c)
in Figure 2). Moreover, the nodes that need sorting are much
less and reduced by about 70% on average (Column “relative
node depth” in Table 1). Overall, the time spend in sorting
process is actually faster than that without BVH contraction.
Furthermore, The path to reach triangles are much short-
ened (average length of 2.6 to reach triangles), comparing
to a path with usually 6-15 levels to reach the correspond-
ing BVH nodes. The reduction on average depth can largely
speedup the traversing process on both stack and stackless
implementation, and overcome the extra cost to use the loop
variable. The testing result in Table 1 shows that the acceler-
ation on runtime and the number of box-tests are similar.

The experiment results in Table 1 and Figure 2 shows that
traversing the new contracted multi-branch BVHs will not
cause inefficiency comparing to binary BVHs, since the rel-
ative ratio of actual running times is similar to the ratio of
decreased ray-box tests.

5.4. Evaluation on Details

From the previous section we show that the improvement on
overall performance on contracted BVHs. We also carefully
evaluated the performance of this algorithm with the impacts
on different rendering settings, including sample size, light-
ing environment, camera position, and the order of reflection
rays. Due to the length limit of the paper, the evaluation de-
tails are provided in the supplemental material, and here we
summarized the useful conclusions.

Sample size. Taking a sample pixel over a pixel block with
size between 8-by-8 to 32-to-32 usually provides the best
overall improvement. In practice, one thousand sample pix-
els are sufficient for our approach.

Lighting setting. Higher ratios of occluded shadow rays can
speedup ray-traversing on contracted BVHs since intersec-
tions are found faster after contraction. The performance for
diffuse rays should not be affected by light environments.
In our experiments shown in the supplemental material, the
performance to traverse shadow rays on contracted BVHs
get better improvement when a higher ratio of occluded rays
appear. Moreover, better coherence of shadow rays generally
improves the performance of our approach.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Yan Gu et al. / Ray Specialized BVH Contraction

0.0
0.5
1.0
1.5
2.0

× 108

1 5 10 15 20

0.0
0.6
1.2
1.8
2.4

× 108

1 5 10 15 20

0.0
0.5
1.0
1.5
2.0

× 108

1 5 10 15 20

0
1
2
3
4

× 108

1 5 10 15 20

(a) node traversed, by original BVH
(blue) and by RDTC (red)

0.00
0.25
0.50
0.75
1.00

1 4 7 10 13 16

0.00
0.25
0.50
0.75
1.00

1 4 7 10 13 16

0.00
0.25
0.50
0.75
1.00

1 4 7 10 13 16

0.00
0.25
0.50
0.75
1.00

1 4 7 10 13 16

(b) structural (cyan) and overal-
l (orange) imbalance descriptors

0

2

4

10

1 4 7 10 13 16

0

2

4

16

1 4 7 10 13 16

0

2

4

6

1 4 7 10 13 16

0

2

4

6

1 4 7 10 13 16

(c) Average number of branches (green), intersected
boxes (yellow) and actual traversed nodes (red)

Figure 2: Detail results by levels in the original and contracted BVH. Column (a) shows the nodes that actually traversed (i.e. by Pass-tests)
in each level. Column (b) provides structural and overall imbalance descriptors defined in Section 5.2. Column (c) gives the average number
of branches, intersected boxes and actual traversed nodes on contracted BVH, and each node is weighted by the number in its counter. Initial
BVHs are top-down SAH BVHs.

Camera positions. In our experiments, we show that differ-
ent camera positions do not impact the performance of our
approach much. This is because high quality ray tracing re-
quires numerous diffuse rays to generate global illumination
effects, and hence such a large number of incoherent rays
distribute fairly randomly no matter where the camera posi-
tions are (usually less than 5% differences between the ex-
treme cases in one scene).

Higher-order diffuse-bouncing rays. In our experiments,
we also observed that consistent performance improvements
are achieved with higher-order diffuse-bouncing rays, and
the differences in relative ratios between 1st, 2nd and 3rd
order diffuse-bouncing rays are between 1% to 3% on all 3
scenes.

5.5. N-ary BVHs

Now we briefly summarize some experimental results when
our approach is applied to n-ary BVHs (Quad-BVHs or Oct-
BVHs). In this case, multiple bounding boxes can simultane-
ously test together using the SIMD units on a CPU. We com-
pare BVHs constructed by our method (using the parameter
of ray distribution and surface area, refer to the CBTC-RD
column in Table 8 in the supplemental material) with two
existing n-ary BVH construction methods: directly collaps-
ing [DHK08] (direct collapse column), and only by surface
area [WBB08] (CBTC-SA column).

We provided experiment results on 10 outdoor scenes com-
bining with 3 initial BVH construction algorithms in the sup-
plemental material. The conclusion is that CBTC-RD pro-

vides a 15% / 21% (diffuse / shadow ray) improvement for
Quad-BVH and 25% / 30% for Oct-BVH compared with di-
rect collapsing, and 10% / 12% for Quad-BVH and 14% /
15% for Oct-BVH compared with CBTC-SA. Notice that
this improvement is measured by number of box testing.
This is because the same code can be used as ray-primitive
tests on all different parameters since the tree structures are
the same. Thus, the reduction of ray-box tests is irrelevant
to the code implementation, and any code optimization will
accelerate all BVHs. Again, due to the page limit, the full
experiment data and result analysis are provided in the sup-
plemental material.

6. Conclusion

In this paper we demonstrated a novel method to efficiently
contract BVHs that accelerates ray-primitive testing signif-
icantly. This contraction is based on the statistics generated
from a sample of the rays. Our algorithm can start with any
initial binary BVH created by a state-of-the-art algorithm,
and is compatible with other ray-tracing techniques for ac-
celerating ray-primitive testing. Unlike previous method to
rebuild an extra BVH, we directly keep statistics in the B-
VH, so a post-optimization can be easily applied.

Notice that our method significantly decreases Pass-tests
at the cost of increasing Prune-tests (overall tests are de-
creased). An interesting direction for future work is the sim-
ilar idea but in opposite direction: a method to re-group the
nodes to avoid Prune-tests. A heuristic need be developed to
acquire the statistics for newly generated nodes.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Yan Gu et al. / Ray Specialized BVH Contraction

Acknowledgments

This research was supported in part by NSF grants CCF-
1218188, CCF-1314590, and CCF-1533858, and by the Intel
Science and Technology Center for Cloud Computing.

References

[AK10] AILA T., KARRAS T.: Architecture considerations for
tracing incoherent rays. In Proc. High-Performance Graphics
(2010). 2

[AKL13] AILA T., KARRAS T., LAINE S.: On quality metric-
s of bounding volume hierarchies. In Proc. High-Performance
Graphics (2013). 2

[AL09] AILA T., LAINE S.: Understanding the efficiency of ray
traversal on GPUs. In Proc. High-Performance Graphics (2009).
2

[BH09] BITTNER J., HAVRAN V.: RDH: Ray Distribution
Heuristics for Construction of Spatial Data Structures. In 25th
Spring Conference on Computer Graphics (SCCG) (2009), Haus-
er H., (Ed.). 1, 2

[BHH13] BITTNER J., HAPALA M., HAVRAN V.: Fast insertion-
based optimization of bounding volume hierarchies. Computer
Graphics Forum 32, 1 (2013), 85–100. 2

[BWB08] BOULOS S., WALD I., BENTHIN C.: Adaptive Ray
Packet Reordering. In Proc. Interactive Ray Tracing (2008). 6

[DHK08] DAMMERTZ H., HANIKA J., KELLER A.: Shallow
bounding volume hierarchies for fast SIMD ray tracing of in-
coherent rays. In Proc. Eurographics Conference on Rendering
(2008). 2, 5, 6, 9

[FLF12] FELTMAN N., LEE M., FATAHALIAN K.: SRDH: Spe-
cializing BVH construction and traversal order using represen-
tative shadow ray sets. In Proc. High-Performance Graphics
(2012). 1, 2, 4, 5

[GHFB13] GU Y., HE Y., FATAHALIAN K., BLELLOCH G.: Ef-
ficient BVH construction via approximate agglomerative cluster-
ing. In Proc. High-Performance Graphics (2013). 1, 2, 6

[GPBG11] GARANZHA K., PREMOZE S., BELY A., GALAK-
TIONOV V.: Grid-based SAH BVH construction on a GPU. The
Visual Computer 27, 6-8 (2011), 697–706. 2

[GPM11] GARANZHA K., PANTALEONI J., MCALLISTER D.:
Simpler and faster HLBVH with work queues. In Proc. High-
Performance Graphics (2011). 2

[GS87] GOLDSMITH J., SALMON J.: Automatic creation of ob-
ject hierarchies for ray tracing. IEEE Computer Graphics and
Applications 7, 5 (May 1987), 14–20. 2, 6

[Hav00] HAVRAN V.: Heuristic Ray Shooting Algorithms. Ph.D.
thesis, Department of Computer Science and Engineering, Fac-
ulty of Electrical Engineering, Czech Technical University in
Prague, November 2000. 1, 2

[HM08] HUNT W., MARK W. R.: Ray-specialized accelera-
tion structures for ray tracing. In Proc. Interactive Ray Tracing
(2008). 2

[IH11] IZE T., HANSEN C. D.: RTSAH traversal order for occlu-
sion rays. Comput. Graph. Forum 30, 2 (2011), 297–305. 5

[Jak10] JAKOB W.: http://mitsuba-renderer.org. 6

[KA13] KARRAS T., AILA T.: Fast parallel construction of high-
quality bounding volume hierarchies. In Proc. High-Performance
Graphics (2013). 1, 2

[Kar12] KARRAS T.: Maximizing parallelism in the construction
of BVHs, octrees, and K-D trees. In Proc. High-Performance
Graphics (2012). 2

[Ken08] KENSLER A.: Tree rotations for improving bounding
volume hierarchies. In Proc. Interactive Ray Tracing (2008). 2

[KKW∗13] KELLER A., KARRAS T., WALD I., AILA T., LAINE
S., BIKKER J., GRIBBLE C., LEE W.-J., MCCOMBE J.: Ray
tracing is the future and ever will be. In ACM SIGGRAPH Cours-
es (2013). 1

[LGS∗09] LAUTERBACH C., GARL M., SENGUPTA S., LUEBKE
D., MANOCHA D.: Fast BVH construction on GPUs. In Proc.
Eurographics (2009). 2

[LKA13] LAINE S., KARRAS T., AILA T.: Megakernels consid-
ered harmful: Wavefront path tracing on GPUs. In Proc. High-
Performance Graphics (2013). 2

[Mor11] MORA B.: Naive ray-tracing: A divide-and-conquer ap-
proach. ACM Trans. Graph. 30, 5 (Oct. 2011), 117:1–117:12.
2

[NIDN13] NABATA K., IWASAKI K., DOBASHI Y., NISHITA T.:
Efficient divide-and-conquer ray tracing using ray sampling. In
Proc. High-Performance Graphics (2013). 2

[NM14] NAH J.-H., MANOCHA D.: Sato: Surface area traversal
order for shadow ray tracing. Computer Graphics Forum (2014).
5

[PBD∗10] PARKER S. G., BIGLER J., DIETRICH A.,
FRIEDRICH H., HOBEROCK J., LUEBKE D., MCALLIS-
TER D., MCGUIRE M., MORLEY K., ROBISON A., ET AL.:
Optix: a general purpose ray tracing engine. ACM Transactions
on Graphics (TOG) 29, 4 (2010), 66. 1

[PGDS09] POPOV S., GEORGIEV I., DIMOV R., SLUSALLEK P.:
Object partitioning considered harmful: Space subdivision for B-
VHs. In Proc. High Performance Graphics (2009). 1, 2

[PL10] PANTALEONI J., LUEBKE D.: HLBVH: Hierarchical L-
BVH construction for real-time ray tracing of dynamic geometry.
In Proc. High-Performance Graphics (2010). 2

[SFD09] STICH M., FRIEDRICH H., DIETRICH A.: Spatial splits
in bounding volume hierarchies. In High-Performance Graphics
(2009). 2, 6

[Tsa09] TSAKOK J. A.: Faster incoherent rays: Multi-bvh ray
stream tracing. In Proc. High Performance Graphics (2009). 6

[Wal07] WALD I.: On fast construction of SAH-based bounding
volume hierarchies. In Proc. Interactive Ray Tracing (2007). 2

[WBB08] WALD I., BENTHIN C., BOULOS S.: Getting rid
of packets - efficient SIMD single-ray traversal using multi-
branching BVHs. In Proc. Interactive Ray Tracing (2008). 2,
4, 5, 6, 9

[WBKP08] WALTER B., BALA K., KULKARNI M., PINGAL-
I K.: Fast agglomerative clustering for rendering. In Proc. In-
teractive Ray Tracing (2008). 2

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray tracing de-
formable scenes using dynamic bounding volume hierarchies.
ACM Trans. on Graphics 26, 1 (2007). 2

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C., WAGNER
M.: Interactive rendering with coherent ray tracing. In Computer
graphics forum (2001), vol. 20, pp. 153–165. 2, 5

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S.,
ERNST M.: Embree: a kernel framework for efficient cpu ray
tracing. ACM Transactions on Graphics (TOG) 33, 4 (2014),
143. 1

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

