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Abstract—Various core-based power evaluation approaches for
microprocessors, caches, memories and buses have been proposed
in the past. We propose a new power evaluation technique that
is targeted toward peripheral cores. Our approach is the first
to combine for peripherals both gate-level-obtained power data
with a system-level simulation model written in an object-oriented
language. Our approach decomposes peripheral functionality into
so-called instructions. The approach can be applied with three
increasingly fast methods: system simulation, trace simulation or
trace analysis. We show that our models are sufficiently accurate
in order to make power-related system-level design decisions but
at a computation time that is orders of magnitude faster than a
gate-level simulation.

Index Terms—Low-power design, power estimation, system-
level simulation, system-on-a-chip design.

I. INTRODUCTION

A S mobile computing devices have become more popular,
minimizing average power and total energy consumption

has become an important design goal. Furthermore, short
product life cycles and increasing product complexity have
led to core-based design paradigms. As a consequence, there
is a strong demand for core-based power evaluation and
optimization tools.

A core is a pre-designed processing-level component, such
as a microprocessor, memory, or peripheral component like a
direct-memory access controller, bus interface, or compres-
sion/decompression engine. A core may reside on a single chip
with tens of other cores, forming a system-on-a-chip, or SOC.
Cores typically have numerous parameters to increase the
number of applications in which the core can be used. Example
parameters include bit-widths and buffer sizes. An important
but hard SOC design task is thus to configure the numerous
and interdependent parameters of the SOC cores, such that
the configuration is tuned to the executing software under
power/performance constraints. Fast and accurate evaluation
and optimization tools are needed to perform such tuning.
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A core’s power consumption may vary greatly depending
on the application driving the SOC, and on the configuration
of the core itself. Thus, the average-power tables provided in
core data-sheets, even when extended to account for a subset of
common configurations, may yield inaccurate power numbers
for a particular application and configuration.

Therefore, researchers have proposed techniques for fast
system-level power evaluation of various cores, including
microprocessor, cache, memory and bus cores. In our efforts
to develop a system-level power evaluation environment for
parameterized SOC, we found however that no techniques
existed to evaluate peripheral cores as fast and accurately as
a combined gate-level/system-level model (i.e., executable
specification) could provide. Our work uses such an approach
and applies it to peripheral cores, namely those single-purpose
processing cores that typically surround a microprocessor core.

II. PREVIOUS WORK

Previous power evaluation work has been done at various
abstraction levels, trading off accuracy for speed at higher
levels. Logic-level approaches simulate a gate-level design and
measure switching activity of design nodes [1], [2], executing
orders of magnitude faster than circuit-level approaches [3],
[4], but still requiring days to evaluate even one configuration.
RTL (register-transfer level) approaches simulate an RTL
design, consisting of coarser components like adders and
multipliers, and compute power using power models of those
components, known as macro-models. These approaches may
use table-lookup techniques or analytical models. Early work
was done in [5], using table-lookups, where each component
was modeled via an -variable characterization (input density,
output density, switching-probability, etc.) of its power con-
sumption [6], [7]. An -dimensional lookup table is used to
lookup the power consumption of an RTL component during
simulation. Similarly, analytical models have been devised that
compute power consumption of an RTL component given the
actual input patterns or some form of input pattern characteriza-
tion [8], [9]. Lookup tables and the coefficients of the analytical
models are often derived from the gate-level circuit structure
or lower level power evaluation and simulation. In [10], RTL
power evaluation demonstrates accuracy of within 5%, but RTL
approaches may still be too slow for extensive system-level
exploration, especially considering that just synthesizing an
RTL design may take hours, which must be repeated for each
configuration.

At an even higher abstraction level, behavioral-level ap-
proaches estimate power of a behavioral HDL description
before a synthesized design is obtained. Switching is estimated
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using entropy from circuit input to circuit output by quadratic
or exponential degradation [11], [12]. Such approaches, while
fast, will not be nearly as accurate for cores as approaches that
take advantage of the fact that cores can be presynthesized.

In [13], a system-level power estimation approach is intro-
duced for mapping a workload to a set of resources, where the
workload would be a measure of the computational activity and
the resources represent the hardware. Each resource is modeled
via a power-state machine that captures the power behavior of
that component. A power management unit will translate a re-
source event and the simulation events into power-state machine
transitions while accumulating power consumption.

Work has been done to evaluate power consumption of mi-
croprocessor cores. Instruction-level power modeling is pro-
posed by [14]. Given a program execution trace, energy is com-
puted as the sum of the energy consumed by each instruction
that is executed, circuit state energy consumed when a partic-
ular instruction is followed by another, and energy consumed
by other effects such as stalls and cache misses. This approach
is sped up in [15] by deriving a shorter program trace that re-
sults in equal power dissipation. In [16], a mathematical generic
power model for 32-bit microprocessors is proposed. The ap-
proach classifies the instruction set into classes like branches,
etc. Other researchers have focused on fast system-level models
for cache, memory and bus power consumption [17], [18], con-
sisting mostly of equations that compute power consumption
as a function of usage/traffic and core parameters. In [19], a
cycle-accurate power simulation tool for a system with a mi-
croprocessor and memories is introduced, with accuracy within
5% of board measurements. A trace-based approach deploying a
mix of analytical models for memories and instruction-set sim-
ulation is introduced in [20].

III. POWER-EVALUATION FOR PERIPHERALCORES

While previous system-level evaluation approaches for SOC
components focused on microprocessors, cache, memory and
buses, we now describe an approach for peripherals.

A. Overview

We have found that peripherals can be viewed as executing a
sequence of “instructions.” Classically, an instruction represents
an atomic action available to a microprocessor programmer. We
use “instruction” more generally as an action that, collectively
with other actions, describes the range of possible behaviors of
a core. We have extended the instruction-level power modeling
approach that was previously used for microprocessor cores,
for use with peripheral cores. In developing the approach, we
noted that cores typically already come with system-level func-
tional models, written in an object-oriented language like C++,
or Java, and that in fact the VSIA requires such models in its
standard [21].

We informally define the power evaluation problem as
follows. Given a parameterized core [e.g., a Universal Asyn-
chronous Receiver/Transmitter (UART)] of an SOC, we are
to devise a high-level executable model, say in C++, of that
core that can output energy consumption during a system-level
simulation. This model must be sensitive to changes in the

various parameters of that particular core. Our approach can be
applied to each peripheral core in an SOC to obtain the total
system energy consumption.

Our approach is broken into seven steps. Of these, the
core provider performs the first five steps while the core user
performs the last two steps. It is important to note that tasks
performed by the core provider are done once while tasks
performed by the core user are iterated until desired system
power/performance constraints are met.

B. Core Provider Steps

The core provider steps are done for each target technology,
and are only performed one time for each. The resulting data is
used in any core-based design using the particular core. These
steps may take days to complete, forming part of the months re-
quired to develop the core. Keep in mind that the core provider
performs all the following steps manually. Furthermore, since
each core may exhibit different power consumption character-
istics, the core provider must manually fine-tune each step, in
order to achieve desired accuracies.

Step 1: Selecting Peripheral Instructions:The core provider
must first break the core’s functionality into a set ofinstruc-
tions. Given an RTL model of a core, one first determines the
system-level instructions of that core. These instructions must
have the property that they collectively cover the entire function-
ality of the core. As with the instructions of an instruction-set
processor, each instruction operates on some input data and pro-
duces some output data. For example, for a UART, one might
select the following instructions:Reset, Enable_tx, Enable_rx,
Send, andReceive.

In general, there is a tradeoff in choosing the right in-
structions for power evaluation: having many fine-grained
instructions may lead to greater accuracy but longer simulation
times than having fewer, coarse-grained instructions. Notice
also that instruction creation is currently a manual process,
requiring good knowledge of the core’s behavior as well as the
core’s power consumption characteristics.

Step 2: Instruction Data Dependency Modeling:For each in-
struction, the core provider must determine how dependent the
instruction’s power consumption is on the instruction’s input
data. We thus define an instruction’s power-dependency charac-
teristic as one of:dependentdirectly on its input data, dependent
on astatisticalcharacterization of its input data (e.g., the density
of 1’s in a vector of bits), orindependentof its input data. Such
determination can be based on factory data-sheets, a core de-
signer’s knowledge, experimental results or statistical analysis.
For example, for a UART example, we ran experiments that pro-
vided different data to each instruction, and we determined that
the power-dependency characteristic for all instructions was in-
dependent. For example, theSendinstruction consumes approx-
imately a constant amount of energy regardless of the data being
sent; likewise for theReceiveinstruction.

Step 3: Core Power-Mode Modeling:Very unlike micropro-
cessors, certain instructions executed on a peripheral core can
drastically change the power consumption of succeeding in-
structions. In particular, certain instructions change the mode of
the peripheral core. This concept of mode is very different from
that of measuring interinstruction power dependencies (e.g., a
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Fig. 1. UART’s power-mode transition function.

load following a store may consume more power than a load
following an add). To account for this, the core provider must
determine the set of modes of a core, referred to aspower-modes
that cause the core to consume significantly more or less power
per each execution of its instructions. In our UART example,
we found four power modes:Idle, Tx_enabled, Rx_enabled, and
Tx_rx_enabled. Given these modes, we define a power-mode
transition function of a core, that gives the next power-mode
given the current power-mode and the most recently executed
instruction of that core. For a UART example, the power-mode
transition function is shown in Fig. 1.

Step 4: Gate-Level Power Evaluation:Here, we use gate-
level simulation to obtain per-instruction energy consumption
data for the lookup-tables. Given an RTL model of a core, its
instructions, parameters, and modes, we follow the procedure
outlined in Algorithm 1.

Algorithm 1:
for Parameter-Space do
for Power-Mode-Space do
for Instruction-Space do
if independent then
create test-bench simulating with

data random, mode , parameter
elseif statistical then
for

Statistical-Characterization-Space do
create test-bench simulating with

data , mode , parameter
elseif dependent then
for Data-Space do
create test-bench simulating with

data , mode , parameter

This procedure gives a systematic way of creating a set of
test-bench models that, when simulated at gate-level, capture
the energy consumption of a particular instruction, in a par-
ticular mode with a particular parameter setting. Note that the
procedure has different actions for the different power-depen-
dency characteristics introduced in step 2. We then simulate
each test-bench with the core’s gate-level model, and we ana-
lyze the energy consumption of the corresponding instruction,
mode and parameter value. We tabulate these energy results into
our lookup tables. The following table gives the lookup energy
values ( J) for the UART example. The rows correspond to in-
structions while columns correspond to the UART’s buffer size

TABLE I

parameter values. The entries are repeated for each one of the
four modes as shown in Table I.

Step 5: System-Level Modeling:Here, we develop a system-
level model of each core that enables rapid power evaluation
when executed (i.e., an executable specification). Given an RTL
model of a core, its instructions, and its modes, we implement a
functional model of the core in terms of its instructions. If using
method-calling objects [22], the interface to the object repre-
senting the core would have the instructions as methods and
the instruction’s input/output data as parameters. To each ob-
ject-oriented model, we add two data objects, calledcore_en-
ergy (initialized to zero) andpower_mode(initialized to Idle.)
We then augment the implementation of each method of the
core’s system level model with the code in Algorithm 2.

Algorithm 2:
// : the current instruction, : current
mode, : current parameter, : instruc-
tion’s data
behavior();
power mode power mode table
[power mode ];
if independent then
core energy core energy + energy table

[ power mode]
elseif statistical then
core energy core energy energy table

[ power mode ]
elseif dependent then
core energy core energy energy table

[ power mode ]

C. Core User Steps

Step 1: Connecting the System-Level Core Model:During
this step, the core user selects components from the core li-
brary and connects them according to the system-level model
organization.

Step 2: System-Level Power Evaluation:Here, the core user
simulates the complete SOC. This can take on the order of sec-
onds or minutes. Thus, hundreds or thousands of configurations
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Fig. 2. (a) Functional model, (b) trace-driven model.

can be evaluated. The top-level simulation model will be de-
signed to output the value of thecore_energyvariable, for each
core of the system, at the end of each simulation. Likewise, the
sum of allcore_energyvalues represents the system-level es-
timate of the SOC energy consumption for a given configura-
tion of its parameters. An estimate of the SOC average power
consumption is obtained by dividing the total SOC energy con-
sumption by the execution time.

D. Trace-Driven Evaluation Approach

Processing instruction traces via trace simulators, instead of
using a full functional simulator, can speed up the system-level
power evaluation approach described above. Our trace-driven
approach is inspired by similar work applied to caches and pro-
cessors. Cache simulators intended for power or performance
evaluation typically work off of address reference traces. Pro-
cessor simulators intended for power evaluation also have re-
cently been developed using instruction traces.

We define a trace, with respect to a core, to be a sequence of
instructions with accompanying data items that are executed by
that core during its functional simulation. We extend the above
simulation-based approach by converting the functional models
of the cores to nonfunctional, or partially functional, models.
These models operate on a trace. We refer to such nonfunctional
models astrace simulators.

Fig. 2 shows the functional-simulation-based approach
as well as the trace-simulator-based approach. Using trace
simulators, a core user simulates a system once to obtain the
trace files for each core. These trace files are subsequently
processed using trace simulators to obtain power and explore
various core parameter effects. Trace-driven simulators are
significantly faster than full functional simulators.

We now describe how to construct these trace-driven simula-
tion models for general peripheral cores. First, given a system
level functional model of a core, the core developer augments
the implementation of each method in that model with code that
will append to a trace-file a unique id for that instruction and the
corresponding instruction data. When executed, such a model
will output a set of traces, one per each core in the system, that
is subsequently used by trace simulators as described next.

Given an RTL model of a core, its instructions, and its modes,
we implement a nonfunctional model of that core in terms of
its instructions. If using method-calling objects, the interface to
the object representing the core would have the instructions as
methods and the instruction’s input/output data as parameters

to the corresponding methods. To each object-oriented model,
we add two data items:core_energy(initialized to zero) and
power_mode(initialized to Idle). The implementation of each
function consists of the code fragment presented in Algorithm
2, but excluding the functional implementation (i.e., the call to
behaviorroutine).

Each core’s object-oriented model is then designed to read
the corresponding trace file and execute the instructions of it
accordingly. The top-level simulation model will be designed
to output the value of thecore_energyvariable, for each core
of the system, at the end of each simulation. Likewise, the sum
of all core_energyvalues represents the system-level estimate
of the SOC energy consumption for a given configuration of its
parameters. An estimate of the SOC average power consump-
tion is obtained by dividing the total SOC energy consumption
by the execution time.

E. Trace Analysis

We can further speed up the power evaluation time for cores
by reducing the size of the trace files, therefore reducing the
processing time required to evaluate power consumption. Our
technique is similar in idea to those in [15] intended for micro-
processors, but simpler (since microprocessor instruction traces
are more complex). Here, we will outline similar approaches
for speeding up our trace-driven power evaluation approach for
peripheral cores. They are to be compared with thefull trace
approach of the previous section, in which the traces store each
instruction along with its complete input data.

In thereduced trace via characterized-dataapproach, rather
than storing complete parameter data, we store a statistical char-
acterization of that data. For example, we can store the data-den-
sity, defined as the ratio between the number of bits that are set
to the total number of bits. Density has been shown to be a good
predictor of power in many components, and our own experi-
ments support this.

In thereduced trace via instructions onlyapproach, we store
the instruction only, without any parameter data. We can take
this approach if we determine that power consumption is mostly
independent of an instruction’s data. Note that we can apply the
above trace reductions to the entire trace file, i.e., all instruc-
tions, or to selected instructions. Thus, Fig. 3 shows code that
can use a different method for each type of instruction.

In the reduced trace via instruction-frequencyapproach,
we combine a sequence of instructions that are identical or
have identical power consumption into a single instruction
augmented with a frequency value. We could further annotate
each instruction with a statistical characterization of the data
accompanying the combined instructions. The instruction-fre-
quency approach is an area of future work, and could be
extended in the direction of [15].

IV. EXPERIMENTS

We have performed numerous experiments to verify the ac-
curacy, and simulation speedup obtainable by using the power
modeling approach presented in this work. We outline our ex-
perimental setup and results next.
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Fig. 3. Target SOC architecture.

A. Target SOC Architecture

The target SOC architecture used in our experiments is shown
in Fig. 3. Here, a MIPS R3000 processor is connected to instruc-
tion and data caches via the processor local bus. In turn, the
caches are connected to on-chip main memory via the system
bus. The MIPS, caches, memory, and associated buses collec-
tively constitute the processor subsystem of the SOC. The pro-
cessor subsystem is connected to the peripheral bus via a bridge
component. Numerous peripherals reside on the peripheral bus.
These are: UART, Direct Memory Access (DMA) controller,
Discrete Cosine Transform (DCT) decoder, external peripheral
I/O controller (called Digital I/O to distinguish it from the use of
the term “peripheral” referring to SOC peripherals), and timer.
In our experiments, we focus on power estimation for peripheral
components only, shown as shaded in Fig. 3. Each SOC periph-
eral is parameterized. The number of configurations and a brief
description of parameters are given in Table II.

B. Experimental Setup

We have implemented a system-level model of the above
SOC in C++. Our implementation is augmented with the
power-model approach described in this paper. The energy
lookup tables have been obtained using the technique men-
tioned earlier in this work. A VHDL model of each of the
peripheral is used to obtain the energy lookup tables. The
VHDL models have been captured at RTL and synthesized
down to gate using Synopsys synthesis tools. Gate-level power
estimation is performed using Synopsys power estimation
tools. To ensure relative accuracy, the same compiler directive
(medium optimization effort) and library binding (LSI_10K)
has been used for all synthesis and gate-level estimation runs.
Each peripheral has been modeled using the following ideal1

number of power-modes (see Table III).
For our experiments, five different benchmarks have been

used: a digital camera application processing a black/white
image of planet earth (digcam-earth), a digital camera ap-
plication processing a color image of a car (digcam-car), a
pseudo-application designed to utilize all peripherals with
random instruction and random data (utilize-random), a
pseudo-application designed to utilize each peripheral with
3000 instruction calls and data set to zero (utilize-fixed0), and

1In some experiments a less than ideal number of power-modes is used to
measure estimation accuracy sensitivity.

TABLE II

TABLE III

a pseudo-application designed to utilize each peripheral with
3000 instruction calls and data set to one (utilize-fixed1). The
following table gives utilization and data characteristics of each
of the five benchmarks. These examples were chosen to provide
a range of inputs and determine if our estimation method would
maintain accuracy under variety of inputs as shown in Table IV.

C. Results

Part 1: Estimation Accuracy:Here, we compared SOC en-
ergy consumption (the peripheral subsystem) results obtained
using our approach to those obtained using gate-level estima-
tion. Our results are summarized in Fig. 4. The experiments
are averaged over all possible configurations of the SOC cores.
Furthermore, we used the ideal number of power-modes for
this part of the experiment. The percent error fordigcam-earth,
digcam-car, utilize-random, utilize-fixed0, utilize-fixed1, was
5.9%, 4.4%, 4.4%, 6.2%, and 10% respectively. The average
error was 6.2%. The maximum error of 10% occurred withuti-
lize-fixed1, which executed all instructions with data set to one.
The minimum error of 4.4% occurred withdigcam-car, which
executed the longest, andutilize-random, which executed with
random data patterns.

Part 2: Power-Mode Sensitivity:Here, we examined the
importance of power-modes. We used the UART peripheral,
a fixed configuration, and three different power-mode se-
lections, namely, one power-mode, two power-modes, and
four power-modes. We ran all five benchmarks. The energy
consumption of the UART core and the percent error relative to
gate-level estimation is shown in Table V.

Results show that the error increases as the number of power-
modes is reduced from the ideal. Thus, a proper selection of
power-modes is important for accuracy.

Part 3: Instruction Sensitivity:Here, we examined the im-
portance of proper instruction granularity selection. We used the
UART peripheral, a fixed configuration, and four power-modes.
Furthermore, we aggregated theSendandReceiveinstructions
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TABLE IV

Fig. 4. Power estimation comparison.

TABLE V

into a singleSend_or_receiveinstruction. We ran all five bench-
marks. The energy consumption of the UART core and the per-
cent error relative to gate-level estimation is shown in Table VI.

Results show that the error increases as the instruction gran-
ularity is reduced from the ideal. Thus, a proper selection of
instructions is important for accuracy.

Part 4: Trace-File Reduction:Here, we experimented with
trace file reduction. We selected two benchmarks,digcam-earth
anddigcam-car. For each core, we used a fixed configuration,
and the ideal number of power-modes. The results are provided
in Table VII.

TABLE VI

For each benchmark we measured the sizes of the trace files
for the full-trace (full-trace), the reduced trace via character-
ized data (reduced-trace-c), and the reduced trace via instruc-
tions only (reduced-trace-i). Also, we compared the CPU time
required to evaluate power consumption, comparing gate-level
simulation (gate-level), functional system-level simulation (sys-
level), full-trace, reduced-trace-c, andreduced-trace-i. We note
that the file size offull-trace was 9 times larger than the file
size of reduced-trace-cand 64 times larger than the file size
of reduced-trace-i. Likewise, evaluation time (i.e., CPU cycles
required to perform the simulation) using a trace file was on
the average 5 times faster thansystem-levelsimulation. In terms
of power, the error using a trace files was on the average less
than 1%.
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TABLE VII

V. CONCLUSION

We have introduced an instruction-based system-level tech-
nique for fast and accurate power evaluation of peripheral cores.
The technique can be used in conjunction with those previously
developed for microprocessors, caches, memories and buses,
to achieve power evaluation of systems-on-a-chip, and comple-
ments evolving system-level modeling standards. We showed
the importance of the power-mode concept, and showed that
data-sheet lookup based approaches can be inaccurate. In ad-
dition, similar to microprocessor and cache trace-simulator ap-
proaches, we have shown a method for using peripheral instruc-
tion traces and trace simulators to further speedup power evalu-
ation. Further work may focus on automating the characteriza-
tion phase of our technique.
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