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Abstract. We describe a set of fixed-function and programmable blocks, 
eBlocks, previously developed to provide non-programming, non-electronics 
experts the ability to construct and customize basic embedded computing 
systems. We present a novel and powerful tool that, combined with these 
building blocks, enables end-users to automatically generate an optimized 
physical implementation derived from a virtual system function description. 
Furthermore, the tool allows the end-user to specify optimization criteria and 
constraint libraries that guide the tool in generating a suitable physical 
implementation, without requiring the end-user to have prior programming or 
electronics experience. We summarize experiments illustrating the ability of the 
tool to generate physical implementations corresponding to various end-user 
defined goals. The tool enables end-users having little or no electronics or 
programming experience to build useful customized basic sensor-based 
computing systems from existing low-cost building blocks.  

1 Introduction 

The cost, size, and power consumption of low-end microprocessors in the past decade 
has dropped tremendously as silicon technology continues to follow Moore’s Law. 
For example, an 8-bit microprocessor chip may cost less than $1, occupy just a few 
millimeters, and consume just microwatts of power. Such reductions enable 
integration of microprocessors into domains previously unthinkable, such as RFID 
tags, ingestible pills, and pen tips.  

Meanwhile, a problem in the design of basic sensor-based embedded computing 
systems is that end-users cannot setup basic custom embedded systems without the 
assistance of engineers. An end-user is an individual developing a sensor-based 
computing system who likely does not have programming or electronics expertise, 



such as a homeowner, teacher, scientist, etc. For example, a homeowner may wish to 
setup a custom system to indicate that a garage door is open at night, that a child is 
sleepwalking, or that an ageing parent has yet to get out of bed late in the morning. A 
scientist may wish to setup an experiment that activates a video camera when an 
animal approaches a feeding hole, or activates a fan when a temperature exceeds a 
threshold. Countless other examples exist. Despite the fact that such systems could be 
built from computing and sensing components whose total cost is only a few dollars, 
end-users cannot build such systems without knowledge of electronics and 
programming. Just connecting a button to an LED (light-emitting diode) would 
require knowledge of voltages, grounding principles, power supplies, etc. Making 
such a connection wireless requires further knowledge of communications, 
microcontroller programming, wireless devices, etc. Hiring engineers to build the 
system immediately exceeds reasonable costs. Off-the-shelf solutions for specific 
applications are hard to find, costly due to low volumes, and difficult to customize.  

Our previous work addressed this problem through development of basic blocks, 
called eBlocks, that enable end-users with no electronics or programming experience 
to define customized sensor-based systems merely by connecting blocks and 
performing minor configuration of those blocks [5]. The blocks incorporate small 
inexpensive microprocessors into previously passive devices like buttons, motion 
sensors, and beepers. Each device has a fixed function, and can be easily connected to 
other devices merely by snapping together standard plugs, with the devices 
communicating using predefined basic networking protocols. Figure 1 illustrates 
several applications built using eBlocks. A sleepwalking detection application is 
shown in Figure 1(a), which consists of motion and light sensor outputs combined 
using a logic block (configured to compute motion and no light), whose output 
connects to a wireless transmit block. The wireless transmit block is matched with a 
wireless receiver block (through setting of switches to identical positions), which 
ultimately activates a beeper block when motion at night is detected. Figure 1(b) 
illustrates a second example, a presentation timer, which turns on a green light for 20 
minutes, followed by a yellow light for 5 minutes, and lastly a red light indicating 
time has expired. The design splits a button press to two prolonger blocks, one that 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Example sensor based applications built with fixed-function blocks, (a) Sleepwalking 
Detector, (b) Presentation Timer. 
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prolongs the button press for 20 minutes, another for 25 minutes. Additional logic 
turns on the appropriate lights depending on whether both, one, or neither prolonger 
block is outputting a true value.  

eBlocks represent one of several new research approaches that utilize physical 
(“tangible”) objects to enable end-users to program electronic devices [12]. Other 
examples include Media Cubes [1], Electronic Blocks [20], and Tangible 
Programming Bricks [16]. Commercial X10-based devices [18] communicate through 
household power lines and are complementary to our approach.  

This paper describes our recent efforts to develop computer-based tools that an 
end-user could use to optimize an eBlock system or to map a virtual eBlock system to 
a limited set of physical blocks. While the work in this paper describes a tool to help 
end-users to build eBlock systems, related work that we have done [15] describes a 
tool to help end-users to tune low-level eBlock parameters, such as microprocessor 
clock frequency and communication baud rate, in order to achieve goals like 
maximizing battery lifetime and/or minimizing system latency.  

2 eBlocks Overview  

The key idea of eBlocks is to enable end-users to build useful customized sensor-
based systems merely by connecting blocks, like buttons, motion sensors, logic, 
beepers, etc. eBlocks’ key feature is that they encapsulate previously passive 
components by an ultra-lightweight compute wrapper. The following sections briefly 
describe two types of eBlocks, fixed function blocks and programmable blocks. A 
section also describes the eBlocks simulator, a multifaceted graphical environment 
that can simulate system functionality, configure programmable blocks, and provide 
the interface for the technology mapping and optimization tool introduced in this 
paper. Further details on eBlocks are discussed in [6]. 

2.1 Fixed-Function Blocks 

Fixed-function eBlocks have a specific predefined function. Two types of fixed-
function eBlocks are Boolean and integer. Boolean blocks send “yes” or “no” packets, 
while integer blocks send integer packets. While this paper focuses on Boolean 
blocks, the methods generally apply to integer blocks, and our future work will 
address such application. Four categories of Boolean blocks exist: sensor, compute, 
communication, and output blocks.  

Sensor blocks sense events, such as motion, light, sound, button presses, or 
temperature. When a sensor detects the presence of an event (i.e. a light sensor detects 
light), the sensor generates a yes output, and otherwise generates a no output. 

Compute blocks perform logic or state computations on inputs and generate new 
outputs. A 2-input “Combine” block (a.k.a. “Logic”) computes a 2-input logic 
function configured by the end-user (e.g., AB, or A’+B). A 3-input Combine block is 
also available. An inverter block inverts a yes input to no output, or a no input to yes 
output. A “Yes Prolonger” block prolongs a yes input over the block’s output for an 



end-user-configured duration. A “Toggle” block switches between yes and no outputs 
on successive yes inputs. A “Pulse Generator” block generates yes and no output 
pulses for an end-user-configured duration. A “Once-Yes Stays-Yes” (a.k.a. 
“Tripper”) block trips to a yes output state when the main input receives a yes, and 
stays in that state until a yes appears on a reset input.  

Communication blocks include wireless transmit and wireless receive blocks, 
which must be configured to implement a point-to-point channel by setting the 
corresponding switches on each block to the same channel value. A splitter block 
splits a single input into multiple identical outputs. 

Output blocks beep, turn on LEDs, control electric relays, or provide data to a PC 
for logging or other processing. A yes input activates output blocks. For example, a 
beeper block beeps when its input is yes, and is silent when its input is no. Figure 2 
shows our initial physical prototype versions of eBlocks. Each physical block contains 
a PIC microcontroller for local computation and inter-block communication. The 
connections among blocks (along with any configurations of each block) define a 
system’s functionality. A unidirectional, packet-based protocol provides the basis for 
block communication. Each block includes hardware specific to the block’s task (e.g., 
sensors, resistors, voltage regulators, etc.). An end-user connects blocks using wired 
connectors or can replace a wire by a wireless connection by utilizing wireless 
transmit and receiver blocks. We have built over 100 prototype physical blocks, 
successfully used in controlled experiments by over 500 people of various skills 
levels, mostly end-users with no programming background [5]. 

2.2 eBlock Simulator 

The eBlock simulator, shown in Figure 3, is a Java-based graphical user interface 
(GUI) for eBlock system entry and simulation and is available online at [6]. End-users 
can connect, test, and optimize various eBlock systems before interacting with 
physical blocks. End-users drag a block from a catalog on the right edge of the 
simulator to the workspace on the left and connect the blocks by drawing lines 
between the blocks’ input and outputs. The user can choose between a “simple mode” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Garage Door Open At Night Dector is built by snapping various fixed function 
eBlocks together. 
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in which commonly-blocks appear in the catalog, and an “advanced mode” containing 
more blocks. eBlocks that sense or interact with their environment include 
accompanying visual representation to simulate the corresponding environment. For 
example, a “day/night” icon accompanies the light sensor. End-users can alternate the 
icon between day and night by clicking on the icon, causing the light sensor’s output 
to change accordingly. The gray text box situated in the bottom-left of the simulator 
displays context-sensitive help such as a block’s description and interface when the 
mouse cursor hovers over the corresponding block. 

2.3 Programmable Blocks 

In contrast to fixed-function blocks, a programmable block can be programmed to 
implement arbitrary behavior. Our current programmable block has two inputs and 
two outputs, as shown in Figure 4. An expert user could write C code that describes 
the block’s behavior, and our tools would then combine that with the eBlock protocol 
code into a binary, which the user could then download using our serial cable 
interface.  

However, most end-users will not have C-coding expertise. We thus provide a 
tool for automatically converting internal (non-sensor, non-output blocks) fixed-
function blocks into a smaller network of programmable blocks that preserves the 
system’s functionality, automatically generating code for each programmable block. 
In this context, a programmable block is a means for slightly more advanced users to 
reduce the block count and hence cost of their systems.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Capture and synthesis tool illustrating the cafeteria food alert system. 
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3 Technology Mapping 

3.1 Problem Description 

A problem with using physical fixed-function blocks is that an end-user may only 
have a subset of possible blocks readily available, and/or may have limited numbers 
of particular blocks.  For example, an end-user may have three types of blocks 
available – 2-input logic, tripper, and prolonger blocks – of which many instances of 
each exist. Defining the desired application behavior using just those blocks would be 
a significant challenge even for an expert end-user. Instead, we provide for the end-
user a way to capture the desired behavior in the graphical simulator using any 
combination of standard fixed-function blocks. The end-user also lists the types and 
numbers of available physical fixed-function blocks, forming what is essentially a 
constrained block library. We then define an automation tool that creates a new block 
network with the same functionality as the desired network, but only using blocks 
from the constrained library.  Sensor and output blocks have specialized circuitry 
(e.g., light sensors, LEDs, beepers), so the physical counterparts for those blocks must 
be available – i.e., we cannot build a light sensor out of motion sensors. The mapping 
problem thus only involves inner blocks, namely compute and communication blocks. 

The above-described problem is essentially a technology-mapping problem, 
common in chip design, with some differences from traditional problems. Technology 
mapping is a central part of the chip design process. Chip designers describe a desired 
circuit’s behavior using easy-to-work-with components, such AND, OR, and NOT 
logic gates, with any number of inputs on each gate. However, a chip’s underlying 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 4. Programmable blocks: (a) An original system using fixed-function blocks, (b) 
programming a programmable block to replace the inner fixed-function blocks, (c) the new 

system using the programmable block. 
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technology may support only 2-input and 3-input NAND gates, requiring that generic 
AND/OR/NOT circuits be mapped to a circuit consisting only of such NAND gates. 
Modern technologies consist of far more complex mappings of generic circuits to 
technology-specific components. Efficient technology mapping has been intensely 
researched for decades [2,3,4,8,9]. Our technology-mapping problem has some 
differences from previous technology-mapping problems. In the domain of field 
programmable gate arrays (FPGAs), technology mapping translates a digital circuit to 
a physical implementation on lookup tables (LUTs) [7]. A LUT is capable of 
specifying any logic function with a given number of inputs (defined by the size of 
the physical LUTs within the FPGA). Because LUTs are general programmable 
structures, the mapping methods correspond more to the problem of converting to 
programmable blocks than to that of fixed-function blocks. In application-specific 
integrated circuit (ASIC) design, technology-mapping implements a hardware circuit 
using a library of physical cells with fixed functions [7]. However, the final ASIC 
implementation can use an essentially unlimited number of any physical cells within 
the library. In contrast, our problem has a fixed numbers of each block, and 
furthermore does not necessarily have a balanced set of blocks. Nevertheless, our 
solution approach borrows from existing ASIC techniques.  

3.2 Transformation Rule Base 

A straightforward but non-optimal ASIC technology mapping method converts every 
technology independent circuit element into a technology-dependent universal gate 
element. In circuits, a NAND gate or a NOR gate represents a universal gate. In our 
problem, we found that we could implement nearly every block using some network 
of 2-input logic and splitter blocks. Defining a universal mapping heuristic that would 
replace each unmapped block in a network by an equivalent network consisting of the 
universal blocks is one possible method to perform technology mapping.  

A better optimizing ASIC technology-mapping method involves graph-covering 
methods [13]. A library is built of mappings from technology independent sub-circuits 
to technology dependent sub-circuits, and then directed acyclic graph covering 
methods cover the unmapped circuit. The methods are built on similar graph methods 
used for instruction coverage generation in compilers.  While such methods could be 
applied to our problem, we found that the state-based functions associated with our 
fixed-function blocks might introduce significant complexity into the graph cover 
heuristics. In fact, such traditional methods typically focus on the combinational part 
of the circuit, whereas state-based (sequential) blocks are a key part of our problem. 

Another ASIC technology mapping method involves rule-based technology 
mapping [10,11]. Those techniques perform local optimizations on a circuit based on 
a set of transformation rules.  We used this method as the basis for our first solution to 
the problem, which we call the transformation rule method. We developed a 
transformation rule base as follows. For each standard fixed-function block, we 
manually built alternative implementations of that block (the source block) using 
other various subsets of standard fixed-function blocks (target blocks). For example, 
for a 2-input logic block, we defined a transformation for implementing that block 
using a 3-input logic block, as shown in Figure 5(a) (Config. shows the truth table 



entries for the block). Figure 5(b) shows a transformation of a tripper block into an 
equivalent set of blocks involving a logic block and a splitter block, with the required 
logic configuration shown. Figure 5(c) shows multiple transformation rules for a 
inverter block. The invert block can be replaced utilizing either a 2-input logic block 
or a 3-input logic block, configured to implement the invert on the first input. 

We point out that we could have treated logic blocks using logic synthesis 
methods, wherein we would convert every sub-network of logic blocks (2- and 3-
input logic blocks and invert blocks) into a Boolean expression, optimize the 
expression, and then map the expression into logic blocks in the library using 
traditional circuit technology mapping. However, as this is a first work, we preferred a 
transformation rule approach for consistency with the other blocks, resulting in a 
simpler tool but a less optimized mapped network. Nevertheless, incorporating logic 
synthesis methods is an area of future improvement.  

4 Optimization 

4.1 Problem Description 

Given a network of fixed-function blocks, there may exist more blocks than 
necessary, arising from two situations. First, an end-user may have created a network 
of fixed-function blocks that is easy to comprehend, but has more blocks than 
necessary. Alternatively, technology mapping may have inserted two adjacent sub-
networks with perimeter blocks that could be merged into fewer blocks. We thus 
developed a method to reduce block count while preserving network behavior.  

We considered different methods for reducing blocks. A model-based method 
would utilize a formal understanding of the underlying finite-state machine (FSM) (or 
combinational) behavior of each block. This method would compose the FSMs into a 
single network-level FSM, eliminate equivalent and redundant states, and remap the 
reduced FSM to physical blocks. This approach appeared overly complex and 
possessed the problem that the reduced FSM might not be mappable to existing 
physical blocks. Another method builds on peephole optimization, an optimization 
method commonly found in compilers. This method inspects a local area of code to 
identify and modify inefficient code [17]. We can similarly inspect sections of the 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Sample block equivalencies used in the technology mapping equivalncy library. 
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block network to optimize inefficient or redundant sections. The peephole 
optimization method enables us to preserve the pre-defined block structure because 
we are operating on the block level and eliminates the need for additional mapping. 

4.2 Peephole Optimizations 

We analyzed a variety of networks and identified commonly occurring inefficient 
block combinations. We added optimization templates to the library that reflect these 
inefficient block combinations, along with a corresponding optimized block network. 
The optimizer traverses the network specification searching for subsystems matching 
any of the corresponding optimization templates and replaces the inefficient block 
combination by the optimized block network defined by the template.  

Figure 6 illustrates several optimization templates defined within the optimization 
library. Figure 6(a) illustrates inverters located at the input or output of logic blocks 
that an end-user could have merged into the logic block. The optimizer eliminates the 
inverters and updates the logic block configuration accordingly. The optimization 
shown in Figure 6(b) merges chained prolonger blocks into a minimum number of 
prolonger blocks. If the combined yes time of the chained prolonger blocks is less 
than the maximum yes time of a single prolonger block, the optimizer can merge the 
chained prolonger blocks into a single prolonger block. If the combined yes time of 
the chained prolonger blocks exceeds the maximum yes time of a single prolonger 
block, then the minimum number of prolonger block are used. Figure 6(c) analyzes 
the number of unused inputs on chained splitters and attempts to combine splitters. 
Each peephole optimization is treated independent of others peephole optimizations as 
well as independent of the technology mapping transformations. 

5 Programmable Block Operations 

Technology mapping transformation rules and peephole optimizations discussed in 
previous sections pertain to fixed function blocks. Inclusion of programmable blocks 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Sample peephole optimization used in the optimization library. 
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presents further opportunity for technology mapping and optimization. For example, 
if a fixed function block does not exist in the physical library, a programmable block 
can by configured to replace the missing fixed function block. Furthermore, multiple 
fixed-function blocks can be replaced by a single programmable block to reduce block 
count and/or cost of the system. 

Several options exist to deal with the existence of programmable blocks. One 
option is to develop a separate partitioning algorithm, utilized in a secondary stage, 
which aims to assign multiple fixed-function blocks to programmable blocks. A 
simpler method is to define low-level technology mapping transformation rules and 
peephole optimizations specific to programmable blocks, and to incorporate those 
rules and optimizations into the main technology mapping and optimization heuristic 
(discussed in Section 6). The second method follows closely what we have done with 
fixed-function blocks, thus we defined several programmable block operations and 
incorporated them into the appropriate libraries.  

6 Technology Mapping and Optimization Methodology 

Figure 7 illustrates the overall technology mapping and optimization design 
methodology intended to aid end-users in generating an optimized physical sensor-
based system based on end-user defined criteria. Two parties are responsible for the 
input specification, the node designer and the end user. The node designer is an expert 
who has an understanding of the underlying details of the various eBlocks and 
provides the pertinent block information prior to the release of the mapping and 
optimization tool. The end-user may have no expertise in programming or electronics 
but wants to construct a customized sensor-based system. The end-user provides input 
specific to their situation and the application being created. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Technology mapping and optimization environment. 
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6.1 Node Designer Input 

The node designer defines the technology mapping transformations discussed in 
Section 3 by creating a text-based technology-mapping library read in by the tool. 
Furthermore, the node designer defines various peephole optimizations discussed in 
Section 4 utilized by the tool. The optimization library is currently a C file that 
contains various functions to perform each of the peephole optimizations, 
alternatively these optimizations could be defined in a text file as the technology 
mapping transformation which is then translated by the technology mapping and 
optimization tool. These files are provided by the node designer and are independent 
of the various sensor-based systems constructed by the end-user. 

6.2 End-User Input 

The end-user needs to specify which fixed-function and programmable blocks are 
physically available, the functionality of the specific application being built, and the 
optimization goals.  

The end-user first defines the “Block Count/Cost” input, i.e., how many of each 
type of block is physically available and the cost of each eBlock (regardless of 
whether they are physically available). The input specification can be done in a 
graphical environment in which an end-user can manually enter a number in a text 
box next to the graphical depiction of the block of interest or click on up/down arrows 
until the appropriate value is displayed (shown in Figure 8 under the “Block 
Count/Cost” heading). The end-user can similarly define block cost. 

The end-user’s next task is to define the “Physical/Virtual Block Weights” input. 
We define physical blocks as blocks that are physically available in the end-user’s 
block set; virtual blocks do not exist in the block set, meaning they would have to be 
purchased to create the physical system. The end-user specifies four weights:  

 WP_FF  = physical fixed function block weight 
 WV_FF  = virtual fixed function block weight 

 WP_PROG  = physical programmable block weight 
 WV_PROG  = virtual programmable block weight 

These values are used within a cost equation to evaluate whether a given system 
configuration yields an improvement (further discussed in Section 6.3). By simply 
assigning various weights, with lower weights indicating preferred block types, an 
end-user can direct the technology mapping and optimization to use preferred block 
types when possible. For example, an end-user who is uncomfortable with 
programmable blocks and wants to only utilize fixed function blocks, whether virtual 
or physical, can set the blocks weights to WP_FF = 1, WV_FF = 1, WP_PROG = 10, and 
WV_PROG = 10. Selection of a programmable block by the tool yields ten times the cost 
of a fixed function block, guiding the tool to favor fixed-function blocks. 
Alternatively, an end-user who wants to utilize blocks already existing in their 
physical block set, whether fixed or programmable, can set the block weights to WP_FF 
= 1, WV_FF = 25, WP_PROG = 1, and WV_PROG = 25. Again, virtual blocks yield higher 
cost, thus the tool is biased to select physically available blocks before utilizing any 



virtual blocks. The end-user can adjust the four block weights to reflect a variety of 
situations and to guide the technology mapping and optimization tool in creating an 
appropriate physical sensor based system.  

Within the “Physical/Virtual Block Weight” input, the end-user must also choose 
the optimization criteria – either to minimize the number of blocks utilized or to 
minimize the monetary cost of the resulting system. The end-user selects the 
optimization goal by selecting the corresponding radio button. 

The last task required of the end-user is to create the eBlock system, thus defining 
the desired system functionality.  The end-user creates the eBlock system within the 
block simulator (Section 2.2) by dragging and connecting blocks in the workspace. 

6.3 Design Space Exploration 

Once all inputs to the technology mapping and optimization tool are defined, our tool 
uses simulated annealing to explore the design space and generate the finalized sensor 
based system. The simulated annealing algorithm [14] is a popular optimization 
approach modeled after annealing in metallurgy, wherein a material is continuously 
heated and cooled to increase the material’s strength. The algorithm randomly 
searches the design space by generating random changes, and accepts a change if an 
objective function value is decreased. Alternatively, a change that increases the 
objective function value can also be accepted based on a probability linked to a global 
“temperature” value. Early in the algorithm, changes that increase the objective 
function cost are more likely to be accepted, to avoid being trapped in a local 
minimum early on. As the algorithm continues to run, these higher cost changes are 
less likely to be accepted, thus settling into a minimum cost solution. The rate of 
decline in which higher cost solutions are accepted is based on a definable cooling 
schedule. The longer the algorithm runs, the higher a chance of a good solution, thus 
the key is to define a cooling schedule that balances the solution quality and runtime. 
We chose simulated annealing due to the heuristic’s generality – we can simply define 
a set of possible changes consisting of the various transformations and optimizations 
discussed in previous sections, and let the tool search the solution space. While 
computationally expensive, the power of modern computers coupled with the 
relatively small sizes of eBlock systems make the use of annealing effective.  

 
 
 
 
 
 
 
 
 
 
 
 

 Figure 8. Using a graphical interface, the end-user specifies, (a) the block count/cost library 
and, (b) the physical/virtual block weights.  
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Depending on the end-user defined optimization criteria, we use one of two 
weighted cost functions to determine the system cost. If minimizing block count is the 
objective, the following cost equation is utilized: 
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If minimizing total system cost is the objective, the following cost equation is utilized: 
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The end-user, as described in Section 5.2, assigns the various block weights. The 
technology mapping and optimization tool utilizes simulated annealing and performs 
random changes consisting of an optimization or a transformation from a randomly 
chosen single technology mapping transformation rule (Section 3), a peephole 
optimization (Section 4), or a programmable block operation (Section 5).  

7 Technology Mapping and Optimization Results 

Utilizing the technology mapping and optimization methodology previously 
discussed, we now consider several eBlock systems and provide the corresponding 
physical eBlock system implementation determined by the technology mapping and 
optimization tool taking into consideration user-specified block availability and 
preferences. We considered six different scenarios in which end-users have varying 
types and quantities of physical eBlocks already available, as well as differing 
preferences as to the types of eBlocks the end-user wants to utilize to build the desired 
eBlock system. Section 7.1 looks at scenarios where the optimization criterion 
selected is block size reduction and Section 7.2 looks at scenarios where the 
optimization criterion selected is system cost reduction.  

For each scenario, we considered sixteen eBlock system specifications, ranging 
from a “Night Light Controller” consisting of two internal blocks to a “Digital 
Hourglass Timer” consisting of over 50 internal blocks. The “Technology Mapping” 
library and “Optimization” library input files specified by the node developer are 
consistent across each scenario considered. The “Block Cost” input contains the 
monetary cost of each block type, derived from [19], are also consistent across each 
scenario considered. Each scenario defines the “Block Counts” input specifying the 
number and type of physical blocks already available to the end-user, i.e., the eBlocks 
that end-user currently has on hand. Each scenario further defines the 
“Physical/Virtual Block Weight” input specifying the end-user’s preference towards 



available physical blocks or virtual blocks the end-user wants to utilize in constructing 
the final eBlock system implementation. 

7.1 Minimizing Block Count 

We first consider a scenario, referred to as Scenario 1, in which an end-user may have 
just stumbled upon eBlocks online and wants to try to build various systems using the 
eBlock simulator and has no physical eBlocks available. Block Set A, listed in Table 
2, reflects that the end-user has no physically available blocks. Furthermore, the 
Block Set corresponds to the “Block Count” input of the technology mapping and 
optimization tool. To realize the eBlock system specified within the eBlock simulator, 
the end-user is willing to purchase fixed function blocks but is weary of utilizing 
programmable blocks. Thus, the end-user can specify this preference by adjusting the 
“Physical/Virtual Block Weights” input, setting the fixed function block weights to 10 
and programmable block weights to 100, as listed in Table 1. Having no physical 
eBlocks (as specified by Block Set A) and a desire to utilize only fixed function block 
(as specified by the block weights listed in Table 1), we then utilized the technology 
mapping and optimization tool to implement each of the sixteen eBlock systems. 
Figure 9 illustrates a breakdown of block types for each system, indicating the number 
of physical fixed function, physical programmable, virtual fixed function, and virtual 
programmable blocks each eBlock system is composed of. Only a subset of systems is 
illustrated in Figure 9 due to space limitations. In Scenario 1, programmable blocks 
are penalized, thus all sixteen final eBlock systems consist solely of fixed function 
blocks with solutions yielding and average of 12.9 inner blocks.  

 
 
 
 
 
 
 
 
 

Table 1. Breakdown of physical block counts and weights for each sceanrio. 

 
 
 
 
 
 
 
 
 
 

Table 2. Breakdown of physical block counts for each block set, all input and output blocks are 
assumed to contain unlimited corresponding physical block counterparts. 

 Block Count 
Assignment WP_FF WV_FF, WP_PROG WV_PROG 

Scenario 1 & 7 Block Set A 10 10 100 100 
Scenario 2 & 8 Block Set A 10 10 10 10 
Scenario 3 & 9 Block Set B 1 10 1 100 
Scenario 4 & 10 Block Set B 1 10 1 10 
Scenario 5 & 11 Block Set C 1 10 1 100 
Scenario 6 & 12 Block Set C 1 10 1 10 
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Block Set A 0 0 0 0 0 0 0 0 0 0 0 0 0 
Block Set B 10 2 2 10 2 2 2 10 10 10 0 0 0 
Block Set C 10 2 2 10 2 2 2 10 10 10 2 2 2 



In the second scenario (Scenario 2), the end-user again has no physical blocks 
available, but the end-user in this scenario is willing to purchase fixed function and 
programmable blocks. Again, as the end-user has no available blocks, Block Set A is 
utilized to specify the “Block Count” input. Furthermore, as the end-user does not 
have a preference towards fixed function or programmable blocks, all block types are 
equally weighted in the “Physical/Virtual Block Weight” input. Figure 9 illustrates a 
breakdown of block types for a subset of the sixteen eBlock systems considered. 
Overall, five solutions can take advantage of programmable blocks, resulting in 
solutions that on average require 10.5 inner blocks. By allowing programmable 
blocks, the final eBlocks systems can be implemented using on average 2.4 fewer 
inner blocks compared to a system composed of solely fixed function blocks 
(Scenario 1). 

In the next two scenarios considered (Scenario 3 and 4), an end-user has access to 
some physical fixed-function blocks, perhaps having purchased a initial set eBlocks 
consisting of only fixed function blocks, with the number and type of physical blocks 
available listed in Block Set B. In addition, the end-user in Scenario 3 is willing to 
purchase fixed function blocks if needed but is apprehensive to purchase 
programmable blocks. Block weights are set to so physical blocks have lower 
weights, virtual fixed-function blocks are weighted slightly higher, and virtual 
programmable blocks are heavily weighted, as listed in Table 1. In Scenario 4, an 
end-user is willing to purchase fixed function and programmable blocks. Virtual 
blocks have slightly higher weights, but the block weights make no distinction 
between fixed-function and programmable blocks. In Scenarios 3 and 4, a limited 
number of physical fixed function blocks exist, thus the tool will bias solutions to 
utilize physically available blocks before choosing virtual blocks as shown in Figure 
9. Scenario 3 further penalizes usage of virtual programmable blocks, thus no 
solutions include virtual programmable blocks. On average, solutions require 16.44 
inner blocks but only require end-users to acquire an additional 3.44 inner blocks. 
While Scenario 3’s final inner block count is higher than in Scenarios 1 and 2, 
existing blocks are utilized minimizing the number of additional blocks required. 
Scenario 4 yields solutions with an average inner block count of 13.7, of which an 
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Figure 9. Resulting number of physical fixed function (FF) blocks, physical programmable 

(Prog) blocks, virtual fixed function blocks, and virtual programmable blocks for several 
scenarios and systems. 
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average of 2.3 additional blocks are required. Again, this occurs because the 
programmable blocks are utilized, enabling reduction of fixed-function blocks. 

In Scenarios 5 and 6, an end-user has a slightly larger set of physical fixed 
function and programmable blocks available as listed in Block Set C. The end-user in 
Scenario 5 is willing to purchase fixed function blocks, thus the end-user sets WV_FF 
to 10 while WV_PROG is set to 100. Lastly, in Scenario 6, an end-user is willing to 
purchase fixed function and programmable blocks. While higher than the physical 
block weights, both virtual block weights (WV_FF and WV_PROG) are equally weighted. 
In scenario 5 and 6, a larger physical block library exists, including both fixed 
function and programmable blocks. Figure 9 shows Scenario 5 yields a further 
reduction of inner blocks of 14.1, and 2.3 additional blocks because an expanded 
physical block set is available and specifically because physical programmable blocks 
are available. Scenario 6 results in further decrease resulting in an inner block count 
of 12.9 and an additional block count of 2.9 because virtual programmable blocks are 
not penalized. 

7.2 Minimizing Total System Cost 

In this section, we consider the same scenarios previously discussed but aim to 
minimizing the total system cost. Because the end-user is interested in cost reduction, 
the tool must consider the price of blocks utilized in the final solution. In block count 
reduction utilizing a 2-input logic block and 3-input logic block made no difference 
because both had a block count of 1. However, in the system price reduction a 2-input 
logic block is a better choice at $7.42 than the 3-input logic block at $9.05.  

Figure 10 provides a breakdown of system cost based on the block classification - 
physical fixed-function, physical programmable, virtual fixed-function, or virtual 
programmable. Figure 11 indicates the cost of blocks not currently available within 
the physical set that an end-user needs to purchase to implement the physical system 
indicated by the tool. Scenarios 7 and 8 again consider block libraries in which no 
physical blocks are available, thus the tool tries to find the lowest cost system 
implementation. Although Scenario 8 does not penalize use of programmable blocks, 
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there was no cost benefit in utilizing programmable blocks. Both Scenarios 7 and 8 
resulted, on average, in an inner block cost of $71.29. Scenarios 9 and 10 include a 
library of fixed function blocks, where the end-user assigns larger weights to virtual 
blocks with virtual programmable block receiving an even higher weight. Again, there 
was no cost benefit in utilizing programmable blocks with both scenarios resulting in 
a total system cost of $71.20, and a cost of $14.80 for virtual blocks. Scenarios 11 and 
12 included a library of both fixed function and programmable blocks thus resulting 
in inner block costs of $58.62 and $64.13 and an additional block cost of $9.31 and 
$14.12 respectively. 

Overall, our technology mapping and optimization enables end-users to 
successfully design a system with existing blocks or with minimal additional blocks 
required. Additionally, our optimization tool is effective in reducing the size of end-
user designed systems and reducing system cost. On average, our tool is extremely 
fast, requiring only 6 second per application, executing on a 2.8 GHz Xeon computer. 
When the end-user selected system cost reduction as the optimization criteria, the tool 
yielded a 23% reduction of system cost compared to the original implementation. 
When the end-user selected block count minimization as the optimization criteria, on 
average the tool yielded system implementations requiring six virtual blocks.  

8 Conclusions and Future Work 

We described a technology mapping and optimization tool to aid end-users in 
transforming a virtual eBlock system into an optimized physical block system. The 
tool requires no programming or electronics experience on the end-user’s part, yet 
provides end-users with the ability to guide the tool in producing a system optimized 
for size or cost based on a constrained block library. The tool presented in paper is 
part of a larger framework. We plan to continue to add more blocks to the eBlock set 
as well as to expand the tools to support customization of the communication protocol 
and block parameters. The blocks, combined with the tool, help end-users setup useful 
basic sensor-based embedded computing systems to monitor and control the end-
users’ environments.  
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