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Evaluating Power Consumption of Parameterized
Cache and Bus Architectures in System-on-a-Chip

Designs
Tony D. Givargis, Frank Vahid, and Jörg Henkel, Senior Member, IEEE

Abstract—Architectures with parameterizable cache and bus
can support large tradeoffs between performance and power. We
provide simulation data showing the large tradeoffs by such an
architecture for several applications and demonstrating that the
cache and bus should be configured simultaneously to find the op-
timal solutions. Furthermore, we describe analytical techniques for
speeding up the cache/bus power and performance evaluation by
several orders of magnitude over simulation, while maintaining
sufficient accuracy with respect to simulation-based approaches.

I. INTRODUCTION

T HE GROWING demand for portable embedded com-
puting devices is leading to new system-on-a-chip (SOC)

architectures intended for embedded systems [10]. Such
SOC architectures must be general enough to be used across
several different applications in order to be economically
viable, leading to recent attention to programmable silicon
platforms [8], [15], [16], [18]. Different applications often
have very different power and performance requirements (and
a single application may have different requirements over
time). Therefore, these platforms must be adaptable not only to
each application but also to different power and performance
requirements.

A typical SOC architecture will have one or more caches and
buses [19], which consume a large percentage of system power,
especially in deep-submicrometer technology. The cache can
be made parameterizable by allowing configuration of its fea-
tures like line size, associativity, and total size. The bus can be
made parameterizable by configuring it to use different sized
and spaced wires and by enabling or disabling encoding tech-
niques. For example, an application that does not benefit from
large associativity would consume less power if the cache were
configured for smaller associativity. Although this would result
in unused transistors, it would reduce power by reducing com-
parisons. The new-found abundance of transistors on-chip en-
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Fig. 1. Target architecture.

ables design of such parameterized components. In fact, some
platforms come in the form of intellectual property, such as a
Hardware Description Language (HDL), and thus can be syn-
thesized to have only those transistors necessary for a selected
configuration.

In this paper, we begin by describing our parameterized ar-
chitecture. We summarize related work. We describe our exper-
imental setup for evaluating the large power and performance
tradeoffs possible by configuring our architecture, a setup based
on accurate but time-consuming simulation. We then provide
analytical techniques for speeding up the cache and bus eval-
uation by several orders of magnitude, while maintaining rea-
sonable accuracy. We conclude that cache and bus parameters
should be evaluated simultaneously, and that our analytical tech-
niques are fast enough to permit extensive search for the optimal
configuration for a given application and requirements.

II. TARGET ARCHITECTURE

Fig. 1 shows the block diagram of our SOC target archi-
tecture. The whole system may feature a CPU, an instruction
cache (I-cache), a data cache (D-cache), a main memory, pe-
ripheral units, and cores for diverse applications (like MPEG
encoding, for example), as well as various buses to connect all
these cores. Our investigations focus on the subsystem CPU,
CPU-to-cache (processor local) bus, I/D-caches, cache-to-main-
memory (system) bus, and the main memory. Our focus in this
paper is on the enclosed area in Fig. 1, because it is the system
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part with heaviest traffic and thus accounts for the largest part
of power consumption.

The I-cache and D-cache each have the following design pa-
rameters: cache size, line size, and associativity. Cache line is
the size of a block of data that is loaded from main memory into
the cache on a cache miss. Cache associativity is the number
of slots that a particular cache line can be placed into once it is
loaded from main memory. When cache associativity is set to
one, a line of data will always map to a single cache line, when
set to eight, a line of data can map to any of eight possible cache
lines. The range of values considered are: cache sizes of (32 K,
16 K, 8 K, 4 K, 2K, 1K, 512, 256, or 128), line sizes of (8, 16, or
32), and associativity of (2, 4, or 8). Each bus has the following
design parameters: number of data lines (32, 16, 8, or 4) with
bus invert (on or off).

We assume that a parameterizable bus is in use such that the
number of data wires in use can be selected to be one of 4, 8,
16, or 32. The result of such variation is that configuring the bus
to use four wires will result in lowest coupling capacitance [1],
since the spacing between the wires is increased. As a result, a
bus with four wires will result in the lowest power per transfer,
but more transfers and hence reduced performance. Conversely,
using all 32 wires will result in the highest average capacitance,
due to decrease in relative wire spacing. Note that when we say
the size of the bus, we are referring to the number of wires that
that bus is composed of and not the width of the wires. Instead,
we assume that the routing area of the bus is constant for any
size bus.

In our experiments, we focus on evaluating bus and cache
parameters together in order to find the best tradeoff between
power/performance/hardware effort.

III. RELATED WORK

The related work important to our approach can be divided
into three categories: work on system-level power optimization
in general, architectural power optimization focusing on a single
core (like a CPU, cache, main memory, etc.), and work on bus
issues like power, performance, and size.

As for the first group, Daveet al. [2] introduce a codesign
methodology that optimizes for power and performance at the
task level. Their procedure for task allocation is based on an av-
erage power consumption and does not take into consideration
data dependencies on the instruction level to estimate/optimize
power. In addition, they do not take into consideration cache and
bus effects in terms of power and performance. The system-level
power optimization approach proposed by Honget al. [6] has
the same limitations regarding the addressing of architectural
tradeoffs. Rather, they exploit the technique of variable voltage
scaling in order to minimize power consumption.

At the architectural level for single system components (i.e.,
not considering any tradeoff between various system parts),
high-performance microprocessors have been investigated and
specific software synthesis algorithms have been derived to
minimize power by Hsiehet al.[7]. Tiwari [17] investigated the
power consumption at the instruction level for different CPU
and digital signal-processing architectures and derived specific
power optimizing compilation strategies.

An approach that is based on system level and takes into con-
sideration the interdependencies between various system parts
has been proposed by Liet al. [5]. Their target system features
a CPU, a data cache, an instruction cache, and a main memory.
The impact of buses is not accounted for. As a result, the eval-
uation will be less accurate in new technology, where routing
capacitance will play a significant role in the system’s power
consumption. Fornaciariet al.[3] explore the impact of different
bus encoding schemes for embedded systems in terms of power
dissipation. Though they study power consumption for various
cache sizes, they do not explore all relevant interdependencies
(e.g., cache line size, associativity, main memory size, etc.). So,
their approach basically assumes that most system parameters
have already been determined, and they focus on finding the
best bus encoding scheme.

A key contribution in reducing bus power has been the en-
coding of data, such as bus-invert [12]. Here, the Hamming dis-
tance of two consecutive data words is computed. If this dis-
tance is greater than half the word size, the inverted data are
sent and a control signal is asserted to signal decoding of the
data on the receiver side. Using bus-invert, a theoretical power
savings of 25% average and 50% peak is obtainable. However,
bus-invert coding may increase the bus cycle time, resulting in
a performance penalty. Limited-weight codes [13] are general-
ized encoding schemes that, using more than one control signal,
reduce average bit transitions on the bus, resulting in even lower
power consumption.

Our approach is more comprehensive than approaches pro-
posed so far. We take into consideration most of the relevant
parts of a whole embedded system (CPU, instruction/data cache,
main memory, and buses) and explore the interdependencies
of different system parameters like cache sizes, associativity,
main memory capacity, bus encoding schemes, and bus widths.
Lastly, we consider, besides power, performance and area as
well.

IV. SIMULATION -BASED ANALYSIS

In this section, we present a simulation-based approach to ex-
plore parameter optimization in SOC architectures. We consider
a whole system consisting of a CPU, caches, a main memory,
and interfaces between those cores, and we demonstrate the high
impact of an adequate adaptation between core parameters and
interface parameters in terms of power consumption. We will
show that cache and bus configurations have a significant im-
pact in this respect. In addition, we make the important obser-
vation that optimizing for performance does not imply that en-
ergy consumption is optimized as well. This is especially true
in deep submicrometer technology.

A. Experimental Setup

For our experiments, we used the flow shown in Fig. 2, which
allows us to estimate power consumption of the subsystem
shown in Fig. 1, and estimate its performance for a given set
of bus and cache parameters. After selecting a set of parameter
values, the source code of the application is simulated to obtain
a cache trace. This cache trace is then fed into a cache simu-
lator, that is, a cache analyzer that outputs cache performance
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Fig. 2. Simulation-based performance analysis.

metrics, cache power consumption, and bus traces. The cache
performance metrics, combined with the instruction trace
generated by the simulator, is used in the CPU analyzer tool to
compute CPU power consumption and system execution time.
The bus trace is fed into the bus analyzer, where bus power
consumption is computed and a memory trace is generated.
Likewise, the memory trace is fed into the memory analyzer,
where its power consumption is computed. Finally, the power
consumption of all components is summed to obtain the total
system power consumption. This process is iterated for each
new set of parameter values.

To obtain CPU power, we have applied an instruction-based
CPU power model. Here, each CPU instruction is characterized
with respect to power. During a simulation, each executed in-
struction contributes to the total power consumption. In addi-
tion, cache misses and pipeline stalls are also accounted for, and
their power consumption is added to the total CPU power. This
approach is outlined in [14]. In [14], a cycle-accurate power sim-
ulation tool for an embedded system, using a strong ARM archi-
tecture as CPU, is introduced. The reported results are accurate
within 5% compared to measurements conducted on a hardware
board.

To obtain bus power, we have applied the standard power
model , where is the toggle frequency on
the bus wires and is the average capacitance of each wire.
We have assumed that the routing area on the chip is constant.
Thus, if less wires are routed, they will be spaced farther away,
reducing the average wire capacitance. For this reason, we have
modeled the capacitance of a bus with fewer wires with a lower
capacitance.

For caches and memory, we used analytical power models.
That means that those models resemble a parameterized struc-
ture of the underlying components. For example, a cache is de-
composed into a decoding part, blocks, output, etc. A block
is decomposed into lines, rows, and cells, and each of these
basic components is associated with some relative capacitance.
Model parameterization allows us to match our models accord-
ingly when cache size, line size, and associativity are varied.
The cache and memory models are driven by instruction traces

Fig. 3. Power versus execution time for older technology.

and thus accumulate and finally output the energy consumption
throughout the run of an application. Further details are found
in [5].

Cache and memory area is obtained by using corresponding
models as described in [20]. Area used by the bus-invert en-
coding is obtained by applying models described in [4]. Area
used by the bus routing and CPU were excluded since these were
not dependent on our parameter configurations.

For our experiments, we deployed four, mostly data-domi-
nated, applications: an algorithm for computing three-dimen-
sional (3-D) vectors of a motion picture3d-image,an MPEG-II
encodermpeg,a diesel engine control algorithmdiesel,and a
complex chroma-key algorithmckey. (We in fact did a fifth ex-
ample of an animation algorithm but omit results for presenta-
tion briefness since they matched the others.) The applications
ranged in size from about 5 to 230 kB of C code.

B. Experiment Overview

For each of the four applications, we ran the cache simu-
lation tool for all different cache configurations and obtained
the cache, main memory, and CPU power consumption values
as well as the CPU-to-cache and cache-to-main-memory bus
traffic traces. We then input the bus traffic traces to a bus sim-
ulator [4] for all possible bus configurations. We thus obtained
total power (cache plus main memory plus CPU plus bus) con-
sumption for 46 656 possible configurations for each example.1

Generating these power data for each of the four examples re-
quired roughly one week of computation time. We did this pro-
cedure for two distinct technologies: an older technology (0.8

m), shown in Fig. 3, and a newer technology (0.18m), shown
in Fig. 4. The wire-to-gate capacitance ratios for old and new
technologies were three and 100, respectively, based on [20] and
also supported by data in [11] showing rapidly increasing ratios.
Each plot represents several tens of thousands of configurations,
each configuration representing a point in the plot.2 In addition,

1We obtain 46 656 as follows. For each of the two caches, we have nine pos-
sible cache sizes and three possible associativities/line sizes. For each of the two
buses, we have four possible widths and two data encoding. As a result, we ob-
tain (9 3) (9 3) (4 2) (4 2) = 46 656.

2Note that due to the scale/resolution, many different design points appear as
only one point in the plots.
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Fig. 4. Power versus execution for new technology.

many inferior data points have been cropped to further improve
the presentation.

C. Power and Performance Tradeoff in Newer Technology

Fig. 3 provides plots of execution time (-axis) and total
power ( -axis) for each example in the old technology. Total
power includes CPU, cache, memory, and buses. Note that in
three of the four examples, the configuration with the lowest
execution time corresponded with the configuration having the
lowest power consumption. Only in one example was there a
real tradeoff between execution time and power.

Fig. 4 provides plots in the newer technology. Upon exam-
ination, we find that all four examples exhibit a tradeoff be-
tween execution time and power. The reason for this behavior
is that the bus power is a significant component of total power
in newer technology, and bus power is inversely related to exe-
cution time. In particular, fewer wires implies less wire capaci-
tance and hence less power, but also implies more bus transfers
and hence a higher execution time.

Each plot displays at least four distinct “regions.” In the older
technology, each region appears as a spike. In the newer tech-
nology, each region appears in an L-shape. Upon investigation
of the data, we found that each region corresponds to a particular
CPU-to-cache bus size of 32, 16, 8, or 4 (i.e., the four sizes we
evaluated). The leftmost region corresponds to a CPU-to-cache
bus of 32 bits (giving the smallest execution time), and the right-
most corresponds to 4 bits. The bottom-most point of each re-
gion corresponds to the optimal cache/bus configuration for that
region based only on power and execution time (not size). The
many points above and often to the right of the optimal corre-
spond to different cache and cache-to-main-memory bus con-
figurations. Within a region, there is no tradeoff between power
and execution time—the lowest execution time configuration is
also the lowest power configuration in any given region. Thus,
we observe that the CPU-to-cache bus size is the major com-
ponent in determining the system’s power and execution time
metrics. Moreover, for a given CPU-to-cache bus size, one can
expect a local tradeoff among power and execution time. We
conclude from these data that future automated search heuris-
tics should begin by selecting a CPU-to-cache bus size that puts
one in the appropriate region based on power and execution time
constraints and/or cost function for a given application. Then,

the automated search heuristics seeks the near-optimal power
and execution time points in that region.

As an additional note, some plots show more than four re-
gions, with a region appearing directly above another region

(actually all plots originally showed four pairs of regions be-
fore being cropped). These and regions differ in that
uses bus-invert for the CPU-to-cache bus whiledoes not. We
see that bus-invert is crucial for low power in newer technology.

D. Size and Differing Cache/Bus Configurations

At the bottom of each region in the new technology, we see
a very dense set of points. These points correspond to the op-
timal or near-optimal power and performance configurations for
that region, each point representing a different cache configu-
ration and cache-to-main-memory bus configuration. We obvi-
ously want to choose the configuration with the smallest size
that is near the optimal within some tolerance.

We therefore examined all configurations within a couple per-
cent of the optimal power, energy, and execution time of each
region to find the minimum size configuration in this subregion.
One might expect that the best cache configuration in one region
would be the best in the other regions, for a single example. In
some examples, this was indeed the case. But in other examples,
the best configuration was different in different regions.

It must be noted that we consider both power and energy as
important metrics in the design of a system. A system’s power
consumption dictates the design of heat-sink, power supply, and
dc-to-dc converter (if needed) used in that system. Moreover, for
systems that are designed for continuous operation, a configura-
tion yielding lower power consumption that meets the system’s
timing constraints is preferred. Energy, on the other hand, is im-
portant for battery-driven systems that perform short tasks.

Table I illustrates the above-mentioned difference in config-
urations in different regions for two examples. The first three
data rows correspond to the best configuration in the 32, 16-,
and 8-bit CPU-to-cache bus regions for thempegexample, and
the second three rows for thedieselexample. Notice that the best
configurations for the first example involve variations in cache
sizes, associativity, and line, and in one case bus invert is not
used on the cache-to-memory bus. In the second example, asso-
ciativity and line vary, as do the cache-to-memory bus size and
the use of bus invert.

Slight changes in these parameters result in significant penal-
ties. For example, in thedieselexample, after examining the
complete set of data (not shown), we observed that changing
the cache line in the fifth row of the table from eight to 16 (to
match that of the last row) resulted in a performance penalty of
28%. This is in part due to the fact that the diesel application had
little spatial locality. The key conclusion from the above discus-
sion is that there is no one best cache configuration independent
of CPU-to-cache and cache-to-memory bus configuration, and
vice-versa—the two must be sought simultaneously.

E. Tradeoff Between Design Constraints: Old Versus New
Technology

The following experiments have been conducted to demon-
strate the different behavior of the old and the new technology
in terms of power consumption and area. In Fig. 5, the upper two
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TABLE I
THE BEST CACHE CONFIGURATION DIFFERS FORDIFFERENTCPU-CACHE BUS SIZE REGIONS

Fig. 5. Ckey’s power, performance, and area tradeoffs using two specific
configurations for new and old technologies.

plots show the power/performance tradeoffs (left) and area/per-
formance tradeoffs (right) for the newer technology. The lower
two plots show the same for the older technology. The configu-
ration that yielded the “ ” points has a larger data cache than the
configuration yielding the “” points. The points in each plot,
from left to right, are obtained by varying the CPU-to-cache bus
size from 32 down to 16, 8, and 4.

As we can see, the graphs show a strong power/performance
tradeoff in dependency of the CPU-to-cache bus. Even if we
choose half the cache size (“”), the qualitative behavior is the
same due to the CPU-to-cache bus dominance. For the older
technology, however, a significant power/performance tradeoff
with respect to bus sizes cannot be observed, i.e., all corre-
sponding points are almost located on a horizontal line. This is
because of the already mentioned lower wire/transistor capaci-
tance relationship for older technology.

In terms of area/performance tradeoff, we again have a signif-
icant tradeoff for the new technology. But since area is the same

(in terms of transistor counts), in this case the old technology
shows the same tradeoff (in terms of the shape of the graph; the
absolute numbers of the area are different due to different fea-
ture sizes, of course). Obviously, the question of whether or not
there is a tradeoff depends on the technology as well as on the
constraint that is of concern. These are key observations when
performing design space explorations. Area and power obvi-
ously behave differently, either showing a tradeoff in conjunc-
tion with performance or not. A branch-and-bound technique,
for example, could use this knowledge for a fast and efficient
search of the design space.

F. Simultaneous Optimization of Buses and Caches

The implication of the above data is that cache and bus cannot
be optimized independently; they must be optimized in some
combined manner. Any approach that tries to separate their op-
timization may produce inferior results, especially when newer
technology is deployed. For example, consider a straightfor-
ward heuristic that first optimizes cache without considering bus
(assuming standard 32-bit buses with negligible capacitance),
which essentially represents earlier cache power optimization
work done for older technology, and that then optimizes the bus.
While the cache configuration may represent the best power, ex-
ecution time, and size in some regions, it may represent a rather
inferior configuration in other regions. We applied this heuristic
to the same two examples above. The heuristic achieves the best
power and performance within each region but does very poorly
in terms of size compared to the best sizes in Table I. For the first
example, the sizes obtained for the three regions were 301 272,
304 472, and 306 072, representing size penalties of nearly 50%
in the first two regions. The sizes for the second example were
26 272, 27 872, and 26 872, representing size penalties of 70%,
63%, and 52%, respectively. Thus, we see the need for new
heuristics that simultaneously optimize cache and bus.

G. Summary of Simulation-Based Analysis

We can summarize our observations thus far as follows.
First, in older technology, there is hardly a tradeoff between
power and execution times, i.e., small execution times implies
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low power consumption and a large execution time implies
high power consumption. Second, newer technology does
feature a real tradeoff, since bus power consumption becomes
more significant due to a higher wire/gate capacitance ratio
for smaller feature sizes. Third, the dominating source for
power consumption in newer technology is the CPU-to-cache
bus. The selection of this bus’ size, therefore, is the major
factor in making the tradeoff between a system’s power and
performance. Fourthly, for a given CPU-to-cache bus configu-
ration, there is an optimal configuration of remaining cache/bus
parameters that minimizes both power and performance.
However, there is no optimum set of cache parameters across
different CPU-to-cache bus configurations, and therefore the
bus parameters of the CPU-to-cache bus parameters must be
adapted to one another. Lastly, regarding size, for a given
CPU-to-cache bus configuration, there is a near-optimal con-
figuration of remaining cache/bus parameters that minimizes
power, performance, and size. Again, this CPU-to-cache
configuration differs for different CPU-to-cache bus configura-
tions, and minor changes to the configuration can yield large
penalties in performance or size.

V. ANALYTICAL EVALUATION

Realizing that large tradeoffs are possible by configuring a
system’s parameters, but that system simulations are slow, we
have devised a technique for fast evaluation of power consumed
by the cache and bus subsystems of our target architecture. The
technique uses a two-step approach of first collecting interme-
diate data about an application using a small number of simula-
tions, and then using analytical equations to rapidly predict the
performance and power consumption for each of thousands of
possible configurations of system parameters.

Noticing that large tradeoffs are possible by configuring a
cache for an application, but that cache simulations are slow,
many researchers have focused on speeding up cache simula-
tions. Kirovski et al. [9] reduces thenumberof trace-driven
cache simulations necessary for exploring different cache con-
figurations by establishing bounds and hence pruning numerous
inferior configurations without having to simulate them. Wu
and Wolf [22] order the search of different cache configura-
tions such that, after each cache simulation, they can reduce
the sizeof a given input trace by removing redundant infor-
mation (“trace stripping”), thus speeding up subsequent simula-
tions of other configurations. Our work differs in that we couple
cache parameters with bus parameters (and possibly other pa-
rameters in the future), resulting in an enormous design space
and thus seemingly excluding any approach based on repeated
simulation. While one-pass cache-simulation [21] is a common
technique, in which numerous cache configurations are evalu-
ated simultaneously during one simulation, incorporating the
myriad of other parameters that we wish to consider [bus, di-
rect memory access (DMA), peripheral cores, etc.] into such an
approach would likely become prohibitively complex.

Givargis and Vahid [4] have developed a set of formulas for
rapidly estimating bit-switching activities on a bus with a given
size and encoding scheme. They have also contributed formulas

Fig. 6. Equation-based performance analysis.

to estimate bit-switching activities used by the encoding/de-
coding logic. These formulas, combined with the capacitance
estimation formulas by Chernet al. [1], can be used to perform
a system-level exploration of bus size and encoding schemes for
low power designs.

Our work is an improvement on previous work in that the
long cache simulations can be replaced by the fast models in this
paper to reduce the time to evaluate all cache/bus configurations
for a given application from days/weeks to seconds/minutes.

A. Approach Overview

In our approach, we use a two-step technique, as shown in
Fig. 6. The first step,characterizing simulation,involves simu-
lating the application with typical input vectors once or a small
number of times that is just enough to provide enough interme-
diate data to characterize the application for the second step. The
second step,parameter exploration,uses heuristics to traverse
the design space of possible parameter configurations, coupled
with fast estimation equations that use the intermediate data to
provide power, performance, and size values for a given config-
uration. These equations evaluate in constant time, so can deal
with huge numbers of possible configurations.

We have chosen to focus initially on developing parameter
optimization for a system’s cache and bus subsystems because
these typically consume a significant percentage of system
power (we plan to soon extend our approach to also consider
DMA). We have already developed an approach for buses
[4] involving definition of the intermediate data (bus traffic);
estimation equations for power, performance, and size as a
function of bus parameters (size and encoding) and traffic;
and an exhaustive search heuristic. We now describe the
intermediate data and estimation equations necessary for cache
parameter optimization, followed by a description of a method
for coupling the cache methods with that previously developed
for buses.
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B. Cache Performance and Power

In this section, we discuss the technique that we have
employed for rapidly evaluating cache metrics. We define
the problem as follows. Given a trace of memory references
(referred to hereafter as atrace-file), we are to compute the
number of cache misses, denoted, for all different caches.
Two caches are different if they differ in their total cache size,
line size (block size), or degree of associativity. We limit the
values for each of these three parameters to a finite range of
powers of two, say

Min Max

Min Max

Min Max

Note that for practical purposes, we only consider values that are
powers of two for each of these parameters. Given a trace-file,
we must define a function to compute the
number of cache misses for any cache configuration. We assume
that with the aid of a cache simulator, we are able to compute
the above function, for any value from the sets, , and , in
linear time with respect to the size of the trace-file.

Intuitively, our approach works as follows. We know that at
low cache sizes, higher line size and associativity have a greater
positive effect than they do at high cache sizes. For example,
doubling the line size when cache size is 512 B may reduce
cache miss rate by 30%; however, when the cache size is 8 K,
it may not reduce the miss rate at all. Thus, we are interested
in finding these improvement ratios at both low and high cache
sizes, so that, by line fitting, the improvement ratio for any cache
size can be estimated. This assumes a smooth design space be-
tween these points.

Our approach consists of three steps. First, we simulate the
trace-file for some selected, , and values and obtain the
corresponding cache misses. Then we calculate a linear equa-
tion, using the least square approximation method. Last, we use
our linear equations to compute for all cache parameters. We
first simulate the following points in our domain space:

Then we compute the following ratios:

Here, denotes the improvement we obtain by using max-
imum line size and associativity when cache size is at its min-
imum. Likewise, denote the positive improvement we

obtain by using maximum line size and associativity when the
cache size is at its maximum. Given these ratios, we estimate
for a given cache size, line size, and associativity as follows:

The first three equations,, , and , normalize our parameters
to be within a unit range. The next equationestimates cache
misses using lowest line size and associativity by computing
a linear line through the points and . If more simula-
tion data are available, the least square approximation is used
to compute . The next two equations and estimate the
expected improvement gained from higher line size or associa-
tivity. The last equation combines the previous equations to es-
timate cache miss rate.

C. Combined Cache and Bus

In this section, we describe how to extend the cache data
into bus data for simultaneous cache/bus design space explo-
ration. The technique described in the previous section allows
us to rapidly estimate the number of cache missesfor a given
cache parameter setting. This numberis a measure of cache
to main-memory bus traffic. Likewise, the total number of cache
accesses, i.e., the size of the trace-file, is a measure of CPU
to cache bus traffic. Given this traffic, and assuming data of
random nature, we can use equations [4] to compute the bit-
switching activity on the bus and use it, along with wire capac-
itance models, to compute power consumption of our system.
Based on our own experiments and others referenced in [4], the
random data assumption holds for data buses. (We have only
considered analytical switching models for data buses and have
relied on simulation for address buses.) In this paper, we con-
sider varying the number of data bus wires, e.g., 16 or 32 bits,
and data encoding, e.g., binary or bus-invert.

For our bus model, we assume that there are, -bit items
transmitted per unit time on a bus of widthusing binary en-
coding. Here, denotes the traffic on the bus and is obtained
by estimating cache misses, as described above. The following
equation gives power consumption for the data bus:

transfer/item bit/transfer

item/s transition/bit

transition/s

In this equation, bus capacitance is calculated using models de-
veloped by Chernet al. [1]. Our equation is expanded to take
into account bus-invert encoding. This method uses an extra



GIVARGIS et al.: PARAMETERIZED CACHE AND BUS ARCHITECTURES 507

TABLE II
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control line and extra circuit logic to compute the Hamming dis-
tance (bit transitions) between two consecutive data items. If the
Hamming distance is greater than one-half the bus width, then
the control line is asserted and the inverted data are sent over the
bus [12]

transition/s

Given the traffic on a bus, power can be quickly estimated
using analytical models as described above. Likewise, similar
analytical models can be applied to compute cache and memory
power (and performance). These have been extensively modeled
by [2].

D. Experimental Results

In order to verify our approach, we performed the following
experiments. We explored power and performance for mapping
the dieseland ckey to our system architecture and exploring
three parameterized parts: cache, CPU-cache (Processor Local)
bus, and cache-memory (System) bus. The cache parameters
and their possible values were: cache size of 128, 256, 512, 1
K, 2 K, 4 K, 8 K, or 32 K; cache line of 8, 16, or 32; and as-
sociativity of 2, 4, or 8. The parameters for each bus were: data
width of 4, 8, 16, and 32; and bus invert encoding either enabled
or disabled.

Fig. 7. Equation-based results: (a) diesel application’s performance, (b) diesel
application’s energy, (c) ckey application’s performance, (d) ckey application’s
energy. Light gray is actual measurement and dark gray denotes estimated
measurements.

We compared these results with those obtained using simu-
lation (described in the previous sections). For the fast estima-
tion approach, we ran the system simulator only six times for
the reference cache configurations described earlier. We then
fed the power, performance, and hit-rate information from these
simulations into our cache power/performance models, and next
evaluated the models for all cache configurations. For each such
configuration, we also obtained bus traffic data and these data
into our bus model for all bus configurations. Obtaining these
values for all possible cache/bus configurations required only
84 min, instead of seven days, a speedup of 120 times.

While we obtained data for all of the 45 568 possible
cache/bus configurations, we present data for just a small
subset of ten configurations in Table II. These configurations
have been selected to reflect worst, average, and best case
estimates. Fig. 7 provides performance and power respectively
for dieselandckeyapplications. The light-gray bars are actual
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measurements and the dark-gray bars estimated measurements.
While hundreds of times faster, our cache estimation approach
resulted in an average error of only 2%, with the worst case
being 18%, over the entire solution space of thousands of
cache/bus configurations (and not just the ten configurations
presented here). It should be noted that the CPU power
consumption was about 44% and 65% (fordiesel and ckey
respectively) of total power consumption.

Perhaps even more important than the accuracy reported
above is therelative accuracy,or fidelity, of the estimates. We
see from the charts that our fast approach orders the various
configurations the same as the simulation approach—thus, we
have the ability to still pick the best parameter configuration,
which is the most important aspect of the approach.

VI. CONCLUSION

We have shown that by designing parameterized caches and
buses, and varying those parameters for a given application, we
can obtain large tradeoffs in power and performance. We have
also described analytical techniques that enable rapid explo-
ration of the complete cache/bus configuration space, enabling
selection of the optimal configuration for a given application.
The results and analytical techniques can be applied not only to
postfabrication parameters but also to prefabrication parameters
that are configured and then used to synthesize an SOC archi-
tecture customized to a particular application and requirements.
Future work includes further development of adaptive caches
and buses, integration of such items with configuration-aware
compilers, and extension of the techniques to parameterized mi-
croprocessors and peripheral cores. In addition, we would like
to further investigate the impact of each of the parameters indi-
vidually.
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