
A Highly Configurable Cache for Low Energy
Embedded Systems

CHUANJUN ZHANG
San Diego State University
and
FRANK VAHID and WALID NAJJAR
University of California, Riverside

Energy consumption is a major concern in many embedded computing systems. Several studies
have shown that cache memories account for about 50% of the total energy consumed in these
systems. The performance of a given cache architecture is determined, to a large degree, by the
behavior of the application executing on the architecture. Desktop systems have to accommodate
a very wide range of applications and therefore the cache architecture is usually set by the man-
ufacturer as a best compromise given current applications, technology, and cost. Unlike desktop
systems, embedded systems are designed to run a small range of well-defined applications. In this
context, a cache architecture that is tuned for that narrow range of applications can have both
increased performance as well as lower energy consumption. We introduce a novel cache architec-
ture intended for embedded microprocessor platforms. The cache has three software-configurable
parameters that can be tuned to particular applications. First, the cache’s associativity can be
configured to be direct-mapped, two-way, or four-way set-associative, using a novel technique we
call way concatenation. Second, the cache’s total size can be configured by shutting down ways.
Finally, the cache’s line size can be configured to have 16, 32, or 64 bytes. A study of 23 programs
drawn from Powerstone, MediaBench, and Spec2000 benchmark suites shows that the configurable
cache tuned to each program saved energy for every program compared to a conventional four-way
set-associative cache as well as compared to a conventional direct-mapped cache, with an average
savings of energy related to memory access of over 40%.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles; C.5.4 [Computer
System Implementation]: VLSI System

General Terms: Design, Performance

Additional Key Words and Phrases: Cache, configurable, architecture tuning, low power, low energy,
embedded systems, microprocessor, memory hierarchy

This research was supported by the National Science Foundation (grants CCR-9876006 and
CCR-0203829) and by the Semiconductor Research Corporation (grant 2003-HJ-1046G).
F. Vahid is also with the Center for Embedded Computing Systems at UC Irvine.
Authors’ addresses: C. Zhang, Department of Electrical and Computer Engineering, San Diego
State University, San Diego, CA 92182; email: chzhang@cs.ucr.edu; F. Vahid and W. Najjar, Depart-
ment of Computer Science and Engineering, University of California, Riverside, CA 92521.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1539-9087/05/0500-0363 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005, Pages 363–387.

364 • C. Zhang et al.

1. INTRODUCTION

Designers of embedded microprocessor platforms have to compromise between
performance, cost, and energy dissipation. Caches may consume up to 50% of
a microprocessor’s power [Malik et al. 2000; Segars 2001]. Creating the best
cache architecture is thus important and involves selecting the amount of as-
sociativity, the total cache size, and the cache line size, among many other ar-
chitectural options. These parameters greatly impact the cache’s hit rate (the
percentage of accesses that find the desired data in the cache) and the energy
(power times time) consumed in accessing cache. Energy comes from not only
the power consumed when accessing the cache, but also the time and power
spent transferring data to/from the next level of memory during a cache miss,
plus the power consumed by the idle processor during such a miss.

Associativity divides a cache into several ways, each of which is looked up
concurrently during a cache access. A cache with only one way is known as direct
mapped. For some programs, increasing the number of ways to two or even four
improves a cache’s hit rate [Hennessey and Patterson 1996]; beyond four ways,
the improvement is typically not as great. However, more ways means more con-
current lookups per access, and hence more energy per access—a direct-mapped
cache uses only about 30% of the energy per access as a four-way set-associative
cache [Reinman and Jouppi 1999]. Performance-oriented applications want the
highest associativity possible. Energy-oriented applications want the associa-
tivity such that the energy savings from added ways, due to improved hit rate,
outweigh the energy increase per access.

Cache size is the total number of data storage bytes in the cache, indepen-
dent of the cache’s organization. Larger size may improve the hit rate for some
programs, at the expense of more power consumed to fetch (dynamic power)
and to hold (static power) the data. Performance-oriented applications benefit
from a large size cache. Energy-oriented applications want the size such that
the energy savings from increased capacity outweigh the energy increase from
more power.

Line size is the number of bytes moved to and from the next level of memory
during a miss. Typical line sizes are 16, 32, or 64 bytes. When a program exhibits
higher spatial locality, then a larger line size cache can reduce cache misses.
However, without spatial locality, a large line size fetches many unnecessary
bytes, which not only lengthens cache fill time, but may also evict needed bytes
from the cache, thus increasing off-chip memory accesses and stalls. Because
microprocessors for desktop computers serve many applications, they include
caches that are a compromise.

Since an embedded system typically executes just a small set of applications
for the system’s lifetime (in contrast to desktop systems), we ideally would like
to tune the architecture to those specific applications. However, an architec-
ture tuned to a particular set of applications may perform terribly for other
applications, representing an important dilemma facing system architects.

One option that microprocessor vendors use to solve this dilemma in embed-
ded systems is to manufacture multiple versions of the same processor, each
with a cache architecture tuned to a specific class of applications. Another option

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

Configurable Cache for Low Energy Embedded Systems • 365

is to provide a synthesizable core rather than a physical chip, so that an embed-
ded system designer can synthesize a cache architecture tuned to the intended
application. Both options increase the microprocessor unit cost. The second
option also suffers from a longer time to market [Semiconductor Industry As-
sociation 1999]. The variety of cache architectures found in modern embedded
microprocessors, summarized in Table I, illustrates that the dilemma of decid-
ing on the best cache architecture for mass produced microprocessors has yet
to be solved.

We introduce a novel configurable cache architecture that largely reduces
the dilemma by incorporating three configurable cache parameters, which are
configured by setting a few bits in a configuration register. The cache can be
configured in software as either direct mapped, two-way, or four-way set asso-
ciative, while still utilizing the full cache capacity. We achieve such configura-
bility using a new technique we call way concatenation [Zhang et al. 2003a].
The cache’s ways can also be shut down, to adjust total size. The cache line
size can be configured, using a technique we call line concatenation [Zhang
et al. 2003b], to be 16, 32, or 64 bytes, with an underlying physical line size of
16 bytes.

All these configurable features are achieved at the cost of a very small amount
of performance overhead, and negligible size overhead, compared to a regular
four-way set-associative cache, as verified not only by our estimates using the
CACTI model [Reinmann and Jouppi 1999], but also by our own physical layout
of the cache in a 0.18 micron CMOS technology.

In this paper, we provide the details of our configurable cache, including
way concatenation, way shutdown, and line concatenation, discussing the per-
formance and area overhead imposed by such configurability. We demonstrate
significant energy savings compared to nonconfigurable caches, for applications
drawn from the Powerstone [Malik et al. 2000], MediaBench [Lee et al. 1997]
and the Spec2000 [SPECBENCH 2002] benchmark suites.

The paper is organized as follows. In Section 2, we examine the relation be-
tween performance and energy consumption. In Section 3, we discuss previous
work. We introduce the way concatenate cache architecture in Section 4. We
discuss way shutdown in Section 5. We present line concatenation in Section 6.
In Section 7, we explain how to use a configurable cache. Section 8 provides
conclusions.

2. CACHE ENERGY VERSUS PERFORMANCE

2.1 Energy Evaluation

There are two main components that result in energy dissipation in a CMOS
circuits, namely static energy dissipation due to leakage current, and dynamic
energy dissipation due to logic switching current and the charging and dis-
charging of the load capacitance. Dynamic energy per cache access equals
the dynamic power of all the circuits in the cache multiplied by the time per
cache access; the static energy of a cache equals static power multiplied by the
time.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

366 • C. Zhang et al.

T
ab

le
I.

In
st

ru
ct

io
n

an
d

D
at

a
C

ac
h

e
S

iz
es

,A
ss

oc
ia

ti
vi

ti
es

,a
n

d
L

in
e

S
iz

es
of

P
op

u
la

r
E

m
be

dd
ed

M
ic

ro
pr

oc
es

so
rs

In
st

ru
ct

.C
ac

h
e

D
at

a
C

ac
h

e
In

st
ru

ct
.C

ac
h

e
D

at
a

C
ac

h
e

P
ro

ce
ss

or
S

iz
e

A
s.

L
in

e
S

iz
e

A
s.

L
in

e
P

ro
ce

ss
or

S
iz

e
A

s.
L

in
e

S
iz

e
A

s.
L

in
e

A
M

D
-K

6-
II

IE
32

K
2

32
32

K
2

32
M

ot
or

ol
a

M
P

C
85

40
32

K
4

32
/6

4
32

K
4

32
/6

4
A

lc
h

em
y

A
U

10
00

16
K

4
32

16
K

4
32

M
ot

or
ol

a
M

P
C

74
55

32
K

8
32

32
K

8
32

A
R

M
7

8K
/U

4
16

8K
/U

4
16

N
E

C
V

R
41

81
4K

D
M

16
4K

D
M

16
C

ol
dF

ir
e

0–
32

K
D

M
16

0–
32

K
N

/A
N

/A
N

E
C

V
R

41
81

A
8K

D
M

32
8K

D
M

32
H

it
ac

h
iS

H
77

50
S

(S
H

4)
8K

D
M

32
16

K
D

M
32

N
E

C
V

R
41

21
16

D
M

16
8K

D
M

16
H

it
ac

h
iS

H
77

27
16

K
/U

4
16

16
K

/U
4

16
P

M
C

S
ie

rr
a

R
M

90
00

X
2

16
K

4
N

/A
16

K
4

N
/A

IB
M

P
P

C
75

0C
X

32
K

8
32

32
K

8
32

P
M

C
S

ie
rr

a
R

M
70

00
A

16
K

4
32

16
K

4
32

IB
M

P
P

C
76

03
16

K
4

32
16

K
4

32
S

an
dC

ra
ft

sr
71

00
0

32
K

4
32

32
K

4
32

IB
M

75
0F

X
32

K
8

32
32

K
8

32
S

u
n

U
lt

ra
S

P
A

R
C

Ii
e

16
K

2
N

/A
16

K
D

M
N

/A
IB

M
40

3G
C

X
16

K
2

16
8K

2
16

S
u

pe
rH

32
K

4
32

32
K

4
32

IB
M

P
ow

er
P

C
40

5C
R

16
K

2
32

8K
2

32
T

I
T

M
S

32
0C

64
14

16
K

D
M

N
/A

16
K

2
N

/A
In

te
l9

60
IT

16
K

2
N

/A
4K

2
N

/A
T

ri
M

ed
ia

T
M

32
A

32
K

8
64

16
K

8
64

M
ot

or
ol

a
M

P
C

82
40

16
K

4
32

16
K

4
32

X
il

in
x

V
ir

te
x

II
P

ro
16

K
2

32
8K

2
32

M
ot

or
ol

a
M

P
C

82
3E

16
K

4
16

8K
4

16
T

ri
sc

en
d

A
7

8K
/U

4
16

8K
/U

4
16

A
s

m
ea

n
s

as
so

ci
at

iv
it

y,
D

M
m

ea
n

s
di

re
ct

m
ap

pe
d.

S
iz

e
is

to
ta

lc
ac

h
e

si
ze

in
by

te
s

(K
m

ea
n

s
ki

lo
by

te
s)

.U
m

ea
n

s
in

st
ru

ct
io

n
an

d
da

ta
ca

ch
es

ar
e

u
n

ifi
ed

.L
in

e
is

li
n

e
si

ze
in

by
te

s.
S

ou
rc

es
:M

ic
ro

pr
oc

es
so

r
R

ep
or

t
an

d
da

ta
sh

ee
ts

of
va

ri
ou

s
m

ic
ro

pr
oc

es
so

rs
.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

Configurable Cache for Low Energy Embedded Systems • 367

Dynamic energy constitutes the main part of the energy dissipation at
micron-scale technology, but static energy dissipation is going to account for
an increasing portion of total energy in nanoscale technology. We consider both
of them in our energy evaluation.

Energy consumption due to accessing off-chip memory should not be dis-
regarded, since fetching instruction and data from off-chip memory is energy
costly because of the high off-chip capacitance and large off-chip memory stor-
age. Also, when accessing the off-chip memory, the microprocessor stalls while
waiting for the instruction and/or data and this waiting still consumes some en-
ergy. Thus, our equation for computing the total energy due to memory accesses
is as follows:

energy mem = energy dynamic + energy static (1)

where

energy dynamic = cache hits ∗ energy hit + cache misses ∗ energy miss,
energy miss = energy offchip access + energy uP stall

+ energy cache block fill
energy static = cycles ∗ energy static per cycle.

The underlined terms are those we obtain through measurements or sim-
ulations. We compute cache hits and cache misses by running SimpleScalar
[Burger and Austin 1997] simulations for each cache configuration. We com-
pute energy hit of each cache configuration through simulation of circuits ex-
tracted from our layout (which happened to reasonably match earlier work we
did using the CACTI model to compute such energy).

Determining the energy miss term is challenging. The energy offchip access
value is the energy of accessing off-chip memory, and the energy uP stall is
the energy consumed when the microprocessor is stalled while waiting for the
memory system to provide an instruction or data. energy cache block fill is the
energy for writing a block into the cache. The challenge stems from the fact that
the first two terms are highly dependent on the particular memory and micro-
processor being used. To be “accurate,” we could evaluate a “real” microprocessor
system to determine the values for those terms. While accurate, those results
may not apply to other systems, which may use different processors, memo-
ries, and caches. Therefore, we chose instead to create a “realistic” system, and
then to vary that system to see the impacts across a range of different sys-
tems. We examined the three terms of energy offchip access, energy uP stall,
and energy cache block fill for typical commercial memories and microproces-
sors. The energy-cache-fill is the energy of filling instruction/data to the cache,
which we measure using SPICE simulation. The energy uP stall is the energy
consumed by a stalled microprocessor. We estimated the energy uP stall as the
standby energy of a microprocessor. The energy offchip access includes the en-
ergy consumed by off-chip bus and off-chip DRAM memory. We calculated the
off-chip bus energy considering the voltage, capacitance and switching of the
off-chip bus. Energy consumed by off-chip DRAM energy depends on technology
and manufacturer. We surveyed typical commercial SDRAM providers in the

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

368 • C. Zhang et al.

markets and decided to use a range of the DRAM instead of a specific product
of a DRAM manufacturer. We found that energy miss ranged from 50 to 200
times bigger than energy hit. Thus, we redefined energy miss as

energy miss = k miss energy ∗ energy hit.

Based on our examination of various real systems, we considered situations of
k miss energy equal to 50 and 200.

Finally, cycles is the total number of cycles for the benchmark to execute,
as computed by SimpleScalar, using a cache with single cycle access on a hit
and using 20 cycles on a miss. Energy static per cycle is the total static energy
consumed per cycle. This value is also highly system dependent, so we again
consider a variety of possibilities, by defining this value as a percentage of total
energy including both dynamic and static energy:

energy static per cycle = k static ∗ energy total.

k static is a percentage that we can set. Low-power CMOS research has typi-
cally focused on dynamic power, under the assumption that static energy is a
small fraction of total energy—perhaps less than 10%. However, for deep sub-
micron, the fraction is increasing. For example, Agarwal et al. [2002] reports
that leakage energy accounts for 30% of L1 cache energy for a 0.13-micron
process technology. To consider this CMOS technology trend, we evaluate the
situations where k static is 30% and 50% of the total energy.

In this paper, all energy plots use k miss energy = 50 and k static = 30%.
We discuss the impact of the larger values for those constants, while the plots
for those larger values can be found in Zhang et al. [2003a, 2003b].

To verify that our estimation method is reasonable, we present actual values
for a particular system. We use the low-power 64-Mbit SDRAM manufactured
by Samsung (model K4S643233E) operating at 2.5 V, 55 mA, and 100 MHz. The
total number of bytes read from off-chip memory is 32 bytes, using a cache line
size of 32 bytes. It takes 20 cycles to send out the address and 4 cycles to read one
word (4 bytes). Then it takes the total of 52 cycles to read 32 bytes from the off-
chip memory. The energy per memory access is 2.5 V × 50 mA × 520 nS = 65 nJ.
We calculate the energy consumed by off-chip bus as follows. The capacitance
load is 30 pF per pin [Smith 1997] and the voltage is 2.5 V. The bus is 32 bits wide
and roughly half the 32 bits switch during a transmission. The energy per switch
is 1/2 × V2 × C. Then the energy consumption of 32 bytes of data and 32 bits ad-
dress is 1/2 × 2.52 V × 30 pF × (32×8+32) × 1/2 = 13.5 nJ. We use an ARM920T
processor [Segars 2001], which has active power of 100 mW at 100 MHz. As-
sume the processor consumes 10% of the active power when the microprocessor
is stalled. The stalled energy consumed during access to off-chip memory is
100 mW × 10% × 520 nS = 5.2 nJ. We measured the cache read and refill en-
ergy as 0.827 nJ and 0.451 nJ, respectively. We can calculate the k miss energy
as k miss energy = (65 nJ + 13.5 nJ + 5.2 nJ + 0.445 nJ)/0.827 nJ =
101.7. Thus, we see that our ranging k miss energy from 50 to 200 does cover
the actual value for this particular system of 101.7.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

Configurable Cache for Low Energy Embedded Systems • 369

Fig. 1. A four-way set-associative cache architecture with the critical path shown.

2.2 Base Cache Architecture

After examining typical cache configurations of several popular embedded mi-
croprocessors, summarized in Table I, we chose to use a base cache of 8 Kbytes
having four-way set-associativity and a line size of 32 bytes. The base cache is
the cache architecture that we will later extend to be configurable.

Figure 1 depicts the architecture of our base cache. The memory address is
split into a line-offset field, an index field, and a tag field. For our base cache,
those fields are 5, 6, and 21 bits, respectively, assuming a 32-bit address. Be-
ing four-way set-associative, the cache contains four tag arrays and four data
arrays (only two data arrays are shown in Figure 1). During an access, the
address’ index field is decoded to simultaneously read out the appropriate tag
from each of the four tag arrays, while the index field is decoded to simulta-
neously read out the appropriate data from the four data arrays. The decoded
lines are fed through two inverters to strengthen their signals. The read tags
and data items are fed through sense amplifiers. The four tags are simultane-
ously compared with the address’ tag field. If one tag matches, a multiplexor
routes the corresponding data to the cache output.

2.3 Cache Parameter Impact on Energy and Performance

Using multiple ways increases energy substantially, since the tag and data ar-
rays of every way are accessed simultaneously. Yet increasing the associativity
improves the cache hit rate and hence performance. For example, the average
miss rate for the SPEC92 benchmarks is 4.6% for a one-way (in the remainder
of this paper, we will sometimes refer to a direct-mapped cache as a one-way
cache) 8 Kbytes cache, 3.8% for a two-way 8 Kbytes cache, and only 2.9% for
four-way 8 Kbytes cache [Hennessey and Patterson 1996]. Though these differ-
ences may appear small, they in fact translate to big performance differences,
due to the large cycle penalty of misses (which may be dozens of cycles). Thus,
although energy per cache access may be higher for a four-way cache than

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

370 • C. Zhang et al.

Fig. 2. Energy consumption for different associativities, cache sizes, and line sizes, for a selection
of examples. Norm En. stands for normalized memory access energy.

for a one-way cache, that extra energy may be compensated for by the reduc-
tion in energy from reduced accesses, due to fewer misses, to the next level of
memory.

Although greater associativity may increase hit rates on the average across
numerous benchmarks, for particular programs, the greater associativity may
have little improvement on hit rate, thus resulting in extra energy with-
out a corresponding performance benefit. For example, Figure 2(a) shows the
miss rates for two MediaBench benchmarks, epic and mpeg2, measured using
SimpleScalar [Burgar and Austin 1997] and configured with an 8-Kbytes data
cache, with a line size of 32 bytes, and having one, two, or four-way set-
associativity. Note that the hit rates for both are better for two ways than
for one way, while the additional improvement using four ways is very small.
Figure 2(b) shows memory access energy (as computed by Eq. (1) for these two
examples, demonstrating that a two-way cache gives lowest energy for mpeg2,
while a one-way cache is best for epic. Thus, note that a lower miss rate does not
always translate to lower energy. Also note that the energy differences between
different cache configurations for a single program can be quite large—up to
40% in these examples.

A larger sized cache consumes more power (both dynamic and static) than a
smaller one. If an application does not need all the cache capacity, then shutting
down part of the cache will save power. On the other hand, if a smaller cache
results in a significant increase in the miss rate, then the savings from the
smaller cache will be outweighed by the extra off-chip memory access power
dissipation. Figure 2(c) shows the data cache miss rate of two benchmarks,
mpeg2 and binary, for a direct mapped, line size of 32 bytes, and a size of
2, 4, or 8 Kbytes cache.The miss rate of binary remains almost constant for
the different cache sizes, which means a 2 Kbytes cache is enough for that
benchmark. However, the miss rate for mpeg2 increases sharply when the cache
size is decreased from 4 to 2 Kbytes. Figure 2(d) shows the normalized energy
consumption of the data cache for the two benchmarks. The 2 Kbytes data cache
is obviously the best for binary, and the 8 Kbytes cache is the best for mpeg2.
The energy difference for mpeg2 is significant—up to 75%.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

Configurable Cache for Low Energy Embedded Systems • 371

Cache line size also plays an important role in energy dissipation. Figure 2(e)
shows the data cache miss rate of two benchmarks fir and pegwit for an 8-Kbytes
data cache, with one way, and line sizes of 16, 32, and 64 bytes. Increasing the
cache line size does not decrease the miss rate of pegwit. Because a larger cache
line size will incur extra off-chip memory accesses, pegwit consumes the highest
energy at line size 64 bytes, as shown in Figure 2(f). On the other hand, the
miss rate of fir decreases significantly with the increase of cache line size. The
energy dissipation is also the least at a line size of 64 bytes for fir.

From the above three examples, we can see that the basic three cache
parameters—cache associativity, cache size, and cache line size—have a sig-
nificant impact on both performance and energy. No particular set of values
for those parameters is the best for all the benchmarks. Thus, a configurable
cache that would allow an embedded system designer to choose the cache pa-
rameters based on a particular application’s specific characteristic could result
in significant energy savings.

3. PREVIOUS WORK

Previous work can be categorized into three areas: cache architectures that save
dynamic energy, cache architectures that save static energy, and configurable
cache architectures.

Many cache architectures that save dynamic energy do so by modifying the
lookup procedure in a set-associative cache to reduce the number of internal
memory arrays accessed. Phased-lookup cache [Edmonson and Rubinfield 1995;
Hasegawa et al. 1995] uses a two-phase lookup, where all tag arrays are ac-
cessed in the first phase, but then only the one hit data way is accessed in the
second phase, resulting in less data way access energy at the expense of longer
access time. Way predictive set-associative caches [Inoue et al. 1999; Powell
et al. 2001] access one tag and data array initially, and only access the other
arrays if that initial array did not result in a match, again resulting in less
energy at the expense of longer average access time. Reactive-associative cache
(RAC) [Batson and Vijaykumar 2001] also uses way prediction and checks the
tags as a conventional set-associative cache, but the data array is arranged
like a direct-mapped cache. Since data from the RAC proceeds without any
way-select multiplexor, the RAC achieves the speed of a direct-mapped cache,
but consumes less energy than that of a conventional set-associative cache. A
pseudo set-associative cache (PSAC) [Calder et al. 1996] is physically organized
as a direct-mapped cache. Upon a miss, a specific index bit is flipped and a sec-
ond access is made to the cache using this new index. Thus, each location in
the cache is part of a “pseudo-set” consisting of itself and the location obtained
by flipping the index bit. A PSAC thus achieves the speed of a direct-mapped
cache and the hit rate of a two-way cache, at the expense of slower access time
than a two-way cache due to the sequential accessing of the ways. Dropsho et al.
[2002] discussed an accounting cache architecture that is based on the resizable
selective ways cache proposed by Albonesi [1999]. The accounting cache first
accesses part of the ways of a set-associative cache, known as a primary access.
If there is a miss, then the cache accesses the other ways, known as a secondary

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

372 • C. Zhang et al.

access. A swap between the primary and secondary accesses is needed when
there is a miss in the primary and a hit in the secondary access. Energy is saved
on a hit during the primary access. Filter caching [Kim et al. 1997] introduces
an extremely small (and hence low power) direct-mapped cache in front of the
regular cache. The idea of a filter cache is that if most of a program’s time is
spent in small loops, then most hits would occur in the filter cache, so the more
power costly regular cache would be accessed less frequently—thus reducing
overall power, at the expense of performance loss that occurs when the filter
cache misses.

Other cache architectures that save dynamic energy do so by adjusting the
cache’s line size (although most of that work actually seeks to improve perfor-
mance). Some prefabricated microprocessor chips support static line size config-
uration. For example, the MIPS R3000/R4000 [MIPS 2002] has a configurable
cache line size. Actually, the hardware architecture uses a fixed physical line
size [Veidenbaum et al. 1999], but the number of words replaced on a miss could
be varied. Some recent work focuses on the advantages of dynamically sizing
cache lines. Witchel and Asannovic [2001] proposed a software-controlled cache
line size. A compiler specifies how many data to fetch on a data cache miss.
Two hardware implementations are given to support the compiler-controlled
cache. Veidenbaum et al. [1999] proposed a dynamic mechanism to adapt cache
line size to a specific application’s behavior during the execution of applica-
tions. Based on monitoring the accesses to the cache line, a hardware-based
algorithm decides the future cache line size. They achieved 50% reductions in
memory traffic compared to a 32-byte line size. Inoue and Kai [2000] proposed
a dynamic variable line size cache, which exploits the high memory bandwidth
of on-chip merged DRAM/logic chips by replacing a whole cache line in one cy-
cle. They improve performance and save energy, achieving a 75% energy delay
product reduction over a conventional memory path model, taking advantage
of on chip memory. We note that this high bandwidth on-chip memory may not
be available in typical embedded systems.

Other work focuses on cache architectures that save static energy. Due to
VLSI technology advances, static energy dissipation is accounting for an in-
creasingly larger portion of total microprocessor energy consumption. Apart
from multiple threshold (MTCMOS) and dual-Vt circuit level techniques,
Ye et al. [1998] proposed to use more than one turned off transistors connected
in series to reduce the standby leakage power dissipation, such as in a 2 inputs
NAND gate, the leakage current is smaller when both nMOS transistors are
turned off than that when only one nMOS transistor is turned off. Using this
technique, gated-VDD [Powell et al. 2000] inserts an extra pMOS transistor be-
tween the voltage source and the SRAM cells to shut off the unused on-chip
cache lines, achieving 62% energy-delay reductions with minimal performance
degradation. Because much of a chip’s area and transistors are devoted to on-
chip cache (e.g., 60% in the StrongArm [INTEL 2002]), gated-VDD has been
widely used by many researchers to shut off part of the cache. DRI [Yang et al.
2001] cache dynamically resizes a cache by monitoring the miss rate of the cache
and shutting off part of the sets of the cache for a particular application. Tadas
and Chakrabarti [2002] proposed to shut off subbanks of an instruction cache

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

Configurable Cache for Low Energy Embedded Systems • 373

and microblocks of both instruction and data caches, achieving a 22–81% static
energy reduction for an instruction cache and a 17–65% for a data cache for
SPECJVM98 benchmarks. Cache line decay [Kaxiras et al. 2001] dynamically
turns off cache lines that have not been visited for a designated period, reduc-
ing the L1 cache leakage energy dissipation by 4× in SPEC2000 applications
without impacting performance. Zhou et al. [2001] proposed to dynamically de-
termine the time interval for deactivating the cache lines, achieving an average
of 73% instruction cache lines and 54% of data cache lines put into sleep mode
with an average instruction per cycle impact of only 1.7% for 64 Kbytes caches.
In contrast with the shutting off mechanism that loses the information in the
cache, a drowsy cache [Flautner et al. 2002] keeps the unused cache line in a low-
power mode by lowering the SRAM source voltage while retaining the contents
of the cache. 80 to 90% of the cache lines can be put into drowsy mode without
affecting the performance more than 1% from benchmarks of SPEC2000.

Researchers have recently begun to suggest configurable cache architectures.
Ranganathan et al. [2000] proposed a configurable cache architecture for a
general-purpose microprocessor. When used in media applications, a large cache
may not yield benefits due to the streaming data characteristics of media appli-
cations. In this case, part of the cache can be dynamically reconfigured to be used
for other processor activities, such as instruction reuse. Kim et al. [2001] pro-
posed a multifunction computing cache architecture, which partitions the cache
into a dedicated cache and a configurable cache. The configurable part can be
used to implement computations, for example, FIR and DCT/IDCT, which takes
advantage of on-chip resources when an application does not need the whole
cache. Smart memory [Mai et al. 2000] is a modular reconfigurable architec-
ture, which is made up of many processing tiles, each containing local memories
and processor cores, which can be altered to match the different applications.

One work closely related to ours is that of a configurable cache architec-
ture whose memory hierarchy can be configured for energy and performance
trade-offs, proposed by Balasubramonian et al. [2000]. The associativity, size,
and latency of their cache can be dynamically configured based on different
applications or the same application at different phases. Their work targets
general-purpose microprocessors that may require different cache hierarchy
architectures. Another efforts closely related to ours are way shutdown cache
methods, proposed independently by both Albonesi [1999] and by the designers
of the Motorola M*CORE processor [Malik et al. 2000]. In those approaches, a
designer would initially profile a program to determine how many ways could
be shut down without causing too much performance degradation. Albonesi
also discusses dynamic way shutdown and activation for different regions of a
program. We showed that our way concatenation approach is superior to way
shutdown in reducing dynamic power [Zhang et al. 2003a].

Our way concatenate method is complementary to phased lookup, way predic-
tive, pseudo-set-associative, and filter caching methods. Unlike those methods,
ours does not result in multicycle cache accesses during a hit, but those methods
could be combined with ours to reduce the number of misses and hence off-chip
memory accesses further. The way shutdown of our method also reduces static
power, which the other methods above do not.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

374 • C. Zhang et al.

Fig. 3. A way-concatenatable four-way set-associative cache architecture with the critical path
shown. We will examine the portion indicated by a dashed circle in more detail in Figure 5.

Compared with memory hierarchy configurable cache, our configurable cache
can have some ways shut down and tuned to fit the size of the cache to the spe-
cific application. Compared with way shutdown caches, our way concatenation
can have different ways given a fixed size of cache, which we will show to be
superior in reducing dynamic power.

Compared with cache line size configurable only cache architectures
[Inoue et al. 2000; MIPS 2002; Witchel and Asannovic 2001; Veidenbaum
et al. 1999], our cache line size is configured under varied cache sizes and
associativities.

We have also introduced on-chip hardware implementing an efficient cache
tuning heuristic that can automatically, transparently, and dynamically tune
the cache to an executing program [Zhang et al. 2004]. That heuristic seeks not
only to reduce the number of configurations that must be examined, but also
traverses the search space in a way that completely avoids costly cache flushes.

4. WAY CONCATENATION

4.1 Architecture

Because every program has different cache associativity needs, we sought to
develop a cache architecture whose associativity could be configured as one,
two, or four ways, while still utilizing the full capacity of the cache. Our main
idea is to allow ways to be concatenated. The hardware required to support
concatenation turned out to be rather simple.

Our way concatenatable cache is shown in Figure 3. reg0 and reg1 are two
single-bit registers that can be set to configure the cache as four, two, or one-way
set-associative. Those two bits are combined with address bits a11 and a12 in

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

Configurable Cache for Low Energy Embedded Systems • 375

Fig. 4. Layout of one way of cache data.

a configuration circuit to generate four signals c0, c1, c2, c3, which are in turn
used to control the configuration of the four ways.

When reg0 = 1 and reg1 = 1, the cache acts as a four-way set-associative
cache. In particular, c0, c1, c2, and c3 will all be 1, and hence all tag and data
ways will be active.

When reg0 = 0 and reg1 = 0, the cache acts as a one-way cache (where that
one way is four times bigger than the four-way case). Address bits a11 and a12
will be decoded in the configuration circuit such that exactly one of c0, c1, c2,
or c3 will be 1 for a given address. Thus, only one of the tag arrays and one of
the data arrays will be active for a given address. Likewise, only one of the tag
comparators will be active.

When reg0 = 0 and reg1 = 1, or reg0 = 1 and reg1 = 0, then the cache acts as
a two-way cache. Exactly two of c0, c1, c2, and c3 will be 1 for a given address,
thus activating two tag and data arrays, and two tag comparators.

Note that we are essentially using six index bits for a four-way cache, seven
index bits for a two-way cache, and eight index bits for a one-way cache. Also,
note that the total cache capacity does not change when configuring the cache
for four, two or one way.

4.2 Cache Layout

While we initially used the CACTI model to determine the impact of the extra
circuitry on cache access and energy, we eventually created an actual layout
to determine the impact as accurately as possible. Figure 4 shows our lay-
out of the data part of one way of the cache. We used Cadence layout tools
[CADENCE 2002] and we extracted the circuit from the layout. The technol-
ogy we used was TSMC 0.18, the most advanced modern CMOS technology
available to universities through the MOSIS program [MOSIS 2002]. The di-
mensions of our SRAM cell were 2.4 µm × 4.8 µm, using conventional six-
transistor SRAM cells. We used Cadence’s Spectra to simulate the netlist of
the extracted circuits. We measured the access time and energy consumption
of the cache from the outputs of the simulation. We measured the energy of the
various parts of a conventional four-way set-associative cache during a cache
access, and compared that energy with our configurable way-concatenatable
cache configured for four, two, and one-way, using the cache layout. The access
energies and savings of our configurable cache are shown in Table II. These
energies include dynamic power only, not static. Cnv stands for conventional
cache, Cfg stands for configurable cache. The numbers after Cnv and Cfg are
the size and associativity of the cache, for example, 8K2W means an 8 Kbytes,
two-way set-associative cache. The energy savings of the configured two-way

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

376 • C. Zhang et al.

Table II. Dynamic Access Energy of a Configurable Cache Compared with
Conventional Four-Way Set-Associative Cache

Cnv Cfg
8K4W 8K4W 8K2W 8K1W 4K2W 4K1W 2K1W

Energy (pJ) 827.1 828.1 471.5 293.8 411.9 234.1 219.0
Savings −0.1% 42.7% 64.0% 50.0% 71.5% 73.4%

and one-way caches come primarily from the fact that fewer sense amplifiers,
bit lines, and word lines are active per access in those configurations.

4.3 Time and Area Overhead

Perhaps the most pressing question regarding a way-concatenatable cache is
how much the configurability of such a cache increases access time compared
to a conventional four-way cache. This is especially important because the
cache access time is often on the critical path for a microprocessor, and thus
increased cache access time may slowdown the system clock. However, note
that the configuration circuit in Figure 3 is not on the cache access critical
path, since the circuit executes concurrently with the index decoding. Based
on our layout, we can set the sizes of the transistors in the configure circuit
such that the speed of the configure circuit is faster than that of the decoder.
Such resizing is reasonable because we only have four OR and four AND gates
in the configure circuit. From our cache layout, the configure circuit area is
negligible.

However, we have changed two inverters on the critical path into NAND
gates. NAND gates are slightly slower than inverters. One might think this
replacement of inverters by NAND gates would increase the cache access time,
but in fact access time need not be increased. In the following, we will analyze
how to select the transistor size of the NAND gate to make the access time of
the cache as fast as before.

Normally, the cache critical path is on the tag side of a set-associative cache.
From Figure 3, we can see the cache critical path includes a tag decoder, a word
line, a bit line (including the mux), a sense amplifier, a comparator, a mux driver
that selects the output from four ways, and an output driver. We measured the
critical path delay to be 1.28 ns.

Of the two inverters we are going to change to NAND gates on the critical
path, one is the inverter after the decoder, and another is the inverter after the
comparator. Let us consider in more detail the inverter after the decoder. In
Figure 5, we show part of the critical circuit, which we will refer to as the tag
decoder circuit. The tag decoder circuit includes a 6 to 64 decoder, the decoder
inverter that we are going to change into a NAND gate, and the word line
driver (inverter). The figure includes two transistors, P2 and N2, to form a
NAND gate from the original inverter, which was composed from transistors
P1 and N1. The number beside each transistor in the figure is the transistor’s
size; for example, P1’s 3.75/0.2 means the width and the length of the transistor
are 3.75 microns and 0.2 microns, respectively, in our 0.18 micron technology.
We label four signals in the figure: signal (1) is the address, signal (2) is the

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

Configurable Cache for Low Energy Embedded Systems • 377

Fig. 5. Structure of the tag decoder circuit circled in Figure 3. addr is the address, and c1 is the
output of the configure circuit. Note that the circuit is flipped horizontally compared to Figure 3.

Fig. 6. Transient time response of the tag decoder circuit.

decoder output, signal (3) is the inverter/NAND gate output, and signal (4) is
the word line driver output.

Our design goal is to ensure that signal (4) will not be prolonged after we
change the inverter to a NAND gate. Figure 6 shows the transient time re-
sponses of the four signals before the inverter has been changed to a NAND
gate. We can see the delay from the address (1) to the word line driver out-
put (4) is 0.210 ns. Case 1 of Figure 7 shows this tag decoder circuit de-
lay of 0.210 ns in the context of the complete critical path delay of 1.28ns.
We see that the tag decoder circuit accounts for less than 20% of the total
delay.

Replacing the inverter in the tag decode circuit by a NAND gate lengthens the
(1) to (4) delay from 0.210 ns to 0.241 ns, as illustrated by Case 3 in Figure 7. The
lengthening of 0.031 ns represents a critical path lengthening of 2.4%. Because
we replace two such inverters on the critical path, the total lengthening would
be 4.8%.

By resizing the NAND gate transistors to three times their original size in
the inverter, we can compensate for the lengthened delay. The new NAND gate
results in a (1) to (4) delay of 0.210 ns again, just like when using the original
inverter, yielding a total delay the same as the original cache, as illustrated by
Case 4 in Figure 7.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

378 • C. Zhang et al.

Fig. 7. The cache access time under four cases Case 1: original circuit (total delay is 1.28 ns); case
2: transistor N1 is three times as large of the original to the benefit of charging transistor; case 3:
change the inverter to NAND gate without changing the size of the transistor; case 4, change the
inverter to NAND gate with three times size of the original transistor.

One might ask why we did not increase the original inverter’s transistors
to three times their original size, to achieve a shorter original critical path.
The reason is because the original inverter’s contribution to overall delay was
quite small, and only became significant when changed to a NAND gate. In-
creasing the original inverter’s transistors to three times their original size
would decrease the (1) to (4) delay by only 0.013 ns (from the original 0.210 ns
down to 0.197 ns), representing a mere 1% change in critical path delay (2%
when considering the two inverters on the path), as illustrated by Case 2 in
Figure 7.

In short, we can resize transistors to ensure that way concatenation does not
incur performance overhead. The cache’s physical layout is such that resizing is
indeed possible, and the size overhead by such resizing is negligible compared
to the size of the cache.

4.4 Experiments

To determine the benefits of our configurable cache with respect to reducing
dynamic and static power consumption and hence energy, we simulated a vari-
ety of benchmarks for a variety of cache configurations by using SimpleScalar.
The benchmarks included programs from Motorola’s Powerstone suite [Malik
et al. 2000] (padpcm, crc, auto2, bcnt, bilv, binary, blit, brev, g3fax, fir, pjpeg,
ucbqsort, v42), MediaBench [Lee et al. 1997] (adpcm, epic, jpeg, mpeg2, peg-
wit, g721) and some programs from Spec 2000 [SPECBENCH 2002] (art, mcf,
parser, vpr). We included only a subset of benchmarks from each suite due to
time constraints, as simulations are very time consuming; we report data for
every benchmark that we simulated. We used the sample test vectors that came
with each benchmark as program stimuli.

4.4.1 Results. Figure 8 shows instruction and data cache miss rates for the
benchmarks for three configurations of our way-concatenatable cache: 8 Kbytes
with 4-way associativity, 8 Kbytes with 2-way associativity, and 8 Kbytes with
1-way associativity (direct mapped).

We see that the miss rates in the figures support our earlier discussions in
which we pointed out that most benchmarks do fine with a direct-mapped cache.
However, we see that some benchmarks, like jpeg and parser, do much better

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

Configurable Cache for Low Energy Embedded Systems • 379

Fig. 8. Miss rates of an 8 Kbytes instruction and data caches when configured as four ways, two
ways, and direct mapped.

with higher-associativity caches. jpeg’s miss rate is only 6.5% with a four-way
instruction cache, but 9.5% with a one-way cache. parser’s miss rate is nearly
0% with a four-way instruction cache, but is 7% with a one-way cache.

We computed energy data for the benchmarks, using the method described by
Eq. (1), with results summarized using the first three bars in the figure. We com-
pared our 8 Kbytes configurable cache having way concatenation and a 32-byte
line size (cfg8Kwc32B), with two conventional caches: an 8-Kbytes conventional
cache having four-way set associativity and a 32-byte line size (cnv8K4W32B),
and an 8-Kbytes conventional cache having one-way (direct mapped) and a 32-
byte line size (cnv8K1W32B). (The other two bars shown for each example will
be described in upcoming sections). We normalized all energies to the conven-
tional four-way cache. The energy we display for our configurable cache was
determined by simulating all possible configurable cache configurations for a
given benchmark, and selecting the lowest energy configuration.

For most benchmarks, the configuration yielding minimal energy has both
instruction cache and data cache configured for one way. However, for some
benchmarks, such as jpeg, g721, parser and vpr, one-way configurations result
in more overall energy due to high miss rates. In those cases, higher associa-
tivities are preferred. jpeg, for example, uses minimal energy with a four-way
instruction cache and a two-way data cache. parser does best with a four-way in-
struction cache and a one-way data cache. Mpeg2 does best with a one-way
instruction cache but a two-way data cache.

We should point out a design choice we made for the conventional direct-
mapped cache that results in our configurable cache configured as direct-
mapped achieving lower energy than a conventional direct-mapped cache. We
had to choose between a direct-mapped cache having an 8 Kbytes word array
internally, having two 4 Kbytes word arrays, or having four 2 Kbytes word ar-
rays. These latter two cases, known as cache subbanking [Ghose and Kamble
1999] can reduce the power per access, by accessing smaller arrays. The cost of
subbanking is the multiplexing logic, which adds delay. We chose to compare
with a direct-mapped caching having a single 8 Kbytes word array, giving the

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

380 • C. Zhang et al.

Fig. 9. Normalized energy dissipation when way concatenation, way shut down, and cache line
size concatenations are all implemented. cnv stands for conventional, cfg stands for configurable,
wc: way concatenation, ws: way shut down; lc: line concatenation.

fastest access time, which is one of the reasons that microprocessor designers
choose a direct-mapped cache.

The conclusions from our results would not change substantially if we had
chosen to compare to a subbanked direct-mapped cache. The conventional
direct-mapped cache energy might be even with or slightly better than our
configurable cache for some examples, but the average savings overall would
be quite similar.

4.4.2 Main Observations. The first observation we make from this data is
that a way-concatenatable configurable cache has an average energy savings of
28% compared to a conventional four-way set-associative cache, ranging from
3% savings for jpeg to 51% for ucbqsort. The energy savings is 33% compared to
a conventional direct-mapped cache, but perhaps more importantly, the savings
for some examples can be quite large—620% for parser, which results from the
highly undesirable performance degradation due to the high miss rate of a
direct-mapped cache.

4.4.3 Impact of k miss energy and k static Ratios. In our energy calcula-
tion equation (Eq. (1)), we included the memory access energy and the proces-
sor stall energy. Figure 9 showed results for k miss energy = 50 and k static =
30%. We also generated results when increasing k miss energy to 200 (off-chip
memory accesses are even more expensive), and when modifying k static to 50%
(static energy consumption is even more important). We described those results
in [Zhang et al. 2003a], achieving 31% savings compared to a conventional
four-way set-associative cache. Compared to a direct-mapped cache, savings
increased to 48%, due to the even greater penalty caused by a higher miss
rate.

5. WAY SHUTDOWN

We have thus far focused on the impact of cache associativity on energy con-
sumption. We also know that cache size plays an important role in energy
dissipation, especially when static energy, which is proportional to the cache
size and execution time, begins to account for more of the total cache energy
consumption.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

Configurable Cache for Low Energy Embedded Systems • 381

Fig. 10. Miss rate when two ways or three ways of the original four-way 8 Kbytes cache are shut
down.

As CMOS technology continues to scale down, transistors with lower thresh-
old voltage are becoming common. Low threshold voltage transistors enable a
lower supply voltage, resulting in great reductions in dynamic power, since dy-
namic power is proportional to the square of voltage. However, lower threshold
voltage transistors also result in more subthreshold leakage current through
the transistors, resulting in increased static power consumption. Thus, static
power is becoming a greater concern [Agarwal et al. 2002]. Some researchers
are thus working on leakage power reductions, such as DRG-Cache [Agarwal
et al. 2002].

Figure 10 shows the miss rate when cache ways are shut down. We see sig-
nificant increases in the miss rate for many examples. For example, v42 has a
nearly 0% instruction cache miss rate with all ways on, but has 4% and 12%
miss rates when two or three ways are shut down. In contrast, no such miss
rate increase occurs when ways were concatenated in Figure 8. We see that
shutting down ways is far more likely to increase the miss rate than concate-
nating ways—which intuitively makes sense since way shutdown decreases the
cache size while way concatenate does not. However, we still can see that al-
though way shutdown increases the miss rate for some benchmarks, for other
benchmarks, way shutdown has negligible impact, such as for fir, brev, and bi-
nary on data cache. Such negligible impact means that the benchmarks do not
need the full capacity (8 Kbytes) of the cache. To save static energy, we want to
shut down the unneeded capacity. We choose to use way shutdown for this pur-
pose. Thus, we extend our way-concatenatable cache to include way shutdown
also.

5.1 Architecture

Albonesi [1999] originally proposed way shutdown to reduce dynamic power,
using an AND gate to shut down cache ways. Since we instead use way con-
catenation to reduce dynamic power and we want to use way shutdown to reduce
static power, we use instead the shutdown method by Powell et al. [2001], in-
volving a circuit level technique called gated-Vdd, shown in Figure 11. When
the gated-Vdd transistor is turned off, the stacking effect of the extra transis-
tor reduces the leakage energy dissipation. Because the extra transistor can
be shared by an array of SRAM cells, the area increase is thus only about 5%.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

382 • C. Zhang et al.

Fig. 11. SRAM cell with an nMOS gated-Vdd control.

However, Powell showed that the performance overhead of the extra transistor
is about 8%.

5.2 Experiments

The normalized energy dissipation when both way concatenation and way shut
down are implemented is shown in Figure 9 as cfg8Kwcws32B. We again deter-
mine our configurable cache energy by examining all possible configurations of
way concatenation and way shutdown (there are six such configurations). The
average savings compared to a conventional four-way cache increase from 28%
for a way-concatenate cache to 35% for a way-concatenate way-shutdown cache.
Savings compared to a conventional direct mapped were again slightly greater.

Those results were obtained for k miss energy = 50 and for k static = 30%.
We also obtained results for k miss energy = 200. Again, due to the higher cost
of misses, the conventional direct mapped does even worse, with an energy
consumption overhead up to 800% for parser, for example.

Likewise, we considered the case where k static = 50%. For many examples,
way shutdown becomes increasingly important since static energy begins to
dominate. In most examples, way shutdown alone gained most of the energy
savings. However, in some examples, such as v42 and padpcm, the combina-
tion of both concatenate and shutdown was necessary—way shutdown alone
increased the miss rate too much for these examples and thus did not save en-
ergy. Thus, we conclude that we need both way concatenate and way shutdown
to effectively reduce static energy, even in deep submicron technologies.

6. CONFIGURABLE LINE SIZE

6.1 Architecture

We also considered cache line size as a configurable cache parameter. Creating
a cache with a configurable line size is relatively straightforward. Our approach
is shown in Figure 12. The physical line size of the cache is 16 bytes. A counter in
the cache controller specifies how many words to read from the off-chip memory.
For a conventional cache, this counter contains a fixed number, like four for a
16-byte line size cache, assuming one word is read from off-chip memory at a
time. We make the counter writable to achieve configurability. When the line

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

Configurable Cache for Low Energy Embedded Systems • 383

Fig. 12. Architecture of a line size configurable cache.

Fig. 13. Miss rates of one-way instruction (top) and data (bottom) caches for 16, 32 and 64 byte
line sizes.

size is configured larger than 16 bytes, such as 64 bytes shown as in Figure 12,
if there is a miss at physical line 10, then the replace should start from physical
line 00.

We assume the use of an interleaved memory organization. Because we con-
figure the cache line size statically, we do not require the off-chip memory to fit
for all line size possibilities. When the line size is 16 bytes, the off-chip memory
should be organized as 4 banks interleaved, and 8 or 16 banks interleaved for
line sizes of 32 bytes and 64 bytes, respectively.

6.2 Experiments

Figure 13 shows the miss rates for various line sizes for the benchmarks using
direct-mapped instruction and data caches. We see in some benchmarks that a
small line size yields a much higher miss rate than a larger line size, in which
case a smaller line size will likely result in higher energy. In other benchmarks,
the small line size works better, so will likely save energy. In many cases, the
line size has little impact, in which case a smaller line size will likely save
energy. The difference in miss rate between line sizes is quite high—more than
15% in some cases. In terms of miss rates, 15% is huge.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

384 • C. Zhang et al.

In Zhang et al. [2003b], we showed the energy benefits of a configurable line
size for a four-way set-associative instruction cache, for line sizes of 16, 32, and
64-bytes. We showed that for most benchmarks, a line size of 64 bytes yielded the
least energy. However, several benchmarks, such as v42, g721, pegwit and jpeg,
yielded the least energy at a line size of 16 bytes. The energy differences were
surprisingly significant—over 20% in many cases. A line size of 32 did not yield
significant improvements over the other two line sizes in any particular case,
but did work well on average and never performed very poorly—thus explaining
its popularity in Table I. In contrast, 16 bytes was best for some examples and
64 bytes for others, but each performed very poorly in some examples.

We found that selecting the best line size is even more important for data
cache, as the energy differences between line sizes are even greater—up to 50%.
The reason is because spatial and temporal locality varies more greatly for data
access than instruction access. We also found that the line size becomes even
more critical for direct-mapped caches. The differences in miss rates among
line sizes are even more pronounced than before. We found a nearly 60% energy
difference in some cases of the data cache, just by varying the line size.

The normalized energy dissipation of a cache, whose cache associativity,
sizes, and line size can be configured, is shown in Figure 9 (cfg8Kwcwslc). We
can see the energy savings of the configurable cache is now up to an average of
40% compared with a conventional four-way set-associative cache.

6.3 Overhead of Configurability

The overhead of cache line size configuration is negligible. From Figure 12, we
can see that we need to make the counter configurable. This counter will not re-
side in the critical path. A 16-byte line size should have no overhead. A 64-byte
line size could have a few cycles overhead between 16-byte chunks, but these cy-
cles (if any) should be quite small compared to the cycles to read and write the
bytes themselves. The size of the counter is also negligible, though making the
counter accessible for writes through memory-mapped I/O will require some
additional wires and logic.

7. DISCUSSION

Not all three cache parameters are effective for all benchmarks. For example,
for benchmarks crc, bcnt, bilv, binary, bilt, ucbqsort, fir, and brev, way concate-
nation and way shut down combined together at line size 32 bytes has already
reduced the energy dissipation to the extent that line size configuration to ei-
ther 16 or 64 bytes will not reduce the energy dissipation any further. This
means that, when associativity and cache size can be chosen to reduce the en-
ergy dissipation, a line size of s32 byte can also be the best line size, which
is different from our observations from [Ye et al. 1998], where only cache line
size is configurable. For benchmarks v42, g721, pegwit, jpeg, and mcf, way con-
catenation and line size concatenation achieve most of the energy dissipation,
because when way shut down is incorporated with way concatenation, we can-
not see any further energy is reduced. For benchmarks, vpr, mcf, art, g721, and
pegwit, line size concatenation contributes the most of the energy reduction.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

Configurable Cache for Low Energy Embedded Systems • 385

Table III. The Best Configuration in Terms of Energy Dissipation of
Instruction and Data Cache for All Benchmarks

Best Configuration Best Configuration
Ben. ICACHE DCACHE Ben. ICACHE DCACHE
padpcm 8K1W32B 8K1W32B pjepg 4K1W32B 4K2W64B
crc 2K1W32B 4K1W64B ucbqsort 4K1W16B 4K1W64B
auto 8K2W16B 4K1W32B v42 8K1W16B 8K2W16B
bcnt 2K1W32B 2K1W64B adpcm 2K1W16B 4K1W16B
bilv 4K1W32B 2K1W32B epic 2K1W64B 8K1W16B
binary 2K1W32B 2K1W32B g721 8K4W16B 2K1W16B
blit 2K1W16B 8K2W32B pegwit 4K1W16B 4K1W16B
brev 4K1W32B 2K1W32B mpeg2 4K1W32B 8K2W16B
g3fax 4K1W32B 4K1W16B art 2K1W32B 2K1W16B
fir 4K1W32B 2K1W32B parser 8K4W16B 8K2W64B
jpeg 8K4W32B 4K2W32B mcf 8K4W16B 8K1W16B
vpr 8K4W32B 2K1W16B

Clearly, though, we need all three parameters to account for the spectrum of
applications.

The best configurations of all the benchmarks are shown in Table III. From
the table, we can see that any value of the three cache parameters, cache asso-
ciativity, size, and line size, is possible to be the best for some benchmarks.

Note in Figure 9 that our configurable cache is not only best on average, but
is also best for every example. This phenomenon is easily explained by the fact
that conventional caches are designed as a compromise.

A configurable cache could be configured by a designer, or possibly dynami-
cally. In the former scenario, an embedded system designer would have a fixed
program that would run on the microprocessor platform having the configurable
cache. Based on simulations or actual executions on the platform, the designer
would determine the best configuration for that program. The designer would
then modify the boot or reset part of the program to set the cache’s configura-
tion registers to the chosen configuration. We have also developed a method for
dynamically configuring the cache [Zhang et al. 2004].

One limitation of our work is that our direct-mapped configuration is not
as fast as a conventional direct-mapped cache could be. Thus, system clock
frequency using our configurable cache may be slightly slower than a direct-
mapped cache.

One area of future investigation involves use of our configurable cache for
desktop applications. Another area involves use of multiple levels of config-
urable cache.

8. CONCLUSIONS

We have introduced novel configurable cache architecture for embedded com-
puting platforms. By incorporating simple configure circuits, we can configure
the associativity, size, and line size of an embedded system’s cache architecture.
We obtained average energy savings of over 40% compared with conventional
four-way set-associative and conventional direct-mapped caches, with savings
as high as 70% compared to a four-way cache, and as high as 90% compared

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

386 • C. Zhang et al.

to a direct-mapped cache. Since caches may consume half of a microprocessor
system’s power, such savings can significantly reduce overall system power.

REFERENCES

AGARWAL, A., LI, H., AND ROY, K. 2002. DRG-Cache. A data retention gated-ground cache for low
power. In Design Automation Conference.

ALBONESI, D. H. 1999. Selective cache ways: On-demand cache resource allocation. In the 32nd
Annual ACM/IEEE International Symposium on Microarchitecture.

BALASUBRAMONIAN, R., ALBONESI, D., BUYUKTOSUNOGLU, A., AND DWARKADAS, S. 2000. Memory hier-
archy reconfiguration for energy and performance in general-purpose processor architectures. In
the 33rd International Symposium on Microarchitecture.

BATSON, B. AND VIJAYKUMAR, T. N. 2001. Reactive-associative caches. In International Conference
on Parallel Architectures and Compilation Techniques.

BURGER, D. AND AUSTIN, T. M. 1997. The SimpleScalar Tool Set, Version 2.0. University of
Wisconsin-Madison Computer Sciences, Department. Technical Report #1342.

CADENCE. 2002. http://www.cadence.com.
CALDER, B., GRUNWALL, D., AND EMER, J. 1996. Predictive sequential associative cache. In Interna-

tional Symposium on High Performance Computer Architecture.
EDMONDSON, J. H. AND RUBINFIELD, P. I. 1995. Internal organization of the Alpha 21164 a

300-MHz 64-bit quad-issue CMOS RISC microprocessor. Digital Technical Journal 7, 1, 119—
135.

DROPSHO, S., BUYUKTOSUNOGLU, A., BALASUBRAMONIAN, R., ALBONESI, D. H., DWARKADAS, S., SEMERARO, G.,
MAGKLIS, G., AND SCOTT, M. L. 2002. Integrating adaptive on-chip storage structures for reduced
dynamic power. In the 11th International Conference on Parallel Architectures and Compilation
Techniques.

FLAUTNER, K., ET AL. 2002. Drowsy caches: Simple techniques for reducing leakage power. In the
35th Annual ACM/IEEE International Symposium on Microarchitecture.

GHOSE, K. AND KAMBLE, M. B. 1999. Reducing power in superscaler processor caches using sub-
banking, multiple line buffers and bit-line segmentation. In International Symposium on Low
Power Electronics and Design.

HANSON, H. 2000. Static energy reduction for microprocessor caches. In the International Con-
ference on Computer Design.

HASEGAWA, A., KAWASAKI, I., YAMADA, K., YOSHIOKA, S., KAWASAKI, S., AND BISWAS, P. 1995. SH3: High
code density, low power. IEEE Micro 15, 6, 11–19.

HENNESSY, J. L., AND PATTERSON, D. A. 1996. Computer Architecture Quantitative Approach, 2nd
ed. Morgan-Kaufmann, Menlo Park, CA.

INTEL. 2002. http://www.developer.intel.com/design/strong/.
INOUE, K., ISHIHARA, T., AND MURAKAMI, K. 1999. Way-predictive set-sssociative cache for high

performance and low energy consumption. In International Symposium on Low Power Electronic
Design.

INOUE, K. AND KAI, K. 2000. A high-performance/low-power on-chip memory-path architecture
with variable cache-line size. IEICE Trans. Electron. E83-CV, 11 (Nov.).

KAXIRAS, S., HU, Z., AND MARTONOSI, M. 2001. Cache decay: Exploiting generational behavior
to reduce cache leakage power. In the 28th Annual International Symposium on Computer
Architecture.

KIM, H., SOMANI, A. K., AND TYAGI, A. 2001. A reconfigurable multi-function computing cache
architecture. IEEE Transactions on VLSI Systems 9, 4 (Aug.), 509–523.

KIN, J., GUPTA, M., AND MANGIONE-SMITH, W. 1997. The filter cache: An energy efficient memory
structure. In International Symposium on Microarchitecture. 184–193.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. 1997. MediaBench: A tool for evaluating and
synthesizing multimedia and communications systems. In International Symposium on Microar-
chitecture.

MAI, K., PAASKE, T., JAYASENA, N., HO, R., DALLY, W. J., AND HOROWITZ, M. 2000. Smart memories:
A modular reconfigurable architecture. ACM SIGARCH Computer Architecture News 28, 2.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

Configurable Cache for Low Energy Embedded Systems • 387

MALIK, A., MOYER, B., AND CERMAK, D. 2000. A low power unified cache architecture providing
power and performance flexibility. In International Symposium on Low Power Electronics and
Design.

MIPS. 2002. http://www.mips.com.
MOSIS. 2002. http://www.mosis.org.
POWELL, M., YANG, S. H., FALSAFI, B., ROY, K., AND VIJAYKUMAR, T. N. 2000. Gated-Vdd: A circuit

technique to reduce leakage in deep-submicron cache memories. In the ACM/IEEE International
Symposium on Low Power Electronics and Design.

POWELL, M. D., AGARWAL, A., VIJAYKUMAR, T. N., FALSAFI, B., AND ROY, K. 2001. Reducing set-
associative cache energy via way-prediction and selective direct-mapping. In the 34th Interna-
tional Symposium on Microarchitecture.

RANGANATHAN, P., ADVE, S., AND JOUPPI, N. P. 2000. Reconfigurable caches and their application to
media processing. In the 27th Annual International Symposium on Computer Architecture.

REINMAN, G. AND JOUPPI, N. P. 1999. CACTI2.0: An Integrated Cache Timing and Power Model.
COMPAQ Western Research Lab.

SEGARS, S. 2001. Low power desin techniques for microprocessors. In IEEE International Solid-
State Circuits Conference Tutorial.

SEMICONDUCTOR INDUSTRY ASSOCIATION. 1999. International Technology Roadmap for Semiconduc-
tors: 1999 edition. International SEMATECH, Austin, TX.

SMITH, M. J. S. 1997. Application-Specific Integrated Circuits. Addison-Wesley Longman,
Reading, MA.

SPECBENCH. 2002. http://www.specbench.org/osg/cpu2000.
TADAS, S. AND CHAKRABARTI, C. 2002. Architectural approaches to reduce leakage energy in caches.

In International Symposium on Circuits and System.
VEIDENBAUM, A., TANG, W., GUPTA, R., NICOLAU, A., AND JI, X. 1999. Adapting cache line size to

application behavior. In International Conference on Supercomputing.
WITCHEL, E. AND ASANNOVIC, K. 2001. The span cache: Software controlled tag checks and cache

cine Size. In the 28th Annual International Symposium on Computer Architecture.
YANG, S., POWELL, M. D., FALSAFI, B., ROY, K., AND VIJAYKUMAR, T. N. 2001. An integrated

circuit/architecture approach to reducing leakage in deep-submicron high-performance I-caches.
In the 7th International Symposium on High-Performance Computer Architecture.

YE, Y. BORKER, S., ET AL. 1998. A new technique for standby leakage reduction in high-performance
circuits. In International Symposium on VLSI circuits.

ZHANG, C., VAHID, F., AND NAJJAR, W. 2003a. A highly configurable cache architecture for embedded
systems. In the 30th ACM/IEEE International Symposium on Computer Architecture.

ZHANG, C., VAHID, F., AND NAJJAR, W. 2003b. Energy benefits of a configurable line size cache for
embedded systems. In International Symposium on VLSI Design.

ZHANG, C., VAHID, F., AND LYSECKY, R. 2004. A self-tuning cache architecture for embedded systems.
In Special issue on Dynamically Adaptable Embedded System. ACM Transactions on Embedded
Computing Systems 3, 2 (May), 1–19.

ZHOU, H., TOBUREN, M. C., ROTENBERG, E., AND CONT, T. M. 2001. Adaptive mode-control: A static-
power-efficient cache design. In the 10th International Conference on Parallel Architectures and
Compilation Techniques.

Received March 2003; revised March 2004; accepted January 2005

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.

