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Abstract

Emerging non-volatile main memory (NVRAM) technologies provide byte-addressability, low idle
power, and improved memory-density, and are likely to be a key component in the future memory
hierarchy. However, a critical challenge in achieving high performance is in accounting for the asymmetry
that NVRAM writes can be significantly more expensive than NVRAM reads.

In this paper, we consider a large class of cache-oblivious algorithms for dynamic programming
(DP) and linear algebra, and try to reduce the writes in the asymmetric setting while maintaining high
parallelism. To achieve that, our key approach is to show the correspondence between these problems and
an abstraction for their computation, which is referred to as the k-d grids. Then by showing lower bound
and new algorithms for computing k-d grids, we show a list of improved cache-oblivious algorithms of
many DP recurrences and in linear algebra in the asymmetric setting, both sequentially and in parallel.

Surprisingly, even without considering the read-write asymmetry (i.e., setting the write cost to be
the same as the read cost in the algorithms), the new algorithms improve the existing cache complexity
of many problems. We believe the reason is that the extra level of abstraction of k-d grids helps us to
better understand the complexity and difficulties of these problems. We believe that the novelty of our
framework is of interests and leads to many new questions for future work.

1 Introduction

The ideal-cache model [46] is widely used in designing algorithms that optimize the communication between
CPU and memory. The model is comprised of an unbounded memory and a cache of size M . Data are
transferred between the two levels using cache lines of size B, and all computation occurs on data in the
cache. An algorithm is cache-oblivious if it is unaware of both M and B. The goal of designing such
algorithms is to reduce the cache complexity1 (or the I/O cost indistinguishably) of an algorithm, which is the
number of cache lines transferred between the cache and the main memory assuming an optimal (offline)
cache replacement policy. Sequential cache-oblivious algorithms are flexible and portable, and adapt to all
levels of a multi-level memory hierarchy. Such algorithms are well studied [8, 28, 39], and in many cases they
asymptotically match the best cache complexity for cache-aware algorithms. Regarding parallelism, Blelloch
et al. [20] suggest that analyzing the depth and sequential cache complexity of an algorithm is sufficient for
deriving upper bounds on parallel cache complexity.

Recently, emerging non-volatile main memory (NVRAM) technologies, such as Intel’s Optane DC
Persistent Memory, are readily available on the market, and provide byte-addressability, low idle power,
and improved memory-density. Due to these advantages, NVRAMs are likely to be the dominant main
memories in the near future, or at least be a key component in the memory hierarchy. However, a significant
programming challenge arises due to an underlying asymmetry between reads and writes—reads are much

1In this paper, we refer to it as symmetric cache complexity to distinguish from the case when reads and writes have different
costs.
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Dimension Problems
Cache Complexity

Symmetric Asymmetric

k = 2 LWS/GAP*/RNA/knapsack recurrences Θ

(
C

BM

)
Θ

(
ω1/2C

BM

)

k = 3
Combinatorial matrix multiplication,

Θ

(
C

B
√
M

)
Θ

(
ω1/3C

B
√
M

)
Kleene’s algorithm (APSP), Parenthesis recurrence

Table 1: Cache complexity of the algorithms based on the k-d grid computation structures. Here C is the
number of algorithmic instructions in the corresponding computation. (*) For the GAP recurrence, the upper
bounds have addition terms as shown in Section 7.2.

cheaper than writes in terms of both latency and throughput. This property requires researchers to rethink the
design of algorithms and software, and optimize the existing ones accordingly to reduce the writes. Such
algorithms are referred to as the write-efficient algorithms [52].

Many cache-oblivious algorithms are affected by this challenge. Taking matrix multiplication as an
example, the cache-aware tiling-based algorithm [4] uses Θ(n3/B

√
M) cache-line reads and Θ(n2/B)

cache-line writes for square matrices with size n-by-n. The cache-oblivious algorithm [46], despite the
advantages described above, uses Θ(n3/B

√
M) cache-line reads and writes. When considering the more

expensive writes, the cache-oblivious algorithm is no longer asymptotically optimal. Can we asymptotically
improve the cache complexity of these cache-oblivious algorithms? Can they match the best counterpart
without considering cache-obliviousness? These remain to be open problems in the very beginning of the
study of write-efficiency of algorithms [16, 29].

In this paper, we provide the answers to these questions for a large class of cache-oblivious algorithms
that have computation structures similar to matrix multiplication and can be coded up in nested for-loops.
Their implementations are based on a divide-and-conquer approach that partitions the ranges of the loops
and recurses on the subproblems until the base case is reached. Such algorithms are in the scope of dynamic
programming (e.g., the LWS/GAP/RNA/Parenthesis problems) and linear algebra (e.g., matrix multiplication,
Gaussian elimination, LU decomposition) [46, 34, 36, 31, 20, 60, 77, 74, 83, 78].

Since we try to cover many problems and algorithms, in this paper we propose a level of abstraction of the
computation in these cache-oblivious algorithms, which is referred to as the k-d grid computation structures
(short for the k-d grids). A more formal definition is given Section 3. This structure and similar ones are
first used by Hong and Kung [56] (implicitly) in their seminal paper in 1981, and then by a subsequence of
later work (e.g., [9, 2, 59, 10, 36]), mostly on analyzing the lower bounds of matrix multiplication and linear
algebra problems in a variety of settings. In this paper, we show the relationship of the k-d grids and many
other dynamic programming problems, and new results (algorithms and lower bounds) related to the k-d
grids.

The first intellectual contribution of this paper is to draw the connection between many dynamic program-
ming (DP) problems and the k-d grids. Previous DP algorithms are usually designed and analyzed based on
the number of nested loops, or the number of the dimensions of which the input and output are stored and
organized. However, we observe that the key underlying factor in determining the cache complexity of these
computations is the number of input entries involved in each basic computation cell, and such relationship
will be defined formally later in Section 3. A few examples (e.g., matrix multiplication, tensor multiplication,
RNA and GAP recurrences) are also provided in Section 3 to illustrate the idea. This property is reflected by
the nature of the k-d grids, and the correspondence between the problems and the k-d grids is introduced
in Section 8 and 7. We note that such relationship can be much more complicated than the linear algebra
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algorithms, and in many cases the computation of one algorithm consists of many (e.g., O(n)) k-d grids
associated with restrictions of the order of computing.

The second intellectual contribution of this paper is a list of new results for the k-d grids. We first discuss
the lower bounds to compute such k-d grids considering the asymmetric cost between writes and reads (in
Section 4). Based on the analysis of the lower bounds, we also propose algorithms with the matching bound
to compute a k-d grid (in Section 5). Finally, we also show how to parallelize the algorithm in Section 6.
We note that the approach for parallelism is independent of the asymmetric read-write cost, so the parallel
algorithms can be applied to both symmetric and asymmetric algorithms.

In summary, we have shown the correspondence between the problems and the k-d grids, new lower and
upper cache complexity bounds for computing the k-d grids in asymmetric setting, and parallel algorithms in
both symmetric and asymmetric settings. Putting all pieces together, we can show lower and upper cache
complexity bounds of the original problems in both the symmetric and asymmetric settings, as well as spans
(length of dependence) for the algorithms. The cache complexity bounds are summarized in Table 1, and the
results for the asymmetric setting answer the open problem in [16]. The span bound is analyzed for each
specific problem and given in Section 7, 8 and appendices.

Surprisingly, even without considering the read-write asymmetry (i.e., setting the write cost to be the
same as the read cost in the algorithms), the new algorithms proposed in this paper improve the existing
cache complexity of many DP problems. We believe the reason is that the extra level of abstraction of k-d
grids helps us to better understand the complexity and difficulties of these problems. Since k-d grids are used
as a tool for lower bounds, they decouple the computation structures from the complicated data dependencies,
which exposes some techniques to improve the bounds that were previously obscured. Also, k-d grids reveal
the similarities and differences between these problems, which allows the optimizations in some algorithms
to apply to other problems.

In summary, we believe that the framework for analyzing cache-oblivious algorithms based on k-d grids
provides a better understanding of these algorithms. In particular, the new theoretical results in this paper
include:

• We provide write-efficient cache-oblivious algorithms (i.e., in the asymmetric setting) for all problems
we discussed in this paper, including matrix multiplication and several linear algebra algorithms, all-pair
shortest-paths, and a number of dynamic programming recurrences. If a write costs ω times more
than a read (the formal computational model shown in Section 2), the asymmetric cache complexity
is improved by a factor of Θ(ω1/2) or Θ(ω2/3) on each problem compared to the best previous
results [18]. In some cases, we show that this improvement is optimal under certain assumptions (the
CBCO paradigm, defined in Section 4.2).

• We show algorithms with improved symmetric cache complexity on many problems, including the
GAP recurrence, protein accordion folding, and the RNA recurrence. We show that the previous cache
complexity bound O(n3/B

√
M) for the GAP recurrence and protein accordion folding is not optimal,

and we improve the bound to O(n2/B · (n/M + log min{n/
√
M,
√
M})) and Θ(n2/B · (1 +n/M))

respectively2. For RNA recurrence, we show an optimal cache complexity of Θ(n4/BM), which
improves the best existing result by Θ(M3/4).

• We show the first race-free linear-span cache-oblivious algorithms solving all-pair shortest-paths, LWS
recurrences, and protein accordion folding. Some previous algorithms [75, 41] have linear span, but
they are not race-free and rely on a much stronger model (discussion in Section 2). Our approaches

2The improvement is O(
√
M) from an asymptotic perspective (i.e., n approaching infinity). For smaller range of n that

O(
√
M) ≤ n ≤ O(M), the improvement is O(n/

√
M/ log(n/

√
M)) and O(n/

√
M) respectively for the two cases. (The

computation fully fit into the cache when n < O(
√
M).)
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are under the standard nested-parallel model, race-free, and arguably simpler. Our algorithms are not
in-place, but we discuss in Section 6.1 about the extra storage needed.

We believe that the analysis framework is concise. In this single paper, we discuss the lower bounds
and parallel algorithms on a dozen or so computations and DP recurrences, which can be further applied
to dozens of real-world problems3. The results are shown in both settings with or without considering the
asymmetric cost between reads and writes.

2 Preliminaries and Related Work

Ideal-cache model and cache-oblivious algorithms. In modern computer architecture, a memory access
is much more expensive compared to an arithmetic operation due to larger latency and limited bandwidth
(especially in the parallel setting). To capture the cost of an algorithm on memory access, the ideal-cache
model, a widely-used cost model, is a two-level memory model comprised of an unbounded memory and a
cache of sizeM .4 Data are transferred between the two levels using cache lines of sizeB, and all computation
occurs on data in the cache. The cache complexity (or the I/O cost indistinguishably) of an algorithm is the
number of cache lines transferred between the cache and the main memory assuming an optimal (offline)
cache replacement policy. An algorithm on this model is cache-oblivious with the additional feature that it is
not aware of the value of M and B. In this paper, we refer to this cost as the symmetric cache complexity
(as opposed to asymmetric memory as discussed later). Throughout the paper, we assume that the input and
output do not fit into the cache since otherwise the problems become trivial. We usually make the tall-cache
assumption that M = Ω(B2), which holds for real-world hardware and is used in the analysis in Section 7.3.
The nested-parallel model and work-span analysis. In this paper, the parallel algorithms are within the
standard nested-parallel model, which is a computation model and provides an easy analysis of the work-
efficiency and parallelism. In this model, a computation starts and ends with a single root task. Each task has
a constant number of registers and runs a standard instruction set from a random access machine, except it
has one additional instruction called FORK, which can create two independent tasks one at a time that can be
run in parallel. When the two tasks finish, they join back and the computation continues.

A computation can be viewed as a (series-parallel) DAG in the standard way. The cost measures on
this model are the work and span—work W to be the total number of operations in this DAG and span
(depth) D equals to the longest path in the DAG. The randomized work-stealing scheduler can execute such a
computation on the PRAM model with p processors in W/p+O(D) time with high probability [26]. All
algorithms in this paper are race-free [43]—no logically parallel parts of an algorithm access the same memory
location and one of the accesses is a write. Here we do not distinguish the extra write cost for asymmetric
memory on W and D to simplify the description of the results, and we only capture this asymmetry using
cache complexity.

Regarding parallel cache complexity, Blelloch et al. [20] suggest that analyzing the span and sequential
cache complexity of an algorithm is sufficient for deriving upper bounds on parallel cache complexity. In
particular, let Q1 be the sequential cache complexity. Then for a p-processor shared-memory machine with
private caches (i.e., each processor has its own cache) using a work-stealing scheduler, the total number
of cache misses Qp across all processors is at most Q1 + O(pDM/B) with high probability [1]. For a
p-processor shared-memory machine with a shared cache of size M +pBD using a parallel-depth-first (PDF)
scheduler, Qp ≤ Q1 [15]. We can extend these bounds to multi-level hierarchies of private or shared caches,
respectively [20].

3Like in this paper we abstract the “2-knapsack recurrence”, which fits into our k-d grid computation structure and applies to
many algorithms.

4In this paper, we often assume the cache size to be O(M) since it simplifies the description and only affects the bounds by a
constant factor.
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Parallel and cache-oblivious algorithms for dynamic programming and linear algebra. Dynamic Pro-
gramming (DP) is an optimization strategy that decomposes a problem into subproblems with optimal
substructure. It has been studied for over sixty years [12, 5, 38]. For the problems that we consider in this
paper, the parallel DP algorithms were already discussed by a rich literature in the eighties and nighties (e.g.,
[49, 51, 42, 58, 57, 72]). Later work not only considers parallelism, but also optimizes symmetric cache
complexity (e.g., [46, 34, 36, 31, 20, 60, 77, 74, 75, 41, 73, 32]). The algorithms in linear algebra that share
the similar computation structures (but with different orders in the computation) are also discussed (e.g.,
[36, 41, 83, 78, 25, 40, 11, 65]).

Problem definitions. Since we are showing many optimal cache-oblivious algorithms, we need formal
problem definitions. It is hard to show general lower bounds that any type of operations is allowed. For
example, for matrix multiplication on a semiring, the only known lower bound of operations is just Ω(n3−o(1))
for Boolean matrix multiplication assuming SETH (more details of fine-grain complexity in [82]). Here we
make no assumptions of the set of the ring other than “+” and “×” to be atomic using unit cost and unable to
be decomposed or batched (i.e., using integer tricks). We borrow the term combinatorial matrix multiplication
to indicate this specific problem. Such an algorithm requires Θ(n3) operations on square matrices of size n
(n2 inner products). Regarding dynamic programming in Section 7, we discuss the recurrences rather than
the problems, and make assumptions shown in Section 3 and Section 7.

Algorithms with asymmetric read and write costs. Intel has already announced the new product of the
Optane DC Persistent Memory, which can be bought from many retailers. The new memories sit on the main
memory bus and are byte-addressable. As opposed to DRAMs, the new memories are persistent, so we refer
to them as non-volatile RAMs (NVRAMs). In addition, compared to DRAMs, NVRAMs require significantly
lower energy, and have good read latencies and higher density. Due to these advantages, NVRAMs are
likely to be the dominant main memories in the near future, or at least be a key component in the memory
hierarchy. However, a new property of NVRAMs is the asymmetric read and write cost—write operations are
more expensive than reads regarding energy, bandwidth, and latency (benchmarking results in [79]). This
property requires researchers to rethink the design of algorithms and software, and motivates the need for
write-efficient algorithms [52] that reduce the number of writes compared to existing algorithms.

Blelloch et al. [13, 16, 17] formally defined and analyzed several sequential and parallel computation
models that take asymmetric read-write costs into account. The model Asymmetric RAM (ARAM) extends
the two-level memory model and contains a parameter ω, which corresponds to the cost of a write relative to
a read to the non-volatile main memory. In this paper, we refer to the asymmetric cache complexity Q as the
number of write transfers to the main memory multiplied by ω, plus the number of read transfers. This model
captures different system consideration (latency, bandwidth, or energy) by simply plugging in a different
value of ω, and also allows algorithms to be analyzed theoretically and practically. Similar scheduling results
(upper bounds) on parallel running time and cache complexity are discussed in [13, 17] based on work W ,
span D and asymmetric cache complexity Q of an algorithm. Based on this idea, many interesting algorithms
and lower bounds are designed and analyzed by various recent works [13, 16, 17, 23, 61, 14, 21, 19, 53].

In the analysis, we always assume that the input size is much larger than the cache size (which is usually
the case in practice). Otherwise, both the upper and the lower bounds on cache complexity also include the
term for output—ω times the output size. For simplicity, this term is ignored in the asymptotic analysis.

Carson et al. [29] also discussed algorithms using less writes. Their results are under some different
assumptions that disallow the use of more reads, and we discuss how the assumptions affect the algorithms in
the Appendix E.

Discussions of previous work. We now discuss several possible confusions of this paper.
The k-d grid computation structure in this paper is similar to the structure in Hong and Kung [56], and

some subsequence work in linear algebra (e.g., [9, 2, 59, 10, 36]). Several recent papers on DP algorithms
are also based on grid structure (e.g., [31, 60, 77]), but the definitions in those paper are different from the
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Input 𝐼1

Output 𝑂 Output 𝑂

Input 𝐼1

Input 𝐼2

Figure 1: An illustration of a 2d and a 3d grid. The left figure shows the 2d case where the input I1 and
output O are 1d arrays, and each computation cell g(·) requires exactly one entry in I1 as input, and update
one entry in O. For the 3d case on the right, the inputs and output are 2d arrays, and each computation cell
g(·) requires one entry from input I1 and one from input I2. The input/output entries of each cell are the
projections of this cell on different 2d arrays.

k-d grids in this paper. In the k-d grid, the dimension of the grid is related to the number of entries per basic
computation unit (formal definition in Section 3), not the dimension of the input/output arrays. However, in
the special case when the number of input entries per basic computation cell is the same as the dimension
of the input/output arrays, the analysis based on k-d grid provides the same sequential symmetric cache
complexity as the previous work. One such example is matrix multiplication [46], and in these cases we still
provide new lower and upper asymmetric cache bounds as well as parallel approaches (new span bounds).
For other problems (GAP, RNA, protein accordion folding, knapsack), the bounds in the symmetric setting
are also improved.

Some previous work [75, 41] achieves the linear span in several problems. We note that they assume
a much stronger model to guarantee the sequential and parallel execution order, so their algorithms need
specially designed schedulers [41, 30]. Our algorithms are much simpler and under the nested-parallel model.
Also, all algorithms in this paper are race-free, while previous algorithms heavily rely on concurrent-writes to
improve span. The space issue of algorithms is discussed in Section 6.1.

The dynamic programming recurrences discussed in this paper have non-local dependencies (definition
given in [51]), and we point out that they are pretty different from the problems like edit distance or stencil
computations (e.g., [33, 47, 54, 67]) that only have local dependencies. We did not consider other types of
dynamic programming approaches like rank convergence or hybrid r-way DAC algorithms [69, 70, 35] that
cannot guarantee processor- and cache-obliviousness simultaneously.

3 k-d Grid Computation Structure

The k-d grid computation structure (short for the k-d grid) is defined as a k-dimensional grid C of size
n1 × n2 × · · · × nk. Here we consider k to be a small constant greater than 1. This computation requires
k − 1 input arrays I1, · · · , Ik−1 and generates one output array O. Each array has dimension k − 1 and is
the projection of the grid removing one of the dimensions. Each cell in the grid represents some certain
computation that requires k − 1 inputs and generates a temporary value. This temporary value is “added”
to the corresponding location in the output array using an associative operation ⊕. The k − 1 inputs of
this cell are the projections of this cell removing each (but not the last) dimensions, and the output is the
projection removing the last dimension. They are referred to as the input and output entries of this cell.
Figure 1 illustrates such a computation in 2 and 3 dimensions. This structure (mostly the special case for
3d as defined below) is used implicitly and explicitly by Hong and Kung [56] and some subsequence works
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(e.g., [9, 2, 59, 10, 36]). In this paper, we will use it as a building block to prove lower bounds and design
new algorithms for dynamic programming problems. When showing the cache complexity, we assume the
input and output entries must be in the cache when computing each cell.

We refer to a k-d grid computation structure as a square grid computation structure (short for a square
grid) of size n if it has size n1 = · · · = nk = n. More concisely, we say a k-d grid has size n if it is square
and of size n.

A formal definition of a square 3d grid of size n is as follows:

Oi,j =
∑
k

g((I1)i,k(I2)k,j , i, j, k)

where 1 ≤ i, j, k ≤ n. g(·) computes a value based on the two inputs (I1)i,k and (I2)k,j the indices, and
some constant amount of data that is associated to the indices. We assume that computing g(·) takes unit cost.
Each application of g(·) corresponds to a cell, and (I1)i,k, (I2)k,j and Oi,j are entries associated with this
cell. The sum

∑
is based on the associative operator ⊕. Similarly, the definition for the 2d case is:

Oi =
∑
j

g(Ij , i, j)

and we can extend it to non-square cases and for k > 3 accordingly.
We allow the output O to be the same array as the input array(s) I . This is used for all DP recurrences. In

these algorithms, some of the cells are empty to avoid cyclic dependencies. For example, in a 2d grid, we
may want to restrict 1 ≤ j < i. In these cases, a constant fraction of the grid cells are empty. We call such a
grid an α-full grid for some constant 0 < α < 1 if at least an α± o(1) fraction of the cells are non-empty.
We will show that all properties we show for a k-d grid also work for the α-full case, since the constant α
affects neither the lower bounds nor the algorithms.

We now show some examples that can be matched to k-d grids. Multiplying two matrices of size n-by-n
on a semiring (·,+) (i.e., Oi,j =

∑
k (I1)i,k(I2)k,j) exactly matches a 3d square grid. A corresponding 2d

case is when computing a matrix-vector multiplication Oi =
∑

j Ij · f(i, j) where f(i, j) does not need to
be stored. Such applications are commonly seen in dynamic programming algorithms. For example, the
widely used LWS recurrence (Section 7.1) that computes Dj = min0≤i<j{Di + w(i, j)} is a 2d grid, and
the associative operator ⊕ is min. In this case the input is the same array as the output. These are the simple
cases, so even without using the k-d grid, the algorithms for them in the symmetric setting are already studied
in [34, 46].

However, not all DP recurrences can be viewed as k-d grids straightforwardly. As shown above, the
key aspect of deciding the dimension of a computation is the number of inputs that each basic cell g(·)
requires. For example, when multiplying two dense tensors, although each tensor may have multiple
dimensions, each multiplication operation is only based on two entries and can be written in the previous 3d
form, so the computation is a 3d grid. Another example is the RNA recurrence that computes a 2D array
Di,j = min

0≤p<i,0≤q<j
{Dp,q + w(p, q, i, j)}. Assuming w(p, q, i, j) can be queried on-the-fly, the computation

is the simplest 2d grid. Despite that the DP table has size O(n2) and O(n4) updates in total, the computation
is no harder than the simplest LWS recurrence mentioned in the previous paragraph. Similarly, in the GAP
recurrence in Section 7.2, each element in the DP table is computed using many other elements similar
to matrix multiplication. However, each update only requires the value of one input element and can be
represented by a set of 2d grids, unlike matrix multiplication that is a 3d grid and uses the values of two
input elements in each update. The exact correspondence between the k-d grid and the DP recurrences are
usually more sophisticated than their classic applications in linear algebra problems, as shown in Section 7, 8
and appendices. The cache-oblivious algorithms discussed in this paper are based on k-d grids with k = 2
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or 3, but we can also find applications with larger k (e.g., a Nim game with some certain rules on multiple
piles [27]).

We note that our definition of the k-d grid cannot abstract all possible recurrences and computations, but
it is sufficient to analyze the DP recurrences and algorithms shown in Section 7, 8 and appendices. Also the
k-d grid is designed to analyze computations with non-local dependencies [51], so it is not useful to problems
such as the classic edit distance and matrix addition.

4 Lower Bounds

We first discuss the lower bounds of the cache complexities for a k-d grid computation structure, which sets
the target to design the algorithms in the following sections. In Section 4.1 we show the symmetric cache
complexity. This is a direct extension of the classic result by Hong and Kong [56] to an arbitrary dimension.
Then in Section 4.2 we discuss the asymmetric cache complexity when writes are more expensive than reads,
which is more interesting and has a more involved analyses.

4.1 Symmetric Cache Complexity

The symmetric cache complexity of a k-d grid is simple to analyze, yielding to the following result:

Theorem 4.1 ([56]). The symmetric cache complexity of a k-d grid computation structure with size n is

Ω

(
nk

M1/(k−1)B

)
.

The following proof is an extension of the proof by Hong and Kong [56] and we show it here again for
the completeness and to help to understand the proof in Section 4.2 which has a similar outline.

Proof. In a k-d grid computation structure with size n there are nk cells. Let’s sequentialize these cells in
a list and consider each block of cells that considers S = 2kMk/(k−1) consecutive cells in the list. The
number of input entries required of each block is the projection of all cells in this block along one of the
first k − 1 dimensions (see Figure 1), and this is similar for the output. Loomis-Whitney inequality [68, 10]
indicates that the overall number of input and output entries is minimized when the cells are in a square
k-d cuboid, giving a total of kS(k−1)/k = k ·

(
2M1/(k−1))k−1 ≥ 4M input and output entries. Since

only a total of M entries can be held in the cache at the beginning of the computation of this block, the
number of cache-line transfer for the input/output during the computation for such a block is Ω(M/B).
Since there are nk/S = Θ(nkM−k/(k−1)) such blocks, the cache complexity of the entire computation is
Ω(M/B) · nk/S = Ω(nk/(M1/(k−1)B)).

Notice that the proof does not assume cache-obliviousness, but the lower bound is asymptotically tight by
applying a sequential cache-oblivious algorithm that is based on 2k-way divide-and-conquer [46].

4.2 Asymmetric Cache Complexity

We now consider the asymmetric cache complexity of a k-d grid computation structure assuming writes
are more expensive. Unfortunately, this case is significantly harder than the symmetric setting. Again for
simplicity we first analyze the square grid of size n, which can be extended to the more general cases similar
to [46].

Interestingly, there is no specific pattern that a cache-oblivious algorithm has to follow. Some existing
algorithms use “buffers” to support cache-obliviousness (e.g., [7]), and many others use a recursive divide-
and-conquer framework. For the recursive approaches, when the cache complexity of the computation is not
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leaf-dominated (like various sorting algorithms [46, 16]), a larger fan-out in the recursion is more preferable
(usually set to O(

√
n)). Otherwise, when it is leaf-dominated, existing efficient algorithms all pick a constant

fan-out in the recursion in order to reach the base case and fit in the cache with maximal possible subproblem
size. All problems we discuss in this paper are in this category, so we make our analysis under the following
constraints. More discussion about this constraint in given in Section 9.

Definition 1 (CBCO paradigm). We say a divide-and-conquer algorithm is under the constant-branching
cache-oblivious (CBCO) paradigm if it has an input-value independent computational DAG, such that each
task has constant5 fan-outs of its recursive subtasks until the base cases, and the partition of each task
is decided by the ratio of the ranges in all dimensions of the (sub)problem and independent of the cache
parameters (M and B).

Notice that ω is a parameter of the main memory, instead of a cache parameter, so the algorithms can be
aware of it. One can define resource-obliviousness [37] so that the value of ω is not exposed to the algorithms,
but this is out of the scope of this paper.

We now prove the (sequential) lower bound on the asymmetric cache complexity of a k-d grid under the
CBCO paradigm. The constant branching and the partition based on the ratio of the ranges in all dimensions
restrict the computation pattern and lead to the “scale-free” property of the cache-oblivious algorithms:
the structure or the “shape” of each subproblem in the recursive levels is similar, and only the size varies.
The proof references this property when it is used. The CBCO paradigm also restricts the shape of the
computation, which is a stronger assumption than the Loomis-Whitney inequality used in the previous proof.

Theorem 4.2. The asymmetric cache complexity of k-d grid is Ω

(
nkω1/k

M1/(k−1)B

)
under the CBCO paradigm.

Proof. We prove the lower bound using the same approach in Section 4.1—putting all operations (cells)
executed by the algorithm in a list and analyzing blocks of S cells. The cache can holdM entries as temporary
space for the computation. For the lower bound, we only consider the computation in each cell without
considering the step of adding the calculated value back into the output array, which only makes the problem
easier. Again when applying the computation of each cell, the k input and output entries have to be in the
cache.

For a block of cells with size S, the cache needs to hold the entries in I1, · · · , Ik−1 and O corresponding
to the cells in this block at least once during the computation. Similar to the symmetric setting discussed
above, the number of entries is minimized when the sequence of operations are within a k-d cuboid of size
S = a1 × a2 × · · · × ak where the projections on Ii and O are (k − 1)-d arrays with sizes a1 × · · · ×
ai−1 × ai+1 × · · · × ak and a1 × · · · × ak−1. Namely, the number of entries is at least S/B · 1/ai for the
corresponding input or output array.

Note that the input arrays are symmetric to each other regarding the access cost, but in the asymmetric
setting storing the output entries is more expensive since they have to be written back to the asymmetric
memory. As a result, the cache complexity is minimized when a1 = · · · = ak−1 = a, and let’s denote
ak = ar where r is the ratio between ak and other ai. Here we assume r ≥ 1 since reads are cheaper. Due to
the scale-free property that M and n are arbitrary, r should be fixed (within a small constant range) for the
entire recursion.

Similar to the analysis for Theorem 4.1, for a block of size S, the read transfers required by the cache is

Ω

(
nk

SB
·max{ak−1r −M, 0}

)
, where nk/S is the number of such blocks, and max{ak−1r −M, 0}/B

lower bounds the number of reads per block because at most M entries can be stored in the cache from the
5It can exponentially depend on k since we assume k is a constant.

9



previous block. Similarly, the write cost is Ω

(
ωnk

SB
·max{ak−1 −M, 0}

)
. In total, the cost is:

Q = Ω

(
nk

SB
·
(

max{ak−1r −M, 0}+ ωmax{ak−1 −M, 0}
))

= Ω

(
nk

SB

(
max{S(k−1)/kr1/k −M, 0}+ ωmax

{
S(k−1)/k

r(k−1)/k
−M, 0

}))

The second step is due to S = Θ(akr).
The cost decreases as the increase of S, but it has two discontinuous points S1 = Mk/(k−1)/r1/(k−1) and

S2 = Mk/(k−1)r. Therefore,

Q = Ω

(
nk

S1B
S
(k−1)/k
1 r1/k +

nk

S2B

(
S
(k−1)/k
2 r1/k +

ωS
(k−1)/k
2

r(k−1)/k

))

= Ω

(
nk

S
1/k
1 B

r1/k +
nk

S
1/k
2 B

(
r1/k +

ω

r(k−1)/k

))

= Ω

(
nk

M1/kB

(
r1/k +

ω

r

))
Setting r = ω(k−1)/k minimizes nk

M1/kB

(
r1/k + ω

r

)
. In this case, the lower bound of the asymmetric cache

complexity Q is Ω

(
nkω1/k

M1/(k−1)B

)
, and this leads to the theorem.

5 A Matching Upper Bound on Asymmetric Memory

In the sequential and symmetric setting, the classic cache-oblivious divide-and-conquer algorithms to compute
the k-d grid (e.g., 3D case shown in [46]) is optimal. In the asymmetric setting, the proof of Theorem 4.2
indicates that the classic algorithm is not optimal and off by a factor of ω(k−1)/k. This gap is captured
by the balancing factor r in the proof, which leads to more cheap reads and less expensive writes in each
sub-computation.

We now show that the lower bound in Theorem 4.2 is tight by a (sequential) cache-oblivious algorithm
with such asymmetric cache complexity. The algorithm is given in Algorithm 1, which can be viewed as a
variant of the classic approach with minor modifications on how to partition the computation. Notice that in
line 6 and 10, “conceptually” means the partitions are used for the ease of algorithm description. In practice,
we can just pass the ranges of indices of the subtask in the recursion, instead of actually partitioning the
arrays.

Compared to the classic approaches (e.g., [46]) that partition the largest input dimension among ni, the
only underlying difference in the new algorithm is in line 4—when partitioning the dimension not related
to the output array O (line 6–8), nk has to be ω(k−1)/k times larger than n1, · · · , nk−1. This modification
introduces an asymmetry between the input size and output size of each subtask, which leads to fewer writes
in total and an improvement in the cache efficiency.

For simplicity, we show the asymmetric cache complexity for square grids (i.e., n1 = · · · = nk) and
n = Ω(ω(k−1)/kM), and the general case can be analyzed similar to [46].

Theorem 5.1. Algorithm 1 computes the k-d grid of size nwith asymmetric cache complexity Θ

(
nkω1/k

M1/(k−1)B

)
.
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Algorithm 1: ASYM-ALG(I1, · · · , Ik−1, O)

Input: k − 1 input arrays I1, · · · , Ik−1, read/write asymmetry ω
Output: Output array O

1 The computation has size n1 × n2 × · · · × nk
2 if I1, · · · , Ik−1, O are small enough then
3 Solve the base case and return
4 i← arg max1≤i≤k{nixi} where xk = ω−(k−1)/k and xj = 1 for 1 ≤ j < k
5 if i = k then
6 (Conceptually) equally partition I1, · · · , Ik−1 into {I1,a, I1,b}, · · · , {Ik−1,a, Ik−1,b} on k-th

dimension
7 ASYM-ALG(I1,a, · · · , Ik−1,a, O)
8 ASYM-ALG(I1,b, · · · , Ik−1,b, O)

9 else
10 (Conceptually) equally partition I1, · · · , Ii−1, Ii+1, · · · , Ik−1, O into

{I1,a, I1,b}, · · · , {Ik−1,a, Ik−1,b}, {Oa, Ob} on i-th dimension
11 ASYM-ALG(I1,a, · · · , Ii−1,a, Ii, Ii+1,a, · · · , Ik−1,a, Oa)
12 ASYM-ALG(I1,b, · · · , Ii−1,b, Ii, Ii+1,b, · · · , Ik−1,b, Ob)

Proof. We separately analyze the numbers of reads and writes in Algorithm 1. In the sequential execution
of Algorithm 1, each recursive function call only requires O(1) extra temporary space. Also, our analysis
ignores rounding issues since they will not affect the asymptotic bounds.

When starting from the square grid at the beginning, the algorithm first partitions in the first k − 1
dimensions (via line 10 to 12) into ω(k−1)2/k subproblems (referred to as second-phase subproblems) each
with size (n/ω(k−1)/k)× · · · × (n/ω(k−1)/k)× n, and then partition k dimensions in turn until the base case
is reached.

The number of writes of the algorithm W (n) (to array O) follows the recurrences:

W ′(n) = 2kW ′(n/2) +O(1)

W (n) = (ω(k−1)/k)k−1 ·
(
W ′(n/ω(k−1)/k) +O(1)

)
where W ′(n) is the number of writes of the second-phase subproblems with the size of O being n× · · · × n.
The base case is when W ′(M1/(k−1)) = O(M/B). Solving the recurrences gives W ′(n/ω(k−1)/k) =

O

(
nkω1−k

M1/(k−1)B

)
, and W (n) = O

(
nkω(1−k)/k

M1/(k−1)B

)
.

We can analyze the reads similarly by defining R(n) and R′(n). The recurrences are therefore:

R′(n) = 2kR′(n/2) +O(1)

and
R(n) = (ω(k−1)/k)k−1 ·

(
R′(n/ω(k−1)/k) +O(1)

)
The difference from the write cost is in the base case since the input fits into the cache sooner when
n = M1/(k−1)/ω1/k. Namely, R′(M1/(k−1)/ω1/k) = O(M/B). By solving the recurrences, we have

R′(n/ω(k−1)/k) = O

(
nkω2−k

M1/(k−1)B

)
and R(n) = O

(
nkω1/k

M1/(k−1)B

)
.
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The overall (sequential) asymmetric cache complexity for Algorithm 1 is:

Q(n) = R(n) + ωW (n) = O

(
nkω1/k

M1/(k−1)B

)

and combining with the lower bound of Theorem 4.2 proves the theorem.

Comparing to the classic approach, the new algorithm improves the asymmetric cache complexity by a
factor ofO(ω(k−1)/k), since the classic algorithm requires Θ(nk/(M1/(k−1)B)) reads and writes. Again here
we assume nk−1 is much larger thanM . Otherwise, the lower and upper bounds should include Θ(ωnk−1/B)
for storing the output O on the memory.

6 Parallelism

We now show the parallelism in computing the k-d grids. The parallel versions of the cache-oblivious
algorithms only have polylogarithmic span, indicating that they are highly parallelized.

6.1 The Symmetric Case

We first discuss how to parallelize the classic algorithm on symmetric memory. For a square grid, the
algorithm partitions the k-dimensions in turn until the base case is reached.

Notice that in every k consecutive partitions, there are no dependencies in k − 1 of them, so we can
fully parallelize these levels with no additional cost. The only exception is during the partition in the k-th
dimension, whereas both subtasks share the same output array O and cause write concurrence. If such two
subtasks are sequentialized (like in [46]), the span is D(n) = 2D(n/2) +O(1) = O(n).

We now introduce the algorithm with logarithmic depth. As just explained, to avoid the two subtasks
from modifying the same elements in the output array O, our algorithm works as follows when partitioning
the k-th dimension:

1. Allocating two stack-allocated temporary arrays with the same size of the output array O before the
two recursive function calls.

2. Applying computation for the k-d grid in two subtasks using different output arrays that are just
allocated (no concurrency to the other subtask).

3. When both subtasks finish, the computed values are merged (added) back in parallel, with work
proportional to the output size and O(log n) span.

4. Deallocating the temporary arrays.

Notice that the algorithm also works if we only allocate temporary space for one of the subtasks, while
the other subtask still works on the original space for the output array. This can be a possible improvement
in practice, but in high dimensional case (k > 2) it requires complicated details to pass the pointers of the
output arrays to descendant nodes, aligning arrays to cache lines, etc. Theoretically, this version does not
change the bounds except for the stack space in Lemma 6.1 when k = 2.

We first analyze the cost of square grids of size n in the symmetric setting, and will discuss the
asymmetric setting later.

Lemma 6.1. The overall stack space for a subtask of size n is O(nk−1).

12



Proof. The parallel algorithm allocates memory only when partitioning the output (k-th) dimension. In this
case, it allocates and computes two subtasks of size n/2 where n is the size of the output dimension. This
leads to the following recurrence:

S(n) = 2S(n/2) +O(nk−1)

The recurrence solves to S(n) = O(nk−1) when k > 2 since the recurrence is root-dominated. When k = 2,
we can apply the version that only allocates temporary space for one subtask, which decreases the constant
before S(n/2) to 1, and yields S(n) = O(n). Note that we only need to analyze one of the branches, since
the temporary spaces that are not allocated in the direct ancestor of this subtask have already been deallocated,
and will be reused for later computations for the current branch.

With the lemma, we have the following corollary:

Corollary 6.2. A subtask of size n ≤M1/(k−1) can be computed within a cache of size O(M).

This corollary indicates that this modified parallel algorithm has the same sequential cache complexity
since it fits into the cache in the same level as the classic algorithm (the only minor difference is the required
cache size increases by a small constant factor). Therefore we can apply the a similar analysis in [46] (k = 3
in the paper) to show the following lemma:

Lemma 6.3. The sequential symmetric cache complexity of the parallel cache-oblivious algorithm to compute
a k-d grid of size n is O(nk/M1/(k−1)B).

Assuming that we can allocate a chunk of memory in constant time, the span of this approach is simply
O(log2 n)—O(log n) levels of recursion, each with O(log n) span for the additions [20].

We have shown the parallel span and symmetric cache complexity. By applying the scheduling theorem
in Section 2, we have the following result for parallel symmetric cache complexity.

Corollary 6.4. The k-d grid of size n can be computed with the parallel symmetric cache complexity of
O(nk/M1/(k−1)B + pM log2 n) with private caches, or O(nk/M1/(k−1)B) with a share cache of size
M + pB log2 n.

We now analyze the overall space requirement for this algorithm. Lemma 6.1 shows that the extra
space required is S1 = O(nk−1) for sequentially running the parallel algorithm. Naı̈vely the parallel space
requirement is pS1, which can be very large. We now show a better upper bound for the extra space.

Lemma 6.5. The overall space requirement of the parallel algorithm to compute the k-d grid isO(p1/knk−1).

Proof. We analyze the total space allocated for all processors. Lemma 6.1 indicates that if the root of the
computation on one processor has the output array of size (n′)k−1, then the space requirement for this
task is O((n′)k−1). There are in total p processors. There can be at most 2k processors starting with their
computations of size nk−1/2k−1, (2k)2 of size nk−1/(2k−1)2, until (2k)q processors of size nk−1/(2k−1)q

where q = log2k p. This case maximizes the overall space requirement for p processors, which is:

log
2k

p∑
h=1

O

(
nk−1

(2k−1)h

)
· (2k)h = p ·O

(
nk−1

(2k−1)log2k p

)
= O(p1/knk−1)

This shows the stated bound.

Combining all results gives the following theorem:

13



Theorem 6.6. There exists a cache-oblivious algorithm to compute a k-d grid of size n that requires Θ(nk)

work, Θ

(
nk

M1/(k−1)B

)
symmetric cache complexity, O(log2 n) span, and O(p1/knk−1) main memory size.

Additional space required. The following discussion is purely on the practical side and does not affect the
theoretical analysis of all the theorems in this paper.

We believe the space requirement for the parallel cache-oblivious algorithm is acceptable since it is
asymptotically the same as the most intuitively (non-cache-oblivious) parallel algorithm that partitions the
computation into p square subtasks each with size n/p1/k. In practice nowadays it is easy to fit several
terabyte main memory onto a single powerful machine such that the space requirement can usually be satisfied.
For example, a Dell PowerEdge R940 has about p = 100 and the main memory can hold more than 1012

integers, while the new NVRAMs will have even more capacity (up to 512GB per DIMM). On such machines,
when k = 2, the grid needs to contain more than 1022 cells to exceed the memory size—such computation
takes too long to run on a single shared-memory machine. For k = 3, we need about 1017 cells to exceed
the main memory size, which will take weeks to execute on a highest-end shared-memory machine. Hence,
throughout the paper we focus on cache complexity and span. Even if one wants to run such a computation,
we can use the following approach to slightly change the algorithm to bound the extra space as a practical fix.

We can first partition the input dimensions for log2 p rounds to bound the largest possible output size to
be O(nk−1/p) (similar to the case discussed in Section 6.2). Then the overall extra space for all p processors
is limited to O(nk−1), the same as the input/output size. If needed, the constant in the big-O can also be
bounded. Such a change will not affect the cache complexity and the span as long as the main memory size is
larger than pM where M is the cache size. This is because the changes of partition order do not affect the
recurrence depth, and the I/O cost is still dominated by when the subproblems fitting the cache. In practice,
DRAM size is always several orders of magnitude larger than pM .

6.2 The Asymmetric Case

Algorithm 1 considers the write-read asymmetry, which involves some minor changes to the classic cache-
oblivious algorithm. Regarding parallelism, the changes in Algorithm 1 only affect the order of the partitioning
of the k-d grid in the recurrence, but not the parallel version and the analysis in Section 6.1. As a result,
the span of the parallel variant of Algorithm 1 is also O(log2 n). The extra space upper bound is actually
reduced, because the asymmetric algorithm has a higher priority in partitioning the input dimensions that
does not requires allocation temporary space.

Lemma 6.7. The space requirement of Algorithm 1 on p processors is O(nk−1(1 + p1/k/ω(k−1)/k)).

Proof. Algorithm 1 first partition the input dimensions until q = O(ω(k−1)2/k) subtasks are generated. Then
the algorithm will partition k dimensions in turn. If p < q, then each processor requires no more than
O(nk−1/q) extra space at any time, so the overall extra space is O(p · nk−1/q) = O(n). Otherwise, the
worst case appears when O(p/q) processors work on each of the subtasks. Based on Lemma 6.5, the extra
space is bounded by O((p/q)1/k · q · nk−1/q) = O(p1/knk−1/ω(k−1)/k). Combining the two cases gives the
stated bounds.

Lemma 6.7 indicates that Algorithm 1 requires extra space no more than the input/output size asymptoti-
cally when p = O(ωk−1), which should always be true in practice.

The challenge arises in scheduling this computation. The scheduling theorem for the asymmetric
case [13] constraints on the non-leaf stack memory to be a constant size. This contradicts the parallel version
in Section 6.1. This problem can be fixed based on Lemma 6.1 that upper bounds the overall extra memory
on one task. Therefore the stack-allocated array can be moved to the heap space. Once a task is stolen, the
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first allocation will annotate a chunk of memory with size order of |O| where O is the current output. Then
all successive heap-based memory allocation can be simulated on this chunk of memory. In this manner,
the stack memory of each node corresponding to a function call is constant, which allows us to apply the
scheduling theorem in [13].

Theorem 6.8. Algorithm 1 with input size n requires Θ(nk) work, Θ

(
nkω1/k

M1/(k−1)B

)
asymmetric cache

complexity, and O(log2 n) span to compute a k-d grid of size n.

7 Dynamic Programming Recurrences

In this section we discuss a number of new results on dynamic programming (DP). To show lower and upper
bounds on parallelism and cache efficiency in either symmetric and asymmetric setting, we focus on the
specific DP recurrences instead of the problems. We assume each update in the recurrences takes unit cost,
just like the k-d grid in Section 3.

The goal of this section is to show how the DP recurrences can be viewed as and decomposed into the k-d
grids. Then the lower and upper bounds discussed in Section 4 and 5, as well as the analysis of parallelism
in Section 6, can be easily applied to the computation of these DP recurrences. When the dimension of the
input/output is the same as the number of entries in each grid cell, then the sequential and symmetric versions
of the algorithms in this section are the same as the existing ones discussed in [46, 34, 36, 31, 77], but the
others are new. Also, the asymmetric versions and most parallel versions are new. We improve the existing
results on symmetric/asymmetric cache complexity, as well as parallel span.

Symmetric cache complexity. We show improved algorithms for a number of problems when the number of
entries per cell differs from the dimension of input/output arrays. Such algorithms are for the GAP recurrence,
protein accordion folding, and the RNA recurrence. We show that the previous cache boundO(n3/B

√
M) for

the GAP recurrence and protein accordion folding is not optimal, and we improve the bounds in Theorem 7.2
and 7.3. For the RNA recurrence, we show an optimal cache complexity of Θ(n4/BM) in Theorem 7.2,
which improves the best existing result by O(M3/4).

Asymmetric cache complexity. By applying the asymmetric version for the k-d grid computation discussed
in Section 5, we show a uniform approach to provide write-efficient algorithms for all DP recurrences in this
section. We also shown the optimality of all these algorithms regarding asymmetric cache complexity, expect
for the one for the GAP recurrence.

Parallelism. The parallelism of these algorithms is provided by the parallel algorithms discussed in Section 6.
Polylogarithmic span can be achieved in computing the 2-knapsack recurrence, and linear span in LWS
recurrence and protein accordion folding. The linear span for LWS can be achieved by previous work [75, 41],
but they are not race-free and in the nested-parallel model. Meanwhile, our algorithms are arguably simpler.

7.1 LWS Recurrence

We start with the simple example of the LWS recurrence where optimal sequential upper bound in the
symmetric setting is known [34]. We show new results for lower bounds, write-efficient cache-oblivious
algorithms, and new span bound.

The LWS (least-weighted subsequence) recurrence [55] is one of the most commonly-used DP recurrences
in practice. Given a real-valued function w(i, j) for integers 0 ≤ i < j ≤ n and D0, for 1 ≤ j ≤ n,

Dj = min
0≤i<j

{Di + w(i, j)}
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This recurrence is widely used as a textbook algorithm to compute optimal 1D clustering [63], line break-
ing [64], longest increasing sequence, minimum height B-tree, and many other practical algorithms in
molecular biology and geology [50, 51], computational geometry problems [3], and more applications in [66].
Here we assume that w(i, j) can be computed in constant work based on a constant size of input associated to
i and j, which is true for all these applications. Although different special properties of the weight function
w can lead to specific optimizations, the study of recurrence itself is interesting, especially regarding cache
efficiency and parallelism.

We note that the computation of this recurrence is a standard 2d grid. Each cell g(Di, i, j) = Di +w(i, j)
and updates Dj as the output entry, so Theorem 4.1 and 4.2 show lower bounds on cache complexity on this
recurrence (the grid is (1/2)-full).

We now introduce cache-oblivious implementation considering the data dependencies. Chowdhury and
Ramachandran [34] solves the recurrence with O(n2) work and O(n2/BM) symmetric cache complexity.
The algorithm is simply a divide-and-conquer approach and we describe and extend it based on k-d grids. A
task of range (p, q) computes the cells (i, j) such that p ≤ i < j ≤ q. To compute it, the algorithm generates
two equal-size subtasks (p, r) and (r + 1, q) where r = (p+ q)/2, solves the first subtask (p, r) recursively,
then computes the cells corresponding to w(i, j) for p ≤ i ≤ r < j ≤ q, and lastly solves the subtask
(r + 1, q) recursively. Note that the middle step also matches a 2d grid with no dependencies between the
cells, which can be directly solved using the algorithms in Section 5. This leads to the cache complexity and
span to be:

Q(n) = 2Q(n/2) +Q2C(n/2)

D(n) = 2D(n/2) +D2C(n/2)

Here 2C denotes the computation of a 2d grid. The recurrence is root-dominated with base cases Q(M) =
Θ(M/B) and D(1) = 1. This solves to the following theorem.

Theorem 7.1. The LWS recurrence can be computed in Θ(n2) work, Θ

(
n2

BM

)
and Θ

(
ω1/2n2

BM

)
optimal

symmetric and asymmetric cache complexity respectively, and O(n) span.

7.2 GAP Recurrence

We now consider the GAP recurrence that the analysis of the lower bounds and the new algorithm make use
of multiple grid computation. The GAP problem [49, 51] is a generalization of the edit distance problem that
has many applications in molecular biology, geology, and speech recognition. Given a source string X and
a target string Y , other than changing one character in the string, we can apply a sequence of consecutive
deletes that corresponds to a gap in X , and a sequence of consecutive inserts that corresponds to a gap in
Y . For simplicity here we assume both strings have length n, but the algorithms and analyses can easily
be adapted to the more general case. Since the cost of such a gap is not necessarily equal to the sum of the
costs of each individual deletion (or insertion) in that gap, we define w(p, q) (0 ≤ p < q ≤ n) as the cost
of deleting the substring of X from (p + 1)-th to q-th character, w′(p, q) for inserting the substring of Y
accordingly, and r(i, j) as the cost to change the i-th character in X to j-th character in Y .

Let Di,j be the minimum cost for such transformation from the prefix of X with i characters to the prefix
of Y with j characters, the recurrence for i, j > 0 is:

Di,j = min


min0≤q<j{Di,q + w′(q, j)}
min0≤p<i{Dp,j + w(p, i)}

Di−1,j−1 + r(i, j)

corresponding to either replacing a character, inserting or deleting a substring. The boundary is set to be
D0,0 = 0, D0,j = w(0, j) and Di,0 = w′(0, i). The diagonal dependency from Di−1,j−1 will not affect the
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𝐷00 𝐷01

𝐷10 𝐷11

𝐷00 𝐷01

𝐷10 𝐷11

𝐷00 𝐷01

𝐷10 𝐷11

Recursively solve 𝐷00 Recursively solve 𝐷01 , 𝐷10 Recursively solve 𝐷11

(a) (b) (c) (d) (e)

Figure 2: The new cache-oblivious algorithm for GAP recurrences (n is the input size). The algorithm has
five steps. Step (a) first recursively solves the D00 quadrant, then Step (b) apply n/2 inter-quadrant column
updates and n/2 row updates, each corresponding to a 2d grid. After that, Step (c) recursively solves D01

and D10, Step (d) applies another n inter-quadrant updates, and finally Step (e) recursively solves D11. More
details about maintaining cache-efficiency is described in Section 7.2 in details.

asymptotic analysis since it will at most double the memory footprint, so it will not show up in the following
analysis.

The best existing algorithms on GAP Recurrence [34, 74] have symmetric cache complexity ofO(n3/B
√
M).

This upper bound seems to be reasonable, since in order to compute Di,j , we need the input of two vectors
Di,q and Dp,j , which is similar to matrix multiplication and other algorithms in Section 8. However, as
indicated in Section 3, each update in GAP only requires one entry, while matrix multiplication has two.
Therefore, if we ignore the data dependencies, the first line of the GAP recurrence can be viewed as n LWS
recurrences, independent of the dimension of i (similarly for the second line). This derives a lower bound
on cache complexity to be that of an LWS recurrence multiplied by 2n, which is Ω(n3/BM) (assuming
n > M ). Hence, the gap between the lower and upper bounds is Θ(

√
M).

We now discuss an I/O-efficient algorithm to close this gap. This algorithm is not optimal, but reduce it
to 1 + o(1). How to remove the low-order term remains as an open problem. The new algorithm is similar
to Chowdhury and Ramachandran’s approach [34] based on divide-and-conquer to compute the output D.
The algorithm recursively partitions D into four equal-size quadrants D00, D01, D10 and D11, and starts to
compute D00 recursively. After this is done, it uses the computed value in D00 to update D01 and D10. Then
the algorithm computes D01 and D10 within their own ranges, updates D11 using the results from D01 and
D10, and solves D11 recursively at the end. The high-level idea is shown in Figure 2.

We note that in Steps (b) and (d), the inter-quadrant updates compute 2× (n′/2) LWS recurrences (with
no data dependencies) each with size n′/2 (assuming D has size n′ × n′). Therefore, our new algorithm
reorganizes the data layout and the order of computation to take advantage of our I/O-efficient and parallel
algorithm on 2d grids. Since the GAP recurrence has two independent sections one in a column and the other
in a row, we keep two copies of D, one organized in column major and the other in row major. Then when
computing on the inter-quadrant updates as shown in Steps (b) and (d), we start 2 × (n′/2) parallel tasks
each with size n′/2 and compute a 2d grid on the corresponding row or column, taking the input and output
with the correct representation. These updates require work and cache complexity shown in Theorem 7.1. We
also need to keep the consistency of the two copies. After the update of a quadrant D01 or D10 is finished,
we apply a matrix transpose [20] to update the other copy of this quadrant by taking a min as the associative
operator ⊕, so that the two copies of D are consistent before Steps (c) and (e). The cost of the transpose is a
lower-order term. For the quadrant D11, we wait until the two updates from D01 and D10 finish, and then
apply the matrix transpose to update the values in each other. It is easy to check that by induction, the values
in both copies in a quadrant are update-to-date at the beginning of each recursion in Step (c) and (e).
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Our new algorithm still requires Θ(n3) work since it does not require extra asymptotic work. The cache
complexity and span satisfy:

Q(n) = 4Q(n/2) + 4(n/2) ·Q2C(n/2)

D(n) = 3D(n/2) + 2D2C(n/2)

The coefficients are easily shown by Figure 2. We first discuss the symmetric setting. The base cases
are Q(

√
M) = O(M/B) and Q2C(m) = O(m/B) for m ≤ M . This is a “balanced” recurrence with

O(M/B) I/O cost per level for log2
√
M levels. This indicates Q(M) = O((M/B) log2

√
M). The top-

level computation is root dominated since the overall number of cells in a level decreases by a half after every
recursion. Therefore, if n > M ,Q(n) = O(n2Q(M)/M)+O(n)·Q2C(n) = O(n2/B ·(n/M+log2

√
M)),

which is the base-case cost plus the top-level cost. Otherwise, all input/output for each 2d grid in the inter-
quadrant update fit in the cache, so we just need to pay O(n2/B) I/O cost for log2(n/

√
M) rounds of

recursion, leading to Q(n) = O(n2 log2(n/
√
M)/B). Similarly we can show the asymmetric results by

plugging in different base cases.

Theorem 7.2. The GAP recurrence can be computed in Θ(n3) work, O(nlog2 3) span, symmetric cache
complexity of

O

(
n2

B
·
(
n

M
+ log2 min

{
n√
M
,
√
M

}))
and asymmetric cache complexity of

O

(
n2

B
·

(
ω1/2n

M
+ ω log2 min

{
n√
M
,
√
M

}))

Compared to the previous results [34, 36, 31, 60, 77, 74], the improvement on the symmetric cache
complexity is asymptotically O(

√
M) (i.e., n approaching infinity). For smaller range of n that O(

√
M) ≤

n ≤ O(M), the improvement is O(n/
√
M/ log(n/

√
M)). (The computation fully fit into the cache when

n < O(
√
M).)

Protein accordion folding. The recurrence for protein accordion folding [77] isDi,j = max1≤k<j−1{Dj−1,k+
w(i, j, k)} for 1 ≤ j < i ≤ n, with O(n2/B) cost to precompute w(i, j, k). Although there are some minor
differences, from the perspective of the computation structure, the recurrence can basically be viewed as only
containing the first section of the GAP recurrence. As a result, the same lower bounds of GAP can also apply
to this recurrence.

In terms of the algorithm, we can compute n 2d grids with the increasing order of j from 1 to n, such
that the input are Dj−1,k for 1 ≤ k < j − 1 and the output are Di,j for j < i ≤ n. For short, we refer to a
2d grid as a task. However, the input and output arrays are in different dimensions. To handle it, we use a
imilar method to the GAP algorithm that keeps two separate copies for D, one in column-major and one in
row-major. They are used separately to provide the input and output for the 2d grid. We apply the transpose in
a divide-and-conquer manner—once the first half of the tasks finish, we transpose all computed values from
the output matrix to the input matrix (which is a square matrix), and then compute the second half of the task.
Both matrix transposes in the first and second halves are applied recursively with geometrically decreasing
sizes. The correctness of this algorithm can be verified by checking the data dependencies so that all required
values are computed and moved to the correct positions before they are used for further computations.

The cache complexity is from two subroutines: the computations of 2d grids and matrix transpose. The
cost of 2d grids is simply upper bounded by n times the cost of each task, which is O(n2/B · (1 + n/M))
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and O(n2/B · (ω+ω1/2n/M)) for symmetric and asymmetric cache complexity, and O(n log2 n) span. For
matrix transpose, the cost can be verified in the following recursions.

Q(n) = 2Q(n/2) +QTr(n/2)

D(n) = 2D(n/2) +DTr(n/2)

where Tr indicates the matrix transpose. The base case is Q(
√
M) = O(M/B) and D(1) = 1. Applying the

bound for matrix transpose [20] provides the following theorem.

Theorem 7.3. Protein accordion folding can be computed in O(n3) work, symmetric and asymmetric cache

complexity of Θ

(
n2

B

(
1 +

n

M

))
and Θ

(
n2

B

(
ω +

ω1/2n

M

))
respectively, and O(n log2 n) span.

The cache bounds in both symmetric and asymmetric cases are optimal with respect to the recurrence.

7.3 RNA Recurrence

The RNA problem [51] is a generalization of the GAP problem. In this problem a weight function w(p, q, i, j)
is given, which is the cost to delete the substring ofX from (p+1)-th to i-th character and insert the substring
of Y from (q + 1)-th to j-th character. Similar to GAP, let Di,j be the minimum cost for such transformation
from the prefix of X with i characters to the prefix of Y with j characters, the recurrence for i, j > 0 is:

Di,j = min
0≤p<i
0≤q<j

{Dp,q + w(p, q, i, j)}

with the boundary values D0,0, D0,j and Di,0. This recurrence is widely used in computational biology, like
to compute the secondary structure of RNA [81].

While the cache complexity of this recurrence seems to be hard to analyze in previous papers, it fits into
the framework of this paper straightforwardly. Since each computation in the recurrence only requires one
input value, the whole recurrence can be viewed as a 2d grid, with both the input and output as D. The 2d
grid is (1/4)-full, so we can apply the lower bounds in Section 5 here.

Again for a matching upper bound, we need to consider the data dependencies. We can apply the similar
technique as in the GAP algorithm to partition the output D into four quadrants, compute D00, then D01

and D10, and finally D11. Each inter-quadrant update corresponds to a 1/2-full 2d grid. Here maintaining
two copies of the array is not necessary with the tall-cache assumption M = Ω(B2). Applying the similar
analysis in GAP gives the following result:

Theorem 7.4. The RNA recurrence can be computed in Θ(n4) work, optimal symmetric and asymmetric

cache complexity of Θ

(
n4

BM

)
and Θ

(
ω1/2n4

BM

)
respectively, and O(nlog2 3) span.

7.4 Parenthesis Recurrence

The Parenthesis recurrence solves the following problem: given a linear sequence of objects, an associative
binary operation on those objects, and the cost of performing that operation on any two given (consecutive)
objects (as well as all partial results), the goal is to compute the min-cost way to group the objects by applying
the operations over the sequence. Let Di,j be the minimum cost to merge the objects indexed from i+ 1 to j
(1-based), the recurrence for 0 ≤ i < j ≤ n is:

Di,j = min
i<k<j

{Di,k +Dk,j + w(i, k, j)}
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where w(i, k, j) is the cost to merge the two partial results of objects indexed from i + 1 to k and those
from k + 1 to j. Here the cost function is only decided by a constant-size input associated to indices i,
j and k. Di,i+1 is initialized, usually as 0. The applications of this recurrence include the matrix chain
product, construction of optimal binary search trees, triangulation of polygons, and many others shown
in [38, 50, 51, 84].

The computation of this recurrence (without considering dependencies) is a (1/3)-full 3d grid, which has
the same lower bound shown in Corollary 8.1.

The divide-and-conquer algorithm that computes this recurrence is usually hard to describe (e.g., it
takes several pages in [31, 60] although they also describe their systems simultaneously). We claim that
under the view of our k-d grids, this algorithm is conceptually as simple as the other algorithms. Again
this divide-and-conquer algorithm partitions the state D into quadrants, but at this time one of them (D10)
is empty since Di,j does not make sense when i > j. The quadrant D01 depends on the other two. The
algorithm first recursively computes D00 and D11, then updates D01 using the computed values in D00 and
D11, and finally recursively computesD01. HereD01 is square, so the recursive computation ofD01 is almost
identical to that in RNA or GAP recurrence (although the labeling of the quadrants is slightly changed):
breaking a subtask into four quadrants, recursively solving each of them in the correct order while applying
inter-quadrant updates in the middle. The only difference is when the inter-quadrant updates are processed,
each update requires two values, one in D01 and another in D00 or D11. This is the reason that Parenthesis is
3d while RNA and GAP are 2d. The correctness of this algorithm can be shown inductively.

Theorem 7.5. The Parenthesis recurrence can be computed in Θ(n3) work, optimal symmetric and asymmet-

ric cache complexity of Θ

(
n3

B
√
M

)
and Θ

(
ω1/3n3

B
√
M

)
respectively, and O(nlog2 3) span.

7.5 2-Knapsack Recurrence

Given Ai and Bi for 0 ≤ i ≤ n, the 2-knapsack recurrence computes:

Di = min
0≤j≤i

{Aj +Bi−j + w(j, i− j, i)}

for 0 ≤ i ≤ n. The cost function w(j, i− j, i) relies on constant input values related on indices i, i− j and j.
To the best of our knowledge, this recurrence is first discussed in this paper. We name is the “2-knapsack
recurrence” since it can be interpreted as the process of finding the optimal strategy in merging two knapsacks,
given the optimal local arrangement of each knapsack stored in A and B. Although this recurrence seems
trivial, the computation structure of this recurrence actually forms some more complicated DP recurrence.
For example, many problems on trees6 can be solved using dynamic programming, such that the computation
essentially applies the 2-knapsack recurrence a hierarchical (bottom-up) manner.

We start by analyzing the lower bound on cache complexity of the 2-knapsack recurrence. The computa-
tional grid has two dimensions, corresponding to i and j in the recurrence. If we ignore B in the recurrence,
then the recurrence is identical to LWS (with no data dependencies), so we can apply the lower bounds in
Section 7.1 here.

Note that each update requires two input values Aj and Bi−j , but they are not independent. When
computing a subtask that corresponding to (i, j) ∈ [i0, i0 + ni]× [j0, j0 + nj ], the projection sizes on input
and output arrays A, B and D are no more than nj , ni + nj and ni. This indicates that the computation of
this recurrence is a variant of 2d grid, so we can use the same algorithm discussed in Section 5.

6Such problems can be: (1) computing a size-k independent vertex set on a tree that maximizes overall neighbor size, total vertex
weights, etc.; (2) tree properties such that the number of subtrees of certain size, tree edit-distance, etc.; (3) many approximation
algorithms on tree embeddings of an arbitrary metric [22, 24]; and many more.
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Corollary 7.6. 2-knapsack recurrence can be computed using O(n2) work, optimal symmetric and asymmet-

ric cache complexity of Θ

(
n2

BM

)
and Θ

(
ω1/2n2

BM

)
, and O(log2 n) span.

8 Matrix Multiplication and All-Pair Shortest Paths

In this section we discuss matrix multiplication, Kleene’s algorithm on all pair shortest-paths, and some linear
algebra algorithms including Strassen algorithm, Gaussian elimination (LU decomposition), and triangular
system solver. The common theme in these algorithms is that their computation structures are very similar
to that of matrix multiplication, which is a 3d grid. Strassen algorithm is slightly different and introduced
separately in Appendix A. Other algorithms are summarized in Section 8.2 and the details are given in
Appendix B–D.

We show improved asymmetric cache complexity for all problems. For Gaussian elimination and
triangular system solver, we show linear-depth race-free algorithms in both symmetric and asymmetric
settings which are based on the parallel algorithm discussed in Section 6. There exist work-optimal and
sublinear depth algorithm for APSP [76], but we are unaware of how to make it I/O-efficient. Compared to
previous linear-span algorithms [75, 41], our new algorithms are race-free and in the nested-parallel model.

8.1 Matrix Multiplication

The combinatorial matrix multiplication (definition in Section 2) is one of the simplest cases of the 3d
grid. Given a semiring (×,+), in matrix multiplication each cell corresponds to a “×” operation of the two
corresponding input values and the “+” operation is associative. Since there are no dependencies between
the operations, we can simply apply Theorem 6.6 and 6.8 to get the following result.

Corollary 8.1. Combinatorial matrix multiplication of size n can be solved in Θ(n3) work, optimal symmetric

and asymmetric cache complexity of Θ

(
n3

B
√
M

)
and Θ

(
ω1/3n3

B
√
M

)
respectively, and O(log2 n) span.

The result for the symmetric case is well-known, but that for the asymmetric case is new.

8.2 All-Pair Shortest Paths, Gaussian Elimination, and Triangular System Solver

We now discuss the well-known cache-oblivious algorithms to solve all-pair shortest paths (APSP) on a
graph, Gaussian elimination (LU decomposition), and triangular system solver. These algorithms share
similar computation structures and can usually be discussed together. Chowdhury and Ramachandran [34, 36]
categorized matrix multiplication, APSP, and Gaussian Elimination into the Gaussian Elimination Paradigm
(GEP) and discussed a unified framework to analyze complexity, parallelism and actual performance. We
show how the parallel depth and the asymmetric cache complexity can be improved using the algorithms we
just introduced in Section 5 and 6.

We discuss the details of these cache-oblivious algorithms in the appendix. The common theme in these
algorithms is that, the computation takes one or two square matrix(ces) of size n× n as input, applies n3

operations, and generates output as a square matrix of size n× n. Each output entry is computed by an inner
product of one column and one row of either the input matrices or the output matrix in some intermediate
state. Namely, the output Ai,j requires input Bi,k and Ck,j for 1 ≤ k ≤ n (A, B and C may or may not be
the same matrix). Therefore, we can apply the results of 3d grids on these problems.7 Note that some of

7For Gaussian Elimination Ak,k is also required, but Ak,k is only on the diagonal, which requires a lower-order of cache
complexity to load when computing a sub-cubic of a 3d grid.
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Algorithm 2: KLEENE(A)
Input: Distance matrix A initialized based on the input graph G = (V,E)
Output: Computed Distance matrix A

1 A00 ← KLEENE(A00)
2 A01 ← A01 +A00A01

3 A10 ← A10 +A10A00

4 A11 ← A11 +A10A01

5 A11 ← KLEENE(A11)
6 A01 ← A01 +A01A11

7 A10 ← A10 +A11A10

8 A00 ← A00 +A10A01

9 return A

the grids are full (e.g., Kleene’s algorithm) while others are not, but they are all α-full and contain O(n3)
operations.

The data dependencies in these algorithms are quite different from each other, but the recursions for
cache complexity Q(n) and depth D(n) for APSP, Gaussian elimination and triangular system solver are all
in the following form:

Q(n) = β Q(n/2) + γ Q3C(n/2)

D(n) = 2D(n/2) + δ D3C(n/2)

where Q3C(n) and D3C(n) are the cache complexity and depth of a 3d grid of size n. Here, as long as the the
recursive subtask fits into the cache together with the 3d grid computation and the β, γ and δ are constants
and satisfy β < 8, we can show the following bounds.

Theorem 8.2. Kleene’s algorithm for APSP, Gaussian elimination and triangular system solver of size n can

be computed in Θ(n3) work, symmetric and asymmetric cache complexity of O
(

n3

B
√
M

)
and O

(
ω1/3n3

B
√
M

)
respectively, and O(n) depth.

We now discuss the cache-oblivious algorithms to solve all-pair shortest paths (APSP) on a graph
with improved asymmetric cache complexity and linear span. Regarding the span, Chowdhury and Ra-
machandran [36] showed an algorithm using O(n log2 n) span. There exist work-optimal and sublinear span
algorithm for APSP [76], but we are unaware of how to make it I/O-efficient while maintaining the same
span. Compared to previous linear span algorithms in [41], our algorithm is race-free and in the classic
nested-parallel model. Also, we believe our algorithms are simpler. The improvement is from plugging in the
algorithms introduced in Section 5 and 6 to Kleene’s Algorithm.

An all-pair shortest-paths (APSP) problem takes a (usually directed) graph G = (V,E) (with no negative
cycles) as input. Here we discuss the Kleene’s algorithm (first mentioned in [62, 71, 44, 48], discussed in full
details in [6]). Kleene’s algorithm has the same computational DAG as Floyd-Washall algorithm [45, 80], but
it is described in a divide-and-conquer approach, which is already I/O-efficient, cache-oblivious and highly
parallelized.

The pseudocode of Kleene’s algorithm is provided in Algorithm 3. The matrix A is partitioned into

4 submatrices indexed as
[
A00 A01

A10 A11

]
. The matrix multiplication is defined in a closed semi-ring with
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(+,min). Kleene’s algorithm is a divide-and-conquer algorithm to compute APSP. Its high-level idea is to
first compute the APSP between the first half of the vertices only using the paths between these vertices. Then
by applying some matrix multiplication we update the shortest-paths between the second half of the vertices
using the computed distances from the first half. We then apply another recursive subtask on the second half
vertices. The computed distances are finalized, and we use them to again update the shortest-paths from the
first-half vertices.

The cache complexity Q(n) and span D(n) of this algorithm follow the recursions:

Q(n) = 2Q(n/2) + 6QMM(n/2)

D(n) = 2D(n/2) + 2DMM(n/2)

where QMM(n) is the I/O cost of a matrix multiplication of input size n. The recursion of Q(n) is root-
dominated, which indicates that computing all-pair shortest paths of a graph has the same upper bound on
cache complexity as matrix multiplication.

Theorem 8.3. Kleene’s Algorithm to compute all-pair shortest paths of a graph of size n uses Θ(n3) work,

has symmetric and asymmetric cache complexity of Θ

(
nk

M1/(k−1)B

)
and Θ

(
nkω1/k

M1/(k−1)B

)
, and O(n)

span.

Similar to some other problems in this paper, the symmetric cache complexity is well-known, but the
results in the asymmetric setting as well as the parallel approach are new.

9 Conclusions and Future Work

In this paper, we shown improved cache-oblivious algorithm of many DP recurrences and in linear algebra, in
the symmetric and asymmetric settings, both sequentially and in parallel. Our key approach is to show the
correspondence between the recurrences and algorithms and the k-d grid, and new results for computing the
k-d grid. We believe that this abstraction provides a simpler and intuitive framework on better understanding
these algorithms, proving lower bounds, and designing algorithms that are both I/O-efficient and highly
parallelized. It also provides a unified framework to bound the asymmetric cache complexity of these
algorithms.

Based on the new perspective, we provide many new results, but we also observe many new open
problems. Among them are:

1. The only non-optimal algorithm regarding cache complexity in this paper is for the GAP recurrence.
The I/O cost has an additional low-order term of O((n2 logM)/B). Although in practice this term will
not dominate the running time (the computation has O(n3) arithmetic operations), it is theoretically
interesting to know if we can remove this term (even without the constraints of being cache-oblivious
or based on divide-and-conquer).

2. We show our algorithms in the asymmetric setting are optimal under the assumption of constant-
branching (the CBCO paradigm). Since the cache-oblivious algorithms discussed in this paper are
leaf-dominate, we believe this assumption is always true. We wonder if this assumption is necessary
(i.e., if there exists a proof without using it, or if there are cache-oblivious algorithms on these problems
with non-constant branching but still I/O-optimal).

3. The parallel symmetric cache complexity Qp on p processors is Q1 +O(pDM/B), which is a loose
upper bound when D is large. Although it might be hard to improve this bound on any general
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computation under randomized work-stealing, it can be a good direction to show tighter bounds
on more regular computation structures like the k-d grids or other divide-and-conquer algorithms.
We conjecture that the additive term can be shown to be optimal (i.e., O(pM/B)) for the k-d grid
computation structures.

4. Due to the page limit, in this paper we mainly discussed the lower bounds and algorithms for square
grid computation structures, which is the setting of the problems in this paper (e.g., APSP, dynamic
programming recurrences). It is interesting to see a more general analysis on k-d grids with arbitrary
shape, and such results may apply to other applications like the computation of tensor algebra.
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A Strassen Algorithm

Strassen algorithm computes matrix multiplication on a ring. Given two input matrices A and B and
the output matrix C = AB, the algorithm partitions A, B and C into quadrants, applies seven recursive
matrix multiplications on the sums or the differences of the quadrants, and each quadrant of C can be
calculated by summing a subset of the seven intermediate matrices. This can be done in O(nlog2 7) work,
O(nlog2 7/M log4 7−1B) cache complexity and O(log2 n) depth.

Technically the computation structure of Strassen is not a k-d grid, but we can apply a similar idea in
Section 5 to reduce asymmetric cache complexity. We still use r as the balancing factor between reads
and writes (set to be ω2/3 in classic matrix multiplication). Given square input matrices, the algorithm also
partition the output into r-by-r submatrices, and then run the 8-way divide-and-conquer approach to compute
the matrix multiplication. This gives the following recurrences on work (T ), reads, writes and depth based on
the output size n:

T ′(n) = 7T ′(n/2) +O(n2)

R′(n) = 7R′(n/2) +O(n2/B)

W ′(n) = 7W ′(n/2) +O(ωn2/B)

D′(n) = D(n/2) +O(log n)
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Algorithm 3: KLEENE(A)
Input: Distance matrix A initialized based on the input graph G = (V,E)
Output: Computed Distance matrix A

1 A00 ← KLEENE(A00)
2 A01 ← A01 +A00A01

3 A10 ← A10 +A10A00

4 A11 ← A11 +A10A01

5 A11 ← KLEENE(A11)
6 A01 ← A01 +A01A11

7 A10 ← A10 +A11A10

8 A00 ← A00 +A10A01

9 return A

with the base cases T ′(1) = r, R′(
√
rM) = M/B, W ′(

√
M) = ωM/B, and D′(1) = 1. They solve to

R(n) = r2R′(n/r) = O(nlog2 7r2−log4 7M1−log4 7/B)

W (n) = r2W ′(n/r) = O(ωnlog2 7r2−log2 7M1−log4 7/B)

D(n) = O(log2 n)

The case when r = ωlog7 4 gives the minimized cache complexity of

Q(n) = O(nlog2 7ωlog7 16−1M1−log4 7/B) ≈ O(n2.8ω0.42/BM0.4)

anO(ω0.58) improvement over the non-write-efficient version. In this setting the work isO(nlog2 7ωlog7 64−2),
a factor of O(ω0.14) or O(ω1/7) extra work.

B All-Pair Shortest-Paths (APSP)

We now discuss the cache-oblivious algorithms to solve all-pair shortest paths (APSP) on a graph with
improved asymmetric cache complexity and linear span. Regarding the span, Chowdhury and Ramachan-
dran [36] showed an algorithm using O(n log2 n) span. There exist work-optimal and sublinear span
algorithm for APSP [76], but we are unaware of how to make it I/O-efficient while maintaining the same
span. Compared to previous linear span algorithms in [41], our algorithm is race-free and in the classic
nested-parallel model. Also, we believe our algorithms are simpler. The improvement is from plugging in the
algorithms introduced in Section 5 and 6 to Kleene’s Algorithm.

An all-pair shortest-paths (APSP) problem takes a (usually directed) graph G = (V,E) (with no negative
cycles) as input. Here we discuss the Kleene’s algorithm (first mentioned in [62, 71, 44, 48], discussed in full
details in [6]). Kleene’s algorithm has the same computational DAG as Floyd-Washall algorithm [45, 80], but
it is described in a divide-and-conquer approach, which is already I/O-efficient, cache-oblivious and highly
parallelized.

The pseudocode of Kleene’s algorithm is provided in Algorithm 3. The matrix A is partitioned into

4 submatrices indexed as
[
A00 A01

A10 A11

]
. The matrix multiplication is defined in a closed semi-ring with

(+,min). Kleene’s algorithm is a divide-and-conquer algorithm to compute APSP. Its high-level idea is to
first compute the APSP between the first half of the vertices only using the paths between these vertices. Then
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by applying some matrix multiplication we update the shortest-paths between the second half of the vertices
using the computed distances from the first half. We then apply another recursive subtask on the second half
vertices. The computed distances are finalized, and we use them to again update the shortest-paths from the
first-half vertices.

The asymmetric cache complexity Q(n) of this algorithm follows the recursion of:

Q(n) = 2Q(n/2) + 6Q3C(n/2)

D(n) = 2D(n/2) + 2D3C(n/2)

Considering this cost, the recursion is root-dominated, which indicates that computing all-pair shortest paths
of a graph has the same upper bound on cache complexity as matrix multiplication.

C Gaussian Elimination

Gaussian elimination (without pivoting) is used in solving of systems of linear equations and computing LU
decomposition of symmetric positive-definite or diagonally dominant real matrices. Given a linear system
AX = b, the algorithm proceeds in two phases. The first phase modifies A into an upper triangular matrix
(updates B accordingly), which is discussed in this section. The second phase solves the values of the
variables using back substitution, which is shown in Section D.

The process of Gaussian elimination can be viewed as a three nested-loops and computing the value
of Ai,j requires Ai,k, Ak,j and Ak,k for all 1 ≤ k < i. If required, the corresponding value of the LU
decomposition matrix can be computed simultaneously. The underlying idea of divide-and-conquer approach

is almost identical to Kleene’s algorithm, which partitions A into four quadrants
[
A00 A01

A10 A11

]
. The algorithm:

(1) recursively computes A00; (2) updates A10 and A01 using A00; (3) updates A11 using A10 and A01; and
(4) recursively computes A11.

Note that each inter-quadrant update in step (2) and (3) is a 3d grid, which gives the following recurrence:

Q(n) = 2Q(n/2) + 4Q3C(n/2)

D(n) = 2D(n/2) + 3D3C(n/2)

D Triangular System Solver

A Triangular System Solver computes the back substitution step in solving the linear system. Here we assume
that it takes as input a lower triangular n× n matrix T (can be computed using the algorithm discussed in
Section C) and a square matrix B and outputs a square matrix X such that TX = B. A triangular system
can be recursively decomposed as:[

B00 B01

B10 B11

]
=

[
T00 0
T10 T11

][
X00 X01

X10 X11

]
=

[
T00X00 T00X01

T10X00 + T11X10 T10X01 + T11X11

]
such that four equally sized subquadrants X00, X01, X10, and X11 can be solved recursively. In terms of
parallelism, the two subtasks of X00 and X01 are independent, and need to be solved prior to the other
independent subtasks X10, and X11.

The asymmetric cache complexity Q(n) of this algorithm follows the recursion of:

Q(n) = 4Q(n/2) + 2Q3C(n/2)

D(n) = 2D(n/2) +D3C(n/2)
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E Discussions of Carson et al. [29]

Carson et al. also analyze algorithms that reduce the number of writes [29]. They concluded that many cache-
oblivious algorithms like matrix multiplication could not be write-avoiding. Their definition of write-avoiding
is different from our write-efficiency, and it requires the algorithm to reduce writes without asymptotically
increasing reads. Hence, their negative conclusion does not contradict the result in this paper.

We now use matrix multiplication as an example that optimal number of reads leads to worse overall
asymmetric cache complexity. Let’s say a write is n times more expansive than a read. One algorithm can
apply n2 inner products, and the asymmetric cache complexity is O(n3/B): O(n/B) reads and O(1/B)
writes per inner product. However, the algorithms using optimal number of reads requires O(n3/B

√
M)

reads and writes, so the overall cache complexity is O(n · n3/B
√
M). The first algorithm requiring more

reads is a factor of O(n/
√
M) better on the asymmetric cache complexity. Notice that we always assume

n = ω(
√
M) since otherwise the whole computation is trivially in the cache and has no cost. As a result, an

algorithm with a good asymmetric cache complexity does not always need to be write-avoiding.
The algorithms on asymmetric memory in this paper all require extra reads, but can greatly reduce the

overall asymmetric cache complexity compared to the previous cache-oblivious algorithms. The goal of this
paper is to find the optimal cache-oblivious algorithms for any given write-read asymmetry ω.
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