Chapter 2

Machine Models
with Darren Strash

In Section 1.1, we introduced machine models as a necessity to abstractly design
and analyse algorithms without reference to a particular hardware used to exe-
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Figure 2.1: Some aspects of computer architecture for which we would like ma-
chine models.
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cute a program. Generally speaking, we are facing a chicken-egg problem here.
We can use machine models to abstract from existing hardware. But we can also
strive to develop hardware that matches a certain model in order to simplify pro-
gramming. The first view is usually justified since computer architecture often
follows a quantitative approach [229] changing architectures to improve perfor-
mance for existing benchmark programs. When this process comes up with new
architectural features like caches or pipelines, models have to catch up to make it
possible to develop new programs with reasonably predictable performance. This
also helps in tuning existing programs.

But also the second view makes sense and can be observed in practice. For
example, shared-memory multiprocessors with approximately symmetric mem-
ory access costs (SMPs) have been very successful and kept reappearing although
complex memory hierarchies promise more peak performance; see also Section 2.5.5.

The “daily work™ of an algorithm engineer faces a different question. Out
of several or many available machine models, which one makes sense for the
problem at hand? A straight-forward answer is to look at the machine one plans
to use and pick the “standard” model used for it. A closer inspection shows that the
Algorithm Engineering (AE) cycle of Chapter 1 is at work again. During design,
analysis, implementation, or experimental evaluation, we may learn that we have
to change the machine used or that we have to choose a different (perhaps more
detailed) model to explain the peculiarities of the studied software. Switching the
model may then also have a profound effect on the way we design and implement
our software.

As already discussed in Section 1.1, modeling machines faces a difficult trade-
off between simplicity and fidelity. Figure 2.1 summarizes some aspects of com-
puter architecture that one would like to model. In reality, things are even more
complicated — aspects like instruction pipelining, branch prediction, virtual mem-
ory, transactional memory, memory access contention, or further complexities of
different microarchitectures are not shown at all. To program a modern micro-
processor, one has access to thousands of pages of documentation but there is
no specification of how expensive a machine instruction is — indeed this varies
with the concrete processor model and a lot of context (cache content, state of the
execution pipeline, activities of other threads, temperature, etc.).!

It is worth noting though that this complexity is a relatively new development. In his pio-
neering algorithmics book [276] Knuth specifies his MIX machine language where each machine
instruction takes the same amount of time. In this model, the running time of a deterministic algo-
rithm was a function that could in principle be analyzed analytically. One author’s first computer
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One way out is to work with one or several simple models that each consider
one important aspect. The result can then be used to compare how well different
algorithms take these aspects into account.

Open Problem 1 (Model-based auto tuning) The case for simplicity in machine
models is closely connected to the readability of the result of an algorithm analy-
sis. However, more complicated models can be used to produce complicated but
accurate descriptions of the complexity of an algorithm. These can then help to
derive the value of tuning parameters. While we know of several failed attempts at
that, there are also success stories (e.g. [117]). Nevertheless, the approach seems
to warrant additional research. The basic idea is to perform a detailed analysis of
one or several algorithms/implementations that estimates their execution times as
a function of parameters that describe the machine, input, and the configuration
of the algorithm (tuning parameters). If the input and machine parameters are
known (derived by measuring them or by requiring them as part of the input), one
can use these formulae to select the best algorithm together with optimal tuning
parameters. This is potentially much more powerful than traditional auto-tuning
(e.g., [21, 42]) that blindly tries many combinations of tuning parameters for a
fixed set of inputs in the hope that this finds good values that also work well for
future inputs.

In the remainder of this chapter, we describe a wide spectrum of (more or less)
simple models. In some cases, we add new variants that address limitations of the
basic models. These variants all have a ‘*’-superscript added to their basic name.
Often, we also explain complications of actual hardware going beyond these mod-
els. This can be helpful in performance tuning beyond theoretical analysis or in
understanding deviations between analysis and experiments. However, the level
of detail varies significantly. In part due to space constraint, the expertise (or lack
thereof) of the authors, or perceived relevance to AE. For example, Section 2.3
gives a lot of detail on memory hierarchies where the author (and the AE com-
munity in general) have a lot of experience. On the other hand, our account of
analog computing (Section 2.13.3) remains on a much more cursory level since it

(1983) used an INMOS 6510 processor which understood less than 100 simple machine instruc-
tions. Each instruction was documented in detail including the number of clock cycles needed
to execute it. Hence, Knuth’s approach still worked. Even in the late 1980s, processors like the
Motorola 68000 were simple enough for this approach. Then, things like caching and pipelined in-
struction execution made processors faster but also less predictable. Research in real-time systems
since then has struggled to be able to at least guarantee some upper bounds [479].
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can currently be considered an exotic topic with more importance in the past but
considerable potential for the future.

There is no crystal clear delineation between abstract machine models as dis-
cussed in this chapter and performance tuning for particular architectures. How-
ever, issues discussed in this modeling section have the property that one can
describe the aspect to be optimized using a simple abstraction. For example,
branch-prediction mechanisms are quite complicated but simply striving to avoid
mispredictions is a good abstraction; see Section 2.2.5.

Chapter overview. In the following sections, we introduce concrete machine
models. Sections 2.1-2.3 discuss increasingly refined models of sequential com-
puting. Then Sections 2.4-2.7 present a large number of models for parallel com-
puting, where Section 2.4 motivates its importance and where Section 2.7 attempts
to bring some order into the “zoo” of possibilities. Section 2.8 on circuits takes
a lower-level view on computing that allows us to reason about hardware. Sec-
tions 2.9-2.11 look at aspects of computing orthogonal to the descriptions above:
processing data streams (Section 2.9) that do not fit into memory, fault tolerance
(Section 2.10), and privacy (Section 2.11)

Section 2.12 deviates from classical models of computation by outlining some
models for quantum computing which may revolutionize some areas of comput-
ing in the (near?) future. Indeed, there is no scarcity of further unconventional
models, some of which are briefly discussed in Section 2.13 (e.g., DNA, analog,
or neural computing).

While running time is the driving motivation between most of the models
above, other resources like space, I/O volume or communication cost are also
important. In particular, energy consumption is at least equally fundamental. Sec-
tion 2.14 discusses how to take these resources into account. Section 2.15 sum-
marizes the chapter with a brief look into conceivable futures.

2.1 Turing Machines

Perhaps the first abstract machine model was introduced by Alan Turing in 1936
[457] in order to characterize computability. A finite state machine operates on a
tape by reading and writing symbols from a finite alphabet and by moving the tape.
Allowing multiple tapes already gives surprisingly high flexibility in program-
ming. See Figure 2.2 for an illustration. Turing machines are used in complexity
theory and computability theory because of their great simplicity and flexibility.
They are also useful to nail down the complexity of an algorithm in terms of bit
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Figure 2.2: Multitape Turing machines.

operations, e.g., for integer multiplication [195, ]. Turing machines seem less
useful for designing algorithms that work well on real-world machines because
they differ from them in important aspects (no random memory access, finite al-
phabet, etc.). However, there are notable exceptions; in their book [424], Schon-
hage et al. demonstrate how multitape Turing machines can be a good model for
engineering numerical algorithms, such as dividing complex numbers or taking
square roots.

Exercise 1 Describe a Turing machine model operating on a two-dimensional
tape.

2.2 The von Neumann Model and its Variants

Most algorithm development, in particular in algorithm theory, is still done using
the von Neumann model or one of its variants as described below. It goes back to
one of the first designs for a universal digital computer [352] and it is a successful
way to formalize the basic computational cost of an algorithm. However further
aspects, such as memory hierarchies and parallelism, have to be considered later
in order to arrive at really high performance in practice. In our experience, this is
often more important than using advanced techniques in a simple model, such as
complicated bit parallel operations.

2.2.1 Random Access Machines (RAMs)

The random access machine (RAM) [429], in its modern form (the word RAM),
has a computing unit, a register file, and a freely-addressable memory consisting
of machine words.” See Figure 2.3. All operations execute in constant time.

2There are several quite different definitions of the RAM model around. Often, RAMs are also
confused with register machines; see Section 2.2.2. In particular, note that RAMs that are only
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Figure 2.3: The RAM / von Neumann model. ALU stands for arithmetical logical
unit.

Operations consist of load and store (also using indirect addressing), arithmetic
operations on register operands, and (conditional) branches.> The textbook [+ 10,
Section 2.2] introduces a variant of this model in more detail — with all operations
and an explanation of how pseudocode can be compiled into RAM operations
so that we can directly do asymptotic algorithm analysis on pseudocode. The
main point here is that by ignoring constant factors throughout, we can sweep
many aspects of an actual microarchitecture under the rug. We will also assume
an operation for generating machine words consisting of random bits. In reality,
randomness is often “simulated” using pseudo-random number generators.

An important technical detail is the machine word size w. By default, it is
O(logn), where n is the input size. In particular, this allows a considerable amount
of word-parallelism. It may seem odd that we can do a nonconstant amount of
work in constant time. However, the alternatives are even odder. Constant-size
machine words would not even allow us to address the input. This is the rea-
son why Turing machine models are often used to discuss algorithms where bit-
parallelism is not allowed. Sections 2.2.2 and 2.2.3 discuss the effect of unlimited
word sizes.

Exercise 2 Outline how to implement the set operations U, N, =, and |- | for
subsets of 0..n — 1 in time O(n/w).

allowed to increment or decrement, despite being universal machines, are not useful for analyzing
the complexity of algorithms.

3From a mathematical point of view, we would get a slightly simpler variant of the RAM
model by eliminating the register file. We choose to stick to it for several reasons: First, load-store
architectures represent an important development in computer architecture (also part of the RISC
versus CISC debate). In particular, access to registers is much cheaper than memory access in
practice so we already get a first hint at memory hierarchies. On the theoretical side, dropping the
memory gives us register machines as a special case.
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2.2.2 Register Machines

On a RAM with unlimited word size, we can escalate word parallelism to such
extremes that nondeterminism can be simulated with only polynomial-time over-
head, giving P = PSPACE [224]. Nevertheless, this variant is useful to discuss
computability in general. As a result, we no longer need memory; removing the
memory from the RAM model gives the register machine model. Registers with
“infinite” capacity are also implicit in the real RAM model discussed below.

2.2.3 The Real RAM

In computational geometry [378, ] one also considers the real RAM model
where memory cells and registers can store real-valued numbers. Some operations
are forbidden in this model (specifically the floor operation), otherwise the model
is too powerful, similar to the register machine model. The real RAM is highly
unrealistic yet allows us to abstract away issues related to numerical precision
in order to develop the algorithmic basis of geometric algorithms. These can
then be made realistic by using software libraries that support exact predicates on
symbolic representations of real numbers [163]. For example, the real numbers
most frequently needed in computational geometry can be represented as roots
of a polynomial with rational coefficients (known as algebraic numbers). Other
than exact computation, robust geometric computation can also be done with fixed
precision, or by transformations that preserve a chosen topological property (such
as planarity) [425].

2.2.4 Pointer Machines and Other Restricted RAMs

The full generality of the RAM model makes it difficult to prove lower bounds.
Therefore, one also considers restricted variants. For example, pointer machines
[423, ] are models where arithmetic is not possible. Instead, a finite state
machine operates on a dynamic graph. Other, more ad hoc restrictions are used
for particular families of problems. For example, for sorting and related problems,
we can consider elements that can only be moved, copied, and compared with a
< operation but not otherwise manipulated or inspected.

2.2.5 Instruction Parallelism

As a first small step to modeling parallel processing, one can take into account that
modern microprocessors can execute several machine instructions in each clock
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instruction decode + execute memory write
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Figure 2.4: A simple 5-stage pipeline [229] that splits an instruction execution
into fetching the instruction, decoding it and fetching input data that is stored in
registers, performing actual calculations, memory access, and writing back results
to registers.

cycle. This is achieved by pipelining and instruction parallelism. In pipelin-
ing, instruction execution is split into suboperations. Figure 2.4 shows a simple
5-stage pipeline. Current pipelines for high-performance processors are consid-
erably longer — sometimes using 20 or more stages. There is one pipeline stage
for each suboperation. Each pipeline stage handles one operation in each clock
cycle. Several such pipelines are running in parallel — often specialized to partic-
ular types of operations (integer, floating point, load, store, etc.). Thus, overall,
several dozen machine instructions are being executed in parallel at any point in
time. This works fine for straight-line sequences of instructions without too many
data dependencies between the operations. In this situation, conditional branch in-
structions are a problem because a branch can interrupt the stream of instructions.
When this happens, many partially executed instructions have to be abandoned,
their effect has to be rolled back, and it will take several clock cycles until the next
instruction is completed.

Processors therefore invest considerable resources into predicting the outcome
of a branch instruction. The instruction stream can then be continued in the pre-
dicted way without emptying the pipelines. In the most simple case, the compiler
can predict a branch as taken or not taken. For example, the branch at the end of a
repeat—until loop can be predicted as taken. This will fail only at the last iteration
of that loop. More sophisticated techniques discover patterns in the most recent
executions of a branch instruction using simple state machines [229]. Branch
prediction works surprisingly well in practice. Computer architecture textbooks
report typical rates of at least 90% correct branch predictions [229].

However, in some algorithms, branch mispredictions are hard to avoid. For
example, efficient comparison-based sorting algorithms need about nlogn ele-
ment comparisons. Traditional implementations of these algorithms associate one
conditional branch with each of the comparisons. For fundamental information-
theoretic reasons, these branches cannot be predicted at all — they are taken 50%
of the time in a completely unpredictable way regardless of how much prediction
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hardware is used. In such algorithms, the pipeline interruptions due to branch
mispredictions can completely ruin performance. Algorithm analysis therefore
sometimes also analyzes how many branch mispredictions can happen [351, ].
More importantly, there are techniques to avoid conditional branches [263, A

, 37]. This can greatly improve performance. In order to perform comparison-
based algorithms without conditional branches, one has to dissociate comparisons
from branches. The idea is that only very simple operations should depend on
the comparison. For example, superscalar sample sort [420, 37] only performs an
increment operation if a comparison operation computes the value true. Such sim-
ple operations can be done using predicated instructions. These are only executed
if a special condition flag is set that is the outcome of a comparison. Otherwise,
predicated instructions do nothing. Note that skipping one machine instruction
costs only a fraction of a clock cycle while a branch misprediction costs several
clock cycles.

*Exercise 3 Develop a routine for binary search of an element x in a sorted array
a of size n that uses conditional branches only for testing loop exit and for a
conditional move of the form if c then a :=b. You can assume that n is known
at compile time. Discuss how to generalize the code so that it can make a batch
of several searches'in an instruction parallel way. Why is that still likely to be
slower than searches based on implicit search trees as used in super scalar sample
sort[420, 38]? Implement your solution and benchmark it compared to a more
classical formulation of binary search, e.g., [410, Section 2.7].

Open Problem 2 (Priority queues without branch mispredictions) Design a
priority queue that avoids conditional branches like the super scalar sample sort
[420, 37] and, at the same time, is as cache efficient as sequence heaps [396] . Can
this be implemented in such a way that significant performance improvements are
possible?

Open Problem 3 (Where do branch mispredictions matter?) Most algorithms
where branch mispredictions are known to matter are comparison-based algo-
rithms for sorting and related problems (e.g., merging and partitioning). Can
you find further algorithmic problems? Flow computations? Monte Carlo sim-
ulations? How should these algorithms be modified to eliminate hard-to-predict
branches?

SIMD Instructions. Another dimension of instruction parallelism is exploited
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by SIMD instructions (aka vector instructions) that work on extra-wide registers
(currently up to 512 bits) containing short vectors of numbers (e.g., 32 entries of
16 bits each). For example, an addition of two SIMD registers would add the two
stored vectors component-wise.

2.3 External Memory

In computer architecture, there is a large spectrum of technologies for storing
data. In particular, we face a tradeoff between price per bit on the one hand and
speed on the other hand. Furthermore, there are fundamental physical reasons
(like the limited speed of light) why a large memory must have large access laten-
cies. Thus, there are good reasons why real-world (sequential*) computers with
good performance must have both large cheap memory and small fast memory.
This runs counter to the uniform memory in RAMs and a main principle in von
Neumann’s original idea of a universal computer [35”7]. We now discuss simple
abstract models that grasp the resulting memory hierarchy.

The basic external or secondary memory model (EM) [467], also called the
I/O model, is very simple; see Figure 2.5. We have a random access machine with
(fast) memory limited to M machine words. In addition, there is a large secondary
memory. Access to secondary memory is in blocks of size B. In algorithm the-
ory, analyzing external memory algorithms amounts to counting the number ¢ of
block accesses (I/0s). Sometimes we also use the /0 volume is then c¢B. In AE,
we additionally analyze the internal work, e.g., by counting executed machine in-
structions as in the RAM model. The simplicity of the EM model makes it very

“4For parallel architectures, there is an option to partition a large cheap memory into many small
pieces, each equipped with its own processor core that then has small uniform access latency to its
local piece of memory (aka processing in memory (PIM) [264]); see also Sections 2.4.6 and 2.5.5.

register = ALU
|

fast
M memory
Fz] block transfers

external memory

Figure 2.5: The external memory model
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flexible. Slow and fast memory can be any two levels of the physical memory
hierarchy. The two levels hard disk and main memory were originally most im-
portant. Today, main memory and some unspecified level of the cache hierarchy
are at least equally important. The EM model is highly successful because of
its simplicity and because algorithms that perform well in this model often also
perform well in practice; see [330, ] for overviews of results.

In the subsequent sections, we present further details and variants of the EM
model. This is perhaps the most detailed elaboration of a family of models in this
book. We view this as a convenient example of how a simple successful model
can relate to reality and refined models. The reader should assume that many of
the remaining models in this book deserve a similar amount of further detail. Sec-
tion 2.3.1 explains how many EM algorithms or their complexity can be expressed
based on sorting and scanning primitives. Sections 2.3.2 and 2.3.3 discuss how
the EM model does (or does not) grasp details of a real-world machine. Then
Section 2.3.4 generalizes the EM model to handle parallel disks. These are the
basis for modeling solid state disks in Section 2.3.5 and other nonvolatile memory
in Section 2.3.6. Peculiarities of hardware caches are discussed in Section 2.3.7.
Section 2.3.8 then explains how a simple twist of the EM model can be used to
model algorithms that perform well in multilevel memory hierarchies. Finally,
Section 2.3.9 discusses how virtual memory affects algorithm analysis and de-
sign. Another variant of the EM model yields a useful model for parallel memory
hierarchies; see Section 2.4.6.

2.3.1 Sorting and Scanning

Two simple algorithmic techniques permeate the design of external memory al-
gorithms: Scanning n elements (machine words) is possible with n/B 1/Os. The
shorthand scan(n) is used for this expression. Sorting n elements takes sort(n) =
O(n/B[1+logy zn/M]) I/Os [6]. Using multiway mergesort (Section 11.1.3)
we can see that an upper bound for the constant factor in sort(n) is 2 for sorting
machine-word-sized elements.

Open Problem 4 (Exact lower bound for external sorting) The constant factor
in the lower bound is still open. Aggarwal and Vitter [0] basically show a factor
of 1 and that the factor becomes 2 when one assumes that the number of inputs
is the same as the number of outputs. However, this leaves open the existence of
more efficient algorithms that do an asymmetric amount of reading and writing.
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Exercise 4 Describe an external sorting algorithm that needs just [n/B] output
operations. You can expend a large number of input operations. But try to limit
them to O(n*/BM). Also, limit internal work to O(n*logn/BM).

The sorting bound is also a lower and/or upper bound for many other com-
putational problems even if the actual algorithms used to solve them are quite
different.

From an AE perspective, sorting and scanning are convenient ways to distin-
guish more or less complicated algorithms in a qualitative sense. However, in
practice, the term [log,, /B n/M] is exactly one” in many situations. Let us con-
sider the case of hard disk versus main memory. In the last few decades, the cost
ratio between mechanical hard disk memory and RAM has remained at around
200. This ratio is not likely to increase dramatically as long as RAM capacities
improve at least as fast as hard disk capacities. Hence, in a balanced system with
similar investments for both levels of memory, the ratio between input size and in-
ternal memory size is not huge. In particular, M /B is likely to be much larger than
than the cost ratio. But as long as M /B >n/M, we have [log, zn/M]| = 1. The
cost ratio for nonvolatile memory® (SSDs) versus main memory is even smaller.
We can have [logy,zn/M] > 1 when straddling several layers of the memory hi-
erarchy, e.g., when fast memory is L1 cache size (kilobytes) and slow memory is
the main memory of a large server (terabytes).

2.3.2 What is the Block Size?

On the first glance, the block size B is a parameter defined by the hardware, e.g.,
the cache line size of a certain hardware cache level. However, a closer look
reveals that often there is not one clear block size imposed by the hardware and
that B should actually be considered a tuning parameter of the implementation.
This is particularly clear for mechanical hard disks. There are hardware-
imposed block sizes used for error detection and correction. However, these val-
ues are much too small to be useful for external memory algorithms. A reasonable
linear model for the time to access ¢ consecutive bytes of data on a hard disk is
o+ B¢ where « is a startup overhead accounting for mechanical and software
delays and where f3 is the achievable data rate once access has started. Indeed,
it might be attributed to a historical accident that this model is unusual for hard

SOf course, the value is zero when processing can be done within internal memory.
Nonvolatile memory does not lose its state when the power is switched off.
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disks but standard for message passing; see Section 2.5. The above linear model
suggests that B~ o/ is a reasonable value for the block size. If we make ran-
dom accesses that actually need less data per access, we are at most twice as slow
as using a small block size. If we make a large consecutive access we are at
most twice as fast as accessing the same amount of data with random access of
block size a/fB. For current hard disks, this means that block sizes should be a
couple of megabytes. However, we can also turn this argument around. We can
achieve acceleration up to a factor of two by choosing a block size more appro-
priate for the application at hand. For example, for sorting we can choose large
block sizes as long as this leaves [logy, zn/M| at a value of 1. For index data
structures with access time O(logz n), we may want to choose smaller blocks; see
also Section 13.2.

We have moved this discussion outside the section on hard disks because it
emphasizes the fact that block sizes are tuning parameters. At the other extreme,
even hardware cache lines may not be the right choice for the tuning parameter B.
For example, many Intel processors access two consecutive cache lines consider-
ably faster than two arbitrary cache lines. Hence, setting B to two (or more) cache
lines may be a reasonable choice.

2.3.3 Modeling Mechanical Hard Disks

In Section 2.3.2 we used the formula a + B¢ for modeling the time needed to
access £ bytes of data on a disk.” This is a gross oversimplification for mechanical
hard disks. There are three main additional issues illustrated in Figure 2.6.

A. The disk rotates and the time needed to rotate to the beginning of the in-
tended data block depends on the current rotation angle. Thus, for a partic-
ular data block, the rotational delay will oscillate over time corresponding
to a sawtooth-shaped periodic function.

B. The access head has to seek to the right track before accessing a block.

C. The disk rotates at fixed angular velocity® and the data is stored with an
(approximately) fixed number of bits per millimeter of disk surface. This

"Hard disks are getting less and less important as this book is written. We still believe that this
section remains interesting as an example of how more detailed modeling can have an appreciable
performance impact yet is also impractical in many cases.

8There are exceptions, e.g., audio CDs.
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implies that data stored on the outer zones of the disk is transferred faster
than data on inside zones. Further complications arise for example due to
caching within the disk and because faulty tracks on the disk are replaced
by reserve tracks (usually on the slow inside zones of the disk).

These peculiarities can in principle be exploited for algorithm tuning. Batches of
blocks to be read may be scheduled so that overall rotational delays are minimized
[191, ]. Data accessed together can be stored close together. Important data
could be stored on outer zones.

Such tuning measures are good examples of optimizations one should often
avoid since they can be fragile and nonportable. These optimizations should only
be done on the right level of the software stack and using the right abstractions.
The processor controlling the disk can try to perform optimizations for issues A
and B when it is given batches or queues of outstanding I/Os. A disk usually
presents itself to the operating system as an array of blocks. Hence, the operating
system or a runtime system of a database could perform optimization for issue C
if it is understood that blocks with the smallest index are the fastest ones.

hard disk
b/oc +
b
]OC'](» rotational delay
. disk
; seek time cache

Figure 2.6: Schematic drawing of a mechanical hard disk — illustrating seek time,
rotational delay, and different data densities.
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2.3.4 Parallel Disks

The external memory model has been generalized to consider D identical disks
— in one I/O step, D blocks can be transferred [6, ]. Aggarwal and Vitter
[6] propose a simple variant where any D blocks can be accessed (referred to as
access-any variant). Vitter and Shriver [467] allow only one block to be accessed
from each disk (access one-each). Figure 2.7 depicts these two model variants.
In both variants, we can hope to reduce the number of I/O steps by a factor up to
D. To achieve this speedup, we need enough parallelism in the application. The
one-each variant in addition requires clever data allocation and disk scheduling
(e.g.,see [141, ] for sorting).

The one-each variant is more realistic than the access-any variant. The access-
any variant is still useful because it allows to discuss parallelism independently of
memory allocation and scheduling — see also Section 2.3.5 on SSDs. Moreover,
the access-any variant can emulate the one-each variant with surprisingly small
overhead [407] (a small constant factor using randomization) and there are gener-
alizations to asynchronous access, heterogeneous disks, etc. [397, 1.

Exercise 5 Give an example access pattern, where the one-each variant of the
parallel disk model takes D times more input steps than the access-any variant.
What changes with this pattern if each data block is independently allocated to a
random disk?

A simple way to exploit parallel disks is striping — we concatenate D physical
blocks of size B to one logical block of size DB. We can then apply any single-
disk algorithm using block size DB. This automatically exploits disk parallelism

registers E ALU registers E ALU
I I
M M
p@E->@A BA@A A
external memory external memory
multiple heads multiple disks

Figure 2.7: The external memory model with parallel heads (access any) [6] and
parallel disks (access one-each) [467].
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in a perfectly load-balanced fashion. The problem with this approach is that not
all applications can make very good use of such large block sizes or that there
may not be enough fast memory to store enough blocks in internal memory.

2.3.5 Solid-State Disks

Solid-state disks (SSDs) are built using semiconductor technology that does not
lose its memory when power is lost [331, 7]. Access is done in blocks to hide
access latencies and to simplify error correction. SSDs are cheaper than RAM
because their cells are slightly smaller, because they store several bits per cell,
and because one can stack memory cells in hundreds of layers. On the other hand,
SSD access is slower than RAM access. At the time of writing, SSDs are rapidly
replacing mechanical hard disks in more and more applications — they are faster,
more compact, and need less power. In particular, the nonvolatile memory of a
smartphone is essentially an SSD.

SSDs have smaller blocks than hard disks, higher overall bandwidth, and
much lower access latency. 'There are also two important qualitative differences
compared with hard disks. First, there is a marked asymmetry between reading
and writing. Writing is usually slower, consumes more energy, and often uses
larger block sizes than reading. More precisely, what is most expensive and uses
larger blocks is erasing data blocks which is required to overwrite them with dif-
ferent data later. Also, erasing the same physical block multiple times wears it out
and eventually destroys it. The disk controller therefore employs wear-leveling

SSD 1 S
controller o =
request queues | ol il ol ol i I e e
TITTO =~=E=I== =T ETTT
m— o | |
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Figure 2.8: Schematic drawing of a solid state disk (SSD). Each cell stores several
bits. Many layers of cells and chips side by side give significant parallelism in
request processing.
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algorithms that change the mapping from logical to physical blocks to spread out
write accesses over the entire disk. For the user, it is important that background
processes for wear-leveling and erasing invalidated blocks can cause performance
anomalies in particular for applications with complicated writing patterns. Also,
a nearly full SSD can be much slower for writing than an empty one.

The second important difference is that to achieve maximum throughput of
random disk accesses, one needs to make many accesses in parallel. The currently
dominating NVM Express protocol (NVMe) therefore offers 2'® command FIFO
queues, each of which can buffer up to 2'¢ commands. Figure 2.10 illustrates this
view of an SSD. For example, in an external hash table benchmark [2& 1] we use
an asynchronous parallel approach where up to 128 requests can be in flight at a
time. In a sense, each SSD device behaves like an array of many small parallel
disks. However, we have no control over the allocation of logical blocks to these
“sub-disks”.

Overall, two simple models for SSD seem reasonable. We can use the single-
disk EM model with a block size much larger than the physical block size of the
SSD. This will exploit the parallelism within the SSD because the controller in-
ternally stripes large blocks over the different memory modules. For applications
with many random accesses to small data objects, it is better to use the access-any
variant of the parallel disk model with a sufficiently large value of D to grasp the
parallelism within the SSD. The more complex one-each model is not helpful here
since we have no control over the allocation of blocks to disks.

Exercise 6 Produce a table comparing mechanical hard disks, SSDs and DRAM
memory at the current technology and market prices. Possibly include both main-
stream and high-end variants of the hardware. Compare cost per bit, bandwidth,
latency, and energy consumption. Document your methodology — from where do
you get the prices? How do you define latency? For energy consumption, can
you differentiate between reading, writing, and idling? For hardware that you
actually have at hand, try to compare actual measurements with data sheets or
benchmarks done elsewhere. Discuss differences.

2.3.6 Other Nonvolatile Memory

SSDs may be only an intermediate step to nonvolatile memory that looks more like
main memory than like a disk. This means that block sizes are cache line sizes
and that reads are as fast as for main memory. Writes may still be more expensive
in terms of time and energy consumption and the memory may wear out faster
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so that the number of write operations to a cache line has to be limited. This
situation can be analyzed in the context of write-efficient algorithms [74] where
one considers write operations to main memory to be a factor @ more expensive
than read operations. Another interesting aspect of this is how to make algorithms
persistent when using such memory, i.e., to allow restarts after failures that erase
the local state of the processors and the content of the fast memory [76, 1.

2.3.7 Hardware Caches

One assumption of the EM model is that the algorithm has full control over the
content of the fast memory. In contrast, the content of a processor cache is con-
trolled by the hardware. A typical strategy are a-way set associative caches [229],
where a is a small constant: Suppose the cache contains ak cache lines. It is then
divided into k cache sets of size a. Cache line i is mapped to cache set i mod k.
Each cache set is managed separately using (an approximation of) the least re-
cently used eviction strategy (LRU), i.e., when a new cache line enters a cache set
s then the least recently used block in s is evicted; (see also Section 2.3.9). Some-
times the LRU strategy is only approximated. The case a = 1 is called direct-
mapped cache. Figure 2.9 illustrates this variant of the EM model.

In practice, set-associative caches work quite well, even for relatively small
values of a [229], e.g., a = 4. However, bad situations may arise. Even direct-
mapped caches are efficient if one maintains full control over memory allocation
and simple deterministic access patterns of the algorithm. For more complex ac-
cess patterns there is less previous work. In [326] we consider the situation where
the program scans k arrays of total length n. This covers many external memory

registers E ALU

cache sets fast
2000 || a=p memory
block transfers

cache lines of the memory external memory

Figure 2.9: External memory with set-associative fast memory.
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algorithms akin to sorting. If k£ > a, every element access may cause a cache fault
in the worst case. However, if the starting addresses of the arrays are randomized,
O(n/B) cache faults suffice provided that k = O (M /B'*1/9). One can also bypass
the hardware cache replacement [ 189, ] — although at the cost of considerable
overhead.

Exercise 7 For the computer you are mainly using, try to find as much informa-
tion as you can on its memory hierarchy: how many cache levels? block sizes?
associativity of each level? speed? Make a table and document your sources.

2.3.8 Cache-Oblivious Algorithms / Multilevel Hierarchies

Of course, we can design algorithms that explicitly handle multiple levels of mem-
ory hierarchy and then analyze the number of 1/Os for each level. However, this
is rarely done since it leads to complicated algorithms and complicated results of
the analysis. Anyway, in practice usually two levels of the hierarchy will be the
performance bottleneck so that setting the parameters B and M of the EM model
to these parameters will yield an efficient program. However, which two levels
are relevant may depend on the actual machine and on the size of the input. For
example, when the input fits in the L3 cache, L2 cache misses may be the per-
formance bottleneck whereas, for large inputs, L3 cache misses may dominate.
Hence, in general we need an (auto)tuning mechanism to tune the parameters B
and M.

An elegant alternative to tuning is to design I/O-efficient algorithms that do not
rely on the values of B and M. Such cache-oblivious algorithms are automatically
efficient for all levels of the memory hierarchy [189, , 25]. For example, an
algorithm that just scans an array of size n will need scan(n) I/Os regardless of the
concrete values of B and M. Section 9.3 describes cache-oblivious unbounded ar-
rays and queue-like data structures. Hashing with linear probing (Section 10.4.1)
is another simple example for a cache-oblivious algorithm.

Open Problem 5 (AE for cache-oblivious algorithms) Few cache-oblivious al-
gorithms have been evaluated experimentally [89, , 91]. Even fewer can actu-
ally compete with the best cache-aware algorithms. Even defining “compete” is an
interesting question here. How much overhead is worth the robustness of avoiding
tuning? Does the cache-oblivious algorithm ever outperform a cache-aware algo-
rithm that uses fixed values for M and B across all inputs and machines? Hence,
AE for cache-oblivious algorithms is a wide-open topic.
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Exercise 8 Perform a case study on engineering algorithms for matrix transposi-
tion. Previous algorithms and proof-of-concept implementations [279, ] can
serve as a starting point. To simplify the situation, assume that we transpose
2% x 2k-matrices out-of-place, i.e., the result is in a separate piece of memory.
Compare

a) A straight-forward nested loop implementation

b) A tuned cache-aware algorithm that cuts the matrix into tiles of size B X
B. Subroutines for moving or swapping and transposing tiles should be
carefully tuned.

c) A simple recursive cache-oblivious algorithm

d) A tuned cache-oblivious algorithm that uses a tuned base case and a tuned
copy operation that may be similar to the ones developed for 2.

e) A carefully tuned code from a numerical library.’

Compare the versions for different input sizes and on different architectures.

2.3.9 Virtual Memory

Virtual memory is a combined hardware/operating system mechanism that allows
all processes to use the same logical address space starting from 0. Ideally, this
mechanism should be invisible. However, performance penalties due to the trans-
lation of virtual to physical addresses do show up and can also be modeled. One
important effect is due to the translation lookaside buffer (TLB) — a cache for m
page addresses that allows us to quickly translate accesses to these pages. TLB
misses can be modeled like cache faults for a cache where page size B is the vir-
tual memory page size and where the cache size is M = mB. One can reduce TLB
misses by configuring the operating system to use larger page sizes. Applications
that have many TLB misses (e.g. when they frequently access large hash tables)
experience memory access delays that are not constant but grow with the input
size. The reason is that tree-like data structures are used to resolve TLB misses

[261].

9The documentation of operation cmatrixtranspose in the Alglib library (www.alglib.net/
translator/man/manual.cpp.html, accessed Oct. 17, 2023) mentions that it is actually
using a cache-oblivious implementation. Often matrix transposition is a special case of a more
flexible operation, e.g., with the suffix matcopy.
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Figure 2.10: Left: schematic of the RAM model with the address data path ex-
posed. Right: refined model of the address data path taking translation lookaside
buffer (TLB) and the page table data structure into account.

Virtual memory also supports programming techniques that would otherwise
not be available. For example, the Templated Portable I/O Environment (TPIE)
library for external memory computing [27] uses operating system mechanisms
to emulate a logical memory that is larger than the physical memory. However,
most efficient implementations of external memory algorithms use more efficient
and more flexible mechanisms. A related (efficient) technique is memory over-
committing where the logical address space used is larger than the physical one
but the program never accesses more than the physically available memory. This
allows the allocation of several large arrays whose total size is known but whose
individual size is unknown. Section 10.8 gives an application for space-efficient
hash tables.

When a large external memory is used to extend a small physical memory,
efficient caching mechanisms become essential. The LRU strategy mentioned
in Section 2.3.7 is considered reasonably effective here. However, it is expen-
sive to implement it precisely. Therefore, various approximations are considered
whose precise implementation depends on the capabilities of the required hard-
ware. For example, one can maintain a (possibly approximate) priority queue
of cached pages whose priority is a time stamp. Since maintaining precise time
stamps is too expensive, one can maintain a lower bound for the last access. When
a page has the lowest-known bound, it is not immediately evicted but goes into
a (possibly approximate) FIFO of eviction candidates. In addition, the page is
marked to throw an exception when it is accessed next. If this happens before the
page is actually evicted, a fresh timestamp is noted and used to reinsert it into the
priority queue.

A disadvantage of LRU is that it caches data that is merely scanned and never
accessed again. Therefore various refinements have been designed that evict pages
that are “not in active use”.
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2.4 Shared-Memory Parallel Models

Perhaps the main weakness of the RAM model is that it considers only sequential
algorithms. However, it is difficult to make sequential computers faster. Increas-
ing the clock frequency reduces energy efficiency. Increasing instruction paral-
lelism only helps for a limited set of computations. Increasing the size of the
memory increases access latencies. Overall, there is a limited return on invest-
ment regarding performance when one invests more transistors or more energy
to get faster sequential computers. These limitations can be overcome by look-
ing at parallel computing that allows near-linear scaling of computing power with
the invested resources. Not surprisingly, the most successful models of parallel
computing are slight generalizations of the RAM model. In this section, we begin
with the approach to keep a global shared memory and to replicate the processing
cores. Section 2.5 replicates RAMs and connects them by a network. A more ab-
stract view taken in Section 2.6 is to look at a small set of parallelizable operations
applied to sets or sequences

We begin with the simple PRAM in Section 2.4.1 that can already serve as
a basis for devising parallel algorithms in a high-level fashion, concentrating on
exposing the parallelism in the problem. There, we also introduce several im-
portant conventions for analyzing parallel algorithms. On the other hand, real
shared-memory machines are ubiquitous now from smartphones to servers with
hundreds of cores: Further subsections cover important aspects of real-world
shared-memory machines.

2.4.1 Classical Parallel Random Access Machine (PRAM)

A PRAM consists of p execution units (PEs) of random access machines (RAMs,
Section 2.2.1) attached to a single shared memory. The PEs are numbered from
1 to p (or from O to p — 1, or whatever is most convenient for the algorithm de-
scription), which are their /Ds. As in the RAM model, instructions are assumed to
need constant time. The PEs work in a lockstep fashion, i.e., those PEs that load
a memory cell do so 'based on the value at the beginning of a time step. Those
that write a value to'a memory cell store this value during the step and the value
is visible there in the next time step.

PRAMs come in several variants depending on the rules for concurrent access
to the same memory cell. In the acronyms for these variants, an “E” stands for
“exclusive”, i.e., concurrent access to the same memory cell in the same time step
is forbidden and a “C” stands for “concurrent”, i.e., concurrent access is allowed.
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Figure 2.11: The parallel random access machine (PRAM).

By distinguishing between read access (R) and write access (W), we get three
main model variants — EREW, CREW, and CRCW.

Exercise 9 What would an ERCW PRAM be? Discuss why this variant is not
important.

For CRCW PRAMs there are several submodels depending on the semantics
of concurrent writes:

Common: Concurrent accesses are only allowed if all PEs that attempt to write
to the cell concurrently write the same value. This is the weakest model
variant but is already surprisingly powerful.

Arbitrary: If several different values are written concurrently to a cell, one of
these values will be stored. The algorithm has to remain correct regardless
of which of the values is chosen.

Priority: Among the PEs that try to write, the one with the smallest PE ID writes.
This should not be confused with a prioritization based on the written value
which falls into the Combine category below.

Combine: A commutative and associative operation like sum, min, max, or xor
is applied to the written values. This is a fairly expensive operation.

Table 2.1 gives examples.

An abstract representation of a PRAM computation is a directed acyclic graph
(DAG) of elementary operations where one measures the size of the DAG (work)
and the number of operations on its longest path (span) which is a measure for
the latency of a computation. The goal is often to achieve work similar to the
best-known sequential algorithm and low span, preferably polylogarithmic in the
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Table 2.1: Results of a concurrent write operation to memory cell 42 using differ-
ent variants of the CRCW PRAM model.

input result
PE1 PE2 PE3 | Common  Arbitrary Priority Combine-Add
3 3 3 3 3 3 9
1 2 3 Error  x€{1,2,3} 1 6
2 1 3 Error  x€{1,2,3} 2 6
25178595 2 51
g [ | +
o 3 +
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g E T~
o0 % +\ ‘
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2 7 8 152328 37 42 R

Figure 2.12: DAGs for two ways.to compute 8-element prefix sums.
Left: with span and work 7 (additions). Right: with span 3 and work 12.

input size n, i.e., log%" n. See Figure 2.12 for an example. Note the relation to

the size and depth of a circuit explained in Section 2.8.1.

PRAMs have been criticized as unrealistic because of their lockstep operation
principle and because they do not account well for communication costs. How-
ever, our impression is that this criticism is only partially warranted. PRAMs are
an easy way to express parallelism and are thus a logical first step to a paral-
lel algorithm. Many PRAM algorithms have later been implemented on realistic
machines. In our opinion, what should be questioned is the large number of in-
efficient PRAM algorithms that invest a polynomial factor of additional work in
order to achieve a polylogarithmic span. However, this issue is not so much due to
problems with the PRAM model but with an unrealistic framework for algorithm
analysis.

Open Problem 6 (Slow but efficient parallel algorithms) Polylogarithmic span
has been a primary objective of parallel algorithm development since the 1980s for
complexity-theoretic reasons [214] — problems that do not allow polylogarithmic
span were deemed to be hard to parallelize. However, from an AE perspective,
efficient algorithms with larger span, such as n® for @ < 1, are perfectly fine. Can
we find such algorithms for problems that are otherwise hard, e.g., BFS, strongly
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connected components (see also [179, 1)? Recently, several promising theo-
retical results in this direction have been achieved for problems related to graph
reachability [256, ].

Exercise 10 Describe fast algorithms that perform the logical and of n Boolean
values using n PEs of a PRAM for a) CREW PRAM; and b) common CRCW
PRAM. Compare the achieved running times.

2.4.2 Asynchronous PRAM

To refine PRAM algorithms for real-world shared-memory machines, one can use
an asynchronous model with queued writing [202, , ]. This is a clean
model of the memory access contention that is a major performance problem in
practice. Let us single out the aCRQW PRAM model — the asynchronous con-
current read queued write PRAM [410, Section 2:4.1]. We assume concurrent
reads without delays since the local caches of the PEs enable contention-free con-
current read accesses in many practical situations. However, concurrent writing to
the same memory cell involves gueuing.'” More concretely, a FIFO queue is asso-
ciated with every memory cell. During any clock cycle and for any cell C, first, all
read operations to C return its old value. Then write operations to C are appended
to the queue of C — possibly several ones. Finally, the first write operation in the
queue of C is executed and the corresponding operation finishes. The remaining
write operations remain in the queue, delaying the corresponding PEs. Table 2.2

101 practice, contention may also happen when different cells are accessed, e.g., when they are
located in the same cache line (false sharing). Careful implementation can often avoid such effects.

Table 2.2: Example of queued writing where PEs 1-3 concurrently access mem-
ory cell S[42]. Each row corresponds to one clock cycle on an aCRQW PRAM
(which is still an abstraction of a real-world machine).

S[42]
value - queue | PE 1 PE 2 PE 3
0~ { S[2]:=11 S[42]:=22 S[42]:=33
11 (2,3) | S[42]:=111 queued queued
22 (3,1) | queued instr. x queued
33 (1) queued instr. y instr. v
1t instr. u instr. z instr. w




2.4. SHARED-MEMORY PARALLEL MODELS 59

gives an example. Other operations may also vary in their execution time — we
drop the lockstep synchronization assumed for PRAMs. Further variants can be
considered.

2.4.3 Atomic Operations

To achieve consistent behavior in asynchronous shared-memory machines, we
need atomic operations that perform a set of memory operations uninterrupted by
other PEs; see also [410, Section 2.4.3]. The most widely considered atomic oper-
ation is compare-and-swap (CAS). A call CAS(i, e, d) specifies a value e expected
to be present in memory cell i and the value d that it wants to write. If the expec-
tation is true, d is written to memory cell i, the operation succeeds by returning
1. If the value is different, some other PE has modified cell i in the meantime.
CAS writes the new value of cell i into e and fails by returning 0. See Table 2.3
for an example. CAS can be used to implement locks and other synchronization
primitives. It can also be used to update the content of a cell. For example, a
loop of CAS operations can be used to atomically add an offset to the content of
a cell. This fetch-and-add operation as well as similar update operations are also
directly supported by many architectures (see Table 2.4 for an example). Particu-
larly special are priority updates, where [432] S[i] := max(S[i],x). If one assumes
that updates arrive in an order that is not correlated to their value, the cell value
changes only a logarithmic number of times and thus the updates lead to little
contention.

Table 2.3: Example of two concurrent CAS instructions executed on memory cell
S[42] in the aCRQW PRAM model. The columns labelled R, and R, give the
current value of these registers. PE 1 succeeds in writing the value 1. PE 2 is first
queued and then its CAS instruction fails because the actual value of S[42] is now
1 while value 0 was expected. The actual value is returned in register Rj.

S[42] PE 1 PE 2
val queue ‘ instruction R, R, | instruction R R,
0 () Ry:=CAS(42,R;,1) 0 -1 | R;:=CAS(42,R1,2) 0 -1
1 (2) instr. x 0 1 | queued 0 -1
1 () instr. y 0 I |instrz 1 0

Some architectures support transactional memory. Here, a computer program
can label a (small) subsequence of instructions as a transaction. The hardware
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Table 2.4: Example of two concurrent fetch-and-add operations incrementing
memory cell §[42] in the aCRQW PRAM model.

S[42] queue | PE 1 PE 2

0 0 fetchAdd(42,1) fetchAdd(42,1)
1 (2) instr. x queued

2 () instr. y instr. g

guarantees that a transaction is either executed atomically or fails without chang-
ing the memory. Transactions can immensely simplify the design of concurrent
programs and they often improve performance. A downside is that there are no
hard guarantees that transactions will eventually succeed (perhaps after some re-
tries). Hence, a program also needs a fallback implementation using traditional
techniques such as locks or simpler atomic operations.

Exercise 11 Repeat Exercise 10 (logical and) for the aCRQW PRAM using CAS
instructions. How can youachieve logarithmic worst-case execution time?

2.4.4 Lock-Free and Wait-Free Algorithms

Multiple threads can stand in each other’s way in highly complicated ways. For
example, three threads might wait for locks held by other threads in a cyclical
fashion — a deadlock situation that can bring the system to a standstill. A particu-
larly complex situation is when a thread ¢ holds a lock ¢ and then is itself blocked;
for example, because it currently does not have a PE assigned to it by the oper-
ating system or because it waits for the completion of an I/O operation. Thread
t can then delay many other threads waiting to acquire lock ¢. Therefore, there
has been intensive work on algorithms that avoid such situations. A non-blocking
algorithm avoids any kind of locking, i.e., no blocked thread can block another
thread. A lock-free algorithm moreover guarantees that some thread in the system
can always make progress towards reaching its overall goal. Finally, a wait-free
algorithm guarantees progress by each thread. For more details and examples
refer to a widely used textbook [233].

Open Problem 7 (Scalable concurrent algorithms with or without locks)

Many lock-free algorithms seem to be so complicated that papers on them only
discuss their correctness. However, we also would like to know their scalability
when running on p PEs (i.e., hardware threads). There are very few results in
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this direction and solving such problems might be an important step to better
concurrent algorithms. In particular, many current lock-free algorithms have
severe scalability bottlenecks. An example on priority queues can be found in
Section 12.5.2.!" If we use an asynchronous PRAM model, we can also exploit
assumptions that do not hold for general lock-free algorithms. In particular, each
thread ¢ gets permanently assigned a PE. Thus, we can often prove that ¢ will only
hold a lock for a constant amount of time. Therefore, locking does not necessarily
stand in the way of progress guarantees.'”

2.4.5 The Work-Span Model

A more abstract way to look at shared-memory computations is the work-span
model (aka work-depth model) where we abstract from the actual number of pro-
cessors [4, 75]. We only look (1): at the total work W performed by a computation,
i.e., the time needed for machine operations that are part of the actual computa-
tion, and (2): at its span T..(aka depth), i.e., the longest sequence of dependent
operations within the computation. Roughly, the span is the time needed when
an infinite number of processors is available. The computation forms a graph of
dependencies that is unfolded using fork operations that spawn additional threads
and atomic shared-memory operations. The model comes in different variants de-
pending on what exactly these operations can do. In this book, the default will be
binary forking [75] together with the aCRQW model from Section 2.4.2 and the
atomic operations from Section 2.4.3. In particular, this allows parallel recursion.
Figure 2.13 gives an example. Circuit models (see Section 2.8) take a similar,
more low-level and hardware-oriented view of computations.

Exercise 12 Show that function sumArray in Figure 2.13 has work O(n) and span
O(logn). Implement it using a system supporting task creation. Now tune it, e.g.
by using a larger base case.

An obvious lower bound for the time needed to execute a computation in the
work-span model on a PRAM with p PEs is

W
T(p)=—+T..
p

The underlying paper [480] also gives a curious example of an algorithm that uses locks but
is nevertheless wait-free because it never waits for a lock.

121 practice, we may have to ensure that the operating system indeed never takes away the
assigned hardware thread, e.g., by reserving one or several cores for the operating system. We also
have to be careful about threads that perform I/Os.
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Function sumArray(a : Array i, j) /I compute ):izia[k}
if i = j then return afi]

else return sumArray(a,i, {’%’J) || sumArray(a, {HTJJ +1,))

sumArray(a, 1,5)

sumArray(a,1,3) sumArray(a,4,5)
sumArray(a,1,2) sumArray(a,3,3) sumArray(a,4,4) sumArray(a,5,5)

sumArray(a,1,1) sumArray(a,2,2)

a:|3|1|4|1|5‘

Figure 2.13: A function using parallel recursion to compute the sum of the ele-
ments of an array. The picture gives an example for the array [3,1,4,1,5].

A crucial result is that using appropriate load balancers, this is also an upper
bound at least in a probabilistic sense using randomization in a work-stealing load
balancer [78] (see also [4 10, Section 14.5, 14.6]).

2.4.6 Parallel Memory Hierarchies

The Parallel External Memory (PEM) model [26] is a natural extension of PRAMs.
RAMs with fast memory of size M each are attached to a large shared memory. As

PE 1 PE 2 PE p

M

I: I:
M M
E block E transfers E

shared external memory

Figure 2.14: The parallel external memory model (PEM).
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in the I/O model, access to that memory is in blocks of size B. As with PRAMsS,
we can consider several variants with respect to what kind of concurrent accesses
are supported. PEM is an elegant way to model the differences between the cost
of local and global memory accesses.

Exercise 13 Describe an algorithm that transposes an n X n matrix on a PEM
using O(nZ/Bp) /O steps assuming M > B?.

However, as with basic PRAMs, the PEM model is unrealistic with respect to
the cost of synchronization and contention. To handle this issue, let us introduce
an asynchronous variant with queued writing, PEM™, that adds block access to
the aCRQW PRAM model from Section 2.4.2. One can now also consider atomic
operations on the block level. Unfortunately, current processor architectures only
support atomic operations on machine words (and sometimes on double words).
On the other hand, hardware transactional memory (see also Section 2.4.3) oper-
ates on cache lines. Hence, let us assume that PEM ™ also supports transactions.

One issue with the PEM model that has led to confusion is that Vitter and
Shriver [467] had previously introduced a parallel external memory model. But
for them, M is the overall size of the fast memory. This implies that the bounds
based on the original model [67] (e.g., [387]) are harder to obtain than bounds in
the PEM model and require more sophisticated algorithms that treat communica-
tion and I/Os separately.

The PEM model is a good abstraction of a shared-memory machine where the
PEs have a private cache and symmetric access to the main memory. However,
many practical machines have a more complicated hierarchical structure that can
be approximated by a tree of PEs. Level i of the memory is partitioned into k;
pieces and a subtree of p/k; PEs share access to that piece. Consider a fictitious
but realistic example: Four hardware threads of a core may share an L1 cache. Six
cores on a chiplet may share an L2 cache. Three chiplets may share an L3 cache
on a processor socket. Two sockets may have shared access to the main memory.
Figure 2.15 illustrates this example. Some of the aspects shown in Figure 2.1 can
also be mapped to this model. In that example, k; = k», i.e., each core has its own
L1 and L2 cache. This can make sense in practice since these two cache levels
can reflect different tradeoffs between latency, size, and cost per bit. Similarly,
SSDs and main‘memory may both be attached to sockets although they differ in
size, cost, latency, and volatility.

Section 2.5.5 further generalizes the hierarchical model to allow horizontal
communication on each level. In practice, this is also relevant in a shared-memory
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Figure 2.15: Example of a shared-memory machine with p = 144 threads, k| = 36
cores, kp = 6 chiplets, and k3 = 2 sockets.

setting. In particular, each socket may be directly connected to several main mem-
ory modules. Every core can still access every memory module also on remote
sockets. However, the access costs will be larger the “farther away” the memory
module is. This issue is known as non-uniform memory access (NUMA). Sock-
ets'® are therefore also called NUMA nodes.

Of course, completely analyzing algorithms in such a complex model is even
more forbidding than multilevel external memory. However, we can adopt the
approach to analyze a selected aspect like the number of I/Os on a particular level
that experiments may indicate as a bottleneck. We can also generalize the ap-
proach of cache-oblivious algorithms to parallel memory hierarchies [118].

2.4.7 Graphics Processing Units (GPUs), Accelerators, etc.

The transition of traditional general-purpose sequential processors to multi-core
processors has been a fairly conservative process leading to processors support-
ing a moderate number of parallel threads, favoring fast individual cores with

130r any part of a machine that has uniform access to a set of memory modules, e.g., a chiplet
within a multi-chip module.
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large cache memories and large main memories. It turned out that this is not
the ideal path to maximum peak arithmetic performance or maximum memory
bandwidth. A more radical approach is to support massive parallelism even on a
single chip dedicating a larger fraction of chip area to arithmetic units-and to con-
nect it to memory chips with a different tradeoff between bandwidth, latency, and
cost. Figure 2.16 illustrates this tradeoff. Originally fueled by the large market
for hardware accelerated computer graphics (e.g., for games), so-called graphics
processing units (GPUs) have been particularly successful. Since the beginning
of the millennium, they developed from special purpose processors to general pur-
pose processors (GPGPUs) that are less and less different from traditional CPUs.
GPU applications are now coming from a much wider range, with machine learn-
ing and mining crypto-currencies as major driving forces. In high-performance
computing, the biggest machines currently invest heavily in GPU hardware and
thus exert major pressure on application developers to use GPUs for more and
more applications.

Exercise 14 Compare current high-end CPUs and GPUs of leading manufac-
turers in a table. Possible rows of the table could be price, number of tran-
sistors, thermal design power, cache sizes, maximal attached memory, memory
bandwidth, peak arithmetic performance for various number systems, and perfor-
mance for some basic tasks. It would be particularly interesting to also include
performance for basic operations that are not the core domain of GPUs, e.g.,
sorting, hash table access,.... Interpreting this data might involve normalizing
performance in relation to price or power consumption.

This has not been the only development that makes the landscape of com-
puter architecture more heterogeneous. Processors now routinely contain cores
that have the same instruction set architecture but different microarchitectures.
Typically a mix of high-performance cores with slower but more energy-efficient
cores. There are also special units for generating random numbers, for performing
cryptographic operations, for data (de)compression, etc. Highly interesting is also
reconfigurable hardware (field-programmable gate arrays, FPGAs).

Heterogeneous computing opens up interesting algorithmic questions con-
cerning the scheduling of computations on heterogeneous resources. However,
from the point of view of abstract models of computation, we have to be careful
to keep the model simple. Therefore, it seems a good approximation to decompose
a computation into parts where each part may have a different kind of processing
unit that can handle it best. We can then analyze each part in a model appropriate
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for this processing unit. We also identify bottlenecks, i.e., parts of the computa-
tion that may dominate cost for the available hardware. In particular, parts that are
not bottlenecks can then also be executed on hardware that is not ideally suited for
it. For example, a numerical computation might require some preprocessing that
works best on the CPU followed by an expensive computation that works best on
the GPU. Then we might decide to perform the preprocessing on the GPU anyway
in order to keep the program structure simple and to save data transfer costs be-
tween CPU and GPU. In this case, the simplicity of the GPU preprocessing may
be more important than an efficient implementation. With this process, we will
often arrive at an implementation that works on simple homogeneous hardware or
that has a small number of stages working on different hardware. Further tuning
by offloading parts of the computation to inappropriate yet idle hardware is a pos-
sibility but often not worth the effort.'* It certainly does not warrant a full-fledged
heterogenous model of computation. In summary, heterogeneous computing is a
reality that we have to face. On the other hand, overtuning to use all parts of such
hardware can be considered an anti-pattern of software engineering.

We still need models for the different components of a heterogeneous sys-
tem. Here simplicity is again an important guiding principle. For example, high-
performance cores and efficiency cores in a modern processor still fit into the
general models for shared-memory computing. We only have to be careful not to
assume that all cores have the same speed. Note that this is not even guaranteed
on homogeneous cores. For example, a recent high-intensity computation might
have forced one core to reduce its clock frequency due to overheating. Often ba-
sic load balancing techniques will be able to handle this situation. Let us have a
closer look at GPUs to consider a more interesting example:

Modeling GPUs. Modeling GPUs is an open problem because different ven-
dors have different architectures that also change from generation to generation.
Even a single architecture generation contains different compute units, e.g., for
general-purpose processing, tensor processing, ray tracing, texture mapping, or
video encoding. Let us make the case for maximal simplicity here. Our general
discussion of heterogeneity implies here that we may focus on one stage of an ap-
plication that has one type of computing unit that is most useful. Often, these will
be the general compute units. The main difference between these units to classical
CPU cores is quantitative. For example, an NVidia RTX 5000 Ada GPU contains

I4For example, suppose we use a GPU with 1PetaFlop peak performance to perform a matrix
multiplication. Offloading part of this computation to CPU that can do 200 GFlops, i.e., less than a
per mille of that work, will not be very helpful and may actually harm energy consumption.
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12800 CUDA cores, 100 times as many as a contemporary high-end server CPU.
On the other hand, it has only 32 GByte of memory while a server CPU can ad-
dress several terabytes of memory. Some server CPUs have up to 1152MByte
of cache memory while the RTX 5000 GPU has only 72MByte (already up by
an order of magnitude from the previous generation). These differences in num-
bers already by themselves imply a significantly different programming style and
spectrum of applications without the need for different models of computation.

There are further architectural differences that may warrant a GPU model of
computation. However, there also seems to be some convergence in the devel-
opment of CPU and GPU architecture. For example, a major difference between
GPUs to CPUs is that there are groups of GPU threads that share the same stream
of machine instructions (called a warp in NVidia CUDA). However, threads in
a warp acquired increasing autonomy in subsequent generations of architecture.
On the other hand, SIMD instructions are gaining increasing importance in CPU
architectures. These work on registers that contain multiple machine words (cur-
rently up to 512 bits), applying the same operation to multiple pieces of these
registers (see also Section 2.2.5). The effect is quite similar and one might imag-
ine that a CPU investing heavily in SIMD units with otherwise lightweight cores
and small caches might have similar tradeoffs as a GPU.

Another important feature of the CUDA programming model is that there is a
hierarchy of threads — one or multiple kernels executing a grid of thread blocks,
which are themselves partitioned into warps. Optionally, there is an additional
level of thread-block clusters. Threads within the same block can interact via
on-chip shared memory. Note that CPUs also have some hierarchy reflecting the
hardware; see Section 2.4.6. Hence, overall we are undecided. GPU and CPU
programs are sufficiently different to make it likely that different models may help
to understand this more abstractly. On the other hand, architectural convergence
and the strife for simplicity suggest that we can use the same shared memory
models and keep in mind that different key parameters like the number of cores
and cache sizes can have big impacts even within the same general model.

Exercise 15 Compare existing programming models for GPUs like CUDA, OpenCL,
or Vulkan. Identify commonalities and differences between the models. Where do
these models deviate from models that are compatible with CPU programming?

Open Problem 8 (Modeling GPUs) Develop a simple and useful model for GPU
processing that works for the most important vendors and is stable over multiple
architecture generations.
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CPU

L3 cache maif memory

Figure 2.16: Illustration of the relative areas invested into computing and memory
resources in GPUs (left) and CPUs (right).

2.5 Distributed Models

PE 1 PE 2 PE p
| I 1 I
local local local
memory memory memory

Figure 2.17: A distributed-memory parallel machine.

A simple and highly scalable way to build parallel computers is to connect
multiple smaller computers (nodes — perhaps themselves shared-memory parallel
machines) by a communication network. Algorithms working on such machines
then perform local computations and communication. While there is a large va-
riety of concrete communication operations, these are usually implemented using
point-to-point communication of messages, where one node sends a message to a
receiver node. Alternatively, the system may support access to blocks of the mem-
ory at remote nodes. However, from the algorithmic point of view, this makes little
difference, so we stick to the message view here. '

1550me systems also have hardware support for some of the collective operations from Chap-
ter 19. Radio networks and Ethernet support broadcast to a set of neighboring nodes.
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How can we model communication cost? Let us consider a simple situation
first, where two nodes exchange messages of length ¢ and the network allows
direct communication between these two nodes. To eliminate synchronization
delays, also assume a situation where messages go back and forth repeatedly (the
ping-pong benchmark [238]). The average time per message transfer will then
have a constant offset — the startup overhead — plus a term that depends on /.
The startup overhead is mostly due to the underlying software and thus highly
dependent on which message-passing software is actually used. The latter term
might be assumed to be approximately linear in ¢ — see also Section 2.5.1 below.
The function can also have steps in it because long messages are likely to be
chopped into packets of fixed size. Moreover, different protocols might be used
for different ranges of message sizes. So, macroscopically, we might expect a
piecewise linear function where each sub-function has small steps.

Exercise 16 Implement the ping-pong benchmark on your system, e.g., using
MPI. Running two processes on different machines, make detailed measurements
of the round-trip time as a function of message length. Make multiple repetitions
and measure average time as well as variance and outliers. Discuss possible
explanations for deviations from the simple linear model (o + ([3).

In more general situations, things get much more complicated. Communica-
tion cost can depend on where the nodes are in the network, how the communica-
tion is delayed by traffic between other nodes (congestion), and what the receiver
is currently doing (for example there might be long queues of messages currently
waiting to be processed and complicated rules for matching messages that the re-
ceiver is willing to process). The startup latency may be very high if the nodes
communicate for the first time. This is because communication often requires a
data structure for a communication channel between pairs of nodes. This data
structure needs to be initialized when a node pair communicates for the first time.
On large systems, there may also be insufficient space for communication chan-
nels between all pairs of nodes so that channels can also be deallocated. Even if
the network and the communication software behave in a predictable way, running
time analysis of an application based on message passing can be complicated by
synchronization delays. For example, an operation that receives a message has to
wait for the matching message to be sent.

*Exercise 17 In continuation of Exercise 16, now consider a situation where p
processes are matched up in pairs. Concretely, for even p, consider a pseudo-
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random permutation (see Section 10.1.8) 1t and let PE m(2i) communicate with
PE m(2i+ 1). How does the speed of communication change with p? Are there
increased fluctuations? Discuss. How does the speed change again if you change
T after every iteration (or after a small number of repetitions) with a barrier syn-
chronization (see, e.g., [410, Section 13.4.2]) in between?

Machine models for distributed-memory parallel computing cannot grasp all
these complex details. Hence, simplifications are necessary and naturally lead to
a wide spectrum of possible models. We describe some of the most popular ones
below. Also, it should be noted that modern nodes of distributed-memory ma-
chines are shared-memory parallel machines themselves. Section 2.5.5 discusses
how to handle such hierarchical systems.

2.5.1