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Abstract
Many parallel algorithms use at least linear auxiliary space
in the size of the input to enable computations to be done
independently without conflicts. Unfortunately, this extra
space can be prohibitive for memory-limited machines,
preventing large inputs from being processed. Therefore,
it is desirable to design parallel in-place algorithms that use
sublinear (or even polylogarithmic) auxiliary space.

In this paper, we bridge the gap between theory and prac-
tice for parallel in-place (PIP) algorithms. We first define two
computational models based on fork-join parallelism, which
reflect modern parallel programming environments. We then
introduce a variety of new parallel in-place algorithms that
are simple and efficient, both in theory and in practice. Our al-
gorithmic highlight is the Decomposable Property introduced
in this paper, which enables existing non-in-place but highly-
optimized parallel algorithms to be converted into parallel
in-place algorithms. Using this property, we obtain algorithms
for random permutation, list contraction, tree contraction, and
merging that take linear work, O(n1−ε) auxiliary space, and
O(nε · polylog(n)) span for 0 < ε < 1. We also present new
parallel in-place algorithms for scan, filter, merge, connectiv-
ity, biconnectivity, and minimum spanning forest using other
techniques.

In addition to theoretical results, we present experimental
results for implementations of many of our parallel in-place
algorithms. We show that on a 72-core machine with two-
way hyper-threading, the parallel in-place algorithms usually
outperform existing parallel algorithms for the same problems
that use linear auxiliary space, indicating that the theory
developed in this paper indeed leads to practical benefits
in terms of both space usage and running time.

1 Introduction
Due to the rise of multicore machines with tens to hundreds
of cores and terabytes of memory, and the availability
of programming languages and tools that simplify shared-
memory parallel computing, many parallel algorithms have
been designed for large-scale data processing. Compared
∗This is the conference version of the paper appearing in the SIAM
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to distributed or external-memory solutions, one of the
biggest challenge for using multicores for large-scale data
processing is the limited memory capacity of a single machine.
Traditionally, parallel algorithm design has mostly focused
on solutions with low work (number of operations) and span
(depth or longest critical path) complexities. However, to
enable data to be processed in parallel without conflicts,
many existing parallel algorithms are not in-place, in that
they require Ω(n) auxiliary memory for an input of size n.
For example, in the shuffling step of distribution sort (sample
sort) or radix sort algorithms, even if we know the destination
of each element in the final sorted array, it is difficult to
directly move all of them to their final locations in parallel
in the same input array due to conflicts. As a result, parallel
algorithms for this task (e.g., [17, 19]) use an auxiliary array
of linear size to copy the elements into their correct final
locations.

While many parallel multicore algorithms are work-
efficient and have low span, the Ω(n) auxiliary memory
required by the algorithms can prevent larger inputs from
being processed. Purchasing or renting machines multicore
machines with larger memory capacities is an option, but for
large enough machines, the cost increases roughly linearly
with the memory capacity, as shown in Figure 1. Furthermore,
additional energy costs need to be paid for machines that
are owned, and the energy cost increases proportionally
with the memory capacity. Therefore, designing parallel
in-place (PIP) algorithms, which use auxiliary space that is
sublinear (or even polylogarithmic) in the input size, can lead
to considerable savings. In addition, in-place algorithms can
also reduce the number of cache misses and page faults due
to their lower memory footprint, which in turn can improve
overall performance, especially in parallel algorithms where
memory bandwidth and/or latency is a scalability bottleneck.

There has been recent work studying theoretically-
efficient and practical parallel in-place algorithms for sample
sort [3], radix sort [36], partition [33], and constructing
implicit search tree layouts [6]. These PIP algorithms achieve
better performance than previous algorithms in almost all
cases. While these algorithms are insightful and motivate
the PIP setting, they are algorithms designed for specific
problems and have different notions of what “in-place” means
in the parallel setting. In this paper, we generalize the ideas
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Figure 1: Purchase and rental prices for multicore servers as a function of memory size. The left figure shows the purchase price of an
RAX XT24-42S1 server with 72 CPU cores (Xeon Gold 5220) for different DRAM sizes. The right figure shows the rental price of AWS
EC2 x1e-series multicore instances vs. the DRAM capacity. In both cases, the DRAM capacity is the dominant part of the overall cost.

Model Problems Work-efficient

Strong PIP
Model

Permuting tree layout 3 [6]
Reduce, rotating 3

Scan (prefix sum) 3 *
Filter, partition, quicksort
Merging, mergesort
Set operations 3 [11]

Relaxed
PIP Model

Random permutation 3 *
List and tree contraction 3 *
Merging, mergesort 3 *
Filter, partition, quicksort 3

(Bi)Connectivity *
Minimum spanning forest *

Table 1: Algorithms based on the strong PIP model and the relaxed
PIP model. “Work-efficient” indicates that the PIP algorithm has the
same asymptotic work (number of operations) as the best sequential
algorithm with no restriction on auxiliary space. Algorithms marked
with * are our main contributions, while other algorithms are either
known or require slight changes to existing algorithms. Merging and
mergesort in the relaxed PIP model has been presented in [27], but
our new algorithm in this paper is much simpler. If a problem has a
work-efficient solution in the strong PIP model, then it will not be
listed again in the relaxed PIP model.

in previous work into two models, which we refer to as the
strong PIP model and the relaxed PIP model. At a high
level, the relaxed PIP model provides similar properties to
the classic in-place PRAM model, and the strong PIP model
puts further restrictions on memory allocation that allows PIP
algorithms to simultaneously achieve small auxiliary space
and low span. We provide more details on these models in
Section 3.

The main contribution of this paper is a collection of new
PIP algorithms in the two models, which include algorithms
for solving scan, merge, filter, partition, sorting, random
permutation, list contraction, tree contraction, and several
graph problems (connectivity, biconnectivity, and minimum
spanning forest). The results are summarized in Table 1,
and discussed in more detail in Sections 4–6. Some of
the algorithms are known, and we summarize them in this
paper. The rest are new to the best of our knowledge, and we
distinguish them by presenting our results in theorems and
corollaries.

The algorithmic highlight in this paper is the Decompos-
able Property defined in Section 4. The high-level idea is to
iteratively reduce a problem to a subproblem of sufficiently
smaller size, where the the reduction can be performed using
a non-in-place algorithm for the same problem. If we can
perform the reduction efficiently, then this leads to an efficient
algorithm in the relaxed PIP model. This means that we can
convert any existing non-in-place but highly-optimized par-
allel algorithm to an efficient PIP algorithm. We show many
examples of this approach in this paper, including algorithms
for random permutation, list contraction, tree contraction,
merging, and mergesort. We have also designed other PIP al-
gorithms without using the Decomposable Property, including
algorithms for scan, filter, and various graph problems.

We implement five of our in-place algorithms, and
compare them to the optimized non-in-place implementations
in the Problem Based Benchmark Suite (PBBS) [43]. The
running time comparisons for certain input sizes are shown
in Figure 2 and we provide more details in Section 7. We
show that in addition to lower space usage, our in-place
algorithms can have competitive or even better performance
compared to their non-in-place counterparts due to their
smaller memory footprint, indicating that the theory for
PIP algorithms developed in this paper can lead to practical
outcomes. Our implementations are publicly-available at
https://github.com/ucrparlay/PIP-algorithms.

2 Preliminaries
Work-Span Model. In this paper, we use the classic work-
span model for fork-join parallelism with binary forking for
analyzing parallel algorithms [16, 23]. Unlike machine-based
cost models such as the PRAM model [29], this model is
a language-based model, and we will justify the use of this
model in Section 3. In this model, we assume that we have
a set of threads that have access to a shared memory. Each
thread supports the same operations as in the sequential RAM
model, but also has a fork instruction that forks two new
child threads. When a thread performs a fork, the two
child threads all start by running the next instruction, and the
original thread is suspended until all of its children terminate.
A computation starts with a single root thread and finishes

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

https://github.com/ucrparlay/PIP-algorithms


R
u

n
n

in
g 

ti
m

e 
(m

s)

0

100

200

300

400

500

600

700

Scan Filter RandPerm List
Contraction

Tree
Contraction

PBBS PIP algorithms

Figure 2: Running times for our new PIP algorithms compared to
the non-in-place implementations from PBBS [43]. For scan and
filter, the input size is 109, and for the other algorithms, the input
size is 108. The running times are obtained on a 72-core machine
with two-way hyper-threading, and more details are presented in
Section 7. In all cases, the new PIP algorithms have competitive
or better performance, with the additional advantage of using less
auxiliary space.

when that root thread finishes. The work of an algorithm
is the total number of instructions and the span (depth) is
the length of the longest sequence of dependent instructions
in the computation. A thread can allocate a fixed size of
memory that is either shared by all threads (referred to as
“heap-allocated” memory), or private to this thread and other
threads that it forks (referred to as “stack-allocated” memory).
The latter case requires freeing the memory allocated after
a fork and before the corresponding join. A randomized
work-stealing scheduler, which is widely used in real-world
parallel languages such as Cilk, TBB, and X10, can execute
an algorithm with work W and span D in W/P +O(D) time
whp1 on P processors [2, 20].

In this paper, we also analyze the auxiliary space used,
and we measure space in units of words.
Work-Efficient and Low-Span Parallel Algorithms. The
goal of designing a parallel algorithm is to achieve work-
efficiency and low span. Work-efficiency means that the
algorithm asymptotically uses no more work than the best
(sequential) algorithm for the problem. Low span means that
the longest sequence of dependent operations has polylog-
arithmic length. Achieving low span can lead to practical
benefits. For instance, the number of steals in a work-stealing
scheduler can be bounded by O(PD), which is proportional
to the number of extra cache misses due to parallelism [1, 17].
Low span also leads to fewer rounds of global synchroniza-
tion, which can lead to significant performance improvements
on modern architectures.
The “busy-leaves” property. When using the Cilk work-
stealing scheduler, a fork-join program that uses S1 words
of space in a stack-allocated fashion when run on one
processor will use O(PS1) words of space when run on P

1We say O(f(n)) with high probability (whp) to indicate O(cf(n))
with probability at least 1− n−c for c ≥ 1, where n is the input size.

processors [20]. This is a consequence of the “busy-leaves”
property of the work-stealing scheduler.
Problem definitions. Here we define the problems that are
used in multiple places in this paper. Other problems are
defined in their respective sections. Consider a sequence
[a1, a2, . . . , an], an associative binary operator ⊕, and an
identity element i. Reduce returns a1 ⊕ a2 ⊕ . . . ⊕ an.
Scan (short for an exclusive scan) returns [i, a1, (a1 ⊕
a2), . . . , (a1⊕a2⊕ . . .⊕an−1)], in addition to the sum of all
elements. An inclusive scan returns [a1, (a1⊕a2), . . . , (a1⊕
a2 ⊕ . . . ⊕ an)]. Filter takes an array A and a predicate
function f , and returns a new array containing a ∈ A for
which f(a) is true. Partition is similar to filter, but in addition
to placing the elements a where f(a) is true at the beginning
of the array, elements a for which f(a) is false are placed at
the end of the array. We say that a filter or partition is stable
if the elements in the output are in the same order as they
appear in A.

3 Models for Parallel In-Place Algorithms
In the past, PIP algorithms have been designed based the
in-place PRAM model [25, 26, 28, 34, 37, 46]. However,
this model and the PRAM model itself have some limitations,
which we describe in Section 3.3. Hence, recent work on PIP
algorithms [3, 6, 33, 36] incorporate the PIP setting in the
newer work-span model, although they use different notions
of “in-place” for the algorithms. In this paper, we generalize
the ideas into two models, which we refer to as the strong PIP
model and the relaxed PIP model. At a high level, the relaxed
PIP model provides similar properties as the in-place PRAM
model, and the strong PIP model puts further restrictions on
memory allocation that enables PIP algorithms to achieve
small auxiliary space and low span simultaneously. Based on
our model definitions, algorithms in [6, 33] can be mapped
to the strong PIP model, and algorithms in [3, 36] can be
mapped to the relaxed PIP model. In this section, we will first
define these two models, and then discuss their relationship
to existing PIP models.

3.1 The Strong PIP Model
We start by defining the strong PIP model based on the

work-span model for fork-join parallelism.

DEFINITION 1. (STRONG PIP MODEL AND ALGORITHMS)
The strong PIP model assumes a fork-join computation only
using O(log n)-word auxiliary space in a stack-allocated
fashion for an input size of n when run sequentially (with no
auxiliary heap-allocated space). We say that an algorithm
is strong PIP if it runs in the strong PIP model and has
polylogarithmic span.

For a PIP algorithm in the strong PIP model, the
Cilk work-stealing scheduler can bound the total auxiliary
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space to be O(P log n) words, where P is the number of
processors [20]. All strong PIP algorithms presented in this
paper, as well as existing ones [6, 33], only use O(log n)-
word stack-allocated auxiliary space sequentially. We say a
strong PIP algorithm is optimal if its work and span bounds
match the best non-in-place counterpart.

3.2 The Relaxed PIP Model
Many existing PIP algorithms [3, 25, 26, 28, 34, 36, 37,

46] exhibit a tradeoff between additional space S and span D,
such that S ·D = Θ̃(n).2 We capture these algorithms in our
relaxed PIP model, and refer to these algorithms as relaxed
PIP algorithms.

DEFINITION 2. (RELAXED PIP MODEL AND ALGORITHMS)
The relaxed PIP model assumes a fork-join computation
using O(log n)-word stack-allocated space sequentially and
O(n1−ε) shared (heap-allocated) auxiliary space for an
input of size n and some constant 0 < ε < 1. We say that an
algorithm is relaxed PIP if it runs in the relaxed PIP model
and has O(nε · polylog(n)) span for all values of ε.

The Cilk work-stealing scheduler can bound the total
auxiliary space of relaxed PIP algorithms to be O(n1−ε +
P log n) on P processors. For brevity, we refer to the
auxiliary space in future references to the relaxed PIP model
as just the heap-allocated space. Algorithms in the relaxed PIP
model allow sublinear auxiliary space, which is less restrictive
than in the strong PIP model. This provides more flexibility
in algorithm design, while still being useful in practice as
relaxed PIP algorithms still use less space than their non-in-
place counterparts. In the next section, we introduce a general
property, which allows any existing parallel algorithm with
polylogarithmic span that satisfies the property to be easily
converted into a relaxed PIP algorithm.

3.3 Relationship to Previous Models
PIP algorithms have been analyzed in the in-place PRAM

model for decades. Recent work [3, 6, 33, 36] has designed
in-place algorithms into the work-span model, but they only
provide algorithms for specific problems rather than focusing
on the general parallel in-place setting. In this paper, we
formally define the parallel in-place models, and justify the
models by discussing the limitations of the previous in-place
PRAM, and how our new models overcome it.
The in-place PRAM. Most existing parallel in-place algo-
rithms have been designed in the in-place PRAM [25, 26,
28, 34, 37, 46]. The PRAM has P processors that are fully
synchronized between steps, and the running time of an al-
gorithm is the maximum number of steps T used by any
processor. In this model, the auxiliary space S is the sum
of the total space used across all processors. As pointed out
by Berney et al. [6], each processor on a PRAM requires

2We use Õ(f(n)) to hide polylogarithmic factors.

Ω(1) (usually Ω(log n)) auxiliary space to do anything useful
(e.g., storing the program counter and using registers). This
indicates that if the total auxiliary space S for all processors
is bounded to be small, then the parallelism is also bounded
by O(S). This is because even if we have an infinite number
of processors, no more than S of them can do useful work
simultaneously. The overall PRAM time is Ω(W/S), where
W is the overall work in the algorithm. Hence, in the PRAM
setting, an algorithm can only achieve high parallelism when
S is asymptotically close to W . This has been described by
Langston et al. [26, 28, 34, 46] as the time-space tradeoff in
the PRAM—if the input size is n, then the product of auxil-
iary space S and PRAM time T is Ω̃(n), and an algorithm
is optimal on a PRAM when S · T = Θ̃(n). This limitation
arises because the analysis of parallelism and auxiliary space
are intertwined in the in-place PRAM.
Decoupling the analysis between parallelism and auxil-
iary space. Parallel algorithms with low span have many
practical benefits even for small processor counts, due to
lower scheduling overhead and improved cache locality, as
discussed in Section 2. However, low span cannot be achieved
in the in-place PRAM unless we use nearly linear auxiliary
space. Our goal is to decouple the analysis of parallelism from
the restriction of auxiliary space. In both the strong PIP and
relaxed PIP models, the auxiliary space in measured in the
sequential setting, whereas the span is analyzed based on the
fork-join computation graph. This decouples the space anal-
ysis from the span analysis. Furthermore, in the strong PIP
model, low span and small auxiliary space can be achieved
simultaneously.

To achieve the decoupling, we use the separation of
the private “stack-allocated” memory from the shared “heap-
allocated” memory in work-span model. The heap-allocated
memory is what we usually refer to as the shared memory,
and is independent of the number of processors. The stack-
allocated memory is per processor, and the “busy-leaves”
property guarantees that the overall space usage of a program
is O(PS1) when it is run on P processors, where S1 is
the amount of stack-allocated memory when running the
algorithm sequentially. Since P is usually modest in practice,
if the stack-allocated memory is small (e.g., O(log n)), then
the auxiliary space sizeO(PS1) will be negligible on modern
machines. As a result, the abstraction of the stack-allocated
memory separates the per-processor need from the shared
resource, and overcomes the limitation of the in-place PRAM
by dynamically mapping the algorithm on a machine with P
processors, with the auxiliary space guarantee.

In addition to the advantages discussed above, the work-
span model simplifies parallel algorithm design and analysis,
and algorithm designers do not need to worry about low-
level details related to hardware such as memory allocation,
caching, and load balancing. Recent papers [6, 33, 36] have
made a similar observation on the limitation of the in-place

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited



PRAM model, and analyzed the in-place algorithms using
the work-span model. In this paper, we explicitly formalize
this discussion and define the two PIP models based on the
work-span model.
Other practical considerations. Here we describe addi-
tional benefits to use the new PIP models based on the work-
span model. Modern parallel programming languages, such
as Cilk, OpenMP, TBB, and X10, directly support algorithms
designed for the work-span model using fork-join parallelism,
with efficient runtime schedulers. In contrast to the PRAM,
in which computations have many synchronization points,
computations in the work-span model can be highly asyn-
chronous. This is a practical advantage due to the high syn-
chronization overheads on modern hardware [16]. Further-
more, the PIP algorithms in this paper based on our new
models have additional guarantees with respect to multipro-
grammed environments [2], cache complexity [1, 15, 17],
write-efficiency [4, 12, 13], and resource-obliviousness [22].

4 Decomposable Property
Designing strong PIP algorithms is generally challenging (we
present several in Section 5, but if we relax the auxiliary
space to sublinear (the relaxed PIP model), then we believe
that PIP algorithms can be designed for many more problems.
In this section, we introduce the Decomposable Property,
which enables any existing parallel algorithm that satisfies
the property to be converted into a relaxed PIP algorithm.
If the existing parallel algorithm is work-efficient, then the
corresponding relaxed PIP algorithm will also be work-
efficient.

THEOREM 4.1. (DECOMPOSABLE PROPERTY) Consider a
problem with input size n and a parallel algorithm to solve
it with work W (n) = O(n · polylog(n)). Let r = W (n)/n.
If the problem can be reduced to a subproblem of size
n − n1−ε/r using n1−ε work and space for some 0 <
ε < 1, and polylogarithmic span D(n), then there is a
relaxed PIP algorithm for this problem with W (n) work,
O(nε · polylog(n)) span, and O(n1−ε) auxiliary space.

Proof. We iteratively reduce the problem size by n1−ε/r (this
size remains the same throughout the algorithm), and each
round takes O(n1−ε) work and space. Since r = polylog(n),
this means n1−ε is asymptotically larger than r, and we can
reduce the problem size by at least one on each round. By
applying this reduction for rnε rounds, we have a relaxed
PIP algorithm with W (n) work and D(n) · rnε = O(nε ·
polylog(n)) span, using O(n1−ε) auxiliary space.

The high-level idea of the Decomposable Property is
that, for a problem of size n, if we can reduce the problem
size to n − n′ using work proportional to n′, then we can
control the additional space by varying the size of n′ to fit
in the auxiliary space. This provides theoretically-efficient

relaxed PIP algorithms for parallel algorithms that satisfy
this property. On the practical side, we observe that this
reduction step usually corresponds to solving a subproblem
that is the same as the original problem but with a smaller size.
Hence, we can use the best existing non-in-place algorithms
for this step. We show in Section 7 that the performance of
our relaxed PIP algorithms using this approach is competitive
or faster than their non-in-place counterparts. In the rest of
this section, we introduce some algorithms that satisfy the
Decomposable Property.

4.1 Random Permutation
Generating random permutations in parallel is a useful

subroutine in many parallel algorithms. Many parallel
algorithms (e.g., randomized incremental algorithms) require
randomly permuting the input elements to achieve strong
theoretical guarantees. The sequential Knuth [24, 32] shuffle
algorithm, shown below, has linear work, where H[i] is an
integer uniformly drawn from [1, . . . , i], and A is the array to
be permuted.

1 Function KNUTH-SHUFFLE(A, H)
2 for i← n to 1 do A[i]← i
3 for i← n to 1 do swap(A[i], A[H[i]])

Recent work [44] has shown that this sequential iterative
algorithm is readily parallel. The pseudocode of this parallel
algorithm is shown in Algorithm 1, and is both theoretically
and practically efficient. The key idea is to allow multiple
swaps to be performed in parallel as long as the sets of
source and destination locations of the swaps are disjoint.
We illustrate the dependence structure on an example in
Figure 3. Given an input array H , in Figure 3(a) we create a
node for each index, and an edge from the node to the node
corresponding to its swap destination. In this example, we can
swap locations 6 and 3, 8 and 2, and 7 and 4 simultaneously
in the first step since these three swaps do not interfere with
each other. To resolve the case where multiple nodes point
to the same swap destination, we chain these nodes together,
as shown in Figure 3(b). We also remove self-loops. In
Algorithm 1, each unfinished swap writes to an auxiliary array
R using a max() to reserve both its source and destination
locations (Lines 4–6). We assume that max() takes O(1)
work, and in practice, it can be implemented using a compare-
and-swap loop [42]. We then perform the actual swaps in
parallel for the swaps that successfully reserve both of its
locations (Line 8). The rest of the swaps will be packed
and will try again in the next step. Shun et al. show that
Algorithm 1 finishes in O(log n) rounds whp [44]. The
work and span can be shown to be O(n) in expectation and
O(log n) whp, respectively [16, 44].

We now show that the random permutation algorithm
above satisfies the Decomposable Property. The property for
the sequential Knuth shuffle is easy to see—after applying
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Algorithm 1: PARALLEL KNUTH-SHUFFLE(A,H) [44]
1 R← {−1, . . . ,−1}
2 parallel for i← n to 1 do A[i]← i
3 while swaps unfinished do
4 parallel foreach unfinished swap (s,H[s]) do
5 R[s]← max(R[s], s)
6 R[H[s]]← max(R[H[s]], s)

7 parallel foreach unfinished swap (s,H[s]) do
8 if R[s] = s and R[H[s]] = s then

swap(A[H[s]], A[s])

9 Reset R and pack the leftover swaps (without
modifying the swaps)

10 return A
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(a) The swaps (b) The dependences

Figure 3: An example for H = [1, 1, 2, 4, 2, 3, 4, 2]. (a) indicates
the destinations of the swaps according to H . The dependences of
the swaps are shown in (b), indicating the order of the swaps.

the first n1−ε swaps, which we refer to as one round, the
problem reduces to a subproblem of size n − n1−ε, which
can be solved using the same algorithm. We note that for any
n1−ε swaps, up to 3n1−ε locations will be accessed in the R
and H arrays (H[s], R[s], and R[H[s]] for each swap source
s). We can use a parallel hash table to store these values using
O(n1−ε) space. When the load factor of the hash table is no
more than one-half, then each update or query requires O(1)
expected work andO(log n) work whp [31, 41]. To guarantee
that our algorithm has the same bounds as proved in [16, 44],
we always work on the first n1−ε unfinished swaps based on
the sequential order. The longest dependence length among
the first n1−ε swaps in a phase is bounded by O(log n) whp
since it cannot be longer than the overall dependence length
for all n swaps, which is bounded by O(log n) whp. The
overall span in a phase is O(log2 n), where the additional
factor of log n due to hash table insertions and queries. The
entire algorithm finishes after nε rounds and is work-efficient.
By applying Theorem 4.1, we obtain the following theorem.

THEOREM 4.2. There is a relaxed PIP algorithm for random
permutation using O(n) expected work, O(nε log2 n) span
whp, and O(n1−ε) auxiliary space for 0 < ε < 1.

Constant-dimension linear programming and smallest
enclosing disks. Based on the relaxed PIP algorithm for
random permutation, it is straightforward to design relaxed
PIP algorithms for constant-dimension linear programming

Algorithm 2: PARALLEL LIST-CONTRACTION(L) [44]
Input: A doubly-linked list L of size n. Each element li

has a random priority p(li).
1 R← {0, . . . , 0}
2 while elements remaining do
3 parallel foreach uncontracted element li do
4 if p(li) < p(prev(li)) and p(li) < p(next(li))

then
5 R[i]← 1

6 parallel foreach uncontracted element li do
7 if R[i] = 1 then
8 Splice out element li and update pointers
9 Pack the leftover (uncontracted) elements

10 return A

and smallest enclosing disks using randomized incremental
construction [18, 40]. The randomized algorithms after
randomly permuting the input elements takeO(d!n) expected
work and O(d log n) span and auxiliary space whp, where d
is the dimension [18], by using the in-place reduce algorithm
that will be discussed in Section 5. By using the relaxed
PIP random permutation algorithm, we can obtain parallel in-
place algorithms for constant-dimension linear programming
and smallest enclosing disks in O(d!n) expected work and
O(nε log2 n + d log n) span whp, using O(n1−ε + d log n)
auxiliary space.

4.2 List Contraction and Tree Contraction
List ranking [29, 30, 38] is one of the most important

problems in the study of parallel algorithms. The problem
takes as input a set of linked lists, and returns for each element
its position in its list. List contraction is used to contract a
linked list into a single node, and is used as a subroutine in
list ranking.

We now discuss the Decomposable Property of list con-
traction. The order of contracting elements does not matter
as long as all elements are eventually contracted. Therefore,
similar to random permutation, we can process n1−ε elements
in a round, and apply existing parallel list contraction algo-
rithms [29, 30] to contract these n1−ε elements. To show an
example, we discuss Shun et al.’s non-in-place list contraction
algorithm [44] and how to turn it into a relaxed PIP algorithm.
This is also the algorithm that we implemented in this paper.

The pseudocode and the high-level idea of this algorithm
is given in Algorithm 2. A careful implementation of
this algorithm takes worst-case linear work and O(log n)
span whp [16, 44]. This algorithm assigns a random priority
to each list element (Figure 4(a)), contracts all elements
that have priority lower than both of its neighbors’ priorities
(Figure 4(b)), packs the leftover elements, and iterates until
the list is empty. The number of rounds of this algorithm is
the length of the longest dependence among the nodes, which
is O(log n) whp [44]. Figure 4(d) shows the dependences
in the example (a node depends on all of its descendants in
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Figure 4: A list contraction example for Algorithm 2 with the priorities shown in the boxes. (a) shows the original input, with an extra∞
element at each end of the list. The first round of the algorithm contracts the nodes with priorities 1, 2, 3, and 4, as shown in (b). After all
nodes are contracted, a tree structure is formed, as shown in (c). The dependences of the algorithm are shown in (d), where a node depends
on all of its descendants in the tree. For instance, the contraction of the node with priority 6 needs to be done after the contraction of the
nodes with priorities 2 and 3.

the tree shown)—here the algorithm finishes in 4 rounds (the
height of the tree).

As discussed, the order of the contraction does not
matter. Hence, for a problem of size n, we can work on
n1−ε elements and contract them using this algorithm, which
requiresO(n1−ε) work,O(log n) span whp (no more than the
span for n elements), and O(n1−ε) space. Then the problem
reduces to a subproblem of size n− n1−ε. We can iteratively
apply this for nε rounds, which yields a relaxed PIP algorithm
for list contraction.

After the n elements are spliced out, list contraction
algorithm generates a tree, and the tree for the example
in Figure 4(a) is shown in Figure 4(c). The remaining
work in list ranking after list contraction is referred to as
“reconstruction” [29], which distributes the values down the
tree. Therefore, once we obtain this tree structure, the classic
algorithms [29, 39] for reconstruction take worst-case linear
work and O(log n) span whp. Representing the tree only
requires n pointers, which fit into the 2n pointers in the
input linked list if we are allowed to overwrite the input.
For our new relaxed PIP algorithm, we can store the n1−ε

tree pointers in each round by overwriting the 2n1−ε pointers
of the elements being processed in the current round. After
we recursively solve the smaller subproblem, we can use
the classic reconstruction algorithm for the n1−ε elements
in the current round, which takes worst-case linear work
and logarithmic span whp. In total, the reconstruction step
has the same work, span, and auxiliary space bounds as list
contraction.

Tree contraction is a generalization of list contraction
and has many applications in parallel tree and graph algo-
rithms [29, 35, 38, 44]. Here we will assume that we are
contracting rooted binary trees in which every internal node
has exactly two children. As in list contraction, the ordering
of contracted tree nodes does not matter as long as a parent-
child pair is not contracted in the same round. For a problem
of size n, we can work on n1−ε tree nodes each round and
contract them using existing tree contraction algorithms, and
repeat for nε rounds. Therefore, the Decomposable Property
is satisfied for tree contraction. We can convert the paral-

lel tree contraction algorithm of Shun et al. [16, 44] that is
not in-place, but theoretically and practically efficient, to a
relaxed PIP algorithm that requires O(n1−ε) expected work
and O(log n) span whp per round, and O(n1−ε) space.

We obtain the following theorem for list contraction and
tree contraction.

THEOREM 4.3. There are relaxed PIP algorithms for list
contraction and tree contraction that take O(n) work,
O(nε log n) span whp, and O(n1−ε) auxiliary space for
0 < ε < 1.

4.3 Merging and Mergesort
Merging two sorted arrays of size n and m (stored

consecutively in an array of size n+m) is another canonical
primitive in parallel algorithm design. We assume without
loss of generality that n ≥ m. Parallel in-place merging
algorithms have been studied for the PRAM model [25], using
O(n log n) work, O(nε log n) span, and O(n1−ε) auxiliary
space when mapped to the relaxed PIP model. However, this
algorithm is quite complicated and unlikely to be practical.
By using the Decomposable Property, we can design a much
simpler algorithm based on any existing textbook parallel non-
in-place merging algorithm, combined with some features of
the sequential in-place merging algorithm [27]. The key idea
in [27] for in-place merging is to split both input arrays into
chunks of size k, and sort the chunks based on the last element
of each chunk. Then, the algorithm merges the first remaining
chunk from each of the two input arrays, and when one chunk
is used up, the algorithm replaces it with the next chunk in
the corresponding array.

To obtain a relaxed PIP algorithm, we set the chunk
size to k = n1−ε, so that we can process two chunks using
O(n1−ε) auxiliary space. With this space bound, we can
use a non-in-place merging algorithm to output the smallest
k = n1−ε elements and repeat for O(nε) rounds.

The first step of our algorithm is the same as [27], which
sorts the chunks based on only their last elements, and moves
each chunk to their final destination in parallel by using the
O(n1−ε) auxiliary space as a buffer. Sorting all of the chunks
takesO(nε log n) span. Then, in the merging phase, we move
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the first chunk from each array to the auxiliary space, use any
existing parallel merging algorithm to merge them, until we
either run out of the elements in one chunk, at which point
we load the next chunk of the corresponding array to the
auxiliary space, or until we gather a full chunk of merged
elements, at which point we flush it back to the original array
and empty the buffer. At any time, there can be at most
three chunks in the auxiliary space—two chunks from the
input arrays and one chunk for the merged output, and so
the required auxiliary space is O(n1−ε). We can use any
existing non-in-place parallel algorithm [10, 29] to perform
the merge in the auxiliary space, which takes linear work and
logarithmic span. Such calls to merge in the algorithm can
happen at most 2(n+m)/k times—(n+m)/k times after
loading new chunks to the auxiliary space and (n + m)/k
times after the output chunk is full and is flushed. Each merge
takes work linear in the output size, andO(log k) = O(log n)
span. The overall work is therefore O(n), and the span is
O((n/k) log n) = O(nε log n). This gives the following
theorem.

THEOREM 4.4. Merging two sorted arrays of size n and m
(where n ≥ m) stored consecutively in memory takes O(n)
work, O(nε log n) span, and O(n1−ε) auxiliary space for
0 < ε < 1.

When ε > 1/2, the auxiliary space O(n1−ε) is insuffi-
cient for sorting all O(nε) chunks at the beginning, and so
we sort O(n1−ε) chunks at a time until all chunks have been
processed. As done in [27], we use dual binary search to
find the smallest O(n1−ε) chunks to merge, and repeat our
above algorithm for O(nε) rounds. This will not affect the
cost bounds.

With the relaxed PIP merging algorithm, we can obtain
a relaxed PIP mergesort algorithm with O(n log n) work,
O(n1−ε) auxiliary space, and O(nε log2 n) span.

4.4 Filter, Unstable Partition, and Quicksort
It is easy to see that we can work on a prefix of the filter

problem of size n1−ε using linear work and logarithmic span,
and repeat for nε rounds. The only additional work is to
move the unfiltered elements to the beginning of the array,
which can be done in linear work and O(log n) span for each
prefix. This gives a relaxed PIP algorithm for filter that takes
O(n) work, O(nε log n) span, and O(n1−ε) auxiliary space.
We can implement partition similarly, and when moving the
unfiltered elements to the beginning, we swap the elements
so that at the end of the algorithm, the filtered elements are
moved to the end of the array. This algorithm has the same
cost as filter, although the partition result is not stable. With
the relaxed PIP partition algorithm, we can obtain a relaxed
PIP algorithm for (unstable) quicksort that takes O(n log n)
expected work and O(nε log2 n) span whp, and O(n1−ε)
auxiliary space.

5 Strong PIP Algorithms
The strong PIP model is restrictive because of the polyloga-
rithmic auxiliary space requirement. To date, only a few non-
trivial and work-efficient strong PIP algorithms have been
proposed: reducing and rotating an array, which are trivial,
certain fixed permutations [6], and two-way partitioning [33].
In this section, we review existing strong PIP algorithms for
reduce and rotation, and present new algorithms for scan
(prefix sum), filter, merging, and sorting.

5.1 Existing Algorithms
Reduce. The classic divide-and-conquer algorithm for reduce
is already strong PIP. It is implemented by dividing the input
array by two equal sized subarrays, recursively solving the
two subproblems in parallel, and finally summing together
the partial sums from the two subproblems. This algorithm
requires O(log n) sequential stack space, O(n) work and
O(log n) span, and so it is an optimal strong PIP algorithm.
Rotating an array. Given an array [a1, a2, ..., an] and an off-
set o, the output is a rotated array [ao+1, . . . , an, a1, . . . , ao].
This can be implemented by first reversing [a1, . . . , ao], then
reversing [ao+1, . . . , an], and finally reversing the entire array.
Reversing can be implemented with a parallel loop, which re-
quiresO(log n) stack space when run serially. This algorithm
requires O(n) work and O(log n) span, and is therefore an
optimal strong PIP algorithm.

5.2 Scan
Scan (prefix sum) is probably the most fundamental

algorithmic primitive in parallel algorithm design. Here we
assume ⊕ is + (addition) for simplicity, but the results in this
section also apply to other associative binary operators. Non-
in-place implementations of scan have been designed since
the last century, and the work-efficient version is generally
referred to as the Blelloch scan [8]. The Blelloch scan
contains two phases. The first phase is referred to as the “up-
sweep”, which partitions the array into two halves, computes
the sum recursively for each half, then uses the prefix sums
for each half to calculate the prefix sums for the entire
sequence, and finally stores this result in auxiliary space.
Then the algorithm applies a “down-sweep” phase, which
propagates the sums from the first phase down to each element
recursively—for a subproblem with a prefix sum of p (p = 0
for the subproblem corresponding to the whole sequence),
we recursively solve the left half with prefix sum p, and the
right half with prefix sum p plus the sum of the left half, in
parallel. This algorithm takes O(n) work and O(log n) span,
but unfortunately, it requires linear auxiliary space to store all
of the partial sums.
Making existing approaches in-place. We first discuss a
solution to make the Blelloch scan in-place. We partition
the array into two equal-sized halves, recursively solve each

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited



Algorithm 3: IN-PLACE-SCAN

Input: An array A1...n of size n, assuming A0 = 0.
Output: The exclusive prefix-sum array of A, and sum σ.

1 UP-SWEEP(A, 1, n)
2 σ ← An

3 DOWN-SWEEP(A, 1, n, 0)
4 return (A, σ)

5 Function UP-SWEEP(A, s, t)
6 if s = t then return;
7 In parallel:
8 UP-SWEEP(A, s, b(s+ t)/2c)
9 UP-SWEEP(A, b(s+ t)/2c+ 1, t)

10 At ← At +Ab(s+t)/2c

11 Function DOWN-SWEEP(A, s, t, p)
12 if s = t then As ← p, return;
13 LeftSum = Ab(s+t)/2c
14 In parallel:
15 DOWN-SWEEP(A, s, b(s+ t)/2c, p)
16 DOWN-

SWEEP(A, b(s+ t)/2c+ 1, t, p+ LeftSum)

half, and apply a parallel for-loop to add the sum of the left
half to every element in the right half. Directly applying
this algorithm leads to O(n log n) work, since the recursion
tree has log2 n levels, and on each level we need to perform
O(n) additions, which takes O(n) work and O(log n) span.
We can reduce the work overhead by stopping the recursion
when we reach a subproblem of size no more than log2 n
(these subproblems constitute the base cases), and apply a
sequential in-place scan for these subproblems, and store the
partial sums in the last elements of the subproblem arrays.
We then run scan on the sums of the m = O(n/ log n) base
cases using the aforementioned algorithm. This scan takes
O(m logm) = O(n) work and computes the prefix sum
before the beginning of each base case. Lastly, we add this
prefix sum to the elements in each base case subproblem to
obtain the final result for scan. This algorithm uses O(n)
work, O(log2 n) span, and O(log(n/ log n)) = O(log n)
auxiliary space, which is the recursion depth.

Another approach is to use the Brent-Kung adder [21],
which is a circuit to solve the scan problem with O(log n)
span, O(n) gates, and O(n log n) area. We can change the
circuit to an algorithm that contains O(log n) parallel for-
loops and each for-loop simulates the gates at one level.
The work of this algorithm is linear, which is the same as
the number of gates, and the span is O(log2 n)—O(log n)
parallel for-loops each taking O(log n) span for forking the
tasks. The output of the original circuit is an inclusive scan
(i.e., the output is [a1, . . . , (a1 ⊕ a2 ⊕ . . . ⊕ an)]). The
circuit can be modified to compute the exclusive scan in
the same bounds. In conclusion, we can make the the existing
approaches in-place, but their span would not be optimal.

A new optimal strong PIP algorithm. Our new strong PIP
algorithm is almost as simple as the non-in-place Blelloch
scan, and has the same work and span bounds. The new
algorithm as shown in Algorithm 3, and illustrated in Figure 5.
In the pseudocode, we assume A0 = 0 when it is referenced,
but the algorithm does not actually need to store this. The new
strong PIP algorithm also contains two phases: the up-sweep
and the down-sweep phases, both of which are recursive. The
key insight in our new algorithm is to maintain all of the
intermediate results in the input array of n elements, and
use stack space in the down-sweep phase to pass down the
partial sums. For each recursive subproblem corresponding
to a subarray from index s to t, we partition it into two halves,
s to k and k+ 1 to t, where k = b(s+ t)/2c. In the up-sweep
phase, we first recursively solve the two subproblems, and
then add the value at index k to the value at index t. These
additions are shown as arrows on the left side of Figure 5.
In the down-sweep phase, we keep the prefix sum p of each
subproblem. Similar to the Blelloch scan, we compute the
prefix sum of the right subproblem by adding the sum of the
left subproblem to the current prefix sum. In our algorithm,
the sum of the left subproblem is stored at Ab(s+t)/2c. Both
recursions stop when i = j, and at the end of the down-sweep,
we obtain the exclusive scan result. The down-sweep process
and its output on an example are shown on the right side of
Figure 5.
Correctness and efficiency. The correctness and efficiency
of this algorithm is based on the following observation. In
the down-sweep phase, the value of At in any recursive call
is not being used (except for the root where An is the total
sum). Hence, in our algorithm, we reuse the space for At to
store the sum for the next level. The reduction tree (left side
of Figure 5) has 2n−1 nodes: n nodes for the input and n−1
internal nodes storing the partial sums. We note that in the
down-sweep phase, only the sums of the left subproblems are
used, and there are n−1 of them. They are stored inA1,...,n−1
by the end of up-sweep, while An stores the total sum. With
all of these values, we can run the down-sweep phase in the
same way as in the Blelloch scan. The partial sums stored in
A1,...,n−1 are passed to the output by the argument p in the
down-sweep function call, which is stored in the stack space.
Hence, the new strong PIP scan algorithm uses O(n) work,
O(log n) span, and O(log n) sequential auxiliary stack space,
and is therefore an optimal strong PIP algorithm.

THEOREM 5.1. The new strong PIP scan algorithm is opti-
mal, using O(n) work, O(log n) span, and O(log n) sequen-
tial auxiliary space.

5.3 Other Strong PIP Algorithms
Filter, unstable partition, and quicksort. Consider a k-way
divide-and-conquer algorithm for filter, where we partition
the array into k chunks of equal size, filter each chunk,
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Figure 5: Our new strong PIP scan algorithm. It has an up-sweep phase (left) and a down-sweep phase (right). Each pair of arrows pointing
to the same element indicates an addition.

and pack the unfiltered results together. For one level of
recursion, this takes linear work and O(k log n) span if
chunks are processed one at a time, but within each chunk
we move the elements in parallel. This algorithm only
requires a constant amount of extra space to store pointers.
The number of levels of recursion is O(logk n), and so the
overall work is O(n log n/ log k), and the overall span is
O((k/ log k) log2 n). Similar to Section 4.4, we can use this
filter algorithm to implement an unstable partition algorithm,
with the same cost bounds. In theory, we can plug in any
constant for k, which gives a strong PIP algorithm with
O(log2 n) span and O(log n) auxiliary space, although it
is not work-efficient. Alternatively, we can achieve work-
efficiency by setting k = nε. This does not achieve
polylogarithmic span, but has good performance in practice.
We implement this filter algorithm and present experimental
results in Section 7.

We can obtain an unstable quicksort algorithm that ap-
plies the partition algorithm for O(log n) levels of recursion
whp. We note that Kuszmaul and Westover [33] recently
developed a work-efficient strong PIP algorithm for parti-
tion, which gives a work-efficient and polylogarithmic-span
quicksort algorithm.
Merging and mergesort. We again consider merging two
sorted arrays of size n and m, which are stored consecutively
in an array of size n + m. Again, we can use a two-way
divide-and-conquer approach, where we use a dual binary
search to find the median among all n+m elements, and in
parallel swap the out-of-place elements in two arrays. This
swap can be implemented by the strong PIP algorithm for
array rotation, discussed in Section 5.1. Then, we recursively
run merging on the two subproblems, each of size (m+n)/2.
The subproblem size shrinks by a factor of 2 on each level
of recursion, and so the recursion depth is bounded by
log2(n+m). The work to swap the elements at each level is
O(n+m), and so the overall work isO((n+m) log(n+m)).
The span and auxiliary space is O(log(n + m)), which is
proportional to the recursion depth. This gives a strong PIP
algorithm for merging. A strong PIP mergesort algorithm can
be obtained by plugging in this merging algorithm, although
it is not work-efficient.
Set operations. We now consider computing the union,
intersection, and difference of two ordered sets of size n
and m ≤ n. If the two sets are given in a binary tree

format, then existing algorithms for these operations [11, 45]
are already strong PIP, work-optimal (O(m log(n/m + 1))
work), and have O(log2 n) span. We now describe how to
implement these operations if the sets are given in arrays
stored contiguously in memory. For union, we can first use
the merging algorithm described above, and then the filter
algorithm described above to remove duplicates. Therefore,
computing the union on arrays is strong PIP. For intersection
and difference, we can run binary searches to find each
element in the smaller set inside the larger set, and then
apply the filter algorithm described above to obtain the output,
which takes O(n log n) work. The resulting algorithms are
not work-efficient, since our strong PIP merging and filter are
not work-efficient.

6 Relaxed PIP Graph Algorithms
In this section, we introduce new relaxed PIP algorithms for
graph connectivity, biconnectivity, and minimum spanning
forest. There has been some related work on sequential in-
place graph algorithms, which we discuss in the full version
of this paper.
Connectivity and Biconnectivity. The standard output size
for graph connectivity and biconnectivity is O(n) and O(m),
respectively. Recent work by Ben-David et al. [5] introduces
a compressed scheme for storing graph connectivity informa-
tion. For any 1 ≤ k ≤ n, it requiresO(k log n+m/k) output
size with an O(k) expected query work for connectivity and
O(k2) expected query work for biconnectivity. Construct-
ing such a compressed (bi)connectivity oracle takes O(km)
expected work and O(k3/2 log3 n) span whp. By setting
k = mε, we have have the following theorem.

THEOREM 6.1. A (bi)connectivity oracle can be constructed
using O(m1−ε) auxiliary space, O(m1+ε) expected work,
and O(m3ε/2 log3 n) span whp for 1/2 < ε < 1. A
connectivity query can be answered in O(mε) expected work,
and a biconnectivity query can be answered in O(m2ε)
expected work.

The high-level idea in the algorithms is to select a subset
of the vertices as the “centers” and only keep information
for these center vertices. Each vertex has a 1/k probability
of being selected as a center. This is referred to as the
implicit decomposition of the graph. For a query to a non-
center vertex v, we apply a breadth-first search from v
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to the first center c, which takes O(k) expected work [5].
For connectivity, v’s label is the same as c’s label. It
is also possible that a search does not reach any center,
but Ben-David et al. [5] show that the expected size of a
connected component without a center node is small (O(k)
in expectation), and so the cost to traverse all vertices in such
a component is also O(k) in expectation. For biconnectivity,
an additional step of local analysis is required to obtain the
output for v from c, which requires O(k2) expected work.

Theorem 6.1 gives algorithms that is almost relaxed PIP,
other than having an extra factor of O(mε/2) in the product
of the space and span bounds. Alternatively, we can obtain
new relaxed PIP connectivity and biconnectivity algorithms
by using the minimum spanning forest algorithm that will be
discussed next, at a cost of additional work.
Minimum Spanning Forest. The idea of implicit decom-
position can be extended to the minimum spanning forest
(MSF) problem. For simplicity, we assume that the graph is
connected, but disconnected graphs can also be handled using
an approach described by Ben-David et al. [5].

We note that the MSF is unique for a graph (assuming
that ties are broken consistently). Therefore, for a query to
vertex v, instead of using a breadth-first search on all edges
to find the center in connectivity, we need to search out to a
center using only the MSF edges. This can be achieved by
using a Prim-like search algorithm from v. This increases
the work by a factor of O(log k) to compute the implicit
decomposition of the graph and for the query cost (the queue
will contains O(k) vertices on average for each search).

We can generate an implicit decomposition of the graph
using a similar approach as for connectivity and biconnec-
tivity. We then compute the MSF across the m/k centers of
the decomposition. The output size of this spanning forest
is O(m/k). To compute the MSF in parallel, we can use
Borůvka’s algorithm. We start with every cluster being in
its own component, and enumerate all edges for O(log n)
rounds until the entire graph is connected. On each round, we
run Borůvka’s algorithm to find the minimum outgoing edges
from each component. This takes O(mk log k) work—we
check all m edges in a Borůvka’s round and each edge takes
O(k log k) work to find the clusters of both of its endpoints.
By setting k = mε, we obtain the following theorem.

THEOREM 6.2. Given a graph with n vertices and m edges,
a data structure for minimum spanning forest can be com-
puted in O(m1+ε log2 n) expected work, O(mε polylog(n))
span whp, andO(m1−ε) auxiliary space. Querying if an edge
is in the MSF takes O(m1−ε log n) work.

This MSF algorithm is relaxed PIP. We can also obtain
relaxed PIP algorithms for connectivity and biconnectivity
using the MSF as the spanning forest required in those
algorithms. Detailed analyses for correctness and the cost

bounds of these algorithms are provided in the full version of
this paper.

7 Implementations and Experiments
In the previous sections, we have designed parallel in-place
algorithms with strong theoretical guarantees. Many of
these algorithms are relatively simple, and in this section
we describe how to implement these algorithms efficiently
so that they can outperform or at least be competitive with
their non-in-place counterparts, while using less space. We
present implementations for five algorithms: scan, filter,
random permutation, list contraction, and tree contraction.
The implementations for the first two are fairly simple, and
the last three are based on the deterministic reservations
framework of Blelloch et al. [14].

7.1 Experimental Setup
We run all of our experiments on a 72-core Dell

PowerEdge R930 (with two-way hyper-threading) with
4×2.4GHz Intel 18-core E7-8867 v4 Xeon processors (with
a 4800MHz bus and 45MB L3 cache) and 1TB of main mem-
ory. We compile the code using the g++ compiler (version
5.4.1) with the -O3 flag, and use Cilk Plus for parallelism.

We compare our PIP algorithms to the non-in-place
versions in the Problem Based Benchmark Suite (PBBS) [43],
which is a collection of highly-optimized parallel algorithms
and implementations and widely used in benchmarking. The
implementations of random permutation, list contraction, and
tree contraction in PBBS are from [44].

7.2 Scan and Filter
For scan, we implement Algorithm 3 and switch to a

sequential in-place scan when the subproblem size is less
than 256. For filter, we implement the PIP algorithm from
Section 5.3, but we keep the implementation work-efficient by
setting the branching factor k =

√
n, and only apply one level

of recursion. However, this increases the span toO(
√
n log n)

and has O(
√
n) rounds of global synchronization (the k

chunks are processed one after another), which is a significant
overhead. We use the following optimization to significantly
reduce this overhead in practice. We move the elements
from multiple consecutive chunks in parallel as long as the
destination of the last chunk is before the original location
of the first chunk. We apply a binary search in each round to
find the maximum number of chunks that can be moved in
parallel. If the unfiltered elements are distributed relatively
evenly in the input and the output size is a constant fraction
of the input, then the algorithm requires logarithmic rounds
to finish.

We compare our PIP algorithms to the non-in-place
versions in PBBS. The PBBS scan is the classic Blelloch
scan implementation [7] and the filter is similar to our
implementation, but the output is stored in a separate array. In
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Figure 6: Running times and speedups for scan, filter, list contraction, and tree contraction. The top figures show the running times of our
parallel in-place algorithms and their non-in-place counterparts from PBBS for varying input sizes. The bottom figures show the parallel
speedups compared to the parallel PIP implementations on 1-thread, and the core count varies from 1 core to all 72 cores with two-way
hyper-threading (72HT).

Input Size Scan Filter
(million) PBBS PIP PBBS PIP

100 29 23 23 19
200 50 39 43 36
500 120 89 111 89

1000 250 170 215 172
2000 459 336 422 335

Table 2: Running times (in milliseconds) of the PBBS algorithms
and our new PIP algorithms for scan and filter on 72 cores with
hyper-threading.

the PBBS filter, it first filters each
√
n-sized chunk in parallel

while each chunk is processed sequentially, and then moves
the remaining elements to a separate output array in parallel.

The running times and scalability (parallel speedup
relative to the best algorithm on 1 thread, which was our
PIP algorithm in all cases) for scan and filter on different
input sizes are shown in Figure 6 and Tables 2–3. For filter,
50% of the input entries are kept in the output. Our in-place
scan is 30–45% faster and our in-place filter is about 25–30%
faster than their non-in-place counterparts due to having a
smaller memory footprint. The speedups are also competitive
or better than the non-in-place versions. For filter, the fraction
of elements in the output affects the performance of both our
algorithm and the PBBS algorithm. A larger output fraction
increases the number of rounds for movement and global
synchronization in the PIP filter algorithm. In Table 4, we
vary the output fraction and show that our new algorithms
range from about 2x faster (12.5% output) to having about
the same performance (87.5% output).

This experiment indicates that using the PIP scan and
filter algorithms can improve both the running time and
memory usage over the non-in-place filter algorithm, and
is preferable when the input can be overwritten. We note that

Core Scan Filter
count PBBS PIP PBBS PIP

1 3150 4170 2770 2150
4 1020 1230 861 701
8 548 630 524 393
18 308 331 301 244
36 280 255 254 191
72 265 192 222 179

72HT 250 170 215 172
Table 3: Running times (in milliseconds) of the PBBS algorithms
and our new PIP algorithms for scan and filter on varying core
counts.

Output fraction 12.5% 25% 50% 75% 87.5%
PBBS filter 189 202 215 234 252

PIP filter 94 118 172 212 254
Table 4: Running times (in milliseconds) of the PBBS filter
algorithm and our new PIP filter algorithm, with varying output
fraction on 72 cores with hyper-threading. The input is 1 billion
integers.

ParlayLib [9], the latest version of PBBS, also includes the
in-place versions of scan and filter, and we plan to compare
with these in the future.

7.3 Random Permutation, List Contraction, and Tree
Contraction

Implementing the PIP algorithms for random permuta-
tion, list contraction, and tree contraction is more challenging
since they are more complicated than scan and filter. How-
ever, the Decomposable Property can greatly simplify the
implementation of these algorithms, and we only need to
design an efficient implementation working on a prefix of
the problem and run it iteratively. Interestingly, the original
implementations of these algorithms in [44] are based on a
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Phase: Reserve Commit Cleaning

RP-PBBS 2/1 2/1 0/0
RP-Naı̈ve 0/3 0/3 3/0
RP-Flat 1/2 1/2 2/0
RP-OneRes 1/1 1/2 1/0
RP-Final 1/1 2/1 1/0

Table 5: Approximate number of sequential/random access per swap
on each round for the five implementations of random permutation.

framework named as the deterministic reservations [14] that
runs similarly in rounds, where each round processes a prefix
of the remaining elements. Hence, we carefully modify the
original implementations and obtain new PIP algorithms that
are competitive for random permutation, and faster for list
contraction and tree contraction. Due to space constraints, we
present detailed descriptions of our implementations in the
full version of the paper.
Deterministic Reservations. Deterministic reservations is a
framework for iterates in a parallel algorithm to check if all
of their dependencies have been satisfied through the use of
shared data structures, and executing the ones that have been
satisfied [14]. Deterministic reservations proceeds in rounds,
where on each round, each remaining iterate tries to execute.
Iterates that fail to execute will be packed and processed
again in the next round. To achieve good performance in
practice, instead of processing all iterates on every round, the
framework only works on a prefix of the remaining iterates
(usually around 2% of the input iterates). This naturally meets
our requirement for controlling the number of elements to
process in the relaxed PIP algorithms.
Random Permutation. We implement the PIP random
permutation algorithm (Algorithm 1) based on deterministic
reservations. We have four implementations (RP-Naı̈ve,
RP-Flat, RP-OneRes, and RP-Final), and each one
improves upon the previous one.

The overall goal in our implementations is to reduce
the number of memory accesses in the algorithm. The
original RP-PBBS implementation from PBBS needs roughly
4 sequential accesses and 2 random accesses per swap on each
round. In our new PIP algorithm, we need a data structure
to hold all associated memory accesses in the prefix for
auxiliary arrays R and H . In RP-Naı̈ve, we simply use
concurrent hash tables [41], and this implementation incurs
roughly 3 sequential accesses and 6 random accesses per
swap on each round. As an improvement, RP-Flat uses
an array to replace the hash table for the H array, which
changes the number of sequential and random accesses to
4 and 4, respectively. RP-OneRes removes one of the
reservations (the one on line 6 of Algorithm 1) and reduces the
number of random accesses to 3, at the cost of an additional
cleaning phase at the end. Our final version, RP-Final,
uses an array instead of a hash table for the part of R that
is accessed contiguously by the iterates. RP-Final incurs

Input size: 10M 30M 100M 300M 1000M

RP-PBBS 43.7 89.2 283 781 2680
RP-Naı̈ve 134 256 910 2580 9330
RP-Flat 98.1 187 644 1880 6280
RP-OneRes 77.1 133 422 1370 5250
RP-Final 65.6 131 388 1160 3960

Table 6: Running time (in milliseconds) of the five implementations
of random permutation on 72 cores with hyper-threading.

Additional space 0.4% 1% 2% 4%
Running time (ms) 537 425 411 388

Table 7: Running time with different restrictions on additional space
for RP-Final on 72 cores with hyper-threading. The input is 100
million 64-bit integers.

4 sequential accesses and 2 random accesses per swap on
each round, which is the same as in the non-in-place version.
More discussion about the implementation details are given
in the full version of this paper, and the numbers of memory
accesses for each implementation are given in Table 5.

We test the performance of our implementations on
inputs of size 10 million to 1 billion 64-bit integers, and
compare them with the best non-in-place counterpart, which
is from PBBS (RP-PBBS). The actual running times are
shown in Figure 7 and Table 6. In Figure 7 (left), we see
that all of the implementations have similar and consistent
scalability with respect to input size. In Figure 7 (right), we
show the running times relative to RP-PBBS. RP-Final
only has a modest overhead of 30–40% over RP-PBBS, while
only using 4% of the auxiliary space required by RP-PBBS.
We can further reduce the additional space by shrinking the
prefix size, at the expense of having more rounds, and hence
more global synchronization. In Table 7, we present the
running times under different amounts of additional space for
RP-Final.
List Contraction and Tree Contraction. Similar to random
permutation, for list contraction and tree contraction, we
design our PIP implementations based on the non-in-place
implementations from PBBS [43, 44]. In this case, the
auxiliary space in list contraction and tree contraction is
the R array (shown in Algorithm 2), which has linear size.
In list contraction (Algorithm 2) and tree contraction, R[i]
represents whether node i can be contracted in the current
round. The deterministic reservations framework also needs
to keep this information stored in another form, since it
needs to pack the remaining iterates for the next round. We
optimized the implementations to compute the remaining
iterates directly from the information in the R array, and we
provide more details in the full version of the paper.

We test the performance of our implementations on
inputs of between 10 million to 200 million entries, each
of which contain two 64-bit pointers. The running times
and speedups over the the PIP algorithm on 1 thread as a
function of core counts are shown in Figure 6 and Tables 8–
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Figure 7: The actual running times (left) and running times relative to RP-PBBS (right) of different implementations for random
permutation on 72 cores with hyper-threading. The input size varies from 10 million to 1 billion integers.

Input Size List contraction Tree contraction
(million) PBBS PIP PBBS PIP

10 59 49 73 46
20 79 70 141 82
50 142 131 323 198
100 247 205 600 350
200 494 418 1170 680

Table 8: Running times (in milliseconds) of the PBBS algorithms
and our new PIP algorithms for list and tree contraction on 72 cores
with hyper-threading.

Core List contraction Tree contraction
count PBBS PIP PBBS PIP

1 13900 3350 22800 12600
4 4370 1110 8020 4370
8 2180 636 3950 2210

18 1010 384 2060 1220
36 592 302 1390 1050
72 362 220 899 512

72HT 247 205 603 350
Table 9: Running times (in milliseconds) of the PBBS algorithms
and our new PIP algorithms for list and tree contraction on varying
core counts.

9. Since we eliminated the use of the R array in our PIP
algorithms and simplified the logic in the implementation
(which required changes to the deterministic reservations
framework), the parallel execution time improved by 15–
20% for list contraction and 60–70% for tree contraction
compared to non-in-place version in PBBS by Shun et
al. [44]. It is interesting to observe from Figure 6 and
Table 9 that the speedups of the PIP algorithms over the
PBBS implementations on one thread is larger than on 72
cores with hyper-threading. We conjecture that on one thread,
the simpler logic improves prefetching, whereas when using
all hyper-threads, prefetching does not help as much due to
the memory bandwidth already being saturated.

7.4 Additional Space Usage
Table 10 shows the input size and total memory usage

of our PIP algorithms. We see that for our two strong PIP
algorithms (scan and filter), the auxiliary space overhead is

Problem Input size
(MB)

Memory
usage (MB)

Over-
head

Scan 7629.4 7636.2 <0.1%
Filter 7629.4 7636.9 <0.1%

Random permutation 762.9 791.2 3.7%
List contraction 762.9 773.5 1.4%
Tree contraction 1144.4 1154.9 0.9%

Table 10: Memory usage of our algorithms on the five experiments
from Figure 2.

negligible (less than 0.1%), and for the three relaxed PIP
algorithms (random permutation, list contraction, and tree
contraction), the best performance is achieved when the space
overhead is between 0.9%–3.7%, which is still much smaller
than the input size. We can further reduce the space overhead
for the relaxed PIP algorithms at the cost of higher running
time (e.g., see Table 7). In contrast, the existing non-in-
place algorithms for these problems require additional space
proportional to the input size.

8 Conclusion
In this paper, we defined two models for analyzing parallel
in-place algorithms. We presented new parallel in-place algo-
rithms for scan, filter, partition, merge, random permutation,
list contraction, tree contraction, connectivity, biconnectivity,
and minimum spanning forest. We implemented several of
our algorithms, and showed experimentally that they are com-
petitive or outperform state-of-the-art non-in-place parallel
algorithms for the same problems.
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