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Functional partitioning assigns the functions of a system’s program-like specification among
system components, such as standard-software and cusotm-hardwre processors. We introduce
a new transformation, called procedure cloning, that significantly improves functional parti-
tioning results. The transformation creates a clone of a procedure for sole use by a particular
procedure caller, so the clone can be assigned to the caller’s processor, which in turn improves
performance through reduced communication. Heuristics are used to prevent the exponential
size increase that could occur if cloning were done indiscriminately. We introduce a variety of
cloning heuristics, highlight experiments demonstrating the improvements obtained using
cloning, and compare the various cloning heuristics.

Categories and Subject Descriptors: B.0 [Hardware]: General; B.5.2 [Register-Transfer-
Level Implementation]: Design Aids; automatic synthesis; hardware description languages;
optimization; J.6 [Computer Applications]: Computer-Aided Engineering—computer-aided
design (CA)

General Terms: Design

Additional Key Words and Phrases: Behavioral synthesis, embedded systems, functional
partitioning, hardware/software codesign, replication, system-on-a-chip, system-level design,
transformations

1. INTRODUCTION
Functional partitioning is becoming an increasingly important task for
system design environments. In functional partitioning, a behavioral spec-
ification’s functions are assigned to system components, which include
standard software processors, custom hardware processors, and memories.
Such partitioning may be among multiple packages or among blocks of a
single system-on-a-chip, and must satisfy constraints on I/O, size, perfor-
mance, and/or power. Many research efforts have shown the benefits of
hardware/software functional partitioning among standard and custom
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processors [Gupta and DeMicheli 1993; Ernst et al. 1994; Antoniazzi et al.
1994; Thomas et al. 1993; Xiong et al. 1994; and Eles et al. 1992], leading to
reduced system costs and/or improved performance. Recent experiments
have also shown dramatic benefits, such as less I/O, fewer packages, better
performance, reduced synthesis runtimes, and reduced power consumption,
obtained by functional partitioning among hardware packages [Vahid et al.
1996] as compared to the current approach of structural partitioning
[Johannes 1996]. To take advantage of these benefits, heuristics for rapid
but high-quality functional partitioning must be developed.

Approaches to functional partitioning typically take as input a behavioral
specification, which is a program-like description of desired system func-
tionality. Developers of such specifications are faced with issues that have
faced software developers for years, such as the importance of developing
modular, readable, and reusable code. These issues lead to extensive use of
procedures. Such procedures are often multiply-called from various places
in the specification.

Functional partitioning approaches convert the specification into an
internal representation, whose objects are then partitioned among system
components. The objects could be of various granularities, including state-
ments, statement blocks, and procedures. The question then arises: How
does one handle multiply-called procedures? To our knowledge, two ap-
proaches have been considered: (1) treat each procedure as a single compu-
tation, so a single instance of the procedure (or of its blocks or statements)
is partitioned among components; or (2) treat each procedure call as a
computation, so multiple instances are partitioned.

The latter approach is required when we want to expose the largest
possible solution space by using a dataflow graph internal representation,
using a distinct graph node for each call to show the different data
dependencies per call (similar to using distinct addition nodes for each
addition operation for behavioral synthesis [Orailoglu and Gajski 1986]).
However, this larger solution space provides a much harder problem to
partitioning heuristics. Our experiments in this paper show that the
number of nodes can increase by nearly an order of magnitude (and thus
the solution space by an even greater factor), leading to grossly inferior
solutions.

The former approach also has a drawback, but in this case our cloning
transformation can eliminate it. The drawback is that a single procedure
instance may be called from procedures on other components, requiring
intercomponent communication, but in some cases creating local copies of a
procedure for each call would eliminate this communication. To demon-
strate, consider Figure 1(a), which shows a partial functional specification
with four procedures A, B, C, and D. Figure 1(b) shows the calling
relationships among those procedures, with the calling frequencies denoted
as v, w, x, y, and z. Also shown are the execution times Cs and Ds for
procedures C and D on a particular software processor s (such as an Intel
8051), and the times Ch and Dh on a custom hardware processor h (such
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as a Xilinx FPGA). Figure 1(c) shows a partition of those procedures among
parts s and h, where the interpart data transfer time is shown as u;
without loss of generality, we assume in this example that the intrapart
transfers take 0 time. Given this partition, the total times spent communi-
cating with and executing procedures C and D are shown in Figure 1(d).
Both C and D are accessed from both s and h, so each procedure requires
intercomponent communication. Assuming a move of A or B would be
undesirable (for reasons not visible in the example), we might try moving C
or D to improve the execution time. Moving C would cause a time increase,
as shown in Figure 1(d), from 220 to 230 because A communicates more
with C than does B. Likewise, moving D would cause an increase from 250
to 2050, in this case because D executes much more slowly on s than on h.
Hence, partitioning cannot improve the execution time. However, suppose
we create copies of C and D on each part, changing communication with
them from A or B from interpart to intrapart, as shown in Figure 1(e). The
time related to C decreases, as shown in Figure 1(f), from 220 to 180.
However, the time related to D increases from 250 to 1100, because even
though communication time is reduced, execution time is increased since D
is much slower on s.

The solution to the drawback is to develop an approach that clones only
those procedures that yield improvement. In the above example, we would
want to clone C, but not D, to obtain an improvement in time of 220 2
180 5 40. We have developed such a cloning approach. It uses an access

graph representation, in which each procedure is initially represented as
one node, coupled with a procedure cloning transformation. Cloning creates
a copy of a procedure for exclusive use by one of its accessors. One might
make an analogy with approaches that replicate gates during circuit
partitioning. Heuristics to guide such cloning are then necessary to create
just enough clones to improve partition results, without creating so many
clones as to significantly increase the solution space, and hence worsen
partition results.

The paper is organized as follows. Section 2 discusses related work.
Section 3 provides a problem description. Section 4 defines the clone and
unclone transformations. Section 5 describes how estimation techniques
must be modified to account for clones. Section 6 introduces several
heuristics for performing cloning before, during, and after functional parti-
tioning. Section 7 highlights numerous experiments demonstrating clon-
ing’s benefits and comparing our heuristics. Section 8 provides conclusions.

2. RELATED WORK

One of the first functional partitioning approaches was Aparty [Lagnese
and Thomas 1989; Lagnese and Thomas 1991]. Aparty reads a specification
into an arithmetic-level dataflow graph and then partitions the arithmetic
operations into datapath blocks using a multistage clustering heuristic.
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Numerous closeness metrics were defined between operations for use
during clustering.

Vulcan [Gupta and DeMicheli 1990] partitions a hierarchical control/
dataflow graph’s operations among hardware packages using iterative-
improvement partitioning heuristics, such that size, I/O, and performance
metric constraints are satisfied. Vulcan first partitions the graph at its
coarsest granularity, decomposing certain nodes and repartitioning if con-
straints are not satisfied. CHOP [Kucukcakar and Parker 1991] partitions
(manually) an arithmetic-level dataflow graph’s operations among hard-
ware packages. For each package, CHOP estimates metrics for a range of
implementations of the operations on that package. The ranges for all
packages are then combined into a few implementations that satisfy
performance constraints. SpecSyn [Gajski et al.1994] partitions a procedur-
al-level access graph’s nodes among hardware packages to satisfy size, I/O,
and performance constraints using a variety of heuristics, including clus-

Fig. 1. Cloning example: (a) functional specification; (b) partially-annotated access graph; (c)
first hardware/software partition; (d) time estimates for partition; (e) partition after cloning;
(f) new time estimates after cloning.
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tering and iterative improvement. A two-stage estimation approach (pre-
estimation and online-estimation) is used, involving a sophisticated data
structure that considers hardware sharing during size estimation [Vahid
and Gajski 1995]. Multipar [Chen et al. 1994] reads a specification into an
arithmetic-level control/dataflow graph and partitions the nodes among
hardware packages using integer-linear programming or heuristics. Sched-
uling of the operations occurs simultaneously with partitioning.

All of the above efforts have hypothesized that functional partitioning
among hardware packages was superior to the common approach of struc-
tural partitioning. Experiments in Vahid et al. [1996] support this hypoth-
esis.

Numerous functional partitioning techniques have also been developed to
address the problem of partitioning among a hardware/software architec-
ture, to tradeoff the flexibility and low cost software with the speed of
hardware. In Ernst et al. [1994], statement blocks are partitioned among a
software and hardware processor using simulated annealing. In Gupta and
DeMicheli [1993], statement threads are partitioned using a custom
greedy-improvement heuristic. In Xiong et al. [1994], hierarchical cluster-
ing is used to merge statements together based on their suitability for
hardware or software implementation. In Kalavade and Lee [1994], tasks
in a dataflow graph are simultaneously partitioned and scheduled using a
custom constructive heuristic. In Knudsen and Madsen [1996], basic blocks
are partitioned among hardware and software using a dynamic program-
ming algorithm, which takes communication into account. In Balboni et al.
[1996], processes derived from a hierarchical state-machine are partitioned
between a hardware and software processor, either manually or using
hierarchical clustering; several formal transformations are incorporated
such as parallelization. In Gajski et al. [1994], procedures and variables are
partitioned among standard and custom processors, memories, and buses
using a suite of automated heuristics (e.g., greedy improvement, group
migration, clustering and simulated annealing), or interactively using hints
and a spreadsheet-like display of metric values and constraints. Procedures
can be decomposed into finer granularity using a technique called proce-
dure exlining.

A survey of many of the above techniques can be found in Gajski et al.
[1994] and Wolf [1994]. To our knowledge, the above techniques either: (a)
treat each procedure as a single instance, or (b) expand each procedure-call
into a dataflow graph node. Selectively cloning certain procedures has not
been considered until now.

There has been cloning work performed in related domains. Procedure
cloning has been performed in the compiler domain. Cooper et al. [1993]
address the problem of interprocedural transformations. They focus specif-
ically on using cloning to enable compiler optimizations that previously
could only be obtained by procedure inlining, which is shown to result in
exponential growth in code size and is thus undesirable. For example, the
constant propagation optimization can eliminate the need for many condi-
tional checks, and hence speed-up execution; but since procedures can be
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called with different constants, inlining was previously used. Instead, their
techniques evaluate the multiple calls to a given procedure under the light
of a given optimization; clones are made only for those calls that might
yield an optimization benefit. By being very selective about which proce-
dures are cloned, they avoid exponential code increase while obtaining
many of the optimization benefits of inlining. The developers of the object-
oriented SELF language compiler [Chambers 1992] noted a problem that
occurred when a single method (e.g., Print) could be invoked with different
data types (e.g., characters and Cartesian point). The problem was that
most object-oriented systems generated one compiled-code method for each
source-code method; that one method would have to be general enough to
handle different types, with this generality coming at the expense of
performance. They therefore cloned source-code methods for each invoking
type, so that each cloned method could then be inlined into the invoking
code for better optimization—they referred to this technique as customiza-
tion. Noting that such cloning could lead to exponential growth, they used
dynamic compilation to ensure that only the currently used methods were
cloned. In FUSE [Ruf and Weise 1991], basic blocks are cloned, or special-
ized in their terminology, for different input data values in order to be able
to optimize those blocks for given values. However, the developers note that
even different values may yield identical blocks, meaning that the cloning
unnecessarily increased code size without yielding optimization improve-
ments. Techniques were incorporated to remerge (or reuse, in their termi-
nology) such unnecessary clones.

A second related domain is that of circuit partitioning [Johannes 1996],
in which a network of gates is partitioned among physical packages with
input/output (I/O) and size constraints. As circuit partitioning tends to be
driven by the I/O constraints, much emphasis has been placed on minimiz-
ing the wires crossing between packages (i.e., the cut). An approach
described in Hwang and Gamal [1995] takes a given partition and repli-
cates (clones) nodes such that the cut is minimized. An improvement in
Yang and Wong [1995] not only minimizes the cut, but also minimizes the
number of clones, in order to reduce the final design size. The approach in
Liu et al. [1995] focuses on two-way partitioning, striving to reduce
interpackage signal delays, and thus improve performance by converting
the given network into what they refer to as a replication graph, which
includes two copies of every node, and then applying two-way partitioning
to that graph.

3. PROBLEM DESCRIPTION

In this section we describe the functional specification input, the internal
representation, and the computation and implementation models of our
approach.

The functional specification is one repeating process written using se-
quential-programming constructs, such as those in VHDL or C, including
loops, conditionals, and procedure calls. We later discuss extensions for
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multiple processes, but this work focuses on systems with a small number
of large processes, not a large number of small processes. Several reasons
for partitioning a large process into smaller ones are given in Vahid et al.
[1996]. We assume that a large process is composed of a number of
procedures; if not, exlining techniques can be used to group a large process’
statements into procedures [Vahid 1995]. Because procedures will form the
objects to be partitioned among components, exlining typically seeks to only
group statements that are closely related (e.g., share data or co-exist within
a loop) to prevent creating too many partitioning objects. An example
(partial) specification is shown in Figure 1(a).

We convert the specification into an Access-Graph (AG) representation-
[Vahid and Gajski 1995; Vahid and Le 1996], which is very similar to a
call-graph commonly used in software profiling, as shown in Figure 1(b).
Each AG node represents a procedure and each AG directed edge repre-
sents a procedure call. The edge direction indicates the accessor and
accessee, but not the direction of data flow, which can be in either or both
directions. Note that the structure of the AG can be determined statically,
i.e., without having to execute the behavior. Loops and conditionals are
fully supported, since these can appear within any procedure node. We
treat each large variable as a procedure and each read or write of that
variable as a procedure call. For the purposes of estimation, mentioned
later, we assume the specification is nonrecursive, meaning that the AG is
acyclic. The AG is actually part of a larger format that includes component
representation, called the System-Level Intermediate Format, or SLIF
[Vahid and Gajski 1995].

We annotate each node with internal computation times (execution
excluding any communication and accessed object times) and sizes for every
possible type of implementation part (e.g., an Intel 8051 microcontroller or
a Xilinx XC4000 FPGA). Each edge is annotated with its access frequency
and the number of bits transferred per access. All annotations can be
minimum, average, or maximum values. The above annotations must be
determined using estimators and profilers (which we refer to as the
pre-estimation stage); we use the SpecSyn estimators [Gajski et al. 1994;
Gajski et al. 1997], whose details are beyond the scope of this paper. We
have developed equations that quickly combine these annotations (during a
stage we call online estimation) for a given partition to compute size, I/O,
and execution times including communication; these equations are de-
scribed in Vahid and Gajski [1995], and a special technique for quickly
estimating hardware size while considering hardware sharing among pro-
cedures is described in Vahid and Gajski [1995]. A very small subset of
annotations is shown in Figure 1(b).

The computation model is one of executing each procedure sequentially.
The main procedure (process) executes until it calls another procedure.
Control is transferred to that procedure, which then executes to completion
(perhaps calling other procedures) and returns control to the calling
procedure. The main procedure then continues executing until completion,
and then repeats. While such a sequential model is currently used, there is
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nothing to prevent use of the cloning techniques with more advanced
models that allow concurrent procedure execution; such a model would
require more complex estimation equations, but the cloning techniques
would not be affected. The user typically specifies a constraint on a single
execution of the main procedure, though any number of procedures can be
constrained.

The implementation model consists of one processor per part, where that
processor may be a standard one, such as a microcontroller, or a custom
one, such as obtained using synthesis. Partitioning consists of distributing
procedures (AG nodes) among parts. All procedures on a single part will be
executed by a single processor on that part. Ideally, partitioning groups
procedures that call one another, so that most calls occur within a single
processor. Such internally called procedures can be implemented in many
different ways, such as a control subroutine, inlined, a distinct datapath
module, or even a concurrent processor. Of course, there will be some
procedure calls between parts, meaning that each processor must wait until
one of its procedures is called and then must activate that procedure.
Interpart communication can be accomplished by creating one bus for each
AG edge that is cut between parts, plus some handshaking lines with each
bus to start the called procedure and to indicate procedure completion.
Alternatively, we can create a single bus for all interpart communication,
passing the address of the called procedure followed by any parameter data
over the bus; that approach is the focus of Vahid [1997]. In this paper
experimental data was obtained using the former, edge-crossing, approach.
Once again, if the implementation model was extended for multiple input
processes, and hence for multiple processors per part or concurrently-
executing processors across parts, the estimation equations would need to
be modified, but the cloning techniques would remain the same.

Each part is characterized for partitioning by a type and by I/O and size
constraints. A single chip may contain numerous parts. (A much more
detailed characterization is used by the estimators that determine the
annotations described above; but during partitioning, we already have the
annotations.) The type is used to select the corresponding node annotations
for a given partition. The I/O and size constraints are compared to esti-
mated values obtained using the above-mentioned estimation equations.
The goal of partitioning is to minimize an objective function that computes
a weighted sum of I/O, size, and execution-time constraint violations.

4. CLONE/UNCLONE TRANSFORMS

In this section we define the clone transformation and provide an algo-
rithm, define an unclone transformation that is required by our heuristics,
and contrast cloning with inlining.

4.1 Cloning

We introduce the cloning transformation through a simple example. Con-
sider the AG of Figure 2(a). Node has two accessors, Accessor1 and
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Accessor2. Cloning Node for Accessor2 results in the AG of Figure 2(b).
Accessor2 now accesses its own copy NodeClone1, and no longer accesses
Node. Also, NodeClone1 accesses the same nodes (Accessee1 and
Accessee2) that Node accesses. Because cloning is intended to allow an
accessor to have a copy of the node on its own part, NodeClone1 has been
created on Accessor2’s part. Note that, in this example, we would probably
need to further clone Accessee1 for NodeClone1 and Accessee2 for
Node, to obtain a reduction in communication time and I/O.

More formally, the clone transformation, as applied to an AG, can be
defined as follows:

● Input: (1) an AG; (2) a base n, which is the AG node to clone having
fanin . 1; and (3) an accessor a, which is an AG node that accesses n
via an edge e.

● Output: An AG with a new node nclone, which is a copy of n including
copies of outgoing edges such that e now connects a to nclone,
nclone.fanin 5 1, and nclone.part is set to a.part.

Note that node cloning is only defined relative to a node’s accessor; we must
specify the particular accessor for which a node copy will be made. Also
note that if originally n had a fanin of 1, cloning need not be performed
because a is already the sole accessor of n.

Algorithm 4.1 provides an algorithm for cloning an AG node n for an
accessor a:

Fig. 2. Cloning an AG node.
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Algorithm 4.1. Clone(AG, n, a)
// Create unique node
nclone 5 n.Copy~!
nclone.base 5 n
nclone.id 5 AG.CreateCloneid~n!

AG. AddNode~nclone!
// Redirect edge to point to clone
e 5 AG.SeekEdge~n, a!

e.accessee 5 nclone
// Copy node’s outgoing edges for clone
for each oute [ n.outedges loop

outecopy 5 oute.Copy~!

outecopy.accessor 5 nclone

AG. AddEdge~outecopy!
end loop
// Put clone on accessor’s part
if ( nclone.part !5 a.part) then

AG.UpdateForMove~nclone, a.part!
end if

The algorithm first copies n and assigns the copy nclone a unique name,
while recording the clone’s base. Recording the base is necessary for
uncloning and for estimation reasons, as will be seen later. Next, the
algorithm redirects a ’s edge to point to nclone instead of n. It then copies n ’s
outgoing edges and makes the copies originate from nclone. Finally, it moves
nclone to a ’s part.

To determine the complexity of cloning, note that each step can be
performed in constant time, except for copying the node’s outgoing edges,
which is of order O~n.outedges!; this is the complexity of cloning.
Although the number of possible edges in a directed acyclic graph is O~n2!,
and hence the amortized number of outgoing edges of a node is O~n2/n!
5 O~n!, an AG with n outgoing edges per node would represent an absurd
specification. In particular, this would mean that every procedure calls
nearly every other procedure. Clearly, people do not write specifications in
this manner. Instead, procedures serve to modularize a program, meaning
that each procedure calls only a small subset of other procedures; our
experiments on several examples indicate this subset size is usually less
than seven [Vahid and Le 1996]. Therefore, the number of outgoing edges is
usually a constant, so the amortized complexity of cloning for nondegener-
ate examples is a constant.

We currently allow cloning of nodes representing procedures only, not
variables, even though both node types can have fanin . 1. Cloning of a
variable node prevents the variable accessors from communicating data
through the variable. In the future, it might be interesting to determine if
data is actually being communicated through the variable; if not, cloning
the node should be allowed.
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4.2 Uncloning

Uncloning is required by our heuristics. Uncloning is the inverse transfor-
mation of cloning, but in some cases requires more work than undoing the
changes of the clone transformation, as we shall see.

Consider the AG of Figure 2(b). Node has a clone NodeClone1, which
was created for Accessor2. Uncloning NodeClone1 to Node results in the
AG of Figure 2(a). NodeClone1 is gone along with its outgoing edges, and
Accessor2 now accesses Node instead.

More formally, the unclone transformation, as applied to an AG, can be
defined as follows:

● Input: (1) an AG; (2) a clone nclone, which is the AG node to be uncloned;
and (3) an identical node nident.

● Output: An AG in which nclone’s incoming edges now point to nident, and
which does not include nclone, any of nclone’s outgoing edges, or stranded
nodes.

A stranded node is a node that had incoming edges before the unclone, but
has none after the unclone. For example, if we had cloned Accessee1 and
Accessee2 for NodeClone1 in Figure 2(b), resulting in Accessee1Clone1
and Accessee2Clone1, and we then deleted NodeClone1 while uncloning
it to Node, Accessee1Clone and Accessee2Clone will not have any
accessors, so they too should be deleted. A simpler example is given in
Figure 3, showing a sequence of clone and unclone transforms that lead to a
stranded node. Starting with Figure 3(a), we clone A for one of its
accessors, resulting in A1 of Figure 3(b). This clone increases B ’s fanin to 2,
making B a candidate for cloning. Cloning B for A1 yields B1 in Figure
3(c). Now, if we unclone A1 to A, as in Figure 3(d), B1 will be stranded.
Thus, uncloning must delete such stranded nodes. Deleting a stranded node
may yield further stranded nodes, which must also be deleted.

Fig. 3. Sequence leading to a stranded node.
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An identical node nident is defined as a node with the same base as nclone.
In most cases, nident is in fact the base n itself, from which nclone was
created, but it could also be another clone of n. We use the terminology of
uncloning a node to another node, i.e., we unclone nclone to nident.

Note that uncloning is defined between two nodes. Initially, since cloning
was defined for an accessor and a node which was then cloned, one might
assume that uncloning should be defined for an accessor and the clone.
There are two reasons why one doesn’t specify the accessor. First, the
accessor can be found easily by looking at the clone’s incoming edge.
Second, and more importantly, a sequence of clone and unclone transforms
can lead to a clone having more than one accessor, even though a clone
when it is first created always has exactly one accessor. For example,
consider Figure 4. B of Figure 4(a) is cloned for A, yielding B1 in Figure
4(b). Then, A is cloned for one of its accessors, yielding A1 in Figure 4(c).
B1 now has two accessors, A1 and A. Now that we see that we don’t specify
the accessor for uncloning, we might then assume that only the clone needs
to be specified. However, because we don’t necessarily have to unclone to
the base, but instead to any identical node, we must specify the identical
node to which to unclone.

For brevity, we omit the details of the uncloning algorithm, and instead
include a short description. An uncloning algorithm first redirects nclone’s
incoming edges to point to nident. Next, it passes nclone to a function Delete.
This function removes the given node and all outgoing edges, and then
checks each accessee of outgoing edges; if an accessee is now stranded, the
Delete function recursively calls itself with the accessee.

4.3 Cloning Is Not Inlining

Procedure cloning should not be confused with procedure inlining. In
inlining, a procedure call is replaced by the procedure’s contents. While
inlining also has the effect of copying a procedure for sole use of the
accessor, it also results in inlined implementation of the procedure, which
is often not desired. In particular, the accessor can have multiple calls to
the procedure; inlining replaces each call by the procedure contents,
resulting in multiple instances of those contents. Inlining can result in
explosive growth of a specification’s size [Hall et al. 1996], and in turn of
the implementation’s size. In contrast, cloning only changes each procedure
call’s identifier to the clone’s identifier, so there is just one instance of the

Fig. 4. Sequence leading to a clone with multiple accessors.
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clone procedure. Subsequent behavioral synthesis or software compilation
can still tradeoff the different methods for procedure implementation, such
as a control subroutine, a custom processor, a datapath functional unit, or
as inlined. Also, consider the case of having multiple clones or inlined
procedure contents on the same part. With multiple clones, we can easily
modify size estimates to consider each clone only once, and we can easily
unclone to a single procedure when partitioning is complete. With inlined
procedure contents, size is greatly increased, and recombining multiple
instances of contents is a nontrivial task.

5. ESTIMATION MODIFICATIONS

The existence of clones in an AG requires modification of estimation
techniques. Estimation of metrics, such as performance, size, and I/O, must
be made for each partition examined by partitioning heuristics. If we don’t
modify existing estimation techniques, then when we have multiple same-
base nodes (clones) on one part, we would add those nodes’ sizes while
computing the part size. However, recall that we cloned a procedure for a
behavior to prevent communication by the behavior with another part. If
multiple clones are on the same part, that means that multiple behaviors
on that part access the clones. Those behaviors can share a single version of
those clones and still not have to communicate with another part, so we
always unclone after partitioning until each part has at most one node with
a given base. We therefore see that we must modify our size estimation to
account for multiple clones on the same part. A similar problem must be
solved for I/O estimation. We’ll see that performance estimation techniques
need not be modified (though the estimates themselves will of course be
different).

5.1 Modifying Size Estimation

There are two methods for estimating size: weight based, and design based.
Design-based methods [Vahid and Gajski 1995] maintain a rough design for
each part in a partition, along with contributions made to that design by
each node on that part (e.g., the number of control steps, the datapath
paths, the control lines between the control unit and datapath, the number
of temporary values, etc.). When a node is moved to or from a part, the
part’s design is incrementally modified based on the node’s contributions.
Design-based methods can be made fast, by ensuring that the incremental
modifications take constant-time, but they are more complex to implement,
and far more complex to discuss in a paper such as this one. In contrast,
weight-based methods are much easier to discuss, since they simply associ-
ate a size with each node, and then compute a part’s size by summing its
nodes’ sizes. We therefore limit our discussion to weight-based methods,
but extensions can be made for design-based methods also.

If we do not consider clones, a part P ’s size can be estimated simply by
summing its nodes’ sizes, as shown in Algorithm 5.1. In addition, we can
easily incrementally update a part’s size when a node is added or deleted,
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which occurs when a node is moved from one part to another during
partitioning by subtracting n.size from the source part and adding it to the
destination part.

Algorithm 5.1. SizeEstBefore(P)

for each n [ P.N loop
P.size 1 5 ni.size

end loop

Modifying such size estimation to take clones into consideration means
that we must use same-base nodes only once for a given part. A modified
size estimation algorithm is given in Algorithm 5.2. The algorithm main-
tains a list L of bases seen so far, and only adds a node’s size the first time
a base is seen. Incremental update routines require that we keep a list of
bases along with a count of the number of instances of each base; when a
node is added or deleted, its base count is incremented or decremented, and
the size is only updated when the count changes from 0 to 1 or from 1 to 0.

Algorithm 5.2. SizeEstWithCloning(P)

for each n [ P.N loop
base 5 ni.base
if (!P.L.seek~base!) then

P.L.append~base!

P.size 1 5 ni.size
end if

end loop

5.2 Modifying I/O Estimation

I/O is defined as the number of input/output pins required on a part.
Figure 5 demonstrates the modification necessary for I/O estimation

when considering cloning. First, we consider I/O estimation without clones.
Figure 5(a) shows an AG where Node has two accessors. When the node is
separated from its accessors, as in Figure 5(b), two edges are cut. However,
those edges point to the same node, so I/O estimation counts only one edge,
because sequential accesses to the same node can always share the same
I/O. If clones are present, as in Figure 5(c), the above estimation technique
sees two cut edges that point to different nodes, so each edge contributes to
the I/O estimate. However, as discussed above, we know that clones on the
same part are always uncloned, so we must consider those two edges as
pointing to the same node, as shown in Figure 5(d).

An algorithm for modified I/O estimation is shown in Algorithm 5.3 . The
algorithm maintains a list M of bases seen so far. The algorithm only adds
a cut edge’s width the first time that the edge’s accessee’s base is seen. This
list of accessee bases is maintained both for the accessor’s part and the
accessee’s part.
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Algorithm 5.3. IoEstWithCloning(P)

for each e [ P.cutedge loop
base 5 e.accessee.base
if (!P.M.seek~base!) then

P.M.append~base!

P.IO 1 5 e.wires
end if

end loop

The above assumes I/O implementation using the cut-edges approach
described in Section 3. If using the Vahid [1997] single interpart bus
approach, then the number of I/O for interpart communication is fixed, but
the access to external ports is still computed using the above technique.

Fig. 5. Modifying I/O estimation for cloning.
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5.3 Modifying Performance Estimation

We compute a node’s performance, or execution-time, for a given partition
by adding the node’s internal computation time (ict) and its communication
time. We compute communication time as the time spent transferring data
to/from accessed nodes, plus the execution time of those nodes. Thus, this
recursive technique for computing execution time considers: (1) the unique
ict value for the part to which a node is partitioned; (2) the different
data-transfer times that occur for same-part and different-part accesses;
and (3) the different execution times of the accessed nodes for the given
partition. Equations and further discussion can be found in Vahid and
Gajski [1995]. Those equations assume sequential execution of the proce-
dures—future work will include extending the equations to account for
possible forking, and hence concurrent procedure execution and possible
bus contention.

Because a clone’s annotations are identical to its base’s annotations, we
do not need to modify the execution-time estimation technique for clones.
When a clone is moved to a different part, the technique will automatically
use a different ict value and different data-transfer times when computing
that clone’s execution time.

6. CLONING HEURISTICS

Now that we have defined the clone and unclone transformations and
discussed how estimation techniques can be modified for the existence of
clones, we can discuss various heuristics for cloning procedures before,
during, or after partitioning.

In our approach to system design, there are three tasks to be performed:

(1) allocation: selecting the components (which may coexist on one chip),
such as standard processors, microcontrollers, and ASIC blocks, on
which to implement the system’s functions;

(2) partitioning: assigning the system’s functions among allocated compo-
nents; and

(3) transformation: applying modifications to the system’s functions with-
out changing their input/output relationships. Such transformations
include cloning, inlining, exlining, process merging, loop unrolling, etc.

All these tasks seek to minimize the value of the system’s objective
function. These tasks are highly interdependent; applying one first affects
the possible solutions of another. We can approach these tasks either
sequentially or simultaneously, and our cloning heuristics include both
approaches. In this work we assume allocation has already been done, and
any other transformations are either already done or will be done later.
Future work might attempt to more closely integrate allocation as well as
other transformations.

We can classify cloning heuristics into three categories:
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(1) Prepartition cloning: we first clone some subset of procedures and then
apply partitioning on the new AG.

(2) Postpartition cloning: we apply partitioning to the original AG and then
clone some subset of procedures based on the partition. We can then
reapply partitioning on the new AG.

(3) Integrated partitioning and cloning: we extend an iterative-improve-
ment partitioning heuristic to not only move nodes among parts, but to
also clone and unclone nodes, in its search for a lower-cost partition.

6.1 Prepartition Cloning

In prepartition max-cloning, we clone procedures until no procedure has
more than one accessor, as illustrated in Figure 6(b). Max-cloning provides
the largest possible solution space to subsequent partitioning. As is the

Fig. 6. Two cloning heuristics: (a) input AG; (b) prepartition max-cloning; (c) postpartition
max-cloning.
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case with all cloning heuristics, clones on the same part after partitioning
will be uncloned, so this technique initially appears to be the best, since it
exposes the most solutions. We point out that max-cloning is very similar to
creating a dataflow graph instead of an access-graph from the original
specification; since each procedure call involves distinct data, each call
requires a distinct node.

However, max-cloning results in a large increase in the number of AG
nodes, which we find leads to inferior results, as discussed in Section 7.
One might initially assume that this increase is bad because it causes less
accurate estimates; however, Section 5 describes estimation modifications
so that clones have no effect on accuracy. Instead, the increase is bad
because partitioning heuristics do not consider the entire solution space,
due to the NP-completeness of the partitioning problem. Instead, the
heuristics consider a subset of solutions, and the large increase in nodes
means that the best partitions may never be considered. In addition, the
large number of nodes usually means much longer partitioning runtimes.

How much of an increase in nodes does max-cloning yield? The example
of Figure 6(a) initially consists of 7 nodes, which increases to 15 after
max-cloning. In general, the increase depends on each node’s fanin and
depth (the longest path from a root to the node). The number of instances of
a particular node will equal the number of accessors of the node after all
predecessors have been max-cloned. So we can compute the number of
nodes after max-cloning by using Algorithm 6.1. The algorithm uses a
function TopologicalSort, which returns a topological ordering of the AG
nodes, i.e., a list such that no node appears in the list before any of its
accessors. Each node has a count field that indicates the number of
instances of this node that will appear after max-cloning. total keeps track
of the total number of nodes.

Algorithm 6.1. ComputeNumMaxCloneNodes(AG)

nodes 5 TopologicalSort~AG!

total 5 0
for each n [ nodes loop

if n.accessors.len 5 0 then
n.count 5 1

else
n.count 5 0
for each e [ n.incomingedges loop

n.count 1 5 e.count
end loop

end if
total 1 5 n.count

end loop
return total
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The algorithm traverses the AG nodes in topological order. Nodes with no
accessors (root nodes) are visited first; those nodes are never cloned, since
cloning is defined for a node and its accessor only. Thus we set the count
field of those nodes to 1. The number of accessors of subsequent nodes is
computed as the sum of the count fields of accessing nodes.

Quickly computing the number of nodes for max-cloning using the above
algorithm is useful when limiting max-cloning to cases where the resulting
number of nodes do not exceed some specified limit, without actually
performing max-cloning.

A second prepartition cloning technique is best-cloning. In prepartition
best-cloning, we attempt to predict which clones of nodes for accessors will
best improve the cost after partitioning, much as clustering uses closeness
metrics to predict which node groupings yield the best final partition
[Gajski et al. 1994]. One predictor might be the number of node accessors:
the more accessors, the more likely that an accessor will be on a different
part, and hence benefit from a clone. A second predictor might be the node
size; the smaller the node, the less effect cloning the node has on part sizes.
A third predictor might be the access frequencies of incoming edges: the
higher the frequencies, the greater the penalty for interpart communication
and hence the more likely the benefit of cloning. The various predictor
values could be normalized and summed into a single value indicating the
probable improvement after cloning, and some number of best candidates,
perhaps those whose value exceeds some threshold, could then be cloned.
Because of the excellent results of our other heuristics, we have not yet
investigated prepartition best-cloning.

6.2 Postpartition Cloning

As with pre-partition cloning, we can distinguish between two post-parti-
tion cloning techniques: max-cloning and best-cloning.

In post-partition max-cloning, we clone every node (with fanin . 1, of
course) for every accessor on a different part than the node itself, as long as
the node also has an accessor on the same part. Contrast this with
pre-partition max-cloning, in which we cloned a node for every accessor, not
just those on different parts (since pre-partition implies, of course, that
parts do not even exist yet). Figure 6(c) provides an illustration.

To understand the intuition behind requiring one same-part and one
different-part accessor, consider the following possibilities for a node with
at least two accessors:

(1) All accessors are on the same part as the node: In this case there is no
need to clone, since all accessors already have a same-part version of
the node.

(2) All accessors are on different parts than the node: In this case, if
providing a clone on one of the accessor’s parts yields an improvement,
then partitioning probably already placed the node on that accessor’s
part. The fact that the node appeared on a distinct part probably means
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that the node won’t fit on the other parts, or that the node’s ict was
much better on its current part, but the accessor could not be moved
there.

(3) At least one accessor is on the same part and another is on a different
part: In this case the same-part accessor could be the reason that the
node didn’t appear on another accessor’s part. Cloning will definitely
reduce communication and I/O; whether this reduction outweighs the
increase in the accessor’s part size and the possible reduction in the
node’s ict is seen only after repartitioning.

In postpartition best-cloning, we again attempt to predict which clones of
nodes for accessors improve the cost after repartitioning best. Of course,
now that we have an initial partition, we have more information than
prepartition best-cloning. One approach to best-cloning is to clone those
nodes for accessors that improve the partition’s cost(which was not known
during prepartition cloning).

6.3 Integrated Partitioning and Cloning

Many iterative-improvement partitioning heuristics make thousands of
changes to a given partition, usually by moving a node from one part to
another, using a control strategy that overcomes local cost minima without
making excessive moves. A third approach to cloning, different from
prepartition and postpartition cloning, modifies the definition of a “change”
from just a node move, to either a move, clone, or unclone.

The simulated annealing heuristic is a popular one, and its modification
is straightforward. The modified heuristic is shown in Algorithm 6.2. In the
unmodified version of the heuristic, a function RandMove is called in the
inner loop. In the modified version, a function RandChange is called. The
function has three parameters in addition to partition P. Each represents
the probability of performing each type of change, i.e., a move, clone, and
unclone, respectively. RandChange randomly chooses the type of change,
using those probabilities. A move consists of choosing a random node and a
random destination part, and then moving the node to that part. A clone
consists of choosing a random node with fanin . 2 and a random accessor
of that node, and then applying the clone transformation of Section 4. An
unclone consists of choosing a random clone node, and then uncloning that
node to its base. As will be discussed in the experiments, we find that good
results are obtained using clone/unclone probabilities that are small rela-
tive to the move probability (e.g., 0.05 each).

Algorithm 6.2. Simulated annealing with cloning

temp 5 initial temperature
cost 5 Objfct(P)
while not Frozen loop

while not Equilibrium loop
Ptentative 5 RandChange(P, fmove, fclone, funclone)
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cost2tentative 5 Objfct(P2tentative)
Dcost 5 cost2tentative 2 cost
if (! Reject(Dcost, temp)) then

P 5 P2tentative
cost 5 cost2tentative

end if
end loop
temp 5 DecreaseTemp(temp)

end loop

The heuristic begins with a high initial temperature and a cost of the
initial partition. It then begins an inner loop, in which it generates a
random change to the partition using RandChange, and determines the
amount of change in cost, Dcost. Reject uses this amount and the current
temperature to determine whether to accept or reject the change; improve-
ments are always accepted, while other changes are frequently accepted at
high temperatures but rarely at low ones. When some number of inner loop
executions, or changes, has failed to yield improvement for some time, the
heuristic is said to have reached equilibrium. The heuristic then decreases
the temperature and repeats the inner loop again, unless the temperature
is so low that the heuristic has reached the frozen state, in which case the
heuristic terminates. There are many extensions to the above basic heuris-
tic, such as one that selects the node for the next change from the
“neighbors” of the node of the previous change; see Lengauer [1990] for
further details.

Simulated annealing is rather slow as a partitioning heuristic and some
other heuristics show better results [Eles et al. 1996]. Nevertheless, be-
cause of its simplicity, simulated annealing provides a means for incorpo-
rating new transformations, and is quite independent of the details of the
objective function (as seen above), and therefore is a useful heuristic to use
while new transformations and objective functions are being introduced
and modified.

6.4 Max-Uncloning

Regardless of the cloning heuristic, the resulting partition will likely have
multiple same-based nodes (clones) on a single part. These nodes can be
uncloned to a single node, which will be shared by the accessors. We thus
define a postpartition max-unclone transformation, which unclones all
same-base nodes on a single part through repeated application of the
unclone transformation.

It should be clear that all of the above heuristics can be applied,
regardless of the number and types of components among which a system is
partitioned. Prepartition max-cloning, for example, transforms the access
graph only, independent of components. Postpartition max-cloning clones
nodes accessed by another part—the number and types of those other parts
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are of no concern. Max-uncloning always merges clones of a single part to
one, regardless of the component type (e.g., hardware or software).

7. EXPERIMENTS

We conducted experiments on several examples to demonstrate the im-
provements that can be gained using cloning, and to compare the various
cloning heuristics.

Figure 7 summarizes results of five examples. The examples include a
telephone-answering machine (ans), an Ethernet coprocessor (ether), a
fuzzy-logic controller (fuzzy), an interactive TV processor (itv), and a
microwave transmitter controller (mwt).

After converting each example to an AG and extensively annotating the
AG with estimations obtained using estimators from UC Irvine’s SpecSyn
tool [Gajski et al. 1994], we partitioned each example between a hardware/
software architecture consisting of an 8086 processor and a Xilinx XC4000-
series FPGA. Each example has at least one node with an execution-time
constraint; this node was usually a root node, so the execution time
included communication and execution of many other nodes. Details of the
estimation techniques are beyond the scope of this paper; we refer the
reader to Gajski et al. [1994] and Vahid and Gajski [1995]. We used a cost
function with three terms: the total execution time of the constrained
nodes, the FPGA I/O constraint violation, and the FPGA size constraint
violation. The latter constraints were weighed extremely heavily to ensure
that they were not violated.

We applied five heuristics to each example. None represents results
without any cloning, using simulated annealing. The cooling schedule
parameters include a starting temperature of 50, a stopping temperature of
1, a temperature reduction factor of 0.93, an equilibrium condition of 200
changes without improvement, and an acceptance function as described in
Gajski et al. [1994]. To determine if further improvements could be gained
without cloning, we ran simulated annealing again with a much more
time-consuming cooling schedule (roughly 4 times longer than the previous
schedule) having parameters of 75, 1, 0.97, and 300; none2 represents
results using that schedule. Premax is prepartition max-cloning, postmax is

Fig. 7. Examples: (a) metric values; (b) runtimes; (c) number of nodes.

Procedure Cloning: A Transformation • 91

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 1, January 1999.



postpartition max-cloning, and integ is integrated partitioning and cloning
using simulated annealing (with the same cooling schedule as used in none
above), with clone and unclone probabilities of 0.05, and move probability
of 0.9. Premax’s runtime represents the time for partitioning after cloning,
while postmax’s runtime represents the sum of the times for partitioning
before and after cloning. After each heuristic was applied, postpartition
max-uncloning was performed to merge same-part clones—such uncloning
is denoted using a -u in the figure.

Figure 7(a) provides the design metric values of hardware size (HwSize)
in gates, hardware input/output pins (HwIO), software size (SwSize) in
bytes, and execution time (Exec) in cycles. The average percent improve-
ments over results obtained without any cloning (i.e., results of none) are
also shown. none2 yields nearly no improvements over none, so results are
not shown. As expected, all three cloning techniques obtained good reduc-
tions in execution time on several examples. We expect that such reduc-
tions would come at the expense of some penalties in the other metrics. For
example, integ-u yields minor increases in hardware I/O and software size
(though all constraints are still met). Surprisingly, though, postmax-u
obtains its execution-time improvements with nearly no penalty on the
other metrics. As expected, Premax-u yields very large penalties in hard-
ware size. We have omitted results for postpartition best-cloning because of
the (rather surprising) fact that it does not result in improvement for any of
our examples. Apparently, after partitioning, no single clone will reduce
cost; instead, a sequence of clones and moves are required to escape a local
minimum. Future work might focus on finding such sequences. Figure 7(b)
provides the runtimes for the five heuristics on a 166MHz Pentium. Note
that postmax is nearly double the others because partitioning must be run
twice, once before cloning and once after cloning. Finally, Figure 7(c)
provides the number of nodes for each heuristic. Note that premax yields
big increases in the number of nodes for some examples, indicating that
those examples had a reconvergent procedure-calling hierarchy.

To further evaluate the cloning heuristics, we automatically generated 14
other examples, ranging in size from 10 to 130 nodes, using the techniques
described in Vahid and Le [1996]. Figure 8 summarizes the results. Figure
8(a) shows the percentage improvement in the cost function (the weighted
sum described above) over no cloning (none). Note that premax does well for
very small examples, up to 30 nodes, but then begins to perform very poorly
for bigger examples, often resulting in a nearly 200% cost penalty. Postmax
and Integ, in contrast, consistently improve the cost, or at least make no
change to the cost. Since not all examples have a procedure-call hierarchy
that will necessarily benefit from cloning, we expect that some examples
will have no change in cost. Figure 8(b) shows the runtimes for the
heuristics. Although postmax runs partitioning twice, premax actually
requires more time on large examples, since it results in such large
numbers of nodes to be partitioned. Finally, Figure 9 provides the numbers
of nodes for each heuristic. The number of nodes for none always equals the
original number, so it is not shown. Premax’s number of nodes becomes so
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large as to literally be off the chart, so it is not shown beyond 40 original
nodes. For example, numbers for examples 100 through 130 are 810, 922,
741, and 998, respectively.

None and none2 yield identical costs, implying that partitioning alone
could not yield the improvements that cloning does. We also evaluated
integ with clone and unclone probabilities of 0.1 each, and with move
probability of 0.8. Its results were inconsistent. We also tried performing

Fig. 8. Generated examples: (a) cost improvements; (b) runtimes.
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two iterations of postpartition max-cloning, i.e., first partitioning, then
max-cloning, then repartitioning, then max-cloning again, followed by
another repartitioning. Results were again inconsistent.

Limitations: We have not yet found a cloning heuristic that yields the
best costs as well as the best runtimes and final number of nodes compared
to the other heuristics. However, it is important to note that both integ and
postmax yield much better costs than no cloning at all. A prepartition or
postpartition best-cloning technique might find the best costs and best final
number of nodes, but their runtimes will likely be longer; nevertheless,
they may be worth looking into. A second limitation is that, while integrat-
ing partitioning and cloning for simulated annealing is straightforward,
integrating the two for other partitioning heuristics might not be. For
example, there is no obvious or simple method for integrating cloning with
the Kernighan/Lin partitioning heuristic [Kernighan and Lin 1970], whose
extensions have proven to run extremely fast and to yield low-cost results.

In summary, both the postmax and integ cloning heuristics yield excel-
lent cost improvements over partitioning without cloning. Postmax yields
the best costs, while integ yields the best runtimes and final number of
nodes. The choice of a heuristic thus depends on the relative importance of
those three factors. The results also demonstrate the inferiority of premax;
because premax is akin to creating a dataflow graph representation versus
an access graph. Such results are significant to those considering using a
dataflow graph during system design to represent highly-procedural func-
tional specifications.

8. CONCLUSIONS

We have demonstrated that significant improvements can be gained by
incorporating procedure cloning with functional partitioning. We have

Fig. 9. Generated examples: numbers of nodes.
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shown that postpartition max-cloning and integrated partitioning and
cloning are both good cloning heuristics, each having its own advantages.
In the process, we have shown the inferiority of approaches that expose a
bigger solution space by creating a dataflow graph (prepartition max-
cloning). The success of cloning makes it an essential task in any system-
level functional partitioning tool.
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