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We describe a new processing architecture, known as a warp processor, that utilizes a field-
programmable gate array (FPGA) to improve the speed and energy consumption of a software
binary executing on a microprocessor. Unlike previous approaches that also improve software
using an FPGA but do so using a special compiler, a warp processor achieves these improvements
completely transparently and operates from a standard binary. A warp processor dynamically
detects the binary’s critical regions, reimplements those regions as a custom hardware circuit in
the FPGA, and replaces the software region by a call to the new hardware implementation of
that region. While not all benchmarks can be improved using warp processing, many can, and
the improvements are dramatically better than those achievable by more traditional architecture
improvements. The hardest part of warp processing is that of dynamically reimplementing code
regions on an FPGA, requiring partitioning, decompilation, synthesis, placement, and routing
tools, all having to execute with minimal computation time and data memory so as to coexist
on chip with the main processor. We describe the results of developing our warp processor. We
developed a custom FPGA fabric specifically designed to enable lean place and route tools, and
we developed extremely fast and efficient versions of partitioning, decompilation, synthesis, tech-
nology mapping, placement, and routing. Warp processors achieve overall application speedups of
6.3X with energy savings of 66% across a set of embedded benchmark applications. We further
show that our tools utilize acceptably small amounts of computation and memory which are far
less than traditional tools. Our work illustrates the feasibility and potential of warp processing,
and we can foresee the possibility of warp processing becoming a feature in a variety of computing
domains, including desktop, server, and embedded applications.
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Categories and Subject Descriptors: C.1.3 [Processor Architectures]: Other Architecture
Styles—Adaptable architectures; C.3 [Computer Systems Organization]: Special-Purpose and
Application-Based Systems—Real-time and embedded systems

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Warp processors, hardware/software partitioning, FPGA, con-
figurable logic, just-in-time (JIT) compilation, dynamic optimization, hardware/software codesign

1. INTRODUCTION

Extensive research over the past two decades has demonstrated the benefits
that often can be obtained by reimplementing a software application’s crit-
ical regions, or critical kernels, as a custom circuit coprocessor on a field-
programmable gate array (FPGA). While many products today feature such
coprocessors on FPGAs alongside a microprocessor [Altera 2006; Christensen
2004; D. H. Brown Associates 2004; Morris 2005; Xilinx 2004a; Xilinx 2005a],
and while recent commercial compilers offer to automatically partition critical
software regions to FPGAs or ASICs [Critical Blue 2005] or to create custom
coprocessors tightly integrated within the processor itself [Tensilica 2006], the
significantly different and costlier tool flows associated with FPGA coprocessors
have prevented the use of such coprocessors in mainstream software flows.

We define a software application’s critical region as a loop or subroutine that
is frequently executed, accounting for perhaps 10% or more of total applica-
tion execution time. For many applications, the majority of execution time may
come from just a few critical regions. Therefore, while speeding up a critical re-
gion accounting for only 10% of the execution time may not provide extremely
high overall speedups in itself, by speeding up several such critical regions,
the overall performance improvement can be significant. Implementing a crit-
ical region on an FPGA, commonly called hardware/software partitioning, can
sometimes result in high speedups of 100X–1000X or more for that region. Of
course, the impact of this speedup on the overall application speedup depends on
the contribution percentage of the region to overall application execution time,
per Amdahl’s law. Furthermore, not all applications have regions amenable to
speedup with an FPGA. Nevertheless, for many applications, researchers and
commercial vendors have observed overall application speedups of 10X–100X
[Balboni et al. 1996; Berkeley Design Technology 2004; Chen et al. 2004; Eles
et al. 1997; Ernst et al. 1993; Gajski et al. 1998; Guo et al. 2005; Henkel and
Ernst 1997; Keane et al. 2004; Stitt and Vahid 2005; Stitt et al. 2005], and
in some cases close to 1000X [Böhm et al. 2002; Venkataramani et al. 2001],
obtained by implementing critical regions on an FPGA.

The advent of single-chip microprocessor/FPGA devices makes hardware/
software partitioning even more attractive. Such devices include one or more
microprocessors and an FPGA fabric on a single chip, and typically include ef-
ficient mechanisms for communication between the microprocessor and FPGA,
along with shared memory. Such devices first appeared in the late 1990s from
Atmel [2005] and Triscend [Matsumoto 2000; Triscend 2003] with low-end mi-
croprocessors and FPGAs supporting tens of thousands of gates. Altera [2005]
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developed Excalibur devices incorporating an ARM9 processor and a million-
gate FPGA fabric. Xilinx offers Virtex-II Pro [2004b] and Virtex-4 FX [2005b]
devices incorporating one or more PowerPC processors with an FPGA fabric
having tens of millions of gates. These devices all implement the processor as
a hard core, not as a circuit mapped onto the FPGA fabric itself. Given the ap-
pearance of FPGAs supporting tens of millions of gates, and soon hundreds of
millions of gates, and also knowing that microprocessors may require only tens
or hundreds of thousands of gates, we can see that any FPGA can implement
microprocessors as soft cores mapped on the FPGA fabric itself.

Electronically programming bits onto an FPGA is fundamentally the same
as programming a microprocessor. Like a microprocessor, an FPGA is an
off-the-shelf part. We can program an FPGA by downloading a bitstream into
the FPGA’s memory, just as we program a microprocessor. Thus, conceptually, a
compiler can partition an application into a microprocessor part and an FPGA
coprocessor part, and indeed, such compilers do exist, although mostly in the
research domain [Balboni et al. 1996; Böhm et al. 2002; Critical Blue 2005; Eles
et al. 1997; Gajski et al. 1998; Gokhale and Stone 1998; Hauser and Wawrzynek
1997; Henkel and Ernst 1997; Stitt and Vahid 2002; Xilinx 2000a]. Unfortu-
nately, such compilers require a significant departure from traditional software
tool flows. First, the compiler must determine the critical regions of a software
application, and such determination typically requires profiling. Profiling,
while conceptually straightforward, is often not a standard part of compilation,
especially in embedded systems where executing an application often involves
complicated time-dependent interactions with the application’s environment
and makes setting up simulations difficult. Second, the compiler must generate
a binary for the microprocessor and a binary for the FPGA coprocessor, and the
latter is by no means standard. Thus, partitioning compilers lose the important
concept of a standard binary and the associated benefits of portability.

Recently, researchers showed that by using decompilation techniques, de-
signers could perform desktop hardware/software partitioning starting from
binaries rather than from high-level code, with resulting competitive perfor-
mance and energy [Banerjee et al. 2004; Mittal et al. 2004; Stitt and Vahid 2002,
2005]. Binary-level partitioning opens the door to dynamic hardware/software
partitioning, in which an executing binary is dynamically and transparently op-
timized by moving software kernels to on chip configurable logic, a process we
call warp processing. Warp processors, originally proposed in [Stitt et al. 2003],
provide designers with the ability to program using a high-level language, such
as C, while exploiting the underlying FPGA to improve performance and reduce
energy consumption with no required knowledge of the FPGA. Such transpar-
ent optimizations can be quite beneficial, as programming in a high-level lan-
guage is about five times more productive than programming in VHDL [Vissers
2004].

2. FPGA COPROCESSING

Implementing a critical region as a circuit on an FPGA may yield high per-
formance speedups compared to implementing on a microprocessor when the
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Fig. 1. A comparison of a bit reversal in (a) software on a microprocessor and (b) hardware on an
FPGA.

critical region involves extensive bit-level manipulation or its code is highly
parallelizable.

Bit-level operations are much less efficient on a microprocessor because each
bit-level operation requires a separate instruction or several instructions. An
example of the efficiency of FPGA bit-level manipulations is a bit reversal oper-
ation, shown in Figure 1. Figure 1 (a) presents an efficient software implemen-
tation of a bit reversal that requires approximately 64 instructions to reverse
one 32-bit integer [Press et al. 1992]. Depending on the microprocessor, these
64 instructions could require anywhere from 32 to 128 cycles to complete. How-
ever, as shown in Figure 1 (b), a bit reversal implemented as a hardware circuit
in an FPGA requires only wires to compute and can be performed in a single
cycle, achieving a speedup ranging from 32X to 128X (assuming equal cycle
lengths).

Furthermore, an FPGA can generally implement parallelizable code much
more efficiently than even a VLIW (very large instruction word) or multiple-
issue microprocessor. Whereas a microprocessor might be able to execute sev-
eral operations in parallel, an FPGA can potentially implement thousands
of operations in parallel. The finite impulse response (FIR) filter shown in
Figure 2 is an example of highly parallelizable code that can potentially greatly
benefit from implementing the code on an FPGA. Figure 2 (a) shows the execu-
tion of the FIR filter on a microprocessor requiring many multiply-accumulate
operations and executing for thousands of cycles. Alternatively, Figure 2 (b)
shows an FPGA implementation of the FIR filter in which the hardware cir-
cuit within the FPGA performs multiplications in parallel and implements the
accumulation as a tree of adders (assuming sufficient FPGA resources). By
parallelizing multiply-accumulate operations, the FPGA implementation can
achieve a speedup of at least 100X.
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Fig. 2. FIR filter implemented in (a) software on a microprocessor and (b) hardware on an FPGA.

Fig. 3. Warp processor architecture/overview.

3. COMPONENTS OF A WARP PROCESSOR

Figure 3 provides an overview of a warp processor, highlighting the steps per-
formed during dynamic hardware/software partitioning. A warp processor con-
sists of a main processor with instruction and data caches, an efficient on chip
profiler, our warp-oriented FPGA (W-FPGA), and an on-chip computer-aided
design module. Initially, a software application executing on a warp processor
will execute only on the main processor. During the execution of the application,
the profiler monitors the execution behavior of the application to determine the
critical kernels within. After identifying the critical regions, the on-chip CAD
module executes the Riverside on-chip CAD tools (ROCCAD) to reimplement
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the critical software regions as a custom hardware component within the
W-FPGA.

We include a profiler within each warp processor to determine the critical
kernels within the executing application that the warp processor could im-
plement as hardware. Dynamic profiling is a widely studied problem for which
many solutions exist [Lysecky et al. 2004a; Zagha et al. 1996; Zhang et al. 1997;
Zilles and Sohi 2001]. Typical profilers instrument code, thus changing program
behavior and requiring extra tools. Instead, we incorporate a nonintrusive pro-
filer that monitors the instruction addresses seen on the instruction memory
bus [Gordon-Ross and Vahid 2003]. Whenever a backward branch occurs, the
profiler updates a cache of 16 8-bit entries that store the branch frequencies.
When any of the registers storing the branch frequencies becomes saturated,
the profiler shifts all 16 registers to the right by one bit, thereby maintaining a
list of relative branch frequencies while ensuring all branch frequency registers
do not eventually become saturated. The profiler uses roughly 2000 gates along
with a small cache of only a few dozen entries, with a small associativity, to
save area and power. Furthermore, through simulations of our warp processor
design, we have found that the profiler can accurately determine the critical re-
gions of an application within ten branch frequency register saturations. Using
this methodology, the profiler is able to properly select the correct critical ker-
nels for partitioning, for all the applications we considered. Further details of
the profiler design and accuracy can be found in Gordon-Ross and Vahid [2003].

After profiling the application to determine the critical regions, the on-chip
CAD module executes our partitioning, synthesis, mapping, and routing algo-
rithms. ROCCAD first analyzes the profiling results for the executing applica-
tion and determines which critical region the warp processor should implement
in hardware. After selecting the region, ROCCAD decompiles the critical region
into a control/dataflow graph and synthesizes the critical kernel to produce an
optimized hardware circuit that is then mapped onto our W-FPGA through
technology mapping, placement, and routing. Finally, ROCCAD configures the
configurable logic and updates the executing application’s binary code to utilize
the hardware within the configurable logic fabric. During the binary update, the
warp processor must ensure that the main processor is not currently executing
within the critical region.

Currently, we implement the on-chip CAD module as a separate ARM7
processor including both caches and separate instruction and data memories,
which can either be located on chip or off-chip, depending on what is acceptable
for any given warp processor implementation. Alternatively, we could elimi-
nate the need for the on-chip CAD module by executing our on-chip CAD tools
as a software task on the main processor sharing computation and memory
resources with the main application. We can also envision a multiprocessor
system in which we incorporate multiple warp processors on a single device.
In such a system, there is no need to additionally incorporate multiple on chip
CAD modules, as a single on-chip CAD module is sufficient for supporting each
of the processors in a round robin or similar fashion. Furthermore, we can again
implement the CAD tools as a software task executing on any of the multiple
processors.
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Fig. 4. A warp-oriented field programmable gate array (W-FPGA).

Finally, after reimplementing an application’s critical kernels as hardware,
programming the W-FPGA with the hardware configuration, and updating the
application’s binary to interface with the hardware, the application executes
on the warp processor using a mutually exclusive execution model whereby
either the main processor or the W-FPGA is active at any given time. Using
this implementation, the main processor and the W-FPGA can access the same
data cache, thereby avoiding any cache coherency and/or consistency issues.
Furthermore, we examined the potential benefits of allowing parallel execution
of the processor and configurable logic fabric and found that parallel execution
did not yield significant performance improvements for most applications.

Simulating our warp processor design, we find that our warp processor pro-
vides excellent performance and energy benefits for the embedded applications
we analyze in this article. Warp processing is ideally suited for embedded sys-
tems that repeatedly execute the same application, or set of applications, for
extended periods, and especially for systems in which software updates and
backwards compatibility are essential. As such, a warp processor can quickly
determine which critical regions to implement in hardware and continue uti-
lizing the same hardware configuration, either for the duration of the product’s
lifetime or until the software is updated. However, warp processing can also be
incorporated into other domains such as desktop computing, high performance
servers, personal digital assistants, etc. Within these domains, warp process-
ing could prove to be extremely useful for data-intensive applications such as
image or video processing, data analysis, scientific research, or even games, as
these applications typically execute for an extended period of time during which
the warp processor could partition the critical kernels to hardware. Addition-
ally, short-running applications that execute many times can also benefit from
warp processing, as long as the warp processor can remember the application’s
hardware configuration.

4. WARP-ORIENTED FPGA

Figure 4 shows the overall organization of our W-FPGA, consisting of a data ad-
dress generator (DADG) with loop control hardware (LCH), three input and out-
put registers, a 32-bit multiplier-accumulator (MAC), and our routing-oriented
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configurable logic fabric (RCLF) presented in Lysecky and Vahid [2004]. The
W-FPGA handles all memory accesses to and from the configurable logic using
the data address generator. Furthermore, the data retrieved and stored to and
from each array is located within one of the three registers Reg0, Reg1, and
Reg2. These three registers also act as inputs to the configurable logic fabric
and can be mapped as inputs to the 32-bit multiplier-accumulator or directly
mapped to the configurable logic fabric. As a final step, we connect the out-
puts from the configurable logic fabric as inputs to the three registers using a
dedicated bus.

Since we are targeting critical loops that usually iterate many times before
completion, the W-FPGA must be able to access memory and to control the
execution of the loop. We include a data address generator with loop control
hardware in our FPGA design to handle all memory accesses, as well as to con-
trol the execution of the loop. The data address generator within the W-FPGA
can handle memory accesses that follow regular access patterns. Such data
address generators and loop control hardware are often incorporated into dig-
ital signal processors to achieve zero loop overhead, meaning that cycles are
not wasted in computing loop bounds and sequential memory addresses. Loop
control hardware is typically capable of executing a loop for a specific number
of iterations. While we can determine the loop bounds for many critical loops,
loops can also contain control code within that terminates the loop’s execution.
For example, in a C/C++ implementation to perform a lookup in an array, once
we have found the desired value, we will typically terminate the loop’s execu-
tion using a break statement. Therefore, the loop control hardware within the
W-FPGA will control the loop’s iterations, assuming a predetermined number
of iterations, but will allow for terminating the loop’s execution using an output
from the configurable logic fabric.

In the applications we analyzed for developing warp processors, we fre-
quently found common operations within an application’s critical regions, in-
cluding addition, subtraction, and multiplication. Furthermore, while we often
see multiplications in the critical code regions, they are often in the form of a
multiply-accumulate operation. Implementing a multiplier with a small con-
figurable logic fabric is generally slow and requires a large amount of logic and
routing resources. Therefore, we include a dedicated multiplier-accumulator
within the W-FPGA to conserve resources and provide fast performance.

Figure 5 (a) shows our routing-oriented configurable logic fabric presented
in Lysecky and Vahid [2004]. Our RCLF consists of an array of configurable
logic blocks (CLBs) surrounded by switch matrices for routing between CLBs.
Each CLB is connected to a single switch matrix to which all inputs and outputs
of the CLB are connected. We handle routing between CLBs using the switch
matrices, which can route signals in one of four directions to an adjacent SM
(represented as solid lines in the figure), or to an SM two rows apart vertically
or two columns apart horizontally (represented as dashed lines).

Figure 5 (b) shows our combinational logic block architecture. Each CLB
consists of two 3-input 2-output LUTs, which provide the equivalent of a CLB
consisting of four 3-input single output LUTs with fixed internal routing. We
chose 3-input 2-output LUTs to simplify our technology mapping and placement
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Fig. 5. (a) A routing-oriented configurable logic fabric, (b) combinational logic block, and (c) switch
matrix architecture.

algorithms by restricting the choices our tools will analyze to determine the
final circuit configuration. Additionally, the CLBs are capable of supporting
carry chains through direct connections between horizontally adjacent CLBs
and within the CLBs through internal connections between adjacent LUTs.
Hardware components, such as adders, comparators, etc., frequently require
carry logic, and so providing support for carry chains simplifies the required
routing for many hardware circuits.

The size of our LUTs and CLBs is very important, as it directly impacts both
area resources and delays within our configurable logic fabric, as well as the
complexity of the tools needed to map a circuit to the configurable logic fabric.
Several studies have analyzed the impacts of LUT size on both area and timing
[Chow et al. 1999; Singh et al. 1992]. These studies have shown that lookup
tables with five or six inputs result in circuits with the best performance, while
LUTs with three or four inputs are still reasonable. Another study analyzed
the impacts on cluster size, the number of single output LUTs within a CLB,
and on the speed and area of various circuits [Marquardt et al. 2000]. Their
findings indicate that cluster sizes of 3 to 20 LUTs were feasible, and a cluster
size of 8 produced the best tradeoff between area and the delay of the final cir-
cuits. However, while we would like to incorporate large cluster sizes within our
configurable logic fabric, such clusters allow more flexibility during technology
mapping and placement phases which in turn require more complex technology
mapping and placement algorithms to handle the added intricacy.
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Finally, Figure 5 (c) shows our switch matrix architecture. Each switch ma-
trix is connected using eight channels on each side of the switch matrix; four
short channels routing between adjacent nodes and four long channels routing
between every other switch matrix. Routing through the switch matrix can only
connect a wire from one side with a given channel to another wire on the same
channel, but on a different side of the switch matrix. Additionally, each of the
four short channels is paired with a long channel and can be connected together
within the switch matrix (indicated as a circle where two channels intersect),
allowing wires to be routed using short and long connections. In other words,
the switch matrix can route a wire on a single channel between two different
sides of the switch matrix, connecting short, long, or short and long channels.
Designing the switch matrix in this manner simplifies the routing algorithm
by only allowing the router to route a wire using a single pair of channels
throughout the configurable logic fabric.

Commercially available FPGAs consist of similar routing resources, but typ-
ically are capable of routing between switch matrices that are much further
apart and often include routing channels spanning an entire row or column.
While such flexible routing resources are beneficial in terms of creating com-
pact designs with less routing overhead, they require complex place and route
tools not amenable to on-chip execution. Therefore, we chose to limit the com-
plexity of routing resources to allow for simplified place and route algorithms.
In doing so, we were able to develop a set of fast, lean place and route tools
that can execute 10X faster using 18X less memory than existing desktop-
based place and route tools [Lysecky et al. 2005]. While our configurable logic
design is fundamentally similar to existing FPGAs and can achieve compara-
ble performance to existing commercial FPGAs for many circuits, its limited
routing resources result in lower clock frequencies for large circuits that re-
quire a large percentage of the routing resources. However, for partitioning SW
kernels, the inclusion of the data address generator and multiply-accumulator
within our W-FPGA reduces the complexity and size of the circuit implemented
on the configurable logic, thereby allowing for faster clock frequencies and
alleviating any potential degradation in performance. The interested reader
can find further details on the configurable logic fabric design in Lysecky and
Vahid [2004].

5. RIVERSIDE ON-CHIP COMPUTER-AIDED DESIGN TOOLS

Warp processors require the development of lean versions of partitioning, de-
compilation, behavioral, register-transfer (RT), and logic synthesis, technology
mapping, placement, and routing algorithms. However, the traditional desktop-
based counterparts of these tools typically require long execution times often
ranging from minutes to hours, large amounts of memory resources often ex-
ceeding 50 megabytes, and large code sizes possibly requiring hundreds of thou-
sands of lines of source code. However, the on chip CAD algorithms and tools
incorporated within warp processors must have very fast execution times while
using small instruction and data memory resources. Therefore, we developed
Riverside on-chip CAD (ROCCAD) tools, designed specifically to provide very
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Fig. 6. ROCCAD on-chip CAD tool chain.

fast execution times while minimizing the data amount of memory used during
execution and providing excellent results.

Figure 6 presents the tool chain flow for our on chip CAD tools, ROCCAD,
executed on the on-chip CAD module’s processor. Starting with the software
binary, decompilation converts the software loops into a high-level represen-
tation more suitable for synthesis. Much of the decompilation techniques we
utilize are based on Cifuente et al.’s work [1998, 1999] in binary translation.
Decompilation first converts each assembly instruction into equivalent register
transfers which provides an instruction set independent representation of the
binary. Once decompilation converts the instructions into register transfers, the
decompilation tool builds a control flow graph for the software region and then
constructs a data flow graph by parsing the semantic strings for each register
transfer. The parser builds trees for each register transfer and then combines
the trees into a full data flow graph through definition-use and use-definition
analysis. After creating the control and data flow graphs, the decompiler ap-
plies standard compiler optimizations to remove the overhead introduced by the
assembly code and instruction set. After recovering a control/data flow graph,
the decompilation process analyzes it to recover high-level constructs, such as
loops and if statements [Cifuentes 1996].

ROCCAD then performs partitioning by analyzing the critical software ker-
nels, determined by the on-chip profiler, to evaluate which software kernels
are most suitable for implementing in hardware. Using a simple partitioning
heuristic, the partitioning algorithm determines which critical kernels the warp
processor will implement within the configurable logic architecture to maximize
speedup while reducing energy. Next, ROCCAD uses behavioral and register-
transfer (RT) synthesis to convert the control/data flow graph for each critical
kernel into a hardware circuit description. The RT synthesis then converts the
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hardware circuit descriptions into a netlist format, which specifies the hard-
ware circuits using Boolean expressions for every output of the circuit.

Finally, the on-chip CAD tools execute just-in-time (JIT) FPGA compilation
tools to map the hardware binary onto the underlying configurable logic fabric.
The JIT FPGA compiler first executes logic synthesis to optimize the hardware
circuit. Starting with the Boolean equations representing the hardware circuit,
the JIT FPGA compiler initially creates a directed acyclic graph of the hardware
circuit’s Boolean logic network. The internal nodes of the graph correspond to
any simple 2-input logic gate such as AND, OR, XOR, NAND, etc. We then per-
form logic synthesis to optimize the logic network using the Riverside on-chip
minimizer (ROCM), a simple two-level logic minimizer presented in Lysecky
and Vahid [2003]. Starting with the input nodes, we traverse the logic network
in a breadth-first manner and apply logic minimization at each node. ROCM’s
logic minimization algorithm uses a single expand phase to achieve good opti-
mization. While a more robust two-level logic minimizer could achieve better
optimization for larger examples, the simplified algorithm is better suited for
on-chip execution of warp processors.

After logic synthesis, the JIT FPGA compiler performs technology mapping
to map the hardware circuit onto the CLBs and LUTs of the configurable logic
fabric. The technology mapper uses a greedy hierarchical graph-clustering al-
gorithm. It first performs a breadth-first traversal of the input-directed acyclic
graph starting with the output nodes, and combines nodes to create LUT nodes
corresponding 3-input single output LUTs. Once we identify the single output
LUT nodes, the technology mapper again performs a breadth-first traversal
starting from the output nodes and combines nodes wherever possible to form
the final 3-input 2-output LUTs, which are a direct mapping to the underlying
configurable logic fabric. Finally, the technology mapper again traverses the
graph, now representing the technology-mapped hardware circuit, and packs
the LUTs together into CLBs by identifying situations in which we can utilize
the routing resources between adjacent LUTs, such as when the output from
one LUT is an input to another LUT.

After mapping the hardware circuit into a network of CLBs, the JIT FPGA
compiler places the CLB nodes onto the configurable logic. The placement algo-
rithm is a greedy dependency-based positional algorithm that first determines
a placement of the CLB nodes within the hardware circuit relative to each other.
The placement algorithm starts by determining the critical path within the cir-
cuit and places these nodes into a single horizontal row within the RCLF. It
then analyzes the remaining nonplaced nodes to determine the dependency be-
tween them and the nodes already placed. Based upon these dependencies, for
each unplaced node, we place the node either above (input to an already placed
node) or below (uses an output from an already placed node) and as close as pos-
sible to the dependent node. During this placement procedure, the algorithm
also attempts to utilize the routing resources between adjacent CLBs within
the RCLF, whenever possible. After determining the relative placement of LUT
nodes, the placement algorithm superimposes and aligns the relative placement
onto the configurable logic fabric, making minor adjustments at the edges if
needed.
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We then perform routing between inputs, outputs, and CLBs with the con-
figurable logic fabric using the Riverside on-chip router (ROCR) presented in
Lysecky et al. [2004b] and Lysecky et al. [2005]. ROCR utilizes the general ap-
proach of Versatile Place and Route’s (VPR’s) routability-driven router, allowing
both overuse of routing resources and illegal routes, and eliminates illegal rout-
ing through repeated routing iterations [Betz et al. 1999; Betz and Rose 1997].
ROCR starts by initializing the routing costs within a routing resource graph
representing the configurable logic fabric. For all unrouted nets, ROCR uses a
greedy routing approach to route the net. During the greedy routing process,
for each sink within the net, ROCR determines a route between either the un-
routed sink and net’s source or the nearest routed sink. At each step, it restricts
the router to only those paths within a bounding box of the current sink and
the chosen location to which they are routing. After all nets are routed, if ille-
gal routes exist as the result of overusing routing channels, then ROCR rips
up only the illegal routes and adjusts the routing costs of the entire routing
resource graph. ROCR uses the same routing cost model of VPR’s routability-
driven router. However, in addition, ROCR incorporates an adjustment cost.
During the process of ripping up illegal routes, ROCR adds a small routing
adjustment cost to all routing resources used by an illegal route. During the
routing process, an early routing decision can force the routing algorithm to
choose a congested path. Hence, the routing adjustment cost discourages the
greedy routing algorithm from selecting the same initial route and enables the
algorithm to attempt a different routing path in subsequent iterations. Once
we determine a valid global routing, ROCR performs detailed routing in which
we assign the channels used for each route. Detailed routing starts by con-
structing a routing conflict graph. Two routes conflict when both pass through
a given switch matrix and assigning them the same channel would result in an
illegal routing within it. ROCR assigns the routing channels by determining a
vertex coloring of the routing conflict graph. While many approaches for ver-
tex coloring exist, we chose to use Brelaz’s [1979] vertex coloring algorithms.
Brelaz’s algorithm is a simple and greedy algorithm, producing good results
while not increasing ROCR’s overall memory consumption. For those routes
that ROCR cannot assign to a legal channel, ROCR rips up the illegal routes,
adjusts the routing costs of all nodes along the illegal route (as described be-
fore), and reroutes the illegal routes. It finishes routing a circuit when a valid
routing path and channel assignment has been determined for all nets.

Finally, the binary updater handles updating the software binary to utilize
the hardware for loops. We replace the original software instructions for the
loop with a jump to hardware initialization code. The initialization code first
enables the hardware by writing to a memory-mapped register or port that
is connected to the hardware enable signal. Following the enable instruction,
we generate the code responsible for shutting the microprocessor down into a
power-down sleep mode. After finishing execution, the hardware then asserts
a completion signal that causes a software interrupt. This interrupt wakes up
the microprocessor, which resumes normal execution. Finally, we add a jump
instruction to the end of the hardware initialization code that jumps to the end
of the original software loop.
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Table I. Processor and FPGA Operating Frequencies (of commercially available single-chip
microprocessor/FPGA devices)

Device Proc. Freq. (MHz) FPGA Freq. (MHz) Proc.:FPGA Freq.
Xilinx Virtex-4 FX (0.09 μm) 450 500 1:1.1
Xilinx Virtex-II Pro (0.13 μm) 400 320 1:0.8
Altera Excalibur (0.18 μm) 200 180 1:0.9
Atmel FPSLIC (0.18 μm) 40 33 1:0.8
Triscend A7 (0.18 μm) 60 60 1:1.0
Average: 1:0.92

6. EXPERIMENTAL RESULTS

Considering a warp processor system with a dedicated on-chip CAD module, we
must be able to execute the on-chip tools on a small, embedded microprocessor,
such as an ARM7, using limited instruction and data memory resources while
providing fast execution times. Furthermore, on a system in which the CAD
tools execute as a task on the one of the main processors, the algorithms must
still use limited memory resources and execute quickly so as not to impact the
execution of the main application. ROCCAD tools require 34,720 lines of C code
corresponding to a binary size of 327 kilobytes. Additionally, the ROCCAD algo-
rithms execute for an average of only 1.2 seconds on a 40 MHz ARM7 processor,
requiring a maximum of 3.6 megabytes of data memory during execution for
the benchmarks described in the following.

We compare our warp processors with a traditional hardware/software par-
titioning approach targeting an FPGA, comparing speedup and energy reduc-
tion of critical regions for 15 embedded systems benchmarks from NetBench
[Memik et al. 2001], MediaBench [Lee et al. 1997], EEMBC [EEMBC 2005],
Powerstone [Malik et al. 2000], as well as our on-chip logic minimization tool
ROCM [Lysecky and Vahid 2003]. Instead of restricting our analysis to a spe-
cific processor and FPGA, we compare the performance and energy savings of
both approaches in a device independent manner by analyzing software and
hardware implementations with respect to the ratio of execution frequency
and power consumption of the processor to that of the configurable logic. Thus,
in utilizing ratios to characterize both the processor and FPGAs operating fre-
quency and power consumption, we can analyze the benefits of warp processing
independently of the specific technology process we are utilizing. This is due to
the fact that the ratios between processor and FPGA operating frequency are
likely to remain the same with successive technology generations.

In determining the processor to FPGA operating frequency and power con-
sumption ratios, we analyzed the published performance and power consump-
tion data for several commercially available single-chip microprocessor/FPGA
devices. Table I provides a summary of the maximum operating frequencies of
several single-chip microprocessor/FPGA devices. The Xilinx Virtex-4 FX is the
fastest of the devices, integrating two or more 450 MHz PowerPC processors
within a configurable logic fabric operating at a maximum frequency of 500 MHz
[Xilinx 2005b]. Xilinx also offers the second fastest device, the Virtex-II Pro, in-
tegrating two or more 400 MHz PowerPC processors within a configurable logic
fabric operating at a maximum frequency of 320 MHz [Xilinx 2004b]. Altera’s
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Table II. Operating Frequency and Power
Consumption Ratios (between a Low power ARM7
processor, a traditional FPGA, and the W-FPGA)

Device Proc.:FPGA Freq. Proc.:FPGA Power
FPGA 1:0.92 1:3.0
W-FPGA 1:1.0 1:2.25

Excalibur combines a 200 MHz ARM9 processor with an FPGA operating at a
maximum frequency of 180 MHz [Altera 2005]. Atmel’s Field Programmable
System Level Integrated Circuit (FPSLIC) combines a 40 MHz AVR processor
with an FPGA capable of executing at 33 MHz [Atmel 2005]. Finally, Triscend
offered the A7 that combines a processor and an FPGA both executing at a max-
imum frequency of 60 MHz [Triscend 2003]. Table I further provides the ratio
of processor frequency to FPGA frequency for these platforms. In the best case,
the Virtex-4 FX device achieves a ratio of 1:1.1, whereas the Xilinx Virtex-II
Pro and Atmel FPSLIC both have a ratio of 1:0.8. On average, these single-chip
devices have a processor to FPGA frequency ratio of 1:0.92. Furthermore, as
processors continue to increase in speed with each subsequent process technol-
ogy node, the operating frequencies of FPGAs will also increase while the ratio
of processor frequency to FPGA frequency will remain relatively constant, as
exhibited by the successive offering from Xilinx [2000b].

Table II presents the operating frequency and power consumption ratios be-
tween a low power ARM7 processor and a traditional FPGA, and between a
low power ARM7 processor and our W-FPGA. The processor to FPGA operating
frequency ratio is based on the average presented in Table I. We calculated
the processor to FPGA power consumption ratio by evaluating the power con-
sumption of the critical kernels for several embedded benchmark applications,
implemented as software, executing an on a low power processor and hardware
executing on an FPGA. For each of the 15 NetBench, MediaBench, EEMBC, and
Powerstone benchmarks considered, we implemented the applications’ critical
regions as hardware by manually designing a VHDL implementation and syn-
thesizing the design for a Xilinx Virtex-E FPGA using Xilinx ISE 4.1 [Xilinx
2006]. Using the Xilinx Virtex Power Estimator along with information pro-
vided by Xilinx ISE, we determined the power consumed by the FPGA for each
critical region. We then calculated the processor to FPGA power consumption
ratio by comparing the average power consumed by the Virtex-E FPGA to the
power consumption of a low power ARM7 processor, both of which are imple-
mented using 0.18 μm technology. On average, the FPGA consumes three times
as much power as the ARM7 processor for the critical regions of the applications
we consider, corresponding to a ratio of 1:3.0. Furthermore, as the spreadsheet-
based Xilinx Virtex Power Estimator is not as accurate as the XPower tool, we
conducted a similar analysis using several of the embedded benchmark appli-
cations with almost identical results.

The simplicity of the W-FPGA’s configurable logic fabric allows us to achieve
higher execution frequencies and lower power consumption compared to a tra-
ditional FPGA (implemented using the same process technology) for the em-
bedded applications considered. We analyzed both the execution frequency and
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Fig. 7. Critical region speedup of a single critical region implemented using warp processors
and traditional hardware/software partitioning, targeting an FPGA for NetBench, MediaBench,
EEMBC, and Powerstone benchmark applications.

the power consumption of our W-FPGA compared to an existing FPGA. To
determine the performance and power consumption of our W-FPGA, we im-
plemented our configurable logic architecture in VHDL and synthesized the
design using the Synopsys Design Compiler targeting the UMC 0.18 μm tech-
nology library. Using the synthesized fabric along with gate-level simulations,
we determined the delay and power consumption of individual components
within our configurable logic architecture. We note that this ASIC implemen-
tation of our configurable logic is less efficient than a full custom layout would
be in terms of performance, power, and area, and as such, our estimates for the
performance and power consumption of the W-FPGA are slightly pessimistic.
We implemented the critical regions for all benchmark applications using our
on-chip CAD tools and determined the maximum execution frequency by de-
termining the critical path within each placed and routed design, and further
calculated the power consumption for each circuit. In addition to considering
the delay and power consumption of the configurable logic and switch matrices,
we also considered the delay and power consumption associated with the short
and long wire segments used for routing the hardware design. Finally, we com-
pared the execution frequency of our W-FPGA with the Xilinx Virtex-E FPGA,
as the Virtex-E FPGA uses a 0.18 μm process. On average, our W-FPGA can
achieve clock frequencies 1.5x faster than the Xilinx FPGA and consumes 25%
less power. Therefore, our warp processors should exhibit a ratio of processor
frequency to W-FPGA frequency of 1:1 and a power consumption ratio of 1:2.25.

Figures 7 and 8 highlight the critical region speedup and critical region
energy reduction for the single most critical kernel using warp processors
and traditional hardware/software partitioning targeting an FPGA for all 15
benchmarks using the operating and power consumption ratios summarized
in Table II. In calculating the speedups of the two approaches, we determined
all software execution cycles using the SimpleScalar simulator [Burger and
Austin 1997], and hardware execution cycles using gate-level simulations of the
partitioned critical regions and our W-FPGA. For the traditional hard-
ware/software partitioning, we manually designed the hardware implemen-
tations of the critical regions in VHDL to determine the number of cy-
cles required for the hardware execution, considering the same critical
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Fig. 8. Critical region energy reduction of a single critical region implemented using warp pro-
cessors and traditional hardware/software partitioning, targeting an FPGA for NetBench, Media-
Bench, EEMBC, and Powerstone benchmark applications.

Fig. 9. Equations for determining energy consumption after hardware/software partitioning.

regions partitioned by warp processing the traditional hardware/software
partitioning.

We calculated the energy required for the critical regions after partitioning
using the equations in Figure 9. The total energy consumption, Etotal, is the sum
of the energy consumed by the processor, EProc, and the energy consumed by the
hardware configuration, EHW. The energy consumed by the processor consists
of that during the initialization of the hardware configuration (computed as the
processor’s active power consumption, PProc(active), multiplied by the initializa-
tion time, tinit), and the energy consumed while the critical region is executing in
hardware, computed as the processor’s idle power consumption, PProc(idle), mul-
tiplied by the active time for the hardware configuration, tactive. The processor
power consumption is based on the power consumption of the ARM7 executing
at its maximum operating frequency, 100 MHz. The energy consumed by the
hardware configuration consists of the energy consumed during execution of
the hardware (computed as the power consumption of the hardware configura-
tion, PHW, multiplied by the active time for the hardware configuration, tactive),
and also the static energy consumed by configurable logic during the entire
execution time of the application (computed as the static power consumed by
the configuration logic, Pstatic, multiplied by the total execution time, ttotal).

On average, our warp processor achieves a critical region speedup of 22X
with an average energy reduction of 80%. In comparison, the traditional hard-
ware/software partitioning approach targeting an FPGA achieves a critical re-
gion speedup of 20X and an energy reduction of 79%. Additionally, warp proces-
sors achieve a critical region speedup of over 100X for the benchmark g3fax. For
eight of the applications, including brev, g3fax, url, bitmnp, ttsprk, g721, mpeg2,
and matmul, the warp processor provides an energy reduction of over 80% for
the applications’ single most critical regions. The increased performance of the
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Fig. 10. Overall application speedups of NetBench, MediaBench, EEMBC, and Powerstone bench-
mark applications implemented using warp processors (supporting up to four critical regions) and
traditional hardware/software partitioning targeting an FPGA.

Fig. 11. Overall energy reduction of NetBench, MediaBench, EEMBC, and Powerstone bench-
mark applications implemented using warp processors (supporting up to four critical regions) and
traditional hardware/software partitioning targeting an FPGA.

warp processor compared to traditional hardware/software partitioning can be
partially attributed to the inclusion of customized hardware resources within
the W-FPGA design and to the simplicity of the W-FPGA’s configurable logic
fabric.

Figures 10 and 11 present overall application speedup and energy reduc-
tion using warp processors (supporting up to four critical regions) and tra-
ditional hardware/software partitioning targeting an FPGA for all 15 bench-
marks using the operating and power consumption ratios summarized in
Table II. On average, warp processors provide an overall application speedup of
6.3X while reducing energy consumption by 66%. Alternatively, the traditional
hardware/software partitioning targeting an FPGA results in an average over-
all application speedup of 6X and an energy reduction of 56%. For two appli-
cations, brev and matmul, warp processors achieve a speedup of greater than
10X while reducing energy consumption by more than 80%.

We analyzed the energy consumption of warp processors compared to sev-
eral different processor alternatives, ranging from processors designed for low
power, to voltage-scalable processors, to high-performance processors. Figure 12
presents the average critical region energy consumption of all 15 benchmark
applications for 10 different processor configurations, normalized to the energy
consumption of the XScale processor executing at the maximum possible fre-
quency of 502 MHz. While executing the benchmarks’ critical kernels on an
Intel Pentium 4 processor may provide extremely fast execution, the power
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Fig. 12. Average overall energy consumption of NetBench, MediaBench, EEMBC, and Powerstone
benchmark applications using various processors normalized to the XScale processor at 502 MHz
(processor frequency reported in megahertz).

demands of the Pentium processor lead to extremely high energy consumption,
requiring roughly 15X to 24X more energy than the XScale processor. While
high-performance processors are typically not designed for low power consump-
tion, voltage-scalable processors are designed for flexibility in performance and
power consumption by allowing a designer to adjust both the operating volt-
age and the frequency. By reducing the operating voltage and frequency of the
XScale processor, we can execute it at 102 MHz while reducing energy consump-
tion by 22%. Alternatively, many processors are designed to provide low power
consumption, such as the ARM family of processors, and can often be found in
embedded systems where battery lifetime is a primary concern. Although the
100 MHz ARM7 is the slowest processor, it provides the lowest energy consump-
tion of all the traditional processors we evaluated. However, a warp processor
incorporating a 100 MHz ARM7 processor and our W-FPGA achieves the lowest
overall energy consumption, requiring less than 5% of the energy consumed by
the XScale processor and approximately one-fifth of one percent of the energy
consumed by the Pentium 4 processor.

Finally, we evaluated the area required to implement our W-FPGA. As de-
scribed earlier, we synthesized the VHDL implementation of our W-FPGA us-
ing a Synopsys Design Compiler targeting the UMC 0.18 μm technology li-
brary. Our configurable logic architecture, including the address generators,
multiply-accumulator, and supporting logic, has an area of 14.2 mm2, roughly
corresponding to 852,000 gates. Compared to a low power processor utilized
for the main processor with our warp processor design, the W-FPGA requires
3X more area than an ARM7 processor with an 8 kilobyte cache. However, our
configurable logic architecture only requires 1.2X more area than an ARM9
with 32 kilobytes of cache, a reasonable choice for the main processor. Thus,
when combined with the main processor, a warp processor achieves an average
speedup of 6.3X, using between 2.2X and 4X more area than a small low power
processor alone. As an alternative comparison, our W-FPGA is approximately
equivalent in area to a 64 kilobyte cache.

Additionally, for each benchmark application we determined the amount
of resources required to implement its critical kernels within the W-FPGA’s
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Fig. 13. Percentage of RCLF configurable logic blocks (CLBs) and routing resources used to imple-
ment critical regions of NetBench, MediaBench, EEMBC, and Powerstone benchmark applications.

routing-oriented configurable logic fabric. Figure 13 presents the percentage
of configurable logic blocks and routing resources within our RCLF required
to implement the critical regions of the NetBench, MediaBench, EEMBC, and
Powerstone benchmark applications. On average, the applications’ critical ker-
nels required 12% of the available CLBs and 39% of the routing resources. The
benchmark pktflow required the largest amount of resources, utilizing 33% of
the CLBs and 73% of the routing resources to implement its critical kernels. At
the other extreme, brev required the fewest resources within the RCLF, only
utilizing 5% of the routing resources.

7. CONCLUSIONS AND FUTURE WORK

Our work demonstrates that the basic concept of warp processing, namely the
concept of dynamically mapping software kernels to an on-chip FPGA for per-
formance and energy improvements, is possible. Although the work described
in this article is extensive, involving several years of development and show-
ing reasonable speedups of 6.3X and energy savings of 66% (and up to 10X
and 80% in some examples) for several standard benchmarks, extensive future
work is still required. Better speedups and energy savings may be obtained
through improved lean partitioning, synthesis, placement, and routing, through
advanced decompilation methods that can detect higher-level constructs, and
through the use of embedded multipliers, block RAMs, and other components.
Another hurdle to overcome is the memory bottleneck, which limits speedups in
many benchmarks. Advanced memory access methods may reduce this bottle-
neck, and we are investigating this direction [Stitt et al. 2005] of advancement.
Improving the warp-oriented FPGA represents another direction for further
progress, we are presently fabricating a prototype of the W-FPGA through col-
laboration with Intel as an effort in this direction. Furthermore, studies of
desktop-based applications are needed to determine the extent to which warp
processing can improve such applications, which may involve pointers, exten-
sive access to data structures in memory, and execution spread over more re-
gions than is typical in embedded applications. For both embedded and desktop
applications, we also need to address the impact and interplay of an operating
system executing within our warp processor architecture. As the operating sys-
tem is an essential component in scheduling software execution and managing
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hardware resources, the operating system needs to be aware of warp process-
ing and potentially control the warp processor’s dynamic partitioning. Addi-
tionally, research must be done to compare the warp precessor’s use of silicon
area to other alternatives that could also speedup software binaries. Yet, the
demonstrated impressive 100X-1000X speedups of existing hardware/software
partitioning methods mean that the potential benefits of warp processing are
quite significant.
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