
Algorithmic Building Blocks for Asymmetric Memories

Yan Gu
Carnegie Mellon University

yan.gu@cs.cmu.edu

Yihan Sun
Carnegie Mellon University

yihans@cs.cmu.edu

Guy E. Blelloch
Carnegie Mellon University

guyb@cs.cmu.edu

Abstract

The future of main memory appears to lie in the direction of new non-volatile memory technologies
that provide strong capacity-to-performance ratios, but have write operations that are much more expensive
than reads in terms of energy, bandwidth, and latency. This asymmetry can have a significant effect on
algorithm design, and in many cases it is possible to reduce writes at the cost of reads. In this paper we
study which algorithmic techniques are useful in designing practical write-efficient algorithms. We focus
on several fundamental algorithmic building blocks including unordered set/map implemented using
hash tables, ordered set/map implemented using various binary search trees, comparison sort, and graph
traversal algorithms including breadth-first search and Dijkstra’s algorithm. We introduce new algorithms
and implementations that can reduce writes, and analyze the performance experimentally using a software
simulator. Finally we summarize interesting lessons and directions in designing write-efficient algorithms.

1 Introduction

The future of main memory appears to lie in the non-volatile memory technologies that promise persistence,
significantly lower energy costs, and higher density than the DRAM technology used in today’s main memo-
ries [HP15, Int15, MSCT14, Yol13]. Despite the advantages, a key property of such memory technologies,
however, is their asymmetric read-write costs: compared to reads, writes can be much more expensive in
terms of latency, bandwidth, and energy. Because bits are stored in these technologies as at rest “states” of
the given material that can be quickly read but require physical change to update, this asymmetry appears
fundamental. This motivates the need for write-efficient algorithms that largely reduce the number of writes
compared to existing algorithms.

In the related work section, we review the literature on studying this read-write asymmetry on NAND Flash
chips [BAT06, EGMP14, GT05, PS09] and algorithms targeting database operators [CGN11, Vig12, Vig14].
These works provide novel aspects on rethinking algorithm design. However, most of the papers either treat
NVMs as external memories, or are based on hardware simulators for existing architecture, which may have
many concerns that we will further discuss in the related work section.

Blelloch et al. [BDBF+16, BFG+15, BGST16] formally defined and analyzed several sequential and
parallel computation models with good caching and scheduling guarantees. The models abstract such
asymmetry between reads and writes, and can be used to analyze algorithms on future memory. The basic
model, which is the Asymmetric RAM (ARAM), extends the well-known external-memory model [AV88]
and parameterizes the asymmetry using ω, which corresponds to the cost of a write relative to a read to the
non-volatile main memory. The cost of an algorithm on the ARAM, the asymmetric I/O cost, is the number
of write transfers to the main memory multiplied by ω, plus the number of read transfers. This model captures
different system consideration (latency, bandwidth, or energy) by simply plugging in different values of ω,

1

ar
X

iv
:1

80
6.

10
37

0v
1

 [
cs

.D
S]

 2
7

Ju
n

20
18

and also allows algorithms to be analyzed theoretically. Based on this idea, many interesting algorithms
(and lower bounds) are designed and analyzed by various recent papers [BDBF+16, BDBF+18, BFG+15,
BFG+16, BGSS18, JS17].

Unfortunately, all of the analyses of such write-efficient algorithms are asymptotic, showing the upper
and lower bounds on the complexity of these problems. Also, to prove the bounds, the theoretical models
simplify the real architecture (e.g., without considering blocking of cache-lines or cache policies). It still
remains unknown what the performance of these algorithms are in practice. In this paper, our goal is to
show such performance on a number of fundamental algorithmic building blocks. We believe the lessons in
designing and implementing them are useful for our community to use new memory in the future.

Contribution of this paper.
In this work, our goal is to bridge the gap between theory and practice. We try to study and understand

which algorithmic techniques are useful in designing practical write-efficient algorithms. As the first
paper of this kind, we focus on several of the most commonly-seen algorithmic building blocks in modern
programming: unordered set/map implemented using hash tables, set/map implemented using balanced
binary search trees, comparison sort, and graph traversal algorithms: breadth-first search for unweighted
graphs and Dijkstra’s algorithm for weighted graphs1.

Unfortunately, no non-volatile main memory is currently available, making it impossible to get real
timings. Furthermore, details about latency and other parameters of the memory and how they will be
incorporated into the architecture are also not available. This makes detailed cycle-level simulation (e.g.,
PTLsim [PTL], MARSSx86 [Mic] or ZSim [SK13]) of questionable utility. However, it is quite feasible to
count the number of reads and write to main memory while simulating a variety of cache configurations. For
I/O-bounded algorithms, these numbers can be used as reasonable proxies for both running time (especially
when implemented in parallel) and energy consumption.2 Moreover, conclusions drawn from these numbers
can likely give insights into tradeoffs between reads and writes among different algorithms.

For these reasons, we propose a framework based on a software simulator that can efficiently and precisely
measure the number of read and write transfers of an algorithm using different caching policies. We also
consider variants in caching policies that might lead to improvements when read and write are not the same.

We also note that designing write-efficient algorithms falls in a high dimensional parameter space since
the asymmetries on latency, bandwidth, and energy consumption between reads and writes are different. Here
we abstract this as a single value ω. This value together with the cache size M and cache-line size B (set to
be 64 bytes in this paper) form the parameter space of an algorithm.

Our framework provides a simple, clean and hardware-independent method to analyze and experiment the
performance on the asymmetric memory. We investigate the algorithmic techniques and learn lessons from
the experiments that generally apply for a reasonably large parameter space of ω, M and B. This framework
also allows monitoring, reasoning and debugging the code easily, so it can remain useful even after the new
hardware is available.

With the framework, we design, implement and discuss many different algorithms and data structures
and their write-efficient implementations. Although some of the implementations are standard, like quicksort
and the classic hash tables, many others, including the k-level hash tables, sample sort and phased Dijkstra,
require careful algorithmic design, analysis, and coding. Under our cost measure, which is the asymmetric

1The algorithms that are not I/O-bounded or use much fewer writes than reads are not discussed in this paper (e.g., matrix
multiplication and other algorithms with a similar computation pattern [BFG+15]).

2The energy consumption of main memory is a key concern since it costs 25-50% energy on data centers and
servers [LRR+03, MSG+12, LK14b].

2

I/O cost, we show better approaches on all problems we study in this paper, compared to the most basic and
commonly-used ones on symmetric memories. We understand that there are more advanced versions of the
algorithms and data structures discussed in this paper on some specific applications, and how to implement
them write-efficiently is an interesting topic for future work.

With the algorithms and their experimental results, we draw many interesting algorithmic strategies and
guidance in designing write-efficient algorithms. A common theme is to trade (more) reads for (fewer) writes
(apparently it is hard to directly decrease the writes since this can improve the performance on symmetric
memory as well and should have been investigated already). Some interesting lessons we learned and can be
valuable to share are listed as follows, which can suggest some potential directions to design and engineer
write-efficient algorithms in the future.

1. Indirect addressing is less problematic. In the classic setting, indirect addressing should be avoided
if possible, since each addressing can be a random access to the memory. However, when writes are
expensive, moving the entire data is costly, while indirect addressing only modifies the pointers (at the
cost of a possible random access per lookup).

2. Multiple candidate positions for a single entry in a data structure can help. It can be a good option to
use more reads per lookup but apply less frequent data movements, when the size of a data structure
changes significantly. This is a common strategy we have applied in this paper to provide an algorithmic
tradeoff between reads and writes.

3. It is usually worth to investigate existing algorithms that move or modify the data less. These algorithms
can be less efficient in the symmetric setting due to various reasons (e.g., more random accesses, less
balanced), but the property that they use fewer writes can be useful in the asymmetric setting (like
samplesort vs. quicksort, treap vs. AVL or red-black tree).

4. In-cache data structures should draw more attention3. Since the data structures are kept in the cache
(or small symmetric memory), the algorithm requires significantly less writes to the large asymmetric
memory, although may require extra reads to compensate for less information we can keep within the
data structure. In this paper, we discuss Dijkstra’s algorithm on shortest-paths as an example, and such
idea can also be applied to computing minimum spanning tree, sorting, and many other problems.

2 Related Work

There exist a rich literature to show the read-write asymmetry on the new memories [ACM+11, ABCR12,
BFG+15, BFG+16, CDG+16, CL09, DJX09, DWS+08, HZX+14, IBM14, KSDC14, LIMB09a, MDS+15,
QGR11, XDJX11, YLK+07, ZZYZ09, ZWT13]. Regarding adapting softwares for such read-write asym-
metry, some work has studied the system aspect. For example, there exist many papers on how to bal-
ance the writes across the chip to avoid uneven wear-out of locations in the context of NAND Flash
chips [BAT06, EGMP14, GT05, PS09].

More closely-related papers targeting database operators: Chen et al. [CGN11] and Viglas [Vig12, Vig14]
presented several interesting and write-efficient sequential algorithms for searching, hash joins and sorting.
These are the early and inspirational attempts to design algorithms with fewer writes. Instead of formally
proposing new computational models and analyzing the asymptotic cost, they mainly show the performance

3Similar ideas appear in many existing models already, like the external-memory model or the streaming model.
However, the motivations are different: these models restrict the amount of space that can be used in the computation,
while in our case the data structures are used to reduce the writes to the asymmetric main memory without including
too many extra reads.

3

by the experiment results assuming external memories rather than main memories, or on the cycle-based
simulators for existing architecture. For the latter case however, the prototypes of the new memories are still
under development, and yet nobody actually knows the exact parameters of the new memories, or how they
are incorporated into the actual architecture which is required for the setup of the cycle-based simulator. As
far as we know, there is no available cycle-based simulator at the present time for the new memories. In the
meantime, the asymmetries on latency, bandwidth, and energy consumption between reads and writes are
different, and any of these constraints can be the bottleneck of an algorithm. Hence, designing algorithms
on asymmetric memory are in a multiple-dimension parameter space, rather than just recording the running
time from a simulator. Therefore, it is essential to develop theoretical models and tools that accounts for, and
abstract this asymmetry and use them to analyze algorithms on future memory.

Blelloch et al. [BDBF+16, BFG+15, BGST16] formally defined several sequential and parallel com-
putation models that take asymmetric read-write costs into account. Based on the computational models,
many interesting algorithms (and lower bounds) are designed and analyzed in both sequential and parallel
settings, which includes sorting, permuting, matrix multiplication, FFT, list/tree contraction, BFS/DFS and
other graph algorithms, and many computational geometry and dynamic programming problems [BDBF+16,
BDBF+18, BFG+15, BFG+16, BGSS18, JS17]. Carson et al. [CDG+16] also presented write-efficient
sequential algorithms for a similar model, as well as write-efficient parallel algorithms (and lower bounds)
on a distributed memory model with asymmetric read-write costs, focusing on linear algebra problems and
direct N-body methods. Although many problems under the asymmetric setting have been studied, all the
analyses are asymptotic and only show the upper and lower bounds on the complexity of these problems.

3 Our Model and Simulator

To start with, we discuss how to measure the performance of algorithms on asymmetric memories. We begin
with the computational model that estimates the cost of an algorithm. This model requires the numbers
of read and write transfers between the non-volatile memory and the cache, so later we introduce how the
numbers of an algorithm can be simulated. Unlike the existing symmetric memories, a simple cache policy
like LRU does not work on some asymmetric settings. Thus in Section 3.2 we briefly summarize the solutions
to fix it, and then the cache simulator given in Section 3.3 captures this number with different cache policies.

3.1 The Cost Model for Asymmetric Memory

The most commonly-used cost measure of an algorithm is the time complexity based on the RAM model,
which is the overall number of instructions and memory accesses executed in this algorithm. Nowadays,
since the actual latency of an access to the main memory is at least two orders of magnitudes more expensive
than a CPU instruction, the I/O cost based on the external-memory model [AV88] is widely used to analyze
the cost of an I/O-bounded algorithm. This model assumes a small-memory (cache) of size M ≥ 1, and a
large-memory of unbounded size. Both memories are organized in blocks (cache-lines) of B words. The CPU
can only access the small-memory (with no cost), and it takes unit cost to transfer a single block between
the small-memory and the large-memory. This cost measure estimates the running time reasonably well
for I/O-bounded algorithms, especially in multi-core parallelism. An efficient algorithm in practice should
achieve optimality in both the time complexity and the I/O cost.

To account for more expensive writes on future memories, here we adopt the idea of an (M,ω)-
Asymmetric RAM (ARAM) [BFG+16]: similar to the external-memory model, transferring a block from
large-memory to small-memory takes unit cost; on the other direction, the cost is either 0 if this block

4

is clean and never modified, or ω � 1 otherwise. The asymmetric I/O cost Q4 of an algorithm is
the overall costs for all memory transfers. Theoretical results on this new model have been studied
in [BDBF+16, BDBF+18, BFG+15, BFG+16, BGSS18, JS17].

3.2 Cache Policies

Either the classic external-memory model or the new ARAM assumes that we can explicitly manipulate the
cache in the algorithm. This largely simplifies the analysis, and in many cases is provably within a constant
factor of a more realistic cache’s performance. For example, the standard least-recent used (LRU) policy is
2-competitive against the optimal offline cache-replacement sequence.

Interestingly, the competitive ratio does not hold in the asymmetric setting. Consider a cache with
k = M/B cache-lines and a memory access pattern that repeatedly writes to k− 1 cache-lines and read from
other k − 1 cache-lines. An ideal cache policy will keep all k − 1 cache-lines associated to writes, so the I/O
cost of each round is k − 1 for k − 1 read misses. An LRU policy however causes a cache miss for every
single memory access, leading the I/O cost of each round to ω(k − 1) + k − 1. This overhead is proportional
to ω, which can be significant and problematic.

The solution is affected by the architecture, depending on whether software explicitly controls a DRAM
buffer or not [CGN11, CNF+09, LIMB09b, QSR09]. If so, then the cost measures on the these models are
just the costs in practice, but programmers are responsible for managing what to put on the small-memory
and guaranteeing correctness. The other option is to leave the hardware to control the small-memory. In this
case, Blelloch et al. [BFG+15] show that if the small-memory is partitioned into two equal-size pools and
each of them is maintained using LRU policy, the performance is 3-competitive against the optimal offline
cache-replacement sequence (e.g. using 3× space and incurring no more than 3× cost).

We consider three different cache policies in this paper. The Classic policy maintains the small-memory
as one memory pool and uses the LRU policy for replacement. The SplitPool policy keeps two separate
memory pools and each runs the LRU policy. The Static policy allows static allocation in one memory pool,
and the unallocated memory space is maintained using the LRU policy.

3.3 The Cache Simulator

The goal of this paper is to discuss new algorithmic approaches that minimize the asymmetric I/O cost to the
main memory on a variety of fundamental data structures and algorithms. To capture the number of reads
and writes to the main memory, we developed a software simulator that can adapt to different cache policies
introduced in Section 3.2. The cache simulator is composed of an ordered map that keeps tracks of the time
stamp of the last visit to each cache-line in the current cache, and an unordered map that stores the mapping
from each cache-line to the corresponding location in the ordered map if this cache-line is currently in the
cache. Interestingly, the implementation of this cache simulator is a natural application of the techniques
discussed in this paper.

The cache simulator encapsulates a new structure ARRAY that is used in coding algorithms in this paper.
It is like a regular array that can be dynamically allocated and freed, and supports two functions: READ and
WRITE to a specific location in this array. The ARRAYs are responsible for reporting the memory accesses of
the algorithm to the cache simulator, and the cache simulator will update the state of the cache accordingly.
Therefore, coding using the ARRAYs is not different from regular programming much.

The memory accesses to loop variables and temporary variables are ignored, as well as the call stack.
This is because the number of such variables is small in all of the algorithms in this paper (usually no more

4Throughout the paper, we abbreviate it as the I/O cost, unless stated otherwise explicitly.

5

than 10). Meanwhile, the call stack of all algorithms in this paper has size O(log n). The overall amount of
uncaptured space is orders of magnitudes smaller than the amount of fast memory in our experiments.

The cache consists of one or two memory pools, depending on different cache policies discussed in
Section 3.2. We will explicitly indicate the cache policy used in each of our experiments. The cache simulator
maintains two counters in each memory pool: the number of read transfers, and the number of write
transfers. When testing each algorithm on a specific input instance, the cache is emptied at the beginning and
flushed at the end. A read or write is free if the location is already in the cache; otherwise the corresponding
cache-line is loaded, the counter of read transfer increments by 1, and the least-recently-used cache-line in
this pool is evicted. Also, a write will mark the dirty-bit of the cache-line to be true. When evicting a dirty
cache-line, the counter of write transfer increments by 1. Notice that memory reads can cause write transfers,
and memory writes can lead to read transfers.

When simulating the Classic policy (i.e., the standard one), we also verified our simulated results to
ZSim (cycle-level simulator for current architecture), and the numbers always differ by no more than 10%
when the parameters are set correctly.

4 Sets and Maps

Sets and maps are two of the most commonly-used data types in modern programming. Most programming
languages either have them built in as basic types (e.g. python) or supply them as standard libraries (C++,
C#, Java, Scala, Haskell, ML). In this section we discuss efficient implementations of unordered sets and
maps implemented using hash tables, and due to the page limit, in ordered sets and maps implemented using
balanced binary search trees are introduced in the full version of this paper.

4.1 Unordered Sets and Maps

Our implementation of unordered sets and maps is based on hash tables that support lookup, insertion, and
deletion. The hash tables discussed in this section use open addressing and linear probing, since the goal of
the data structure is to try to minimize the I/O cost focusing on smaller entries (accessing and reading larger
entries are costly anyway so different hash-table implementations make minor differences). For simplicity,
we assume no duplicate keys, and it is straightforward to handle the duplicates with minor modifications. In
this setting, each operation of the hash table reads a small number of cache-lines, and an insertion or deletion
will modify exactly one cache-line that contains the location of the key and will be eventually written back to
the large-memory.

The challenge emerges when the set size changes dynamically. For an efficient implementation, we hope
the overall size of the hash table to be neither too large nor too small. If the load factor passes 80%, linear
probing’s performance drastically degrades. On the other hand, we want the hash table size to be reasonably
small to better utilize the small-memory (cache), since each cache-line holds more entries in this case. In
practice, some implementations keep the load factor up- and lower-bounded by some constant. For example,
a typical implementation keeps the occupancy of the hash table between 1/8 and 1/2, and the size doubles or
shrinks by half if the number of entries exceeds this range. Such resizing reinserts p entries before at least
p/2 insertions and deletions (where p is the set/map size). When reads and writes have approximately the
same cost, the extra cost for such resizing is small compared to the query and update costs (e.g., the queries
read from lots of memory locations). In the asymmetric setting however, the reads cost much less, but the
extra writes in resizing can be significant: the resizing can incur at most twice (p/(p/2) = 2) the writes

6

Algorithm 1: The k-level hash table
Input: Parameter k, occupancy range l and r

1 function LOOKUP(x)
2 for i← 1 to k do
3 p← HashTablei.LOOKUP(x)
4 if p 6= null then return (i, p)
5 return null

6 function INSERT(x) // x is not in HashTable
7 for i← 1 to k do
8 if HashTablei.occupancy < r then
9 HashTablei.INSERT(x)

10 return
11 Allocate HashTablek+1 of size 2 · HashTablek.size
12 Relabel the hash tables with indices from 0 to k
13 foreach y ∈ HashTable0 do
14 INSERT(y)
15 Free HashTable0

16 function DELETE(x; i, p) // x is located p-th in HashTablei
17 HashTablei.DELETE(x, p)
18 if Overall occupancy is less than l (and HashTable1.size > 1) then
19 Allocate HashTable0 of size HashTable1.size/2
20 Relabel the hash tables with indices between 1 to k + 1
21 foreach y ∈ HashTablek+1 do
22 INSERT(y)
23 Free HashTablek+1

compared to the initial insertions (3× writes in total). Hence, our goal is to discuss an alternative approach
that optimizes such extra writes.

4.1.1 The k-level Hash Table

Instead of keeping one hash table, our main idea is to maintain a small number k of hash tables simultaneously,
where k is a pre-determined parameter. In particular, the k-level hash table HashTable is initialized with k
arrays HashTable1,··· ,k with size 2c

′+i for 1 ≤ i ≤ k (or smaller in specific applications) and a constant c′. In
practice we set c′ to be 5.

For insertions, when the overall load factor exceeds some threshold r, we allocate a new chunk of memory
with the double size of the largest current array, and the smallest hash table is discarded after all elements
in it have been reinserted back. Similarly for deletions, if the occupancy of the hash tables drops below a
threshold l, a small array with half of the size of the current smallest hash table is allocated, and the largest
table is freed after the entries in it being reinserted. For instance, a valid k-level hash table may contain two
arrays of size 215 = 32768 and 216 = 65536, when k = 2 and 30000 entries in the current configuration.
The pseudocode of the k-level hash table is given in Algorithm 1. The occupancy range 0 < l < r < 1
indicates when the resizing happens (a valid set of parameters can be 1/8 and 1/2). A classic implementation
can be viewed as the special case of the k-level hash table when k = 1.

We now analyze the I/O cost Q of the k-level hash table. Here we assume that the size of the k-level hash
table is larger than the small-memory and 1− r < 1/B, so that one single lookup, insertion or deletion in a
single level in the hash table on average requires no more than c < 2 cache-line loads to find the location.

Lookup. In a k-level hash table, a lookup requires ck instead of c read transfers (c is the constant just defined)
in the worst case (can quit earlier once the entry is found). The cost increases by a factor of k at most.

7

Insert. There are two definitions of insertions: an insertion that the key is known to be not in the set/map, or
an insertion that it is unknown whether the key is in this set/map. Both cases are commonly-used. In this
paper, we take the first definition and analyze the cost of this type of insertions. The second type of insertion
can be viewed as a lookup first, then an insert if the lookup fails.

When inserting an element in a k-level hash table, we always try the smaller tables first. Once all tables
are full, we resize it. More details can be found in Algorithm 1.

The I/O cost Q of an insertion comes in two parts: the cost of the initial insertion to the hash table, and
the cost of this entry in future hash-table resizings. The cost of the initial insertion is no more than c+ ω,
where c is the number of cache-line reads to find the position to insert, plus ω, one cache-line write for the
actual insertion. The cost of resizing is more complicated to analyze.

We note that although a specific entry can be reinserted multiple times during different resizing processes,
the overall number of element reinsertion is bounded, and thus we can a amortize the work. A resizing occurs
when an insertion comes in and the hash table contains exactly r ·2p(2k−1) elements for some positive integer
p. In this case, at most r ·2p entries (the size of the smallest hash table), are reinserted during the resizing. The
total number of insertions from the last resizing is at least r ·2p−1(2k−1) (assuming 4l ≤ r), so the amortized

I/O cost Q of reinsertion for each insertion is upper bounded by
(c+ ω)r · 2p

r · 2p−1(2k − 1)
= (c+ ω) · 2/(2k − 1).

In the asymmetric setting when ω � 1, the I/O cost of each insertion is approximately ω ·(1+2/(2k−1)),
indicating that compared to the classic implementation where k = 1, in the worst-case the improvement when
k = 2, 3, 4 is about 44%, 57% and 62% respectively. The asymptotic improvement when k → +∞ is 67%.

Delete. A deletion in the k-level hash table is similar to an insertion except that a lookup for the location
is required (details in Algorithm 1). The cost of the initial deletion is ck + ω. A resizing of the hash table
can occur after at least l · 2p(2k − 1) deletions for some positive integer p, and the current hash table keeps
l · 2p(2k − 1) entries. However, it is possible that all of these entries are in the last hash table so they are all
reinserted. We note that when reinserting the elements from the discarded array, we always try smaller arrays
first. This means that a reinserted entry, if not being deleted in the future, will not be reinserted again in
the next min(k − 1, log2 r/2l) shrinking resizings. Namely, the amortized extra cost of a deletion in future
resizings is about ω/k if l is set to be about 2−kr. The overall I/O cost for a deletion is Q = ck+ω(1 + 1/k).

We have bounded of the I/O cost of each lookup, insertion or deletion, and the overall cost Q can be
estimated by summing the amount of each operation multiplied by the cost of this operation. In practice,
insertions and deletions can interleave. For example, when a deletion comes after an insertion, the number of
entries remains the same, which leads to no further cost for these two updates afterward. The exact cost is
also affected by the pattern of the sequence of the operations, and we will show by experiments.

4.1.2 Experiments

In the experiment we test the performance of our k-level hash table, including the numbers of read transfers
and write transfers, I/O costs, and wall-clock running time, on different patterns of queries. In all experiments,
we insert 1 million elements to an empty hash table, each of which is a 4-byte integer, into the hash table,
and we vary the number of queries. The simulated cache contains 10,000 cache-lines and uses the classic
policy, and for wall-clock running time we run the code on a PC with Intel i7-2600 CPU and 8GB RAM. The
occupancy rate is set to be l = 0.2 and r = 0.8. We have tried other parameters (r between 0.6 and 0.8 and
l = r/4). The results slightly vary, but all general conclusions in this section still hold.

Non-deletion cases.

8

Many applications, like webpage caching or the breadth-first searches, only insert but never delete
elements in a hash table. Our experiment starts with this simpler case. We first show the relationship
between k (the number of hash tables) and the numbers of read transfers and write transfers for a variety
of insertion/query ratios, and the results are shown in Table 1. We fix the number of insertions to be one
million, and query α times after each insertion. We vary α from 0, 1/8, to 8 (α < 1 indicates one query per
1/α insertions). About 50% query keys are in the hash table (this ratio affects the I/O cost since a successful
query can terminate earlier). The number of levels k varies from 1 to 4. In Table 2, we show the overall I/O
costs, which are the weighted sums assuming two typical values of the write-read ratio ω, 10 and 100.

We first look at the number of write transfers. When there is no query (i.e., the first column, just inserting
1 million entries), the numbers of writes are consistent with our analysis for insertions in Section 4.1.1. The
only exception here is that cache can hold a constant fraction of the elements, which batches the writes and
reduces the number of memory transfers. However, the relative trend in each column remains unchanged.
Namely, the number of writes always decreases as the increase of k regardless of the ratio between queries
and updates. The number of writes is reduced by 33%, 40% and 43% when k = 2, 3, 4 respectively. Such
improvement also shows up in the overall I/O cost in Table 2.

We note that more queries cause more reads, and larger k also leads to more reads. Since these reads
flush the cache-lines, the numbers of writes in these cases also marginally increase. The optimal choice of k
is decided by the update/query distribution as well as the write-read ratio ω. In general, more queries lead
to worse performance with larger k, and larger ω prefers larger k. In Table 2, we underline the numbers
indicating the best choice of k in that specific setting. The experiment results indicate that picking k to be 2
or 3 is always a good choice when ω = 10, and 3 or 4 when ω = 100.

Wall-clock running time.
We also measure the actual running time of the previously stated operations on a real machine. In the

current platform with symmetric memory-access costs, the write-read ratio is close to 1. Here we show
that, the weighted sums of the I/O measures in Table 1 almost match the actual running times shown in
Table 3, when plugging ω = 1. Therefore, it is reasonable to believe that, the I/O cost shown in Table 2 can
reasonably well project the performance for the future memory, when the bandwidths for reads and writes
become asymmetric. (The argument for energy consumptions holds independently with this running time
and other architectural issues.) Meanwhile, it is interesting to point out that, when insertions are more than
queries, using k-level hash table with k = 2 is actually faster even in the current platform.

Our implementation has a much lower I/O cost compared to separate chaining. We run the same
experiment using the STL unordered set (with the same hash function and other setups), and our hash table is
at least 3-4 times faster in all cases.

Insertion and deletion cases.
We also tested the performance of k-level hash table on deletions. We first insert 1 million elements and

then remove them all. After each insertion or deletion, we query α times. The other settings are the same as
the non-deletion case. The results on the numbers of read transfer and write transfer are shown in Table 4,
and the overall I/O cost with write-read ratio ω to be 10 and 100 are shown in Table 5.

From the results, we get almost the same trend as the non-deletion cases. Compared to the classic
implementation (i.e., k = 1), the overall number of write transfer is reduced by 25%, 32%, and 36% when
no queries are involved, and the improvement is slightly decreased when more queries come in, since more
read accesses flush out the cache-lines. We note that the number of read transfers required by a deletion
is more than that for an insertion, since in each deletion we need to locate the element in the hash table,
which requires to look up in most k hash table levels. Hence, compared to the non-deletion cases, slightly

9

106 insertions, α× 106 queries where α is from 0 to 8, cache size is 10,000 cache-lines.

α 0 1/8 1/4 1/2 1 2 4 8
RT WT RT WT RT WT RT WT RT WT RT WT RT WT RT WT

k=1 1.35 1.17 1.44 1.18 1.52 1.19 1.69 1.21 2.02 1.24 2.68 1.27 4.00 1.31 6.64 1.34
k=2 0.85 0.79 1.06 0.84 1.23 0.87 1.54 0.91 2.09 0.96 3.11 1.00 5.07 1.03 8.94 1.05
k=3 0.76 0.72 1.08 0.80 1.32 0.85 1.73 0.90 2.44 0.95 3.76 0.99 6.31 1.02 11.32 1.05
k=4 0.70 0.67 1.11 0.78 1.40 0.82 1.89 0.88 2.74 0.93 4.30 0.97 7.33 1.00 13.31 1.03

Table 1: Numbers of read and write transfers of k-level hash tables with different query/insert ratios. Numbers
of read and write transfers are divided by 1M.

The I/O costs of k-level hash tables with the same settings in Table 1.

ω = 10 ω = 100

α 0 1/8 1/4 1/2 1 2 4 8 0 1/8 1/4 1/2 1 2 4 8
k=1 13.0 13.2 13.4 13.8 14.4 15.4 17.1 20.0 117.9 119.3 120.5 122.7 125.8 129.9 134.8 140.5
k=2 8.8 9.5 10.0 10.7 11.7 13.1 15.4 19.5 79.9 85.1 88.4 92.8 97.7 102.9 108.2 114.4
k=3 8.0 9.1 9.8 10.7 11.9 13.7 16.5 21.8 73.1 81.4 85.8 91.3 97.0 102.7 108.7 116.3
k=4 7.4 8.9 9.6 10.7 12.0 14.0 17.4 23.6 67.9 78.6 83.8 89.6 95.5 101.3 107.7 116.1

Table 2: The I/O costs of k-level hash tables with different query/insert ratios. The write-read ratio ω are
selected to be typical projected values 10 (latency, bandwidth) and 100 (energy). Results are based on
the numbers in Table 1. Numbers in red with underlines indicate the best choice of k that minimizes the
I/O cost in this setting, and numbers in blue indicate better I/O costs comparing to the classic hash table
implementation (i.e. k = 1).

 0.4

 0.6

 0.8

 1

 1.2

0 1/8 1/4 1/2 1 2 4 8

R
el

at
iv

e
I/

O
 c

os
t

Query/insert ratio

 k=2
 k=3
 k=4

(a) ω = 10

 0.4

 0.6

 0.8

 1

 1.2

0 1/8 1/4 1/2 1 2 4 8

R
el

at
iv

e
I/

O
 c

os
t

Query/insert ratio

 k=2
 k=3
 k=4

(b) ω = 100

Figure 1: Relative I/O cost of k-level hash table with different k. The I/O cost is divided by the k = 1 case,
so every data point below 1 indicates an improvement in such case. Numbers are from Table 2.

smaller values for k are more preferable. The best choice of k in each case is underlined and shown in
Table 5. For smaller ω = 10 (indicating bandwidth and latency), the best choice of k varies based on different
query/update ratios, but k = 2 is always an acceptable choice. When considering the energy consumption
(ω ≈ 100), a larger k, like 3 or 4, is more desirable in all cases.

10

Wall-clock running time (milliseconds), 106 insertions, α× 106 queries where α is from 0 to 8.

k 0 1/8 1/4 1/2 1 2 4 8
1 61 65 69 77 95 129 191 321
2 36 45 53 69 96 163 277 512
3 31 45 57 80 124 213 392 739
4 30 51 66 95 156 278 519 999

Table 3: Wall-clock running time (milliseconds) of k-level hash table with different combinations of k and
query/insert ratios. Numbers in blue indicate a better performance comparing to the classic implementation
(i.e. k = 1).

1 million insertions then 1 million deletions, α times 2 million queries where α is from 0 to 4, 10,000 cache-lines.

k
0 1/4 1 4

RT WT RT WT RT WT RT WT
1 2.55 2.32 2.95 2.36 4.14 2.44 8.91 2.52
2 2.28 1.75 3.15 1.88 5.45 2.04 14.14 2.18
3 2.47 1.59 3.79 1.80 7.11 1.98 19.61 2.12
4 2.72 1.50 4.44 1.75 8.68 1.95 24.67 2.08

Table 4: Numbers of read and write transfers of k-level hash tables with different query/(insert+delete) ratios.
Numbers of read and write transfers are devided by 1M.

The I/O costs of k-level hash tables with the same settings in Table 4.

k
ω = 10 ω = 100

0 1/4 1 4 0 1/4 1 4
1 25.8 26.6 28.5 34.2 235.0 239.4 247.6 261.4
2 19.7 22.0 25.9 35.9 176.8 191.6 209.6 232.0
3 18.4 21.8 26.9 40.8 161.4 183.6 205.1 231.4
4 17.7 22.0 28.2 45.5 152.3 179.6 203.5 233.1

Table 5: The I/O costs of k-level hash tables with different query vs. insert/delete ratios. The write-read ratio
ω are 10 and 100. Results are based on the numbers in Table 4. Numbers in red with underlines indicate the
best choice of k that minimizes the I/O cost, and numbers in blue indicate better I/O costs comparing to the
classic hash table implementation (i.e. k = 1).

4.1.3 Conclusions

We proposed a new data structure, the k-level hash table, to implement unordered set and map, that has the
same space utilization compared to the classic open-addressing hash tables. The key idea in the k-level hash
table is to keep multiple instead of one level of hash tables. As a result, the algorithm uses fewer writes
during resizings, at the cost of more reads in other operations.

The best choice of k is decided by the ratio of updates and queries. Our experiment shows that k = 2
always leads to a lower or similar I/O cost when the query/insert ratio is no more than 8, compared to the
classic k = 1 setting. For the ratio of write/read cost is larger (like 100), larger values of k, like 3 or 4, are
even more preferable than the k = 2 case.

11

4.2 Ordered Sets and Maps

The implementations of ordered sets and maps are based on some form of balanced tree (or tree-like) data
structure and, at minimum, support lookup, insertion, and deletion in logarithmic time. Some set-set
functions such as union, intersection, and difference are also required in many scenarios.

One commonly-used data structure to maintain ordered sets and maps is the self-balancing binary search
tree (BST). Most languages and libraries use either AVL tree [AL63] or red-black tree [Bay72, GS78] to
implement them, while some other implementations of weight-balanced trees [NR73] and treaps [AS89,
SA96] also exist. Here we first analyze the I/O cost on some existing solutions.

4.2.1 I/O cost on BSTs

For simplicity, here we assume that the small-memory size is M = O(1). Locating the key for a lookup,
insertion or deletion requires to load and compare to Θ(log n) tree nodes on the balanced binary search trees
(BSTs), The I/O cost is Θ(log n), which is also the lower bound of such operations.

For an insertion or deletion, we also need to modify the tree accordingly. In the asymmetric setting,
weight-balanced trees [NR73] are not a good option since we have to update the subtree sizes all the way to
the root. This update leads to Θ(log n) writes to the large-memory per update. For the other types of BSTs,
we show their I/O costs on insertions and deletions individually.

Red-black trees. Red-black trees [Bay72, GS78] have the simplest update rules among these balanced
BSTs. With the classic rebalancing rules and careful implementation, it requires only O(1) amortized time
per update (insertion or deletion) after locating the key [Tar83]. Also, red-black trees require no extra cost
to update balancing information except for the tree nodes involved in rotations (unlike the case in AVL
trees). As a result, red-black trees have an optimal amortized I/O cost Q = Θ(log n) per a lookup and
Q = Θ(ω + log n) per insertion or deletion on the (M,ω)-ARAM.

AVL trees. An insertion in AVL trees requires at most two rotations (a double rotation) [AL63]. Unlike
the red-black trees however, we need to track and update the balance factors along the path from the root
to the modified tree node. We now bound the number of updated balance factors to be a constant. If we
store the height of the subtree in each tree node, the difference of the two subtree heights can be checked
in constant time. Since the number of subtrees of height d in an AVL tree is no more than n/cbd/2c for a
tree with n nodes and some constant c > 1 [BFS16], the number of increments of the counts for n nodes is∑

d≥1 d · (n/cbd/2c) = O(n). On average, an insertion needs O(n)/n = O(1) writes.
The deletions of AVL trees is more complicated and Θ(log n) rotations can be applied on every deletion.

Amani et al. [ALT16] recently showed that there exists such a sequence of 3n intermixed insertions and
deletions on an initially empty AVL tree that takes Θ(n log n) rotations. This instance indicates that the
classic implementation of AVL trees has an I/O cost Q = Θ(ω log n) per deletion in the worst case.

Treaps. A treap, also called as a randomized search tree [AS89, SA96], is a Cartesian tree in which each key
is given a randomly chosen numeric priority, and the inorder traversal order of the nodes is the same as the
sorted order of the keys. The priority for any non-leaf node must be greater than or equal to the priority of its
children.

When inserting an element into a treap with n−1 elements or removing an element from n elements, The
updated element only compares to the elements that each has a higher priority than the other elements between

12

this element and the updated element. The number of such comparisons is
∑

j∈[n]\{i} 1/|i− j| = O(log n)

in expectation5, where i is the position of the updated element in the total order of n elements [SA96].
The number of rotations can be computed similarly. For an insertion, a rotation happens once the inserted

element has a higher priority than all elements in the entire subtree. Again if we assume the inserted element
ranked i-th in the total order, the probability that it rotates up for the j-th ranked tree node is 1/|i− j|2 (i.e.,
the j-th element has higher priority than all elements between, and lower than the priority of the inserted
node). The overall expected number of rotations per insertion is

∑
j∈[n]\{i} 1/|i− j|2 = O(1) in expectation.

We can show the constant writes per deletion accordingly.
We note that unlike an AVL tree or a red-black tree, a treap does not require updates to the balancing

criteria, which means that we never need to modify the information in each tree node after it is inserted. As
a result, an insertion, deletion or query on a treap requires O(log n) reads whp and an insertion or deletion
requires O(1) writes in expectation.

4.2.2 Join-based implementation

Blelloch et al. [BFS16, SFB18] recently proposed a framework that supports fast bulk operations. This
framework supports efficient single or multiple insertions or deletions on AVL trees, red-black trees, treaps
and weight-balanced trees, as well as union, intersection and set difference on two BSTs (of the same kind).
This framework is very concise: each function can be implemented within a dozen lines of code and are
independent with the specific balancing criteria in different types of BSTs. The functions rely on only one
helper operation JOIN [Ada92, Ada93, ST85, Tar83, BFS16], which deals with the tree balancing and can be
treated as a black box. Under this framework, the implementation of these functions is highly efficient and
parallelized.

JOIN(TL, k, TR): The JOIN function takes two balanced BSTs (of the same balancing schemes) TL and TR
and a key k, and returns a new balanced BST for which the in-order values are a concatenation of the in-order
values of TL, then k, and then the in-order values of TR. In order to keep the ordering in the tree nodes, the
JOIN function assumes k to be greater than all keys in TL and smaller than all keys in TR. JOIN handles all
issues related to rebalancing, and is the only function that knows about and maintains the balance invariants.
The JOIN algorithms for each of the balancing schemes are given in [BFS16]. Meanwhile, JOIN is the only
function that writes to the memory. More specifically, all operations that change the attributes of a tree node
(e.g., linking to new children, height-maintaining for AVL or red-black trees, color-changing in red-black
trees, etc.) are restricted in JOIN. This property also greatly simplifies the counting of writes in our simulator
and makes the optimizations to reduce writes easier.

SPLIT(T, k)→ (TL, TR): SPLIT can be viewed as the inverse of JOIN that takes a balanced BST and a key
k, and splits the tree into two smaller trees TL that contains keys smaller than key k, and TR for keys larger
than key k. SPLIT can be trivially implemented using JOIN by a recursive approach.

Bulk Operations. Using JOIN as a black box, either single or bulk updates can be implemented simply and
generally across different balancing schemes. As an example, we give the algorithm of taking the union of
two BSTs (or sets/maps) in Algorithm 2. The algorithm is based on divide-and-conquer: T1’s root is used to
partition all elements in two trees into two disjoint set, one with T1’s left subtree and Tl, and the other with
T1’s right subtree and Tr. Then we union the two subproblems recursively and independently, and join the
two output trees using T1’s root. The correctness and running time are shown in [BFS16].

5Also with high probability.

13

Algorithm 2: The union function

1 function UNION(T1, T2)
2 if T1 = NIL then return T2
3 if T2 = NIL then return T1
4 〈Tl, Tr〉 ← SPLIT(T2, T1’s root)
5 return JOIN(T1’s root, UNION(T1’s left subtree, Tl), UNION(T1’s right subtree, Tr))

There are several benefits of using this framework for our implementation and experiment. First, as we
just explained, different updates have the uniform code on different types of BSTs (except for the JOIN),
which justifies the performance by the different balancing criteria for the BSTs, instead of the different
implementations for different trees. Second, although the joined-based implementation operates on two trees,
one can check that when one tree contains only a singleton element, the algorithm runs the same as the
algorithm of a single insertion on each type of the BSTs. The deletion can also be implemented by taking the
difference by the original tree and a tree with a single element. As a result, the joined-based implementation is
strictly more powerful. Lastly, we can also run interesting experiments on more operations like bulk updates,
and compare the results on different BSTs.

4.2.3 Experiments

In this section, we show our experimental results on the counts of read/write transfers for different settings.
Due to the page limit, our experiment mainly focuses on the performance of various binary search trees (AVL
trees, red-black trees, and treaps) with different batch sizes.

In the experiment, we first insert m = 106 million integers as keys to a tree T (empty at the beginning),
drawn from a uniform distribution from 32-bit unsigned integers, and then delete them in a uniformly random
order. The insertion and deletion are grouped in batches of size s, indicating that the insertions are dm/se
unions on the main tree T with trees of size s. The deletions are also batched in dm/se bulks of size s. In our
experiment, we construct a smaller tree for each batch and then call the union or difference function we just
mentioned. We note that if all update elements are given in advance, we can also sort them and put them in a
list. Since this is a more specific case, our experiment is based on the tree-tree updates.

The node size in all different types of tress is 16 bytes. Each tree node stores four 4-byte data blocks to
hold the key, the left and right pointers, and the balancing information. The cache contains 10,000 cache-lines,
similar to the setting for unordered sets.

Table 6 shows the experimental results on BSTs with different balancing schemes with various batch
sizes. The numbers are read and write transfers per update.

Batch size 1.
We first look at the case corresponding the single insertions and deletions, and the results are shown in

Figure 2 and 3. Regarding the number of writes, treaps show the best performance. This is easy to understand
since treaps do not modify any information for rebalancing during insertions/deletions. The structure of
treaps is deterministic once the priorities are decided. The priorities are set before the merging (deleting), and
never changed later. For such reasons, treaps require much fewer writes per update compared to AVL and
red-black trees.

The AVL and red-black trees maintain the balancing information on each tree node that needs to be
updated when the subtree height changes. Then more writes are used due to these updates. Between these
two types of BSTs, red-black trees require more writes, since there are also some color flips on the siblings of

14

(a) Insertion / Union

Batch AVL RB-Tree Treap ω = 10 ω = 100

Size RT WT RT WT RT WT AVL RB-T Treap AVL RB-T Treap
1 11.28 2.83 12.00 3.48 16.61 1.79 39.6 46.8 34.5 295 360 196

1k 12.67 2.89 13.29 3.66 17.18 1.89 41.6 49.9 36.1 302 379 206
10k 6.18 2.68 6.40 3.01 7.33 1.85 33.0 36.5 25.8 274 308 192

100k 2.54 1.84 2.54 1.86 2.56 1.66 20.9 21.2 19.2 186 189 169

(b) Deletion / Difference

Batch AVL RB-Tree Treap ω = 10 ω = 100

Size RT WT RT WT RT WT AVL RB-T Treap AVL RB-T Treap
1 13.83 2.72 16.17 5.17 17.85 1.98 41.1 67.8 37.7 286 533 216

1k 15.11 2.79 17.65 5.21 18.52 2.08 43.0 69.8 39.3 294 539 227
10k 8.17 2.69 10.43 3.44 9.09 2.06 35.1 44.9 29.7 278 355 215

100k 3.22 1.99 3.54 2.43 3.23 1.78 23.2 27.8 21.1 203 246 182

(c) Average Tree Depth

AVL RB-Tree Treap
19.39 19.62 26.48

Table 6: Numbers of read and write transfers and asymmetric I/O costs of different BSTs with various batch
sizes. The numbers are divided by 106 (i.e., per inserted/deleted elements). The write-read ratio ω are selected
to be typical projected values 10 (latency, bandwidth) and 100 (energy).

the updated tree path. Such flips are extremely cheap in the classic symmetric setting but will cost much in
the asymmetric setting when writes become expensive.

The fewer writes for treaps come together with the extra cost on more reads. Treaps are less strictly
balanced compared to the other two trees, which saves the writes to maintaining such balancing, but leads to
larger average tree depth (shown in Table 6(c), about 30% deeper than the other trees). The average depths
for AVL and red-black trees are close to optimal, which is 18.96 for a perfectly balanced tree with 106 nodes.
Because of the shallower average depth, the number of reads required in either updates or queries is much
small on these two trees.

Larger batch sizes.
We now discuss how does the batch size affect the numbers of read and write transfers. The numbers are

given in Table 6.
When the batch size increases but remains small, the reads and writes almost remain the same and slightly

increase. When the batch size is smaller, the elements in a batch and the paths to visit them are always loaded
into the cache once and always stay there. Therefore, the different batch sizes less than 100 do not affect the
performance much.

The peak I/O cost per update is around batch size 1000, as we show here. In such case, the overall
footprint of a batch update no longer fit into the cache, which may lead to two loads per tree node (once in
the split phase and the other in the join phase).

However, the cost turns down when the batch size grows over 1000. The reason is that, the number of tree
nodes visited during each bulk update is Θ(s log(m/s)) (recall that s is the bulk size), which is also the time
complexity [BFS16] of this process. Namely, we need to visit O(log(m/s)) tree nodes per inserted node, so

15

 0

 5

 10

 15

 20

Insert Delete

#
re

ad
s

pe
r

el
em

en
t

AVL trees
red-black trees

Treaps

(a) Number of reads

 0

 1

 2

 3

 4

 5

 6

 7

 8

Insert Delete

#
w

rit
e

pe
r

el
em

en
t

AVL trees
red-black trees

Treaps

(b) Number of writes

Figure 2: The number of read and write transfers of different BSTs on single insertion/deletion. Data are
from the first rows in Table 6(a) and 6(b).

 0

 10

 20

 30

 40

 50

 60

 70

 80

Insert Delete

#
(R

el
at

iv
e)

 I
/O

 c
os

t

AVL trees
red-black trees

Treaps

(a) ω = 10

 0

 100

 200

 300

 400

 500

 600

Insert Delete

#
(R

el
at

iv
e)

 I
/O

 c
os

t

AVL trees
red-black trees

Treaps

(b) ω = 100

Figure 3: The I/O cost of different BSTs on single insertion/deletion. Data are from the first rows in Table 6(a)
and 6(b).

.

we touch fewer nodes as s goes up. Compared to the single updates, each node on multiple tree paths6 is only
looked at and compared with once in the joined-based bulk updates, and this is from which the improvement
comes. Since the top levels in the trees are visited more frequently, they usually stay in the cache. As a result,
the saved memory accesses for small batch size are hidden by the function of the cache. However, when the
batch size keeps growing and exceed the cache size, then the saved memory accesses lead to lower reads, as
shown in Table 6.

The number of writes also decreases for larger batch sizes in AVL and red-black trees, because of the
previously stated reason. When the elements are inserted or deleted one by one, the balancing factor of a
node on by multiple tree paths can be updated multiple times. On the other hand, when the tree is updated in
a bulk, such information will be updated by at most once at the join point, which saves the number of writes
to the asymmetric memory. However, since treaps do not need to update such information, we cannot observe
a significant drop-off on writes for larger batch sizes.

6Usually on the top part of the tree. For example, every single insertion visits the root node.

16

Queries.
We have not explicitly tested the I/O costs for queries, since most queries (like finding or checking a key,

locating the k-th element) have the same memory access pattern as the insertions. The only difference is
that they do not modify the tree, so there will be no writes. These updates may flush the dirty cache lines,
and thus slightly increase the writes. Our experiment shows that if we have the same number of queries and
insertions, the number of writes increases by no more than 5%, which is insignificant. Therefore, we believe
that we can ignore such changes in the most cases.

4.2.4 Conclusions

In this section, we theoretically analyze the asymmetric I/O costs of different types of binary search trees. We
show that red-black trees, the insertions for AVL trees, and treaps on expectation have an optimal asymptotic
cost (Θ(ω + log n) per update).

We then test the actual performance by conducting experiments based on the join-based implementation,
and show that treaps have the best update cost in most cases. The advantage comes from a looser balancing
constraint, which also leads to a larger tree depth and query costs. As a result, AVL tree will be a better
option if the queries are much more than the updates.

5 Sorting

Sorting is one of the most fundamental algorithms and building blocks in algorithm design and programming.
In this section, we analyze, performance engineer and experiment the performance of the existing sorting
algorithms in the asymmetric setting, which include quicksort, mergesort, BST sort and samplesort.

5.1 Algorithms and Implementations

We discuss four sorting algorithms, which are either used as the state-of-the-art implementations or have
efficient theoretical guarantees on asymmetric I/O cost. All four algorithms requires O(n log n) (optimal)
comparisons.

Quicksort. Quicksort is one of the commonly-used sorting algorithms in both sequential and parallel
setting. It picks a random pivot (or the median among several random samples) that partitions the array
into three contiguous subsets containing the input values that are less than, equal to, and larger than the
pivot respectively, based on a scan-based approach. Then two recursive calls are made to the less-than and
larger-than subsets, until the base case (we set it to be 16 elements) is reach and the algorithm switch to an
insertion sort. In our implementation, the pivot is selected to be the median of three random positions.

We now analyze the I/O cost of quicksort. Once the subproblem size is no more than M , the small-
memory size, the subproblem will fit into the cache and no more read and write transfers are required
for this subtask thereafter. The I/O cost Q is thus O(ωn/B · log(n/M)), where the number of memory
transfers to partition the array in the same recursive level add up to O(n/B) and w.h.p. the algorithm requires
O(log(n/M)) levels to reach the subtask with size no more than M .

Mergesort. Mergesort is another textbook sorting algorithm that is stable and easy to parallel. The implement
of mergesort has different versions, and here we discuss an I/O-efficient version. The algorithm partitions the
array into two equal-length parts and recursively sort every subproblem individually. After the computation
of both subtasks is finished, a scan-based process merges the two sorted subsequences into the final output.

17

To implement the algorithm efficiently, we use the rotating arrays so that every element is moved only once
in one merge process. An extra round of data copy is applied if the latest merge leaves the sorted result in the
temporal array.

Similarly to quicksort, no further memory transfers are used in subproblems with size no more than M .
Therefore the I/O cost Q of mergesort is also O(ωn/B · log(n/M)). More specifically, Q = (1 + ω)n/B ·
dlog2(n/M)e when dlog2(n/M)e is even, and otherwise there is an extra (1 + ω)n/B.

BST sort. BST sort treat the input as an ordered set and all elements are maintained in a binary search tree.
Then the in-order traversal of the tree is the sorted output. The BST can either be balanced, or does not apply
any rotation but the elements are inserted in a random order. Both cases give I/O cost of O(n log n+ nω)
on n input elements. It is typically used when the input is adaptive: we can insert and delete elements
dynamically, while the sorted result are maintained at any time. In this case, some balancing schemes are
required if the insertions and deletions are biased.

In our implementation elements are inserted in a random order, which is done in two phases: the first
phase generates n uniformly random integers a1, · · · , an between 1 to n using some hash functions, and
inserting the ai-th elements into the tree with no rotations (check whether this element is already inserted
before the actual insertion); then in the second phase we insert every uninserted element into the tree in the
input order. This guarantees that w.h.p. the gap between the elements inserted in the first phase is O(log n)
in the output order. Hence the tree depth is O(log n) disregarding any input order, and thus inserting one
element requires O(log n) reads and two random writes (the boolean flag that this node is inserted, and to
change the parent’s pointer).

Samplesort. Samplesort is a class of sorting algorithms that are based on divide-and-conquer paradigm with
multiple pivots and especially commonly-used in the multicore setting. To minimize the I/O cost and number
of memory transfers, in this paper, we discuss a cache-aware implementation of samplesort.

Given the cache sizeM and block sizeB, if the input size is smaller thanM then we simply call quicksort.
Otherwise, we pick M random samples from the input, sort the samples, and pick the B-th, 2B-th, ... ,
(M − B)-th samples as the pivots7 and they form M/B buckets. Then for each input element, we binary
search (an implicit search tree) its associated bucket. Finally, we again samplesort the elements in each bucket
individually and recursively.

The algorithm partition the input into M/B almost equal-size subproblems with O(n/B) read and write
transfers. The I/O cost of this algorithm on average is O

(ωn
B

logM
B

n

B

)
.

The number of write transfer of samplesort in our implementation is highly optimized so that one round
of samplesort only requires three sequential reads and one sequential write per input element. After picking
the pivots, we first loop over the input to binary search the associate bucket of each element. However, we
do not store this value; instead, we only modify the counters of each bucket. After that, we have known the
number of elements in each bucket, and we apply a prefix sum compute the offset of each element. Finally,
all elements are distributed to their associated buckets based on the offsets. The algorithm only requires three
reads and one write for each element, and all other operations are all within the cache. Notice that after one
round, the data are stored in another array, so the final results will be moved back to the original array if they
happen to be in the other one.

7If M < n/B then we pick n/B samples, and this will happen only once w.h.p. in the algorithm. In practice we
replace M to be M/c′ for some small constant c′ > 1 to ensure everything that should be in the cache is actually in the
cache.

18

Algorithm I/O cost

Quicksort O(ωn/B · log(n/M))∗

Mergesort O(ωn/B · log(n/M))

BST sort O(n log n+ nω))

Samplesort O(ωn/B · logM/B(n/B))∗

Table 7: List of I/O costs on sorting algorithms. (*) indicates the bounds hold with high probability (1− n−c
for arbitrary c > 0).

There do exist other sorting algorithms like heapsort, shellsort, bitonic sort, etc. Their performances
regarding I/O cost however, are less competitive against the previous sorting algorithms due to either more
work or inefficient memory-access pattern. We did not compare with previous work in [Vig14, BFG+15] in
this paper, since they are not optimal in terms of comparisons and have tunable parameters in the algorithm,
that makes the comparison among them inconclusive. Instead as a very first paper on this topic, we focus
on simple algorithms and draw interesting conclusions that can also be useful in implementing these more
complicated approaches in the future.

5.2 Experiments

In the experiment we test our implementations of the four sorting algorithms on the numbers of read and
write transfers with various cache sizes. We set the input into two categories: one that we indeed move the
data, and the other that the algorithm sorts the indirect pointers pointing to the data fields. The first case
is when we are sorting integers, real numbers or any structures with small and fixed size like graph edges,
key-value pairs of integers and/or pointers, etc. The second case is when the input is irregular, like strings,
texts, images, or any structure that is either large or the sizes vary among different elements. In this case,
moving the data is expensive, so we will sort and output a list of indices pointing to the actual data fields.
Both cases are widely used in practice.

Performance on sorting float-point numbers. We now show the experiments that perform data movement.
We sort 10 million random i.i.d. double-precision float-point numbers and in this case the block size B = 8.
The numbers of comparisons and read and write transfers of four algorithms are summarized in Table 8. The
I/O costs of the algorithms for two typical values of ω (10 and 100) are visualized in Figure 5.

Both quicksort and mergesort require about log2(n/M) rounds, which is 8 to 16, to fully fit the sub-
problems into the small-memory. Both algorithms require approximately the same number of writes, since
quicksort is in-place while mergesort is not and has double memory footprint, but the partition of quicksort is
not exactly even. These factors offset each other. However, the read transfer are doubled in mergesort, and in
practice causing its less efficient practical performance. Mergesort requires fewer comparisons, but this does
not lead to a significant difference in modern architecture, compared to the I/O cost to the main memory.

BST sort, as we analyzed theoretically, requires about log2(nB/M) reads and two random writes plus
some small cost on initializations. BST sort uses less writes compared to quicksort or mergesort when
2B < log2(n/M), which is hard to be satisfied given the parameters of the hardware. BST sort thus will still
be less efficient to sort small and fixed-structure entries in future memories.

The experiment result of samplesort follows our analysis as well: each round of sample sort approximately
requires three sequential reads and one sequential write, and the algorithm uses roughly dlogM/B(n/B)e
rounds to reach the base case. Other costs (sampling and sorting pivots, transposing the offsets, etc.) are
negligible.

19

Cache Quicksort Mergesort BST sort Samplesort
Size RT WT #comp RT WT #comp RT WT #comp RT WT #comp
100 2.06 2.04 39.49 4.01 2.00 24.11 24.49 2.04 43.76 1.60 0.82 63.05

1000 1.58 1.57 39.49 3.11 1.56 24.11 19.39 2.04 43.76 1.01 0.51 56.63
10000 1.11 1.10 39.49 2.25 1.13 24.11 14.17 2.03 43.76 0.50 0.25 52.47

Table 8: Number of read and write transfers of different sorting algorithms on 107 random i.i.d. double-
precision float-point numbers. Values in the table are numbers of read and write transfers and comparisons
per input element. Cache size is measured by the number of 64-byte cache-lines.

Cache Quicksort Mergesort BST sort Samplesort
Size RT WT #comp RT WT #comp RT WT #comp RT WT #comp
100 19.83 1.14 37.68 17.04 1.02 23.30 46.24 1.93 40.93 6.19 0.79 35.97
1000 15.57 0.91 37.68 13.42 0.81 23.30 35.30 1.92 40.93 3.93 0.45 34.34

10000 11.12 0.67 37.68 8.96 0.56 23.30 24.65 1.90 40.93 2.38 0.38 34.43

Table 9: Number of read and write transfers of different sorting algorithms on 2× 106 indices pointing to
structures with average size of 64 bytes. Other setup is the same as that in Table 8.

 0

 10

 20

 30

 40

 50

100 1000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

quicksort
mergesort

BSTsort
samplesort

(a) ω = 10

 0

 50

 100

 150

 200

 250

 300

100 1000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

quicksort
mergesort

BSTsort
samplesort

(b) ω = 100

Figure 4: I/O costs of different sorting algorithms on 107 doubles with various read-write asymmetry ω.
Numbers are from Table 8.

 0
 10
 20
 30
 40
 50
 60
 70
 80

100 1000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

quicksort
mergesort

BSTsort
samplesort

(a) ω = 10

 0

 50

 100

 150

 200

 250

100 1000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

quicksort
mergesort

BSTsort
samplesort

(b) ω = 100

Figure 5: I/O costs of different sorting algorithms on 2× 106 pointers with various read-write asymmetry ω.
Numbers are from Table 9.

20

Based on our previous experience, after highly optimizing the performance in the sequential setting,
samplesort is slightly slower than quicksort (but much faster in multicore parallelism) even though the I/O
cost of samplesort is lower. We believe the reason to be that, samplesort does not explicitly utilize L1 and
L2 caches (the binary search, offset transpose, etc.) so most small-memory accesses are toward L3 cache.
The memory access pattern for quicksort, however, is mostly sequential scanning, which is highly optimized
(like by prefetching) in the current architecture. Since the write costs will significantly increase for future
non-volatile main memory, we project that samplesort will be more efficient in this setting, since the I/O cost
will very likely be the bottleneck of all these sorting algorithms (similar to the existing multicore parallel
setting).

Sorting larger entries. As shown previously, although BST sort requires only at most random two writes
per insertion, this cost is still significant compared to other sorting algorithms that have better spatial locality
in memory access. However, when the size of each input entry becomes larger, each cache-line holds fewer
entries and the number of write transfers per entry increases.

We run the experiment with a fixed number of inputs (107) and cache-lines (1000), and varies the size
of each input entry from 8 bytes to 64 bytes. The results are shown in Table 10. Based on the analysis in
Section 5.1, for quicksort, mergesort, and samplesort, the I/O cost is proportional to the entry size. However,
BST sort is mostly not affected. The number of reads just marginally increases since the cache can hold less
top-tree levels, and slightly more writes are required since the overall footprint of the search tree increases as
the growth of the entry size. From the results, we can see that when the entry size becomes at least 64 bytes,
BST sort outperforms all other algorithms in the asymmetric setting.

Performance on sorting via pointers. In this experiment, we sort 2 million random strings that the characters
are stored contiguously in the memory with an average size of 64 bytes. The input also contains 2 million
8-byte pointers to the strings, and we only sort the pointers.

The implementations of quicksort, mergesort, and BST sort are identical except that each comparison
requires two indirect addresses to locate the data field. Samplesort, since it is cache-aware, requires two
modifications: first, no oversampling for the pivots since now each pivot requires one or two cache-lines for
its data; second, instead binary-search the bucket of each element twice, we now store the bucket label after
the first search to avoid the second search (roughly double the writes while half the reads).

The numbers of read and write transfers are reported in Table 9 and visualized for two typical values of ω
(10 and 100) in Figure 5. Writes of quicksort, mergesort, and BST sort stay approximately the same as the
previous experiment (the decrease in values is due to fewer input elements). Reads are now increased by
about log2(nB/M), the cost of locating the data fields.

For each round in sample sort, each element now requires one random read, three sequential reads and
two sequential writes (i.e. 1.375 read transfers and 0.25 write transfer). Also, one extra random read per
element is in the base case to load the data into the cache. The algorithm requires O(logM/B(n)) rounds to
reach the base case, and in the experiment, this round number is approximately 3, 2 and 1 for three cache
sizes. Finally, output needs to be moved back when reaching the base case in an odd number of rounds.

As what we understand, the wall-clock performance of samplesort when sorting pointers on current
architecture is already faster than the other sorts. This is because samplesort requires fewer I/Os and
comparisons, and all algorithms randomly access the memory so techniques like prefetching cannot help.
This gap will be even enlarged in future NVMs when the write costs being exaggerated.

21

Entry Quicksort Mergesort BSTsort Samplesort
Size RT WT RT WT RT WT RT WT

8 1.58 1.57 3.25 1.63 19.39 2.04 1.01 0.51
16 3.26 3.17 7.00 3.50 21.11 2.29 2.09 1.08
32 6.58 6.13 15.00 7.50 23.04 2.79 4.25 2.24
64 13.18 11.58 32.00 16.00 25.35 3.79 8.91 4.87

Table 10: Numbers of read and write transfers of different sorting algorithms with various data sizes (bytes).
The input size is 107 and the cache contains 1000 cache-lines.

5.3 Conclusions

Based on our implementations and experiments, the following conclusions and the projection of the techniques
for future non-volatile main-memories can be drawn.

Samplesort. Samplesort generally requires fewer I/Os than other sorting algorithms. On existing
hardware, since samplesort does not explicitly optimize for L1/L2 cache, its sequential performance is slightly
slower than quicksort. However, in the multicore parallel setting, samplesort is always the fastest due to its
efficiency on I/O cost. We predict that samplesort will play a more significant role with the future hardware
even in the sequential setting, because of the lower number of accessing to the large asymmetric memory and
the asymmetry of bandwidth and energy on the new memories.

Sorting indirect pointers. The advantage of samplesort will be enlarged when sorting via pointers.
This is because samplesort requires fewer rounds to finish, and therefore it uses fewer reads, fewer writes,
and fewer comparisons compared to other algorithms. This also matches the observation on the existing
symmetric setting that samplesort is more efficient on wall-clock performance.

BST sort. Although BST sort only requiring constant writes on large-memory per update, it is still
inefficient compared to other approaches when sorting integers or float-point numbers because of its lacking
on utilizing the cache-lines. However, when sorting entries with at least 64 bytes (i.e. a cache-line size), the
I/O cost of BST sort outperforms the rest three algorithms.

6 Graph Traversal Algorithms

We now provide the full version of the graph-traversal algorithms in this paper. We discuss two of the most
commonly-used graph-traversing algorithms: Breadth-first search (BFS), and Dijkstra’s Algorithm. We
show that with appropriate implementations, these algorithms can write much fewer to the main memory,
comparing to the classic implementations.

Throughout this section we assume the input graph G = (V,E) contains n = |V | vertices and m = |E|
edges.

6.1 Breadth-First Search

Breadth-first search (BFS) is an algorithm for graph traversing or searching. It starts at the source node,
which is an arbitrary node of a graph, and explores the vertices with respect to the distances (the number of
hops) from the source node. BFS is commonly-used in computing single-source shortest paths on unweighted
graphs, as a subroutine for graph radii estimation, eccentricity estimation and betweenness centrality, and as

22

a basic building block for other graph algorithms like graph connectivity, reachability, bridges, biconnected
components, and strongly connected components. In this paper we focus on the most basic application:
shortest paths on undirected graphs, and the techniques discussed here can apply to many other applications.

6.1.1 The classic implementation

Given a graph G = (V,E) with n vertices and m edges, the classic implementation of BFS keeps a queue
with size n, and an array of boolean flags with size n indicating that each vertex is visited or not during the
search. This implementation requires at most 2 writes for each vertex: one sequential write for adding it to
the queue and one random access for changing the flag of this vertex. Meanwhile, searches along an edge to
an already visited vertex require no writes. The overall I/O cost of BFS Q(n,m) = O(ωn+m) [BFG+16].

This bound is asymptotic optimal for arbitrary graphs, since the output of BFS, the shortest-path tree,
has size O(n). However, a number applications (e.g. s-t shortest-path or connectivity, graph radii estimation
or eccentricity estimation) have output size O(1), which allow techniques utilizing the small-memory and
reducing the number of writes.

6.1.2 BFS implementation using rotating arrays

The rotating arrays are used in many algorithms to reduce the space requirement. For example, the diamond
DAG computation in the longest common subsequence (LCS) problem only requires storing two consecutive
columns (or rows) at any time during the dynamic programming process, since each DP value only depends
on three other nearby vertices in the diamond DAG. The algorithm maintains two arrays each with the size of
either input string: one to hold the results in odd columns (rows) while the other for the even ones. We call
this structure the rotating arrays since the two arrays are rotating and holding computed and uncomputed
values. They only require temporal (cache) space of one dimension although the nodes in the entire DAG
have two dimensions.

Here we observe that BFS on undirected graphs can apply a similar approach: instead of keeping a queue
and a global array of boolean flags with size n, we maintain separate queues, each corresponding to a specific
frontier (i.e. the set of vertices with the same distance to the source). This is because, during the BFS on
undirected graphs, the outgoing edges from the i-th frontier can only reach the vertices in either the (i− 1)-th
frontier or the (i+ 1)-th frontier. Otherwise, assume an edge reaches a vertex in the j(< i− 1)-th frontier,
then the vertex in j-th frontier will visit this vertex in (j + 1)-th frontier. As a result, when processing the
i-th frontier, we only need to keep three frontiers with distance i− 1, i and i+ 1.

Since each frontier is separately kept and all vertices in one frontier have the same distances, we no longer
need to keep the relative orders of the elements within each frontier. We hence directly use an unordered set
to maintain each frontier. Since only three frontiers are useful during the BFS process, we also only allocate
and keep three unordered sets and their roles rotate among the previous, the current and the next frontier.

The 2-level hash table introduced in Section 4.1.1 works perfectly well here since we have no control of
the frontier sizes, which can be either greater or smaller than previous ones. For each frontier, we loop over
all vertices in the set, and for each outgoing edge, if the other endpoint is not in either of the three unordered
sets then it is added to the next frontier. Therefore, the operations to the sets include lookups and insertions.
We do not explicitly delete the sets. Instead, when the searching of one frontier is finished, the new next
frontier will reuse this space of the previous frontier.

23

6.1.3 Bidirectional search

This previous implementation based on rotating arrays can greatly reduce the number of write transfer when
the frontier size is much smaller than the number of vertices, like grids, meshes, roadmaps, etc. For other
graphs with larger frontier size and smaller diameter (e.g. real-world networks that follow power law), I/O
cost is not improved significantly. However for these graphs, the average distance between every pair of
vertices is usually very small, and this is called the “small-world phenomenon” [WS98].

To utilize this property, we employ bidirectional breadth-first search on computing the s-t shortest path.
Assuming the distance between this pair of query vertices is d, then the search from each direction will only
visit the vertices within distance dd/2e. On these power-law graphs, the frontier size grows exponentially on
the first several steps until most of the vertices are reached. The number of vertices on the top-half levels
in the shortest-path tree is therefore far less than n. This difference however, is negligible on graphs with
bounded frontier size, since the distance between a random pair of vertices is large expectedly, and the
bidirectional search eventually reaches about the same amount of vertices unless d is much smaller than the
graph diameter.

To implement bidirectional search efficiently, we also use three rotating arrays for the search process. The
extra detail here is that, the source, destination, and all intermediate vertices are put together in the same sets,
and use one bit (the sign bit) to identify if the vertex is by the search from the source or from the destination.
We only keep three instead of six sets, which reduces the number of read transfers approximately by a half.

6.1.4 Experiment

In the experiment, we examine whether and how the new algorithms we just discussed improve the I/O cost.
We implement four versions of breadth-first search: classic and bidirectional search with and without using
rotating arrays. The experiment is run on 8 graph instances with various cache size.

Graph instances. We use graphs of various types from the SNAP datasets [LK14a] as the input of the
algorithms. The graphs include the road networks in Pennsylvania and Texas (real-world planar graphs), the
web graphs of the University of Notre Dame and Stanford University, the DBLP collaboration network, and
the Youtube online social network (4 real-world networks). In the case of web graphs, each edge represents a
hyperlink between two web pages. We also use synthetic graphs of 2D and 3D grids. For each of the graphs
used, the numbers of vertices and edges are given in the table below. If a graph does not come equipped with
weights, we assign to every edge a random integer between 1 and 10, 000. The graphs we used are relatively
small due to the overhead in our software and hardware simulator, but we adjust the cache size accordingly.

Type Graph # Vertices # Edges
Grid: 2D 1M 3.96M

Sparse Grid: 3D 1M 5.94M
Graphs Roadmap: Pennsylvania 1.09M 3.08M

Roadmap: Texas 1.39M 3.84M
Webgraph: Notre Dame 325K 2.20M

Social Webgraph: Stanford 281K 3.98M
Networks DBLP collab. network 317K 2.10M

Youtube network 1.13M 5.98M

Overall performance. The numbers of read and write transfers on 8 graph instances with various cache
size are given in Table 11. Their weighted I/O costs are given in Table 12 considering two typical values of ω,
and visualized (merged into two categories) in Figure 6.

24

Algorithm Classic BFS BFS based on RA
Cache Size 500 2000 10000 500 2000 10000

RT WT RT WT RT WT RT WT RT WT RT WT
2D Grid 18.47 6.17 17.60 6.01 10.88 4.59 8.75 0.84 6.52 0.16 6.20 0.01
3D Grid 19.38 5.45 16.42 5.31 13.51 4.51 88.24 4.26 31.03 2.01 6.39 0.38
PA Roadmap 8.73 2.78 8.07 2.54 2.43 1.05 29.61 2.95 5.37 0.65 1.26 0.02
TX Roadmap 6.79 2.16 6.01 1.91 1.95 0.85 23.45 2.29 4.32 0.50 1.00 0.02
Stan Webgraph 39.75 3.97 27.11 3.75 9.63 1.48 232.09 5.99 150.70 4.74 35.19 2.10
NDU Webgraph 3.47 1.04 3.02 0.97 2.52 0.77 84.67 4.80 58.91 3.91 18.33 1.73
DBLP Network 19.70 5.75 15.43 5.07 6.85 1.68 140.01 7.34 104.12 6.27 37.67 3.20
Youtube Network 13.23 2.47 9.64 2.29 5.63 1.84 91.70 6.77 71.98 6.39 39.95 5.08

Algorithm Classic Bidirectional BFS Bidirectional BFS based on RA
Cache Size 500 2000 10000 500 2000 10000

RT WT RT WT RT WT RT WT RT WT RT WT
2D Grid 18.14 4.97 17.61 4.94 9.39 4.61 7.60 0.55 4.94 0.13 4.69 0.01
3D Grid 11.66 3.08 10.52 3.06 9.47 2.98 38.24 1.97 8.80 0.69 2.90 0.09
PA Roadmap 7.87 3.19 7.58 3.09 3.37 1.60 27.00 2.62 4.25 0.43 1.06 0.02
TX Roadmap 5.31 2.30 5.03 2.19 1.79 1.06 11.12 1.18 2.30 0.21 0.60 0.01
Stan Webgraph 4.70 1.38 4.24 1.37 2.74 1.29 7.32 0.84 3.00 0.47 0.63 0.13
NDU Webgraph 0.80 0.70 0.77 0.70 0.74 0.68 2.63 0.43 1.12 0.28 0.16 0.06
DBLP network 1.40 1.01 1.29 0.99 1.05 0.89 1.33 0.25 0.37 0.12 0.12 0.04
Youtube network 0.74 0.68 0.71 0.68 0.69 0.67 0.25 0.09 0.08 0.04 0.02 0.01

Table 11: Numbers of read and write transfers of BFS implementations on different cache sizes. Numbers
are r/w transfers per vertex per 10 queries. We pick the number 10 to fit the numbers in one table.

To better understand the performance of different implementations, we also count various statistics of the
searching including the depths and frontier sizes, and the results are generalized in Table 13.

Unidirectional search. Indicated in Table 11, classic BFS requires no more than one sequential write (pushed
into the queue) and one random write (marking the distance) per vertex. The random write can be avoided if
the associated cache line is cached, so better locality of vertex indices of some graphs (roadmaps and NDU
webgraph) and larger cache size reduce writes per vertex. The algorithm also reads the edges of each vertex
and checks whether the other endpoint is visited or not, which is also affected by the edges per vertex and the
locality of vertex indices.

For the implementation using rotating arrays, the key factor is whether the frontier fits into the cache.
Shown in Table 13, the sparse graphs (grids and roadmaps) have smaller frontier sizes, so as long as the cache
can hold each of them, the writes are largely minimized. This is also true for reads since checking is always
in the hash table. However, once the frontier is larger than the cache size, then each insertion to the hash table
now becomes a random write and can hardly be cached because of the hash function. The reads are increased
even more, since checking whether a vertex is visited can lead to at most 6 cache misses: three rotating arrays
each with 2 levels. Summarized in Figure 6, the I/O cost is largely improved using the rotating arrays when
frontiers fit into the cache, but deteriorates when not.

Bidirectional search. The I/O performance of classic bidirectional BFS is similar to the classic unidirectional
BFS since they essentially search in a similar pattern. The bidirectional search requires fewer reads and

25

ω = 10

Algorithm Classic BFS BFS based on RA Classic Bidir. BFS Bidir. BFS based on RA
Cache Size 500 2000 10000 500 2000 10000 500 2000 10000 500 2000 10000
2D Grid 80.18 77.72 56.74 17.13 8.15 6.25 67.80 67.04 55.53 13.14 6.27 4.76

3D Grid 73.85 69.49 58.60 130.86 51.16 10.18 42.44 41.16 39.29 57.98 15.65 3.82

PA Roadmap 36.50 33.42 12.89 59.10 11.84 1.44 39.76 38.46 19.39 53.24 8.52 1.24

TX Roadmap 28.42 25.14 10.44 46.36 9.36 1.18 28.27 26.95 12.37 22.89 4.37 0.69

Stan Webgraph 79.41 64.64 24.39 291.99 198.08 56.18 18.48 17.93 15.62 15.75 7.71 1.93

NDU Webgraph 13.84 12.70 10.20 132.71 98.04 35.58 7.80 7.73 7.54 6.90 3.90 0.75

DBLP network 77.19 66.16 23.67 213.43 166.84 69.63 11.53 11.22 9.91 3.84 1.61 0.56

Youtube network 37.92 32.59 24.06 159.43 135.92 90.72 7.58 7.50 7.38 1.17 0.51 0.17

ω = 100

Algorithm Classic BFS BFS based on RA Classic Bidir. BFS Bidir. BFS based on RA
Cache Size 500 2000 10000 500 2000 10000 500 2000 10000 500 2000 10000
2D Grid 635.5 618.7 469.4 92.5 22.7 6.7 514.7 511.8 470.7 62.9 18.2 5.3

3D Grid 564.0 547.1 464.3 514.4 232.3 44.2 319.4 316.9 307.6 235.6 77.4 12.0

PA Roadmap 286.4 261.5 107.0 324.4 70.0 3.0 326.7 316.4 163.6 289.4 47.0 2.8

TX Roadmap 223.1 197.3 86.8 252.5 54.7 2.8 234.8 224.2 107.6 128.8 23.0 1.5

Stan Webgraph 436.3 402.4 157.1 831.1 624.5 245.1 142.5 141.2 131.6 91.6 50.1 13.6

NDU Webgraph 107.1 99.8 79.2 565.0 450.2 190.8 70.8 70.3 68.8 45.3 28.9 6.0

DBLP network 594.6 522.6 175.1 874.2 731.3 357.3 102.6 100.5 89.7 26.4 12.8 4.5

Youtube network 260.2 239.1 190.0 769.0 711.4 547.6 69.1 68.5 67.6 9.4 4.3 1.5

Table 12: I/O costs of BFS implementations on different cache sizes. Numbers of r/w transfers are from
Table 11. Italic-font number indicates that the classic implementation has a lower I/O cost in that setting.

Unidirectional search Bidirectional search
depth maximum

frontier
size

average
frontier

size

depth maximum
frontier

size

average
frontier

size
2D Grid 1571.4 1460 636.4 370.2 2091 1102.8
3D Grid 229.9 13277 4349.7 49.3 15058 4628.9
PA Roadmap 574.5 5032 1893.1 163.9 7204 2718.3
TX Roadmap 748.6 6058 1804.9 174.7 5752 2102.1
Stan Webgraph 107.1 87614 2383.4 3.5 50094 3782.8
NDU Webgraph 29.2 124519 11155.1 3.8 51562 2053.5
DBLP Network 16.1 129283 19694.4 3.9 36373 1420.1
Youtube Network 15.8 607534 71828.5 2.7 1841 107.4

Table 13: The depths (number of levels in the shortest-path tree) and frontier sizes (number of vertices) during
the search processes. Note that the numbers are averaged from multiple searches.

26

 0

 10

 20

 30

 40

 50

 60

500 2000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic BFS
BFS on RA

Classic Bidir. BFS
Bidir. BFS on RA

(a) ω = 10, sparse graphs

 0
 10
 20
 30
 40
 50
 60
 70
 80

500 2000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic BFS
BFS on RA

Classic Bidir. BFS
Bidir. BFS on RA

(b) ω = 10, social networks

 0
 50

 100
 150
 200
 250
 300
 350
 400

500 2000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic BFS
BFS on RA

Classic Bidir. BFS
Bidir. BFS on RA

(c) ω = 100, sparse graphs

 0
 50

 100
 150
 200
 250
 300
 350
 400

500 2000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic BFS
BFS on RA

Classic Bidir. BFS
Bidir. BFS on RA

(d) ω = 100, social networks

Figure 6: The trends of the I/O costs of four different implementations of BFS. The new implementations
shown in this paper are the BFS and bidirectional BFS based on rotating arrays (red and orange bars). Graphs
used in the experiment are shown in Section 6.1.4 and categorized into sparse (almost planar) graphs and
social networks. We show the relative I/O cost based on varied cache sizes, and each number is geometric
mean of the four graphs in that category (the exact numbers are given in Table 12). We can see the consistent
advantages of the new BFS implementation on sparse graphs, and the improvement of the new bidirectional
version in all cases. Notice that in (b) and (d) some values exceed the ranges of vertical axis.

writes since it strictly searches fewer vertices, especially in social networks since these graphs have smaller
diameters and the two searches usually meet earlier before the majority of the vertices are visited.

This special property of social network largely helps our implementation using rotating arrays. Shown in
Table 13, the two bidirectional searches use 2.7-3.9 rounds on average to meet, which preserves the frontier in
the cache during the search even for very small cache sizes. As a result, the bidirectional BFS using rotating
arrays has a constantly good performance on all combinations of graphs and cache sizes, which is shown in
Table 12 and Figure 6.

6.1.5 Conclusions

We discuss how to efficiently implement BFS in the asymmetric setting and experiment the I/O performance
for four implementations on a variety of graphs. We show that if the query is s-t (pairwise) distance, our
bidirectional BFS using rotating arrays shows an overwhelming advantage in all cases we tested. If all

27

distances to the source are required, the unidirectional BFS using rotating arrays has a better performance if
the cache can hold each frontier.

6.2 Dijkstra’s Algorithm

Dijkstra’s Algorithm [Dij59] is a well-known algorithm to compute single-source shortest paths on a non-
negative weighted graph G = (V,E). Due to the rapid growth of the data size, real-world graphs nowadays
can easily go beyond the size of the order of gigabytes, and they need to be stored on the large non-volatile
memory. Running the classic implementation of Dijkstra’s algorithm can be costly in this setting. We show
that with an appropriate implementation, the algorithm can write much fewer to the non-volatile memory,
which further leads to much lower I/O cost.

Throughout this section we assume the input graph G = (V,E) contains n = |V | vertices and m = |E|
edges.

Dijkstra’s algorithm maintains a set of visited vertices associated with their shortest distances to the source
(denoted by dv for v ∈ V), and the unvisited neighbors of these vertices form the “frontier” (dv for unvisited
vertex v is +∞). Each vertex u in the frontier stores a tentative distance to be minv∈N(u){dv + eu,v} where
N(u) is the incoming neighbor set of vertex u. Initially the visited set contains only one vertex: the source
node. The invariant of this algorithm is that, the minimum tentative distance in the frontier set is indeed the
shortest distance of this vertex, and thus Dijkstra’s algorithm iteratively move this vertex from the frontier to
the visited set and update the frontier accordingly. The correctness can easily be proven by induction on the
number of visited nodes.

Due to the widespread use of Dijkstra’s algorithm, there are plenty of works on the efficient implementa-
tions of Dijkstra’s algorithm and we refer the readers to some recent works [MS03, BGST16] for summaries
of the work bounds of different approaches. Different implementations have different costs on the two
operations in Dijkstra’s algorithm: EXTRACT-MIN that finds and removes the vertex with minimum distance
in the frontier set, and DECREASE-KEY that updates the tentative distance of the other endpoint of an edge
of this vertex removed from the frontier in this iteration. The data type that supports the queries is abstracted
as a priority queue. Specifically when the priority queue is implemented using Fibonacci Heap [FT87] to
maintain the frontier set, the overall time complexity is O(m+ n log n).

6.2.1 Classic implementation using a binary heap

Although there are many advanced implementations of the priority queue with lower time complexities, the
constant hidden in the asymptotic bound is large. In practice the classic implementation using a binary heap
works reasonably well on general sparse real-world graphs, and its wall-clock performance is competitive or
even better on modern computer architecture. We hence implement it as a baseline and measure the number
of read and write transfers of this algorithm as a comparison to our write-efficient version.

For each vertex, we maintain the shortest distance in a global array with size n. For practical purpose,
instead of initializing the priority queue of size n with infinite distances, we insert a vertex when it is first
added to the frontier (so the priority queue needs to support INSERT, which most implementations do). The
binary heap only stores the indices of the vertices which optimizes the memory footprint and number of write
transfers. To perform DECREASE-KEY in a binary heap efficiently, we keep another global array, an auxiliary
structure that maps each vertex to its position in the heap, and is maintained up-to-date as the priority queue
changes. This implementation has worst-case time complexity to be O(m log n). Since this implementation
does not take any special optimization on caching, the I/O cost is therefore O(ωm log(nB/M)), assuming
the cache always keeps the first M/B vertices in the priority queue.

28

6.2.2 Phased Dijkstra

Phased Dijkstra [BFG+16] is a specific implementation of Dijkstra’s algorithm that the goal is to fully
maintain the priority queue in small-memory. It only requires O(n) writes to large-memory, the shortest
distances to all vertices. The idea is to partition the computation into phases such that for a parameter M ′

each phase keeps a priority queue of size at most (1 + ε)M ′ and visits at least M ′ vertices. By selecting
M ′ = M/c for an appropriate constant c, the priority queue fits in small-memory, and the only writes to
large-memory are the final distances.

Algorithm 3: Phased Dijkstra
Input: A connected weighted graph G = (V,E) and a source vertex s
Output: The shortest distances δ = {δ1, . . . , δn} from source s

1 Priority Queue P ← ∅
2 Mark vertex s as visited and set δ(s)← 0
3 while there exists unvisited vertices do
4 if P = ∅ then
5 Scan over all edges in E and store at most M ′ closest unvisited vertices in P
6 if |P | = M ′ then
7 Set dmax as the distance to the farthest vertex in P
8 else
9 dmax ← +∞

10 u = P.EXTRACT-MIN()
11 Set δu as the distance from s to u, and mark u as visited
12 foreach (u, v, disu,v) ∈ E do
13 if δu + disu,v < dmax then
14 if v ∈ P then
15 P.DECREASE-KEY(v, δu + disu,v)
16 else
17 P.INSERT(v, δu + disu,v)
18 if |P | = (1 + ε)M ′ then
19 Remove εM ′ vertices with larger distances in P
20 Set dmax as the farthest distance in P
21 return δ(·)

The pseudocode of the algorithm is provided in Algorithm 3. Technically the priority queue P can be
implemented using an arbitrary heap since it is fully in the small-memory and will not affect the I/O cost. In
our experiment we implement it using a binary heap.

In phased Dijkstra, each phase starts and ends with an empty priority queue P . The priority queue is kept
small by discarding the εM ′ largest elements (vertex distances) whenever |P | = (1 + ε)M ′. To achieve this,
P is flattened into an array, the M ′-th smallest element dmax is found by selection, and the priority queue
is reconstructed from the elements no greater than dmax, all taking linear time. After such a truncation, all
further insertions in a given phase are not added to P if they have a value greater than dmax.

The processing of each phase in phased Dijkstra consists of two parts. The first part (line 5–9) of each
phase loops over all edges in the graph and relaxes any that go from a visited to an unvisited vertex (possibly
inserting or decreasing a key in P). The second part (repeatedly loop over line 10–20) then runs standard
Dijkstra’s algorithm repeatedly visiting the vertex with minimum distance and relaxing its neighbors until
P is empty. Similar to other implementations, to implement relax, the algorithm needs to know whether a
vertex is already in P , and if so where in P so that it can do a decrease-key on it. However in phased Dijkstra
it is too costly to store this information using a global array. Instead, we use an unordered map introduced in
Section 4.1.1 for this mapping. Theoretically the hash table can be set with fixed size, but in practice we use

29

a 2-level hash table since it leads to better performance when the frontier size is consistently small, and equal
performance otherwise. This map is referred as vertex map later.

The I/O cost of phased Dijkstra is Q(n,m) = O
(
n
(m
M

+ ω
))

. More details on the correctness and

complexity analysis can be found in [BFG+16].
We make a special optimization that once all outgoing edges of a vertex are visited, we remove this node

and all associated edges in the scan in Line 5. This is done by using the sign-bit of the output distances, such
that it is more likely being cached. We call the active set that contains visited but not removed vertices.

For an efficient implementation that optimizes memory footprint and I/O efficiency, each heap element
contains the vertex index, the pointer to the vertex map, and the tentative distance. In total it takes 16 bytes.
Each element in the vertex map only stores a pointer, and the vertex index can be check via the corresponding
heap element. Throughout our experiment we set the maximum occupancy rate of the 2-level hash table to be
0.8, and truncation ratio ε = 0.25. M ′ is chosen such that the hash table and priority queue occupy about
40% of the small-memory, while various values of M ′ are also discussed.

6.2.3 Experiments

The experiments are run on two Dijkstra implementations with different parameter combinations on cache
size, cache policy, and the priority queue size. The experiment is run on eight graph instances with various
cache size.

Since in phased Dijkstra the number of reads is significantly more than that of writes, to keep the priority
queue in the cache, the special cache strategy in Section 3.2 is required. In Table 17 we show that different
cache policies only cause minor differences, so in the majority of this section we use the Static policy.

Overall performance. In Table 14 we show the number of read and write transfers of two implementations
on different graphs with various cache size. Cache size varies from 2,000 to 50,000 cache lines each with 64
bytes. In Table 15 the overall I/O costs with different values of ω are listed based on the numbers in Table 14.

For the binary-heap implementation, the actual reads and writes mostly match the theoretical bound
O(m log(nB/M)). Reads are about slightly less than twice as writes: each edge is read once during Dijkstra
(linear scan and requires no modification), and an update in the binary heap always requires one more read
than writes. The only exception is on the roadmaps when the frontier size is consistently small while nearby
vertices share contiguous indices. In this case the cache efficiently holds the entire heap and leads to fewer
reads and writes to the large-memory.

For phased Dijkstra, we first observed that the number of writes is always no more than 1.3 per vertex:
one write per vertex when the distance is finalized, plus some other cost to maintain the active set. The
number of read transfers is mainly decided the number of phases, and the size of the active set (the edge lists
of active vertices at the beginning of each phase needs to be scanned).

The overall I/O performance (shown in Table 15) indicates that phased Dijkstra is consistently better than
the binary-heap version except for the only case that both ω and cache size are small and the active set is
large. This case can hardly happen in practice since the cache size is even much smaller than the current L3
cache. The improvement on I/O cost in all cases is up to 3 and 7.6 when ω is 10 and 100. This peak occurs
when the small-memory sizes is large and frontier size is larger, since at this time the cost to maintain the
binary heap in the classic implementation is costly, while the extra cost to run phased Dijkstra is insignificant.

Different cache maintenance policy. We show the number of read and write transfer of phased Dijkstra on
two different cache policies in 17. Different policies actually give a very similar performance in the graph
instances. More analysis is shown in the full version of this paper.

30

Classic Dijkstra using binary heap Phased Dijkstra
Cache Size 2k 10k 50k 2k 10k 50k

Graph Instance RT WT RT WT RT WT RT WT RT WT RT WT
2D Grid 10.37 4.87 4.61 2.34 3.53 1.89 5.93 1.12 (1) 3.62 1.11 (1) 2.74 1.04 (1)
3D Grid 25.87 14.53 17.44 8.54 8.20 3.35 126.56 1.12 (383) 28.16 1.12 (44) 5.90 1.07 (1)
PA Roadmap 7.82 4.14 2.16 0.81 1.12 0.40 30.40 0.99 (202) 1.89 0.52 (1) 1.04 0.28 (1)
TX Roadmap 7.69 4.10 2.16 0.82 1.09 0.40 37.93 0.97 (262) 1.88 0.53 (1) 1.01 0.27 (1)
Stan Webgraph 37.31 18.13 26.73 12.06 10.60 3.91 404.61 1.03 (100) 81.02 1.02 (16) 13.83 0.88 (2)
NDU Webgraph 24.97 15.34 15.14 8.21 5.19 1.65 99.86 1.10 (132) 22.57 1.01 (24) 5.81 0.67 (3)
DBLP Network 32.14 19.66 23.17 13.02 10.08 4.58 341.08 1.12 (131) 64.75 1.10 (24) 11.53 0.94 (4)
Youtube Network 35.19 22.86 26.80 16.53 21.18 12.90 836.64 1.13 (477) 161.36 1.11 (93) 33.08 1.05 (18)

Table 14: Number of read and write transfers of different Dijkstra implementations on different cache
size. Numbers are normalized to read or write transfers per vertex. We ran SSSP queries on 10 different
randomly-chosen source nodes. Numbers in the parentheses are the average phases.

ω = 10 ω = 100

Classic Phased Dijkstra Classic Phased Dijkstra
Cache Size 2k 10k 50k 2k 10k 50k 2k 10k 50k 2k 10k 50k

2D Grid 59.1 28.0 22.4 17.1 14.7 13.1 497.8 238.9 192.2 118.3 114.3 106.8
3D Grid 171.2 102.8 41.7 137.8 39.3 16.6 1478.9 871.2 343.5 239.0 140.1 113.1
PA Roadmap 49.2 10.2 5.1 40.3 7.1 3.8 421.4 83.1 41.2 129.0 53.9 28.7
TX Roadmap 48.7 10.4 5.1 47.6 7.1 3.7 417.5 84.3 40.9 134.5 54.5 28.3
Stan Webgraph 218.6 147.3 49.7 414.9 91.2 22.6 1850.2 1232.2 401.8 507.7 182.8 101.9
NDU Webgraph 178.4 97.2 21.6 110.9 32.7 12.5 1559.4 836.3 169.7 209.9 123.9 72.8
DBLP Network 228.7 153.4 55.9 352.3 75.7 20.9 1997.6 1325.2 468.4 453.1 174.7 105.9
Youtube Network 263.8 192.1 150.1 847.9 172.5 43.6 2321.0 1679.4 1310.8 949.3 272.8 138.3

Table 15: The I/O costs on different Dijkstra implementations on different cache size. The write-read ratio ω
are selected to be typical projected values 10 (latency, bandwidth) and 100 (energy). Results are based on the
numbers in Table 14.

 0
 10
 20
 30
 40
 50
 60
 70
 80

100 1000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic
Phased Dijkstra

(a) ω = 10, sparse graphs

 0
 50

 100
 150
 200
 250
 300
 350
 400

100 1000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic
Phased Dijkstra

(b) ω = 10, social networks

 0

 100

 200

 300

 400

 500

 600

 700

100 1000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic
Phased Dijkstra

(c) ω = 100, sparse graphs

 0

 500

 1000

 1500

 2000

100 1000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic
Phased Dijkstra

(d) ω = 100, social networks

Figure 7: I/O costs of classic Dijkstra and phased Dijkstra. Graphs are categorized into sparse (almost planar)
graphs and social networks and the I/O cost is geometric mean of the four. Numbers are from Table 15.

31

Cache Policy SplitPool Static
RT WT RT WT

2D Grid 3.74 1.11 3.62 1.11
3D Grid 27.43 1.12 28.16 1.12
PA Roadmap 1.84 0.88 1.89 0.52
TX Roadmap 1.83 0.87 1.88 0.53
Stan Webgraph 81.40 1.02 81.02 1.02
NDU Webgraph 21.96 1.07 22.57 1.01
DBLP Network 65.20 1.11 64.75 1.10
Youtube Network 163.38 1.12 161.36 1.11

Table 16: Number of read and write transfer of phased Dijkstra on two different cache policies: the SplitPool
policy and the Static policy. The cache contains 10,000 cache-lines. Different policies give very similar
performance except for the writes on roadmaps.

Picking appropriate priority queue’s size M ′. In previous experiment we empirically set the overall size
of the priority queue and vertex map to be about 40% of the overall cache size. However, this percentage can
affect the performance of phased Dijkstra. Larger percentage leads the heap to contain more elements so
that the overall number of phases is decreased. Meanwhile the size left for the rest cache is smaller, which
decreases the cache performance. Hence, the number of phases and specific graph property lead to different
optimality point of the the priority queue’s size and no easy conclusions can be drawn. In Table 18 we show a
snapshot on the cache size of 10,000 and the percentage varies from 30% to 60%. The trend is that, when the
priority queue’s size is smaller than the average frontier size then larger priority queue helps, and vice visa.
In general different priority queue’s sizes only make a minor difference on I/O cost and will not affect the
relatively lower cost comparing to the binary-heap implementation.

6.2.4 Conclusions

We discussed phased Dijkstra and experiment its performance on a variety of graphs. The high-level idea is
to fit the computation within the small-memory (i.e. the cache) and thus requires no intermediate writes to
the large asymmetry memory. The experimental results show that phased Dijkstra consistently outperforms
the binary-heap version on I/O cost except for the combination of small ω (= 10), small cache size, and on
social networks. Although phased Dijkstra contains some parameters, we also show that they do not affect
the efficiency of phased Dijkstra when they are within a reasonable large range. A similar case also holds for
different cache policies.

Notice that the idea here that fits the computation in the small-memory can also be applied to computing
minimum spanning tree, sorting, and many other problems.

References

[ABCR12] Manos Athanassoulis, Bishwaranjan Bhattacharjee, Mustafa Canim, and Kenneth A. Ross. Path
processing using solid state storage. In Proc. International Workshop on Accelerating Data
Management Systems Using Modern Processor and Storage Architectures (ADMS), 2012.

32

Cache Policy SplitPool Static
RT WT RT WT

2D Grid 3.74 1.11 3.62 1.11
3D Grid 27.43 1.12 28.16 1.12
PA Roadmap 1.84 0.88 1.89 0.52
TX Roadmap 1.83 0.87 1.88 0.53
Stan Webgraph 81.40 1.02 81.02 1.02
NDU Webgraph 21.96 1.07 22.57 1.01
DBLP Network 65.20 1.11 64.75 1.10
Youtube Network 163.38 1.12 161.36 1.11

Table 17: Number of read and write transfer of phased Dijkstra on two different cache policies: the SplitPool
policy and the Static policy. The cache contains 10,000 cache-lines. Different policies give very similar
performance except for the writes on roadmaps.

Priority Queue Size 30% 40% 50% 60%
RT WT RT WT RT WT RT WT

2D Grid 8.4 1.10 8.6 1.11 8.9 1.11 9.3 1.11
3D Grid 33.7 1.12 28.9 1.12 25.6 1.12 23.3 1.12
PA Roadmap 2.7 0.48 2.8 0.52 3.0 0.58 3.2 0.66
TX Roadmap 2.6 0.48 2.7 0.53 2.9 0.59 3.1 0.66
Stan Webgraph 94.4 1.02 82.9 1.02 72.1 1.02 67.1 1.02
NDU Webgraph 26.1 1.01 22.8 1.01 20.2 1.03 18.5 1.04
DBLP Network 75.1 1.10 64.9 1.10 57.3 1.10 51.5 1.11
Youtube Network 183.8 1.11 161.5 1.11 144.4 1.12 134.9 1.12

Table 18: Number of read and write transfers of phased Dijkstra on different priority queue’s size. The overall
percentage of priority queue and vertex map varies from 30% to 60% comparing to the cache size, which is
10,000 cache-lines.

[ACM+11] Ameen Akel, Adrian M. Caulfield, Todor I. Mollov, Rajech K. Gupta, and Steven Swanson.
Onyx: A prototype phase change memory storage array. In Proc. USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage), 2011.

[Ada92] Stephen Adams. Implementing sets effciently in a functional language. Technical Report CSTR
92-10, University of Southampton, 1992.

[Ada93] Stephen Adams. Efficient sets—a balancing act. Journal of functional programming, 3(04):553–
561, 1993.

[AL63] M AdelsonVelskii and Evgenii Mikhailovich Landis. An algorithm for the organization of
information. Technical report, DTIC Document, 1963.

[ALT16] Mahdi Amani, Kevin A. Lai, and Robert E. Tarjan. Amortized rotation cost in AVL trees.
Information Processing Letters, 116(5):327–330, 2016.

33

[AS89] C.R. Aragon and R.G. Seidel. Randomized search trees. In Foundations of Computer Science,
pages 540–545, 1989.

[AV88] Alok Aggarwal and Jeffrey S. Vitter. The Input/Output complexity of sorting and related
problems. Communications of the ACM, 31(9), 1988.

[BAT06] Avraham Ben-Aroya and Sivan Toledo. Competitive analysis of flash-memory algorithms. In
Proc. European Symposium on Algorithms (ESA), 2006.

[Bay72] Rudolf Bayer. Symmetric binary B-trees: Data structure and maintenance algorithms. Acta
informatica, 1(4):290–306, 1972.

[BDBF+16] Naama Ben-David, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, Charles
McGuffey, and Julian Shun. Parallel algorithms for asymmetric read-write costs. In Proc. 28th
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2016.

[BDBF+18] Naama Ben-David, Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, Yan Gu, Charles
McGuffey, and Julian Shun. Implicit decomposition for write-efficient connectivity algorithms.
In Proc. IEEE International Parallel & Distributed Processing Symposium (IPDPS), 2018.

[BFG+15] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian Shun. Sorting with
asymmetric read and write costs. In Proc. 27th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), 2015.

[BFG+16] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian Shun. Efficient
algorithms with asymmetric read and write costs. In Proc. European Symposium on Algorithms
(ESA), pages 14:1–14:18, 2016.

[BFS16] Guy E Blelloch, Daniel Ferizovic, and Yihan Sun. Just join for parallel ordered sets. In
Proc. 28th ACM Symposium on Parallelism in Algorithms and Architectures, pages 253–264.
ACM, 2016.

[BGSS18] Guy E Blelloch, Yan Gu, Julian Shun, and Yihan Sun. Parallel write-efficient geometric
algorithms. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). ACM,
2018.

[BGST16] Guy E. Blelloch, Yan Gu, Yihan Sun, and Kanat Tangwongsan. Parallel shortest paths using
radius stepping. In Proc. 28th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), SPAA ’16, pages 443–454, 2016.

[CDG+16] Erin Carson, James Demmel, Laura Grigori, Nicholas Knight, Penporn Koanantakool, Oded
Schwartz, and Harsha Vardhan Simhadri. Write-avoiding algorithms. In Proc. IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), pages 648–658, 2016.

[CGN11] Shimin Chen, Phillip B. Gibbons, and Suman Nath. Rethinking database algorithms for phase
change memory. In Proc. Conference on Innovative Data Systems Research (CIDR), 2011.

[CL09] Sangyeun Cho and Hyunjin Lee. Flip-N-Write: A simple deterministic technique to improve
PRAM write performance, energy and endurance. In Proc. IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2009.

34

[CNF+09] Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee, Doug
Burger, and Derrick Coetzee. Better i/o through byte-addressable, persistent memory. In
Proc. ACM SIGOPS 22nd symposium on Operating systems principles, pages 133–146. ACM,
2009.

[Dij59] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik,
1(1), 1959.

[DJX09] Xiangyu Dong, Norman P. Jouupi, and Yuan Xie. PCRAMsim: System-level performance,
energy, and area modeling for phase-change RAM. In Proc. ACM International Conference on
Computer-Aided Design (ICCAD), 2009.

[DWS+08] Xiangyu Dong, Xiaoxia Wu, Guangyu Sun, Yuan Xie, Hai H. Li, and Yiran Chen. Circuit and
microarchitecture evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory
replacement. In Proc. ACM Design Automation Conference (DAC), 2008.

[EGMP14] David Eppstein, Michael T. Goodrich, Michael Mitzenmacher, and Pawel Pszona. Wear
minimization for cuckoo hashing: How not to throw a lot of eggs into one basket. In Proc. ACM
International Symposium on Experimental Algorithms (SEA), 2014.

[FT87] Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM, 34(3), 1987.

[GS78] Leo J Guibas and Robert Sedgewick. A dichromatic framework for balanced trees. 1978.

[GT05] Eran Gal and Sivan Toledo. Algorithms and data structures for flash memories. ACM Computing
Surveys, 37(2), 2005.

[HP15] HP, SanDisk partner on memristor, ReRAM technology. http://www.bit-tech.net/news/
hardware/2015/10/09/hp-sandisk-reram-memristor, October 2015.

[HZX+14] Jingtong Hu, Qingfeng Zhuge, Chun Jason Xue, Wei-Che Tseng, Shouzhen Gu, and Edwin Sha.
Scheduling to optimize cache utilization for non-volatile main memories. IEEE Transactions
on Computers, 63(8), 2014.

[IBM14] www.slideshare.net/IBMZRL/theseus-pss-nvmw2014, 2014.

[Int15] Intel and Micron produce breakthrough memory technology. http://newsroom.intel.com/
community/intel newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-
memory-technology, July 2015.

[JS17] Riko Jacob and Nodari Sitchinava. Lower bounds in the asymmetric external memory model.
In Proc. 29th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
247–254, 2017.

[KSDC14] Hyojun Kim, Sangeetha Seshadri, Clement L. Dickey, and Lawrence Chu. Evaluating phase
change memory for enterprise storage systems: A study of caching and tiering approaches. In
Proc. USENIX Conference on File and Storage Technologies (FAST), 2014.

35

[LIMB09a] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase change
memory as a scalable DRAM alternative. In Proc. ACM International Symposium on Computer
Architecture (ISCA), 2009.

[LIMB09b] Benjamin C Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase change
memory as a scalable dram alternative. In ACM SIGARCH Computer Architecture News,
volume 37, pages 2–13. ACM, 2009.

[LK14a] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
2014.

[LK14b] Jacob Leverich and Christos Kozyrakis. Reconciling high server utilization and sub-millisecond
quality-of-service. In Proc. Ninth European Conference on Computer Systems, page 4. ACM,
2014.

[LRR+03] Charles Lefurgy, Karthick Rajamani, Freeman Rawson, Wes Felter, Michael Kistler, and Tom W
Keller. Energy management for commercial servers. Computer, 36(12):39–48, 2003.

[MDS+15] Jasmina Malicevic, Subramanya Dulloor, Narayanan Sundaram, Nadathur Satish, Jeff Jackson,
and Willy Zwaenepoel. Exploiting nvm in large-scale graph analytics. In Proc. 3rd Workshop
on Interactions of NVM/FLASH with Operating Systems and Workloads, page 2. ACM, 2015.

[Mic] MARSSx86. http://marss86.org.

[MS03] Ulrich Meyer and Peter Sanders. ∆-stepping: a parallelizable shortest path algorithm. J.
Algorithms, 49(1), 2003.

[MSCT14] Jagan S. Meena, Simon M. Sze, Umesh Chand, and Tseung-Yuan Tseng. Overview of emerging
nonvolatile memory technologies. Nanoscale Research Letters, 9, 2014.

[MSG+12] Krishna T Malladi, Ian Shaeffer, Liji Gopalakrishnan, David Lo, Benjamin C Lee, and Mark
Horowitz. Rethinking dram power modes for energy proportionality. In Proc. 45th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 131–142. IEEE Computer
Society, 2012.

[NR73] Jürg Nievergelt and Edward M Reingold. Binary search trees of bounded balance. SIAM journal
on Computing, 2(1):33–43, 1973.

[PS09] Hyoungmin Park and Kyuseok Shim. FAST: Flash-aware external sorting for mobile database
systems. Journal of Systems and Software, 82(8), 2009.

[PTL] PTLsim. http://www.ptlsim.org.

[QGR11] Moinuddin K. Qureshi, Sudhanva Gurumurthi, and Bipin Rajendran. Phase Change Memory:
From Devices to Systems. Morgan & Claypool, 2011.

[QSR09] Moinuddin K Qureshi, Vijayalakshmi Srinivasan, and Jude A Rivers. Scalable high performance
main memory system using phase-change memory technology. ACM SIGARCH Computer
Architecture News, 37(3):24–33, 2009.

36

[SA96] Raimund Seidel and Cecilia R Aragon. Randomized search trees. Algorithmica, 16(4-5):464–
497, 1996.

[SFB18] Yihan Sun, Daniel Ferizovic, and Guy E Belloch. PAM: parallel augmented maps. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), pages
290–304, 2018.

[SK13] Daniel Sanchez and Christos Kozyrakis. Zsim: fast and accurate microarchitectural simulation
of thousand-core systems. In ACM SIGARCH Computer Architecture News, volume 41, pages
475–486. ACM, 2013.

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. Journal of
the ACM (JACM), 32(3):652–686, 1985.

[Tar83] Robert Endre Tarjan. Data Structures and Network Algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1983.

[Vig12] Stratis D. Viglas. Adapting the B+-tree for asymmetric I/O. In Proc. East European Conference
on Advances in Databases and Information Systems (ADBIS), 2012.

[Vig14] Stratis D. Viglas. Write-limited sorts and joins for persistent memory. Proc. VLDB Endowment,
7(5), 2014.

[WS98] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of “small-world” networks.
Nature, 393(6684):440–442, 1998.

[XDJX11] Cong Xu, Xiangyu Dong, Norman P. Jouppi, and Yuan Xie. Design implications of memristor-
based RRAM cross-point structures. In Proc. IEEE Design, Automation and Test in Europe
(DATE), 2011.

[YLK+07] Byung-Do Yang, Jae-Eun Lee, Jang-Su Kim, Junghyun Cho, Seung-Yun Lee, and Byoung-Gon
Yu. A low power phase-change random access memory using a data-comparison write scheme.
In Proc. IEEE International Symposium on Circuits and Systems (ISCAS), 2007.

[Yol13] Yole Developpement. Emerging non-volatile memory technologies, 2013.

[ZWT13] Omer Zilberberg, Shlomo Weiss, and Sivan Toledo. Phase-change memory: An architectural
perspective. ACM Computing Surveys, 45(3), 2013.

[ZZYZ09] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A durable and energy efficient main memory
using phase change memory technology. In Proc. ACM International Symposium on Computer
Architecture (ISCA), 2009.

37

	1 Introduction
	2 Related Work
	3 Our Model and Simulator
	3.1 The Cost Model for Asymmetric Memory
	3.2 Cache Policies
	3.3 The Cache Simulator

	4 Sets and Maps
	4.1 Unordered Sets and Maps
	4.1.1 The k-level Hash Table
	4.1.2 Experiments
	4.1.3 Conclusions

	4.2 Ordered Sets and Maps
	4.2.1 I/O cost on BSTs
	4.2.2 Join-based implementation
	4.2.3 Experiments
	4.2.4 Conclusions

	5 Sorting
	5.1 Algorithms and Implementations
	5.2 Experiments
	5.3 Conclusions

	6 Graph Traversal Algorithms
	6.1 Breadth-First Search
	6.1.1 The classic implementation
	6.1.2 BFS implementation using rotating arrays
	6.1.3 Bidirectional search
	6.1.4 Experiment
	6.1.5 Conclusions

	6.2 Dijkstra's Algorithm
	6.2.1 Classic implementation using a binary heap
	6.2.2 Phased Dijkstra
	6.2.3 Experiments
	6.2.4 Conclusions

