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ality in a well-known high-level source language. However, these approaches have yet to achieve

wide commercial success due in part to the difficulty of incorporating such approaches into software

tool flows. The requirement of using a specific language, compiler, or development environment may

cause many software developers to resist such approaches due to the difficulty and possible insta-

bility of changing well-established robust tool flows. Thus, in the past several years, synthesis

from binaries has been introduced, both in research and in commercial tools, as a means of better

integrating with tool flows by supporting all high-level languages and software compilers. Binary

synthesis can be more easily integrated into a software development tool-flow by only requiring

an additional backend tool, and it even enables completely transparent dynamic translation of

executing binaries to configurable hardware circuits. In this article, we survey the key technolo-

gies underlying the important emerging field of binary synthesis. We compare binary synthesis

to several related areas of research, and we then describe the key technologies required for effec-

tive binary synthesis: decompilation techniques necessary for binary synthesis to achieve results

competitive with source-level synthesis, hardware/software partitioning methods necessary to find

critical binary regions suitable for synthesis, synthesis methods for converting regions to custom

circuits, and binary update methods that enable replacement of critical binary regions by circuits.
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1. INTRODUCTION

Over the past two decades, numerous high-level synthesis techniques have been
proposed as an alternative to the complex task of specifying register transfer-
level (RTL) descriptions of hardware for RTL synthesis. In contrast to RTL
synthesis, which automatically converts cycle-by-cycle hardware behavior de-
scriptions to circuits, high-level synthesis converts algorithms to circuits. Due
to the popularity of the C/C++ programming language, many C-based languages
and high-level synthesis approaches [Böhm et al. 2002; Celoxica 2006; Fin et al.
2001; Fleury et al. 2001; Gajski et al. 1992; Gokhale and Stone 1998; Gupta
and De Micheli 1992; Ku and De Micheli 1990; Najjar et al. 2003; Oxford 1997]
have been proposed to partition descriptions among programmable processors
(software) and custom processors (hardware) and to synthesize that hardware.
Other approaches have proposed to synthesize and partition standard ANSI
C [Athanas and Silverman 1993; Guo et al. 2004; Gupta et al. 2003; Mentor
Graphics 2006; Tensilica 2006].

Despite the existence of many successful RTL synthesis tools [Synopsys 2006;
Synplicity 2006], to our knowledge there are no widely successful high-level syn-
thesis tools. One possible reason that high-level synthesis has not yet become
highly successful is that these approaches typically impose restrictions on tool-
flow that may be unattractive to many software developers. The requirement
of using a nonstandard C language variation may be a significant deterrent
for many software developers who are typically very reluctant to change lan-
guages. Other developers may instead prefer to use a language other than C,
such as Java or Matlab.

Synthesis approaches that synthesize from standard C also impose restric-
tions by requiring a specific compiler or development environment. Software
developers typically have preferred compilers and are likely to resist a change
to well-established software development tools. One could argue that adding
synthesis capabilities to popular compilers could solve this problem. However,
there is little incentive for compiler developers to add synthesis capabilities
because only a small percentage of the compiler users would be interested in
synthesis. Therefore, a synthesis tool with a more transparent tool-flow integra-
tion is likely to be more widely accepted than traditional synthesis approaches.

We proposed binary synthesis in Stitt and Vahid [2002] to achieve a more
transparent synthesis tool-flow by supporting all source languages and compil-
ers of a particular microprocessor. Binary synthesis achieves this transparency
by using the same tool-flow as software development for that microprocessor.
A software developer first compiles an application into a software binary, and
then uses an additional backend tool to partition and then synthesize the ap-
plication. A drawback to such an approach is that the hardware synthesized
from a software binary may be less efficient than hardware synthesized from
high-level code. However, previous work has shown that, in many cases, binary
synthesis achieves comparable hardware to high-level synthesis [Stitt et al.
2005a; Stitt and Vahid 2003, 2002; Stitt et al. 2005b].

In addition to achieving a more transparent tool-flow, binary synthesis has
other advantages compared to traditional approaches. Binary synthesis can
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generate hardware for legacy applications for which the source code is no longer
available and for hand-optimized assembly code, which is common in many em-
bedded systems and digital signal processing (DSP) applications. Binary syn-
thesis can also generate hardware for library code which traditional approaches
are unable to do because libraries are generally provided in object code format.

In this article, we discuss existing binary synthesis approaches and highlight
the underlying techniques that make binary synthesis comparable to high-level
synthesis. Section 2 describes the tool-flow of binary synthesis. Section 3 dis-
cusses related work. Section 4 introduces decompilation techniques used in bi-
nary synthesis approaches. Section 5 describes hardware/software partitioning
techniques used in binary synthesis. Section 6 discusses synthesis techniques.
Section 7 discusses techniques to modify a binary to support communication
with synthesized hardware. Section 8 gives an overview of existing binary syn-
thesis approaches.

2. BINARY SYNTHESIS

The tool-flow for binary synthesis is shown in Figure 1(a). The initial steps of
binary synthesis are the same as any software development tool-flow. Initially,
a software developer specifies an application in a high-level language and then
compiles and links the high-level code into a software binary. Binary synthe-
sis then creates hardware for critical regions of the binary and leaves regions
not suitable for hardware in their existing software implementation. When
targeting a field-programmable gate array (FPGA), binary synthesis outputs
a bitfile that can be used to program a platform consisting of a microproces-
sor and FPGA. Binary synthesis can also target FPGA-only systems by either
synthesizing hardware for the entire application or by synthesizing a soft-core
microprocessor such as the Xilinx MicroBlaze [Xilinx 2006] or Altera NIOS [Al-
tera 2006] to execute the software regions. Binary synthesis could conceptually
also be used for ASIC (application-specific integrated circuit) flows, although
ASIC designers are more likely to accept modified tool flows and are thus more
amenable to traditional high-level synthesis methods.

Figure 1(b) illustrates the implementation of a typical binary synthesis ap-
proach. Decompilation initially recovers high-level information that is needed
for synthesis and partitioning. Hardware/software partitioning then divides the
decompiled representation into hardware and software regions. Next, synthesis
converts the hardware regions into circuit netlists. Binary updating modifies
the original software binary to use the synthesized hardware. The final step
of binary synthesis combines the hardware netlists and modified binary into a
bitfile that programs the targeted platform.

Note that although we call the approach binary synthesis, neither the syn-
thesis nor partitioning is actually performed at the binary level. Because both
partitioning and synthesis are performed on the decompiled representation,
any existing high-level partitioning/synthesis technique may be used while still
obtaining the more transparent tool-flow obtained by first compiling and then
decompiling the original high-level code.
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Fig. 1. Binary synthesis. (a) tool-flow. (b) implementation of a typical binary synthesis approach.

Although complete synthesis from a software binary is possible if the en-
tire application is appropriate for hardware, most applications typically benefit
from leaving certain regions in software. For many regions, there is either no
performance benefit from a hardware implementation or the area requirements
of a hardware implementation are too large. A common example is the initial-
ization of a global array of constants. In software, this code would consist of
a series of instructions that store the constants to the appropriate memory
location. In hardware, storing these constants in FPGA lookup tables would
require a large overhead. Also, additional logic may be needed to transfer these
constants into on-chip block RAMs or off-chip memory. Clearly in this situa-
tion, a software implementation is more efficient. Depending on the constructs
used in the original high-level code, the entire application may be synthe-
sized to hardware or, in situations where the code uses non-hardware-suitable
constructs, the hardware regions may be limited to several computational
kernels.

3. RELATED WORK

There are a number of fields of research that are related to binary synthe-
sis. In this section, we describe approaches orthogonal to binary synthesis:
C-based languages and synthesis, ASIPs, and dynamic software optimization
and binary translation. These techniques also address the problem of improving
software performance with minimal changes to tool-flow. In later sections, we
discuss previous work utilized by binary synthesis: decompilation techniques in
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Section 4.1, hardware/software partitioning in Section 5.1, synthesis in Section
6.1, and binary updating techniques in Section 7.1.

3.1 C-Based Languages and Synthesis Approaches

Previous efforts have attempted to simplify the specification of RTL hardware
by creating C-based hardware description languages with high-level constructs.
Other works have introduced synthesis approaches from C-based languages.
The motivation behind these approaches is that C is a popular high-level lan-
guage and therefore new hardware languages or synthesis approaches based
on C are more likely to be accepted.

One of the early attempts at C-based languages for synthesis was the lan-
guage NapaC [Gokhale and Stone 1998], which used standard C code with
pragma directives to specify the data and computation to be implemented in
hardware. HardwareC [Ku and De Micheli 1990] is a C-based hardware de-
scription language that uses process constructs much like VHDL, but uses
C syntax to describe each process. Streams-C [Frigo et al. 2001] is a hard-
ware description language that consists of a subset of standard C, a set of li-
braries and intrinsic functions, and a communicating process model. Handel-C
[Celoxica 2006; Fleury et al. 2001; Oxford 1997] is a C-like language that is
strongly typed and contains constructs for explicitly specifying parallel con-
structs similar to the occam language, while excluding C constructs that are
not always appropriate for hardware such as floating-point operations, integer
divide, etc. SystemC [Fin et al. 2001] is a language that uses pure C++ syntax
but contains constructs that are more appropriate for hardware specification.
By using C++ syntax, SystemC can be simulated in software by compiling it with
any C++ compiler and then linking in the SystemC library. In addition, Sys-
temC allows standard C constructs, enabling easier hardware/software cosim-
ulation. SA-C [Böhm et al. 2002; Najjar et al. 2003] is a single assignment
C-based language that contains constructs for specifying window operations
that are common in DSP and image processing applications.

In addition to the introduction of C-based languages, there have been nu-
merous approaches that synthesize from standard C. PRISM [Athanas and
Silverman 1993] was an early C-based synthesis approach that synthesized
standard C code onto multiple FPGAs. The Nimble compiler [Li et al. 2000]
was a commercial partitioner from Synopsys that utilized dynamic reconfigu-
ration to swap in hardware regions synthesized from C. Celoxica’s DK design
suite [Celoxica 2006] allows applications to be specified in both C and Handel-C
for regions to be synthesized, and then performs partitioning and verification.
DEFACTO [Diniz et al. 2005], ROCCC [Guo et al. 2004], and SPARK [Gupta
et al. 2003] synthesize standard C code while applying parallelizing compiler
transformations.

Previous C-based languages and synthesis approaches represent good tech-
nical solutions for synthesis from high-level code. The main goal of these ap-
proaches is to maximize performance with a lessened impact on tool-flow com-
pared to traditional hardware description languages such as VHDL or Verilog.
Binary synthesis is not meant to be a replacement for these approaches but is
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instead intended to be a complementary approach that greatly reduces tool-flow
integration at the potential cost of slightly degraded hardware performance. Bi-
nary synthesis mainly targets software developers who are not willing to use a
nonstandard compiler and a nonstandard language.

3.2 Application-Specific Instruction Set Processors (ASIPS)

ASIPs (Application-Specific Instruction Set Processors) improve the perfor-
mance/power of an application compared to a standard microprocessor by
adding custom instructions that are tuned to a specific application. Kucukcakar
[1999] introduced a methodology for developing new instructions which in-
volved profiling to determine frequent instruction sequences and then replacing
these sequences with custom instructions implemented in configurable logic.
Fisher [1999] discussed customizing VLIW instructions sets to a particular do-
main of applications as opposed to a single application.

These previous ASIP approaches achieve good results but have problems
with tool-flow because of the requirement of developing a new Compiler, simu-
lator, profiler, etc. Tensilica [Gonzalez 2000] reduces some of the tool-flow impact
by automatically generating an entire tool-flow based on custom instructions
defined in a specialized language called TIE (Tensilica Instruction Extension).
The XPRES compiler [Tensilica 2006] simplifies the creation of ASIPs by an-
alyzing C code and determining custom instructions, eliminating the need to
manually define TIE instructions. Stretch [2006] is a similar approach that
creates custom instructions in an FPGA instead of ASIC, allowing for the in-
structions to be reconfigured.

One limitation of ASIP approaches is that although they reduce tool-flow
integration problems by automatically generating the tool chain, the software
designer is still limited to using those generated tools. Many software develop-
ers may prefer to use a different compiler or even a different language. Recently,
transparent ASIP approaches have been proposed that create custom instruc-
tions at runtime by reconfiguring a matrix of functional units to create a custom
hardware circuit for instructions within the fill unit of a trace cache [Clark et al.
2005, 2004].

Binary synthesis has similar transparency advantages as runtime ASIP ap-
proaches, theoretically supporting all compilers and languages. In addition,
binary synthesis likely achieves better performances than runtime ASIP ap-
proaches by not being limited to creating hardware for instructions in the fill
unit of the trace cache. Binary synthesis can achieve similar or greater perfor-
mance improvements compared to static ASIP approaches with the tool-flow
advantages of runtime ASIP approaches.

3.3 Dynamic Software Optimization and Binary Translation

Approaches for dynamic software optimization and binary translation have
been proposed to maintain binary compatibility and to reduce compilation
time. Dynamo [Bala et al. 2000] is a dynamic optimization approach that pro-
files an application during execution to determine frequent paths, optimizes
the code for those paths, and stores the optimized code in a special fragment
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cache. When software execution reaches a frequent path, the microprocessor
fetches instructions from the fragment cache to execute the optimized code.
FX!32 [Chernoff et al. 1998] dynamically translates x86 binaries into Alpha
binaries by first emulating the application and profiling to determine frequent
regions that should be translated to native Alpha instructions. Daisy [Ebcioglu
et al. 2001] is a similar approach that first profiles using a series of 8k 8-
way cached counters and then dynamically converts PowerPC binaries into
VLIW code to maintain compatibility and to exploit parallelism in the code.
BOA [Gschwind et al. 2000] dynamically translates PowerPC instructions into
smaller microinstructions that can be more easily pipelined and scheduled in
parallel. BOA also detects frequent paths, performs path-specific optimizations
and translates paths from PowerPC code into native VLIW code. The IA-32
execution layer for the Itanium microprocessor uses software to convert IA-32
instructions into native Itanium instructions [Baraz et al. 2003]. Instruction
path coprocessors [Chou and Shen 2000] dynamically optimize regions of code
that are read into the fill unit of a trace cache. A similar approach [Friendly
et al. 1998] performs path-specific optimizations on regions in the fill unit of
a trace cache and translates the optimized paths to a different underlying
architecture.

Binary translation is also becoming a more common technique used in com-
puter architecture to support an underlying architecture that may be different
than the instruction set architecture. Pentium architectures efficiently execute
x86 binaries by first translating instructions to microinstructions that are more
easily pipelined and parallelized. The Transmeta Crusoe [Dehnert et al. 2003]
and Efficeon [Transmeta 2006] perform code morphing to dynamically convert
x86 binaries into native VLIW instructions that save power compared to Pen-
tium processors.

Many of these dynamic software optimization approaches have the same goal
as binary synthesis which is to achieve a more transparent optimization of an
application. Binary synthesis differs mainly by synthesizing hardware, achiev-
ing much greater performance improvements compared to performing software
optimizations. One potential advantage of dynamic software optimization is the
ability to use runtime information, such as phases or frequent values, to further
optimize the code. Although most binary synthesis techniques are static, warp
processing [Lysecky et al. 2006; Lysecky and Vahid 2003; Stitt et al. 2003] has
demonstrated the feasibility of performing binary synthesis at runtime, allow-
ing binary synthesis to also take advantage of runtime information to optimize
hardware.

4. DECOMPILATION

Decompilation is perhaps the most important task in binary synthesis. We de-
fine decompilation as the recovery of high-level information from a low-level
software representation such as from a binary or assembly code. Other defini-
tions exist, such as the conversion of assembly code into a specific high-level
language. Decompilation is also commonly referred to as reverse compilation
or reverse engineering. We use a more general definition to include the many
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low-level and high-level representations used by different binary synthesis
approaches. The low-level representation may be a software binary, assembly
code, or object code. High-level representations may include a specific language
such as C, an abstract syntax tree, a control/data flow graph (CDFG) annotated
with high-level constructs, or a machine syntax tree.

Early efforts in binary synthesis performed very limited decompilation,
generally only recovering a control/data flow graph representation of the bi-
nary. Synthesis from this partially decompiled representation typically re-
sulted in speedups from 1.2x to 2x compared to software execution on a
100 MHz MIPS. The reason for the small performance improvement was that
the parallelism of the synthesized hardware was limited to the instruction-
level parallelism of the assembly code. Therefore, binary synthesis without
decompilation rarely achieves better performance than a VLIW or multi-issue
microprocessor.

Decompilation is therefore a necessary step for effective binary synthesis. As
an example, consider that for many applications, synthesis exposes parallelism
by unrolling loops. Without knowledge of the loop structures and bounds, the
parallelism visible to a binary synthesis approach is very limited.

4.1 History of Decompilation

In this section, we briefly summarize previous decompilation approaches.
For a more complete summary, we refer the reader to Cifuentes [1994] and
Decompilation [2006].

Initial decompilation approaches appeared between the mid-1960s and the
1980s. The motivation behind the majority of early decompilation approaches
was to port legacy binaries to newer machines by recovering the high-level
source and then recompiling it, [Halstead 1967; Sassaman 1966]. In some situ-
ations, decompilation was also used for converting between languages by first
compiling from a source language and then decompiling into the target lan-
guage [Barbe 1974; Housel and Halstead 1974]. Decompilation also proved
useful for documenting and maintaining applications written in assembly by
decompiling, making modifications, and then recompiling [Hopwood 1978]. Soft-
ware developers have also used decompilation as a debugging tool for assembly
code by recovering a high-level representation that is easier to check for errors
[Barbe 1974].

Early decompilation approaches typically had several limitations. Some ap-
proaches could not actually decompile a binary and had to decompile object
or assembly code—a far simpler task that didn’t require separating code and
data and that also made control structures easier to recover [Hollander 1973;
Sassaman 1966; Workman 1978]. Many approaches performed limited con-
trol/data flow analysis, resulting in an inefficient decompiled representation
[Friedman and Schneider 1973; Hopwood 1978; Housel and Halstead 1974].
Some decompilation approaches were limited to working on binaries com-
piled from a specific compiler [Hollander 1973; Schneider and Winiger 1974].
Other approaches were unable to recover high-level code [Hopwood 1978] or
could only recover code in a specific language [Halstead 1970; Housel and
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Halstead 1974]. In addition, most initial approaches could not recover useful
data types.

Later decompilation approaches have utilized decompilation to port appli-
cations to a different architecture or to optimize an application for a newer
version of a similar architecture [Brinkley 1981; Sites et al. 1993]. More recent
approaches still use decompilation for understanding/maintaining legacy code,
debugging, and verifying the correctness of a compiled application [Hood 1991].
In addition, decompilation has recently been used to verify security of an appli-
cation and for the detection of viruses in a binary [Cifuentes et al. 2001; Hood
1991].

More recent approaches from the 1990s have removed many of the limita-
tions from earlier approaches. Decompiler compilers [Breuer and Bown 1994]
attempted to automate the generation of a decompiler for any compiler but
were limited to compilers for which detailed specifications were given. The
8086 decompiler [Fuan and Zongtian 1991] was one of the first attempts to re-
cover arrays, pointers, and data types. In addition, this decompiler recognized
library functions, resulting in more readable C code. Cifuentes [Cifuentes 1994;
Cifuentes and Van Emmerik 2000; Cifuentes et al. 1999] described formal proce-
dure and control structure recovery techniques in addition to a formal method
for specifying machine semantics, allowing for easier porting of decompilers
to different instruction sets. In Mycroft [2001, 1999], the author presented a
method for the recovery of data types.

In the 1990s, decompilation techniques were also used for performing binary
translation. UQBT (University of Queensland Binary Translation) [Cifuentes
and Van Emmerik 2000] is a retargetable binary translater that uses decompi-
lation techniques to convert a binary into a high-level intermediate represen-
tation that can then be optimized and translated into a binary of a different
instruction set.

Over the past decade, several research-based decompilers have appeared.
The DisC decompiler [DisC 2006] decompiles to C code but only works on bina-
ries generated from the TurboC compiler. DCC [Cifuentes 1994] decompiles x86
binaries to C code but is limited to binaries under 30 kilobytes. To our knowl-
edge, one of the most complete decompilers is Boomerang [2006], which is an
open-source retargetable decompiler that currently supports x86, SPARC, and
PowerPC binaries. REC (Reverse engineering compiler) [REC 2005] is a similar
approach that supports x86, PowerPC, and MIPS R3000 binaries, in addition
to supporting a variety of operating systems.

Recently, Java decompilation has received attention because of the useful-
ness of decompilation for understanding/debugging third-party class libraries.
Also, Java byte code contains class information, thread information, and type
information that is not available in other binaries, making Java byte code much
easier to decompile. Recent approaches such as Mocha [1996], JReverse Pro
[2006], and SourceAgain [Ahpah 2004] can successfully decompile Java byte
code, sometimes recovering a high-level representation that is identical to the
original code. Java decompilation has proven to be so successful that obfusca-
tors have begun to appear to help protect the security of Java applications by
increasing the difficulty of decompilation [Chan and Yang 2004].
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4.2 Summary of Conventional Decompilation Techniques

In this section, we describe conventional decompilation techniques and the
structure of a decompiler, which is similar to the structure of a compiler. The
process of decompilation can be divided into three phases. In the first phase,
which we refer to as intermediate code creation, the front end of the decompiler
parses the binary to create an intermediate representation, which is analo-
gous to a compiler parsing the high-level source code to create an abstract
syntax tree. The next phase is high-level construct recovery, during which the
decompiler analyzes the intermediate code to determine control structures such
as loops and if statements, and data structures such as arrays. This phase
is analogous to compiler optimizations applied on intermediate code. The fi-
nal phase, or the back end, generates a high-level representation by map-
ping the intermediate code and high-level constructs into statements and ex-
pressions from the targeted high-level language. This phase is similar to the
back-end of a compiler, where the intermediate code is mapped onto assembly
instructions.

In this paper, we discuss the first two phases of decompilation. We omit
details on the decompiler back-end because generating high-level source code
is unnecessary for most binary synthesis approaches, which typically synthesize
at the level of a control/data flow graph or syntax tree.

4.2.1 Intermediate Code Creation. Figure 2 illustrates the intermediate
code creation phase of decompilation, showing at each step how the decompiled
representation changes. The C code and corresponding assembly to be decom-
piled are shown in Figure 2(a). This code implements a simple function that
accumulates all values in an array and then returns the accumulated value.

Binary parsing is the first step of intermediate code generation. During bi-
nary parsing, the decompiler analyzes the software binary, determines the in-
structions and data in the binary, and then creates a parse tree for each instruc-
tion. The main difficulty in this step is the separation of code and data, which
is equivalent to the halting problem. However, previous efforts have introduced
heuristics that can separate code and data with a high success rate [Cifuentes
and Van Emmerik 2000]. These heuristics start at the first instruction, which
is assumed to be at the beginning of the binary, and then progressively deter-
mine all other instructions by following the control flow of each subsequent
instruction. Alternatively, if symbol information is included in the binary, then
separating code and data is trivial.

After separating code and data, the decompiler converts each instruction
into an instruction-set independent representation. A commonly used interme-
diate representation in decompilers is register-transfer lists [Cifuentes 1994].
A register transfer is a statement that defines a particular register. During this
process, the decompiler makes all instruction side effects explicit using register
transfers. For example, a pop instruction would use two register transfers: one
to define the value being read from the stack and another to define the stack
pointer. Register transfers are also used to define condition flags that may be
set by an instruction. Figure 2(b) shows the register transfers created during
binary parsing for the given example.
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Fig. 2. Decompilation of a simple function into a CDFG. (a) The original C code and corresponding

assembly. (b) The machine-independent representation (register transfers) created by binary pars-

ing. (c) The symbol table created during type recovery. (d) The recovered CFG. (e) The recovered

CDFG after removing temporary registers and expressions.

Type recovery analyzes the uses of data in the register transfer lists to de-
termine low-level types. All data at the binary level is either an integer or a
float which is specified by the semantics of each instruction. Integer types can
be further classified into addresses of instructions and addresses of data. Type
recovery determines addresses to data by analyzing registers that are used in
load or store instructions. Type recovery determines addresses to instructions
by analyzing indirect jump instructions. Type recovery also determines the
size of data from instructions that assign an immediate to a register or instruc-
tions that load a specific size (load word, load byte, etc.). Logic optimization also
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determines data size in the situation when certain bits may be ended with zeros.
After determining the type and size of data, type recovery uses definition-use
analysis to propagate this information to all other instructions, further refining
the types.

Figure 2(c) illustrates type recovery for the given example. Type recovery
determined that registers 1, 3, 4, and 6 were integer types and registers 2
and 5 were addresses. All values in the registers were determined during type
recovery to be 32-bits wide except for register 6 which was 16-bits wide.

The decompiler next performs control flow graph (CFG) recovery by per-
forming basic block analysis to determine the nodes of the CFG. These nodes
may consist of 1-way nodes (jumps), 2-way nodes (conditional branches),
n-way nodes (indirect jumps), call nodes (function calls), return nodes, and
fall-through nodes. Next, the decompiler connects these nodes based on the tar-
gets of the control instructions to form a complete control flow graph. Figure
2(d) illustrates control flow graph recovery for the given example. The control
flow graph consists of three basic blocks: one block to initialize the induction
variable and accumulated value, one block that represents the body of the loop,
and one block that returns from the function.

After recovering the control flow graph, the decompiler analyzes the register
transfer lists and recovers a data flow graph for each function by performing
intraprocedural definition-use analysis on the register transfer lists. After cre-
ating the data flow graph, data flow analysis optimizes the data flow graph
to eliminate inefficiencies introduced by the instruction set and assembly code
such as temporary registers and temporary expressions. In addition, data flow
analysis eliminates many register transfers that correspond to condition flags
that are guaranteed to never be set. Figure 2(e) shows the decompiled con-
trol/data flow graph after data flow recovery and analysis. In this example, the
decompiler has optimized away all registers except register 2, 3, and 4.

4.2.2 High-Level Construct Recovery. After generating the intermediate
control/data flow graph representation of the binary, decompilation performs
high-level construct recovery as shown in Figure 3. For simplicity, the figure
shows the decompiled code as high-level C code. The actual representation is
typically an annotated CDFG or abstract syntax tree.

The first step of high-level construct recovery is function recovery, which ana-
lyzes the targets of call instructions or jump-and-link instructions to determine
function calls. Next, function recovery analyzes inputs to the data flow graph
for each function to determine function parameters that are passed in registers.
Some decompilation techniques also check common parameter-passing conven-
tions to determine parameters passed on the stack [Cifuentes 1994]. Figure 3(a)
shows the decompiled function after function recovery.

Control structure recovery [Cifuentes 1994; Cifuentes and Van Emmerik
2000; Cifuentes et al. 1999] analyzes the control flow graph to determine high-
level control structures such as loops and if statements. Control structure re-
covery determines loop structures using interval analysis. An interval contains
a maximum of one loop which must start at the head of the interval. After check-
ing all the intervals of a control flow graph for loops, each interval is collapsed

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 34, Publication date: August 2007.



Binary Synthesis • 13

Fig. 3. High-level construct recovery from a CDFG (Figure 2(e)). The decompiled function is shown

after (a) function recovery, (b) control structure recovery, and (c) array recovery, which is almost

identical to the original code from Figure 2(a).

into a single node, forming a new control flow graph which is then checked for
additional loops. This process is repeated until the control flow graph can no
longer be reduced. By processing loops in this order, control structure recovery
can determine the proper nesting order of loops. After finding a loop, control
structure recovery determines the type of the loop as pretested, posttested, end-
less, or multi-exit, based on the location of the exit from the loop. Control flow
and data flow analysis determines loop induction variables that the decompiler
can then analyze to determine loop bounds.

For brevity, we omit a description of determining if statements. Cifuentes
gives a complete description of the determination of if statements in Cifuentes
et al. [1999]. Figure 3(b) shows the decompiled function after recovering control
structures.

Array recovery [Cifuentes 1994; Stitt et al. 2005a] analyzes memory accesses
of loops to determine linear patterns which correspond to array accesses. Non-
linear patterns can also be analyzed but are generally omitted because linear
patterns are more common. After identifying an array with linear memory ac-
cess patterns, array recovery determines the size of the array from the bounds
of the loop that accesses the array. If a loop is unbounded or the bounds can-
not be determined, then array recovery is unable to determine the size of the
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array. The size determined from the loop bounds may only represent a sub-
set of the array in the situation that the loop does not access the entire array.
Therefore, after determining arrays from loops, array recovery uses heuristics
to map memory accesses outside of the loop onto the recovered arrays. If array
recovery is unable to determine all elements of the array, the missing elements
are treated as separate variables.

To recover multidimensional arrays, array recovery analyzes nested loops
to detect row-major ordering or column-major ordering calculations. The size
of each dimension corresponds to the bounds of each nested loop. Multidimen-
sional array recovery is generally less successful than single-dimension array
recovery because of the multiple ways that a compiler may implement row-
major and column-major ordering calculations.

Figure 3(c) shows the final decompiled function after recovering arrays.
Note the similarity between the decompiled code and the original C code in
Figure 2(a). The only difference is that the decompiler replaced variable names
with the corresponding registers to which the compiler mapped the variables.

4.3 Limitations

Decompilation is not always as successful as was illustrated in Figures 2 and
3. Indirect jumps may result in failure to decompile a specific region, or even
the entire application if the decompiler cannot separate code and data. Non-
linear memory access may result in the decompiler failing to recover arrays.
However, despite these limitations, previous work has shown that decompi-
lation performed during binary synthesis can almost always recover enough
high-level information to synthesize efficient hardware [Stitt et al. 2005a; Stitt
and Vahid 2003; Stitt et al. 2005b] for embedded system applications and DSP
applications. One reason for this high success rate is that applications in these
domains tend to be written using constructs that are ideal for decompilation.

4.4 New Decompilation Techniques for Binary Synthesis

Most existing decompilation techniques were developed to recover a high-level
representation of an application for purposes of maintenance, debugging, and
translation. Although decompilation commonly recovers high-level code similar
to the original code, software compiler optimizations applied to the original code
may transform the binary representation, resulting in a different decompiled
representation. Although the recovered code is different than the original code,
this representation is generally suitable for the traditional uses of decompila-
tion.

When performing decompilation for the purposes of binary synthesis, the
recovered representation must be appropriate for generating fast hardware.
Optimizations applied to the code by the software compiler may result in a
representation that is unsuitable for hardware. Software compiler optimiza-
tions tend to force the synthesis tool into a particular implementation, which
often does not improve the hardware, especially considering that the compiler
optimizations target a microprocessor architecture with completely different
resources than would be used in custom hardware. Therefore, binary synthesis
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approaches require new additional synthesis-specific decompilation techniques
to recover the original unoptimized representation. Although unoptimizing a
program may seem counterintuitive, the idea is to allow the synthesis tool to
make all optimization decisions. Also, removing optimizations should not result
in decreased performance because the synthesis tool can always perform the
optimizations again.

Loop unrolling is an example of a software compiler optimization that can be
problematic for binary synthesis. Unrolled loops may result in less detailed pro-
filing information. Many critical region detection techniques profile backwards-
branch instructions to determine loop execution times. If a compiler completely
unrolls a loop, then these backwards-branch instructions will not be present the
binary. Also, loop unrolling can remove or obscure memory access patterns that
are important for array recovery and synthesis of advanced memory structures
such as smart buffers [Guo et al. 2004]. Loop unrolling may also greatly in-
crease the size of the control/data flow graph, resulting in significant increases
in synthesis execution times due to superlinear complexity synthesis heuris-
tics, which may make a binary synthesis approach less practical. Also, even if
a synthesis tool unrolled a loop to expose parallelism, the amount of unrolling
applied by the software compiler is unlikely to match the amount of unrolling
applied by the synthesis tool.

To deal with the problems of loop unrolling, a new decompilation technique,
loop rerolling, was introduced in Stitt and Vahid [2005b]. Loop rerolling first
detects instances of loop unrolling in the software binary by using efficient
pattern detection and definition-use analysis, and then rerolls the unrolled
iterations of the loop into a single iteration that more closely represents the
loop in the original code.

Strength reduction is another software compiler optimization that is poten-
tially problematic for binary synthesis. Typically, a compiler applies strength
reduction to convert an expensive multiplication into a series of shift-and- add
operations. This optimization is more effective when one of the inputs of the
multiplication is a power of 2 or close to a power of 2. However, in several situ-
ations, strength reduction may result in less efficient hardware. Converting a
multiplication into a series of shifts and adds may exhaust all adder resources
even if multipliers are available. In this situation, strength reduction forces the
binary synthesis tool into a particular implementation using adders, whereas
using a multiplier might have produced better hardware. Also, some micropro-
cessors, such as a MicroBlaze, may not have a multiplier, requiring the software
compiler to convert all multiplications into shifts and adds. Clearly, in this situ-
ation, binary synthesis would generate more efficient hardware if the compiler
had not performed any strength reduction.

A new decompilation technique, strength promotion, was introduced in Stitt
and Vahid [2005b] to deal with the problems of strength reduction in binary
synthesis. Strength promotion detects instances of strength reduction within
the binary and then promotes the reduced operations into a form likely to match
the original form. Strength promotion does not hurt hardware performance
because a synthesis tool can always perform the strength reduction again after
determining the available resources. Although promoting and then reducing
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seems redundant, promoting the operations prevents the synthesis tool from
being forced into a less-efficient adder implementation when multipliers are
available.

Other synthesis-specific decompilation techniques consist of applying exist-
ing optimizations to decompiled code. One such optimization eliminates ineffi-
ciency caused by compare-with-zero instructions. A compare-with-zero instruc-
tion is a control instruction that results in a change to the program counter,
based on the comparison of a specific register with the constant value zero.
To implement comparisons with nonzero values, an additional instruction per-
forms an arithmetic operation, typically subtraction, of the values compared.
If not removed, these arithmetic instructions may result in many unnecessary
subtractors in the synthesized hardware. Decompilation in binary synthesis
performs optimizations that replace subtractions followed by compare-with-
zero instructions with a simple comparison of two values.

Future dynamic binary synthesis approaches may require additional special-
ized decompilation techniques that trade off high-level information for reduced
decompilation time. Existing dynamic approaches utilize standard decompila-
tion techniques because the time required for placement and routing dominates
the execution time of binary synthesis.

5. HARDWARE/SOFTWARE PARTITIONING

Although binary synthesis is capable of converting a software binary completely
to hardware, a hardware-only implementation may not be efficient. For some
regions of an application, hardware may yield little or no performance ben-
efit compared with software. Implementing those regions in hardware may
yield larger than necessary hardware; software on a microprocessor may be a
more size-efficient implementation. Thus, modern synthesis solutions, whether
high-level or binary might use hardware only for the regions that yield large
speedups when in hardware and use software for the remaining regions. Hard-
ware/software partitioning identifies performance-critical regions of an appli-
cation, and then decides which of these regions should be implemented in hard-
ware [Chiodo et al. 1994; Gajski et al. 1994; Wolf 1994].

5.1 Summary of Hardware/Software Partitioning Techniques

Hardware/software partitioning approaches can be classified into two applica-
tion categories, sequential and parallel. Partitioning of sequential applications
deals with moving critical loops, blocks, and functions into hardware. Partition-
ing of parallel applications deals with mapping tasks or processes onto multiple
microprocessors or hardware coprocessors.

Hardware/software partitioning consists of five subproblems: choosing a re-
gion granularity, evaluating partitions using implementation and estimation
techniques, consideration of different implementations of each region, consid-
eration of different implementation models, and exploration of the partition
solution space which is guided by profiling.

Hardware/software partitioning initially selects a region granularity to
consider for hardware implementation. Selecting region granularity involves
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analysis of the trade-offs between fine-grained and coarse-grained granulari-
ties. Fine-grained granularities, such as blocks or statements, provide flexibility
for selecting code for hardware but result in a large number of partitions that
may require long exploration times. Coarse-grained granularities, such as loops
and functions, reduce the number of possible partitions but may contain code
that is not appropriate for hardware. Recently, approaches have also consid-
ered a granularity of paths, which potentially combine the reduced partitions
of loops and functions with the flexibility of more fine-grained approaches. Path
granularity has the disadvantage of a runtime overhead to check if the appro-
priate path is taken. Parallel partitioning approaches also consider the more
coarse-grained granularities of tasks or processes which may be decomposed
into more fine-grained granularities.

To determine a solution, hardware/software-partitioning approaches per-
form partition evaluation by evaluating design metrics such as hardware and
software execution time, communication time, hardware area, power, energy,
etc. Parallel approaches also consider the effects of scheduling multiple tasks
onto shared processors. Evaluation approaches may determine actual values of
design metrics by synthesizing or compiling regions, or may trade off accuracy
to reduce execution time by using estimation techniques [Enzler et al. 2000;
Kannan et al. 2002; Kulkarni et al. 2002; Shayee et al. 2003; Xu and Kurdahi
1996].

Another issue related to hardware/software partitioning is the consideration
of multiple implementations of each region. For example, a region consisting of
an accumulate loop could be implemented using a single adder or could alter-
natively be unrolled and implemented as a large adder tree. Other possibilities
include different amounts of unrolling, pipelining, etc. Partitioning approaches
must consider the trade-off of evaluating multiple implementations and keep-
ing the total number of possible partitions at a reasonable size.

In some cases, hardware/software partitioning must choose between differ-
ent implementations models for hardware regions. One issue is deciding be-
tween a mutually exclusive or parallel execution model for microprocessors
and coprocessors. Hardware/software partitioning also considers different com-
munication models, such as a shared register file [Jones et al. 2005], shared
memory, shared cache, and memory-mapped registers [Stitt and Vahid 2005a],
which represent different trade-offs of latency and bandwidth.

Finally, hardware/software partitioning performs exploration of the partition
solution space to minimize an objective function or to meet constraints. Partition
exploration methods were introduced in the early 1990s by the digital-hardware
design automation community [Ernst and Henkel 1992; Gupta and De Micheli
1992; Vahid and Gajski 1997]. These early techniques were based on digital
circuit partitioners that had also come from that community and had matured
by that time. As opposed to partitioning basic circuit components, such as tran-
sistors, early hardware/software partitioning methods started with the basic
statements or operations of an application and then applied powerful circuit
partitioning algorithms to examine thousands of possible partitions of these
statements/operations in search of the best partition. Many of the subsequent
exploration methods have also been based on circuit partitioning, utilizing
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sophisticated algorithms like min-cut [Vahid 1997], dynamic programming
[Ernst and Henkel 1992], simulated annealing [Eles et al. 1997], genetic evo-
lution [Srinivasan et al. 1998], and tabu-search [Eles et al. 1997].

Partition exploration approaches are guided by profiling techniques, which
either instrument the code with profiling instructions [Duesterwald and Bala
2000] or simulate the application while monitoring special instructions that
correspond to high-level constructs. These profiling techniques all determine
performance-critical regions after the application has executed. Alternatively,
some approaches detect performance-critical regions during execution by us-
ing architectural support for monitoring instructions. The M*CORE processor
[Scott et al. 1999] profiles backwards-branch instructions to determine loops
that should be placed in a special loop cache. Gordon-Ross introduced a more
flexible nonintrusive hardware-based approach for detecting frequent loops
[Gordon-Ross and Vahid 2003]. Ammons [Ammons et al. 1997] proposed an ap-
proach for using hardware counters found in architectures such as the Pentium
4 to perform profiling. Vaswani [Vaswani et al. 2005] introduced a nonintrusive
hardware profiler for detecting hot paths.

5.2 Partitioning Techniques for Binary Synthesis

By decompiling to recover high-level constructs, binary synthesis might ap-
ply existing high-level hardware/software partitioning techniques for choosing
a granularity, evaluating partitions, considering multiple region implemen-
tations, considering implementation models, exploring the partition solu-
tion space, and profiling. However, some specialized techniques have been
introduced.

For static binary synthesis, certain granularities may not be considered if
decompilation is unable to recover the corresponding high-level constructs. For
example, if decompilation does not recover loops, then critical region detection
can only consider functions and blocks. For profiling approaches by instrumen-
tation of code, static binary synthesis must first decompile the binary to recover
high-level constructs, insert code to profile those constructs, and then regener-
ate a binary using the binary update techniques discussed in Section 7.

Dynamic binary synthesis typically uses more specialized partitioning tech-
niques due to the need to reduce partitioning times and memory usage to en-
able on-chip execution. Dynamic approaches generally consider coarse-grained
granularities, such as loops and functions, to reduce the number of possible
partitions. Similarly, dynamic approaches limit the amount of implementations
considered for each region and the number of implementation models. For par-
tition evaluation, dynamic binary synthesis utilizes fast estimation techniques,
trading off accuracy to reduce the execution time required by actual implemen-
tations. Dynamic approaches also use specialized partition exploration algo-
rithms that have much shorter execution times compared to traditional explo-
ration techniques. Warp processors [Lysecky et al. 2006] perform a simplified
partition exploration based on a greedy 0-1 knapsack heuristic. An on-chip pro-
filer initially provides the exploration heuristic with a list of critical loops, sorted
in order of percentage of execution time. The exploration heuristic then selects

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 34, Publication date: August 2007.



Binary Synthesis • 19

loops for hardware implementation in sorted order until area is exhausted. The
complexity of this heuristic is O(n), where n is the number of critical loops. Be-
cause the number of critical loops for most applications tends to be small, this
heuristic requires exploration times several orders of magnitude shorter than
traditional approaches and, in many cases, can achieve competitive solutions.
For profiling, dynamic approaches may be more likely to rely on architectural
support due to the requirement of determining critical regions at runtime. Pro-
filing by instrumentation of code can be used by dynamic approaches but adds
complexity due to introducing extra instructions, which may also reduce the
performance of the application. Profiling using simulation is clearly not possi-
ble for dynamic binary synthesis. Determining critical regions after an applica-
tion executes is possible but only for systems that repeatedly execute the same
application.

6. SYNTHESIS

After hardware/software partitioning selects regions for hardware implementa-
tion, synthesis converts those regions into custom hardware circuits. Synthesis
techniques can be divided into high-level techniques [De Micheli 1994; Gajski
et al. 1992; Walker and Camposano 1991] that a custom controller and data-
path for an algorithm, and low-level techniques that optimize the logic within
the circuit in addition to optimize the layout and connection of components to
maximize clock frequency [Betz and Rose 1997; Betz et al. 1999; Brayton et al.
1984].

6.1 Summary of Synthesis Techniques

High-level synthesis techniques initially perform lexical analysis and parsing
of high-level code to convert the code into an intermediate representation such
as an abstract syntax tree or control/data flow graph. Synthesis then performs
standard compiler optimizations such as tree-height reduction, constant prop-
agation, dead code elimination, etc.

After optimizing the intermediate code, scheduling determines the starting
time of each operation in the code. Scheduling algorithms may be resource-
constrained in which case the scheduler tries to minimize cycle latency without
violating resource constraints such as a specific number of adders, multipliers,
etc. Scheduling algorithms may also be performance-constrained in which case
the scheduler attempts to achieve the specified performance while using mini-
mal hardware resources. Other scheduling techniques examine Pareto-optimal
solutions, trading off performance for reduced area, etc.

During scheduling, high-level synthesis performs resource allocation to de-
termine the datapath resources in the synthesized hardware. Resource alloca-
tion typically allocates resources based on the maximum number of operations
required in any cycle.

After allocating resources, high-level synthesis performs binding, which as-
signs operations from the code onto hardware resources, sometimes considering
the sharing of resources among multiple operations. One goal of binding is typ-
ically to reduce steering logic such as muxes, buses, and registers.
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Control synthesis creates a controller that configures the synthesized data-
path to execute the appropriate scheduled operations each cycle.

Following high-level synthesis, low-level synthesis performs combinational
and sequential logic optimization which reduces area and improves perfor-
mance of the circuit, technology mapping which maps hardware resources onto
architectural components, and placement and routing which optimizes the lay-
out and connections between resources.

6.2 Synthesis Techniques for Binary Synthesis

Most binary synthesis approaches utilize existing high-level synthesis tech-
niques which are made possible by initially decompiling to recover high-level
constructs. Therefore, binary synthesis can apply any scheduling, resource al-
location, binding, or control synthesis techniques. In addition, binary synthesis
also uses existing low-level techniques for logic optimization, technology map-
ping, placement, and routing.

Dynamic binary synthesis approaches utilize specialized low-level synthe-
sis techniques because existing methods require too much execution time and
memory to run on-chip. On-chip logic minimization [Lysecky and Vahid 2003]
techniques have been proposed that run up to 20x faster than existing ap-
proaches, use 3x less memory, while achieving results in some cases only 2%
worse than existing techniques. Techniques have also been proposed for on-chip
technology mapping, placement, and routing [Lysecky et al. 2004], resulting
in speedups of 3x compared to existing approaches with an 18x reduction in
memory. On-chip routing results in a 30% increase in the length of the critical
path, which in many cases may be an acceptable trade-off to enable dynamic
synthesis.

7. BINARY UPDATING

Binary updating techniques modify a software binary by adding or removing
instructions or by changing existing instructions. Binary updating is a difficult
problem because at the binary level, the compiler and linker have assigned
all instruction addresses. Therefore, adding an instruction requires the binary
updater to modify all control instructions to adjust their targets to the proper
location. Also, if data is mixed with code in the binary, then the binary updater
must also adjust all references to that data. Therefore, in order to add an in-
struction, the binary updater must consider the effects on all other instructions.

7.1 Summary of Binary Update Approaches

The problem of updating a binary was initially addressed by the tool EEL (Ex-
ecutable Editing Library) [Larus and Schnarr 1995] which is part of WARTS
(Wisconsin Architectural Research Tool Set) [Hill et al. 1993]. EEL was orig-
inally intended for instrumenting an existing executable to perform profiling.
EEL accomplished this instrumentation by adding additional instructions to
keep track of execution frequencies. Other uses of EEL include emulation of
features not provided in hardware and optimization of existing binaries. Etch
[Romer et al. 1997] is a similar approach capable of rewriting Win32 x86
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Fig. 4. Binary updating. (a) Original binary for an accumulate loop. (b) Initially, the binary updater

converts the original binary to a control/data flow graph and then inserts new code (shown in italics),

which in this example keeps track of the executions and iterations of the loop. (c) Next, the binary

updater updates the binary by assembling the control/data flow graph. During assembly, the binary

updater allocates registers for numExec and numIterations and adjusts all branch targets for the

new instructions.

binaries. Pixie [MIPS 1990] and QPT [Ball and Larus 1994] are similar ap-
proaches. Dynamic binary synthesis approaches [Lysecky et al. 2006] utilize a
simpler binary update approach that overwrites the instructions of a loop with
code that initializes the hardware, and then jumps to the end of the original
loop. The advantage of this approach is that the simplicity allows for dynamic
binary updating. The disadvantage is that the instructions used to initialize
the loop must be smaller than the instructions used to implement the loop.

7.2 Techniques for Updating Binaries

Figure 4 illustrates the binary update process. Figure 4(a) shows the original
binary for an accumulate loop. The binary updater initially converts the binary
into a control/data flow graph, shown in Figure 4(b) in order to remove the
absolute instruction addresses. This conversion allows the binary updater to
insert additional code without having to modify every other control instruction.
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Figure 4(b) shows an example of inserted code (shown in italics) to profile the
iterations and executions of the loop in the binary. This loop is either identified
by decompilation applied during binary synthesis or by decompilation applied
by the binary updater. When using the binary updater as part of binary synthe-
sis, the binary updater uses the decompiled representation as input. Finally,
the binary updater assembles and links the modified control/data flow graph,
creating a new binary as shown in Figure 4(c). During assembly, the binary
updater allocates registers for the inserted code if possible and reassigns the
targets of the control instructions to the appropriate location. For the example
in the figure, the binary updater stored numIterations in register reg10 and nu-
mExec in register reg11. The binary updater modified the target of the branch
at the end of the original binary to account for the additional add instruction
used to increment numIterations.

7.3 Uses of Binary Updating During Binary Synthesis

Binary synthesis utilizes binary updating for two purposes: instrumenting the
binary with profiling code and inserting instructions to initialize and commu-
nicate with hardware. Using the binary updater to profile was illustrated in
Figure 4 where the binary updater included additional instructions to monitor
iterations and execution frequencies of a loop.

Binary updating implements communication with hardware by adding
instructions to transfer all inputs and outputs to/from each hardware re-
gion. During decompilation, definition-use analysis identifies registers that
represent inputs and outputs to a region. Definition-use analysis identifies a
register as an input if that register is used in the region before it is defined.
Similarly, definition-use analysis identifies a register as an output if that reg-
ister is defined by the region and is used again outside the region before it is
redefined. In addition to identifying register inputs, the decompiler also identi-
fies array inputs and scalar inputs. The input for an array is the base address
of the array and the amount of data that is read from the array, both of which
are identified during the array recovery step of decompilation. Definition-use
analysis is also used to identify scalar inputs. In the situation where an ad-
dress of an array or scalar cannot be determined statically, the hardware reads
the inputs from memory during execution after computing the appropriate
address.

Figure 5 illustrates how binary updating modifies the binary to communi-
cate with synthesized hardware during binary synthesis. Figure 5(a) shows the
original binary for a function that consists of an accumulate loop. This binary
has a single input, reg2 which stores the base address of the array to be accumu-
lated. The binary also has a single output, reg4, which stores the accumulated
value. The registers reg3, reg4, reg5, and reg6 can also be considered outputs
because they are defined by the function. However, because the code does not
use these registers again, we do not consider them as outputs. Figure 5(b) shows
a simple synthesized circuit for the corresponding binary. The circuit consists
of an adder to accumulate values in the array and a DMA to fetch the array
from memory. The circuit has four register inputs: Addr (the base address of the
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Fig. 5. Communication with hardware using binary updating. (a) The original binary for an accu-

mulate loop, with hardware input reg2 (base address of the array) and output reg4 (accumulated

value). (b) A simple hardware circuit for the corresponding binary, with memory mapped registers

for Enable, Addr, Done, and Accum. (c) An updated binary that uses the synthesized circuit.

array, specified by reg2), Accum (the accumulated value to be stored into reg4),
Enable, and Done. Figure 5(c) shows the updated binary that communicates
with the synthesized circuit, assuming for simplicity that the architecture sup-
ports memory-mapped hardware registers. Initially, the code moves reg2 into
the Addr input register and then enables the hardware by moving the value
1 into the Enable input register. The following branch instruction loops until
the Done register is set upon the completion of the DMA transfer, essentially
stalling the microprocessor until the hardware finishes. Alternatively, the bi-
nary updater may use instructions to put the microprocessor to sleep to save
power. Next, the binary updater uses a move instruction to move the accu-
mulated value from the Accum output register into reg4 which gets returned
from the function. If we had considered registers 3, 4, 5, and 6 as outputs, then
the binary updater would also have included instructions for assigning these
registers upon completion of the hardware. For this example, the target ar-
chitecture uses memory-mapped registers within the FPGA, allowing a move
instruction to transfer data to these registers. Depending on the instruction
set, binary updating may use load instructions. Other communication models,
such as a shared cache or shared memory with DMA, would require different
instructions.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 34, Publication date: August 2007.



24 • G. Stitt and F. Vahid

The execution time required by the added instructions varies depending
on the architecture. For the memory-mapped register example, an access to a
memory-mapped register by the microprocessor typically takes approximately
10 cycles. Therefore, the updated binary in Figure 5(c) may require an addi-
tional 40 cycles, one for each register access. Although binary updating may
seem to create an overhead due to the addition of communication instructions,
such instructions would also be added by high-level hardware/software parti-
tioning tools.

8. EXISTING BINARY SYNTHESIS APPROACHES

We initially proposed binary synthesis in Stitt and Vahid [2002] to achieve
a more transparent tool-flow integration for hardware/software partitioning
compared to traditional partitioning approaches. This initial approach utilized
limited decompilation to recover high-level control structures and to optimize
away assembly inefficiencies, achieving speedups compared to a MIPS micro-
processor at the cost of a large area overhead. The area overhead was later
reduced using additional decompilation techniques which resulted in signif-
icant speedups compared to software execution for the standard benchmark
suites MediaBench, NetBench, and EEMBC [Stitt and Vahid 2003].

Mittal et al. [2004] developed similar binary synthesis techniques to trans-
late DSP binaries into FPGA hardware. By treating the binaries as an inter-
mediate representation for synthesis, their approach could synthesize applica-
tions written in C/C++, Matlab, and Simulink in addition to hand-optimized
assembly code. The FREEDOM Compiler [Zaretsky et al. 2004] expands on
this approach by converting the binary to a machine syntax tree, optimiz-
ing the tree, creating a control/data flow graph, and then performing syn-
thesis with resource constraints specified by an architectural description
library.

In Stitt et al. [2005a], we showed that binary synthesis could take advan-
tage of advanced synthesis techniques, such as smart buffers [Guo et al. 2004],
by performing more decompilation to recover memory access patterns and ar-
rays. This work also showed that decompiled C code commonly results in sim-
ilar synthesized hardware compared to synthesis from the original C code. We
also presented a case study of binary synthesis on a commercial h.264 decoder
[Stitt et al. 2005b]. Whereas previous efforts typically showed the possibility
of performing binary synthesis on small, unoptimized benchmarks, this work
showed that binary synthesis could be competitive with high-level synthesis
approaches on a large, highly-optimized commercial application. In Stitt and
Vahid [2005b], we introduced loop rerolling and strength promotion as decom-
pilation techniques that greatly improve the quality of hardware synthesized
from a software binary in the presence of software compiler optimizations. Stitt
and Vahid [2005b] also showed that binary synthesis can produce similar re-
sults for several different instruction sets, including instruction sets of softcore
microprocessors such as the MicroBlaze.

Critical Blue [CriticalBlue 2006] is a commercial binary synthesis ap-
proach that utilizes decompilation to synthesize a custom VLIW coprocessor to
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speed up critical software kernels. Binachip [2006] is a similar approach that
translates a software binary into a custom FPGA implementation.

Several attempts at synthesizing Java byte code have been proposed
[Helaihel and Olukotun 1997; Kuhn et al. 1999]. Java byte code is potentially
a good candidate for binary synthesis because high-level information is stored
in the byte code, such as class and thread information. Due to the difficulty
in extracting parallelism from a sequential application, having explicit coarse-
grained parallelism in the byte code makes synthesis of byte code potentially
superior to synthesis from languages without explicit parallelism. The main dif-
ficulty in synthesizing Java byte code is dealing with the abundance of virtual
functions which result in indirect jumps that make static control flow analy-
sis difficult. In addition, the use of references requires complex alias analysis.
Helaihel [Helaihel and Olukotun 1997] eliminates many of these problems by
preallocating class instances, but this approach is limited to objects that are
not created in loops or in recursive functions. Kuhn et al. [1999] restricts the
constructs and coding style of Java code to make RTL, behavioral, and system
synthesis possible.

In addition to static binary synthesis techniques, warp processors [Lysecky
et al. 2006; Stitt et al. 2003] perform binary synthesis at runtime, providing a
completely transparent synthesis tool flow. Warp processors include extra hard-
ware to profile an executing binary to identify critical regions and also contain
a specialized configurable logic fabric that supports efficient on-chip CAD tools
that run on a small coprocessor. Beck and Carro [2005] proposed a similar,
more coarse-grained approach that maps sequences of Java byte code onto a
coarse-grained reconfigurable fabric, achieving a speedup of 4.6x compared to
a stack-based java virtual machine.

9. CONCLUSIONS AND FUTURE WORK

We introduced binary synthesis as a complementary approach to traditional
high-level synthesis techniques. Compared to high-level synthesis approaches,
binary synthesis can be more transparently integrated into existing software
tool flows by supporting all high-level languages and compilers. Binary syn-
thesis also creates the possibility of synthesizing library code and legacy
applications.

We showed that decompilation is an essential step in binary synthesis, re-
covering high-level information that is lost during software compilation. We
presented the underlying techniques used by most decompilers and discussed
the limitations of existing techniques. By using decompilation, binary synthe-
sis approaches have achieved very competitive results compared to traditional
synthesis techniques.

With the increasing popularity of new languages and compilers, binary syn-
thesis is likely to become more widely accepted due to its independence from
languages and compilers. Binary synthesis enables a platform provider to re-
lease a single binary synthesis tool for the instruction set used by the platform
as opposed to supporting each possible language that a user of a particular plat-
form might consider. By not excluding certain languages or compilers, binary
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synthesis can also attract a new market segment of software developers to use
microprocessor/FPGA platforms. Also, the increasing possibilities of dynamic
binary synthesis allow software developers to obtain software speedups with
no additional effort and without any changes to tool flow.

Future work will likely involve extending binary synthesis to handle par-
allel applications in which case more complex decompilation and partitioning
techniques will be needed to recover threads, processes, and communication/
synchronization constructs. In addition, the actual performances obtainable for
different languages are currently unknown because most existing approaches
only synthesize binaries generated from C code. Indirect jumps in C++ and
Java code resulting from virtual functions can result in inefficient hardware.
However, this problem is not unique to binary synthesis; it also applies to tra-
ditional synthesis approaches. Future work in dynamic binary synthesis will
likely include improved synthesis and placement and routing algorithms that
can execute extremely quickly while still resulting in fast hardware, making
dynamic binary synthesis more competitive with static approaches. Such work
may also include handling multithreaded and multiprocess binaries.
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