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Memory accesses often account for about half of a microprocessor system’s power consumption.
Customizing a microprocessor cache’s total size, line size, and associativity to a particular program
is well known to have tremendous benefits for performance and power. Customizing caches has
until recently been restricted to core-based flows, in which a new chip will be fabricated. However,
several configurable cache architectures have been proposed recently for use in prefabricated mi-
croprocessor platforms. Tuning those caches to a program is still, however, a cumbersome task left
for designers, assisted in part by recent computer-aided design (CAD) tuning aids. We propose to
move that CAD on-chip, which can greatly increase the acceptance of tunable caches. We introduce
on-chip hardware implementing an efficient cache tuning heuristic that can automatically, trans-
parently, and dynamically tune the cache to an executing program. Our heuristic seeks not only to
reduce the number of configurations that must be examined, but also traverses the search space in
a way that minimizes costly cache flushes. By simulating numerous Powerstone and MediaBench
benchmarks, we show that such a dynamic self-tuning cache saves on average 40% of total memory
access energy over a standard nontuned reference cache.

Categories and Subject Descriptors: B.3 [Memory Structures]: Design Styles—Cache memories

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Cache, configurable, architecture tuning, low power, low energy,
embedded systems, on-chip CAD, dynamic optimization

1. INTRODUCTION

Using a prefabricated microprocessor platform in an embedded system prod-
uct provides strong time-to-market advantages over fabricating an application-
specific integrated circuit (ASIC). With on-chip configurable logic available on
many platforms today, the attractiveness of prefabricated platforms over ASICs
expands to even more situations. A drawback of a prefabricated platform is that
key architectural features, such as cache size, cannot be synthesized such that
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they are tuned to the application. While microprocessor manufacturers could
previously provide a variety of prefabricated ICs spanning the continuum of
desired architectures, providing such variety becomes increasingly difficult as
microprocessors coexist with numerous other coprocessors, configurable logic,
peripherals, and so on, in today’s era of system-on-a-chip platforms.

A solution is for key architectural features to be designed with built-in con-
figurability, enabling designers to configure those features to a particular appli-
cation. Motorola’s M*CORE designers [Malik et al. 2000] incorporated a con-
figurable unified set-associative cache whose four ways could be individually
shutdown to reduce dynamic power during cache accesses. Additionally, the
M*CORE’s cache can be configured as an instruction cache, data cache, or uni-
fied cache. The M*CORE’s designers showed an average 30% of total power
savings by tuning the cache for their Powerstone benchmarks and as much as
40% savings on certain benchmarks. Albonesi [1999] also proposed a config-
urable cache whose ways could be shutdown to reduce dynamic power, showing
an average 40% savings in overall cache energy dissipation on Spec95 bench-
marks through tuning. Veidenbaum et al. [1999] proposed a cache whose line
sizes could be adaptively modified, resulting in a reduction in memory traffic
by over 50%. Balasubramonian et al. [2000] proposed a cache that could be
configured as a single or as a two-level cache, achieving savings of 43% of mem-
ory hierarchy energy when their configurable cache is used as an L2/L3 cache
coupled with a conventional L1 cache.

We have designed a highly configurable cache with three parameters that
designers can configure: total size (8, 4, or 2 Kbytes), associativity (4, 2, or 1-
way for 8 Kbytes, 2 or 1-way for 4 Kbytes, and 1-way only for 2 Kbytes), and
line size (64, 32, or 16 bytes). We will briefly discuss our configurable cache in
Section 2; the detailed design can be found in Zhang et al. [2003a, 2003b].

Tuning is presently a cumbersome task imposed on the designer, who in most
cases must manually determine the best configuration. A designer can use sim-
ulation to determine the best cache, but such simulation is often cumbersome to
setup, since modeling a system’s environment can be harder than modeling the
system itself. Simulations can also be extremely slow, requiring tens of hours
or days to simulate just seconds of an application, and represents an extra step
in the designer’s tool flow. Furthermore, simulating an application typically
uses a fixed set of input data during execution. Such a simulation approach
cannot capture actual run-time behavior where the data changes dynamically.
Recently, some design automation aids have evolved to assist the designer in
the tuning task [Givargis et al. 2002]. While tuning fits into existing hardware
design flows reasonably well, such simulation-based tuning does not fit in well
with standard, well-established embedded software design flows, which instead
primarily consist of compile, download, and execute.

Several researchers have proposed dynamically tuning cache parameters.
Veidenbaum et al. [1999] used an adaptive strategy to adjust cache line size
dynamically to an application. Kaxiras’s cache line decay method [Kaxiras
et al. 2001] dynamically turns off cache lines that have not been visited for
a designated period, reducing the leakage energy dissipation. Albonesi et al.
[1999] proposed dynamically turning off cache ways to reduce dynamic
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energy dissipation. Balasubramonian et al. [2000] dynamically detects the
phase change of an application and configures the hierarchy of the caches to
improve the memory hierarchy performance and therefore reduce dynamic en-
ergy dissipation. However, these dynamic strategies each manipulate only one
cache parameter, like cache line size, cache size, and cache hierarchy. Based on
monitoring some predetermined criteria, such as cache miss rate and memory-
to-L1 cache data traffic volume [Veidenbaum et al. 1999], the time interval
between two visits to a cache line [Kaxiras et al. 2001], the instruction per
cycle (IPC) [Albonesi et al. 1999], and miss rate, IPC, and branch frequency
[Balasubramonian et al. 2000], these dynamic strategies increase/decrease or
turn on/off the single aspect of the cache that is tunable.

In our work, we tune not one but four cache parameters: cache line size,
cache size, associativity, and cache way prediction. The space of configurations
is much larger, and hence we propose a method of dynamically tuning the cache
in a very efficient manner. Our method uses some additional on-chip hardware
that dynamically tunes our configurable cache to an executing program. The
tuning could be applied using different approaches, perhaps being applied only
during a special software-selected tuning mode, during the startup of a task,
whenever a program phase change is detected, or at fixed periods. The choice
of approach is orthogonal to our design of the self-tuning architecture itself.

In this paper, we introduce the tuning problem, describe our approach to
developing an efficient heuristic for searching the configuration space, and pro-
vide experimental results showing the effectiveness of our methods. The paper
is organized as follows. We briefly describe our configurable cache architecture
and benefits in terms of energy dissipation in Section 2. In Section 3, we describe
our self-tuning strategy involving a search heuristic. We provide the results of
our search heuristic in Section 4. We conclude the paper in Section 5.

2. CONFIGURABLE CACHE ARCHITECTURE

Our configurable cache architecture includes four parameters: cache size, which
can be configured as 8 Kbytes, 4 Kbytes, or 2 Kbytes; associativity, which can
be 4-way, 2-way, or 1-way (direct mapped); line size, which can be 16 bytes,
32 bytes, or 64 bytes; and way prediction, which can be turned off or on (but is
always off if the cache is configured as direct mapped).

2.1 Associativity: Way Concatenation

The configuration of associativity is implemented by a technique we call way
concatenation, as shown in Figure 1. The base cache consists of four banks
that can operate as four ways. By configuring a small register, the ways can
be effectively “concatenated,” resulting in either a two-way or direct-mapped
8 Kbytes cache. The way concatenation logic is very simple, consisting of eight
logic gates. The four outputs of the configure circuit, c0, c1, c2, and c3, control
the opening and closing of each way. We replaced the two inverters used in
a traditional cache by NAND gates. One inverter is the word line driver; the
other inverter is the output inverter of the comparator. Based on our layout in
0.18-µm CMOS technology, by appropriately sizing the NAND gates we can
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Fig. 1. A way-concatenable four-way set-associative cache architecture with the critical path
shown.

ensure that our changes do not impact the cache’s critical path. The area over-
head of the configuration circuit is negligible compared with the total cache
area [Zhang et al. 2003]. It should be noted that full tags (address bits from
a11 to a31) are checked when the associativity is configured as 1-way, 2-way, or
4-way. Although two bits of the tag do not need to be checked when the cache is
configured as direct mapped, the overhead of checking those bits is negligible
and a full tag check simplifies the cache’s control circuits.

2.2 Cache Size: Way Shutdown

We also permit the tuning of cache size through way shutdown. Individual ways
can be shutdown, resulting in a 4 Kbytes cache that can be either 2-way or direct
mapped, or a 2 Kbytes direct mapped cache. The shutdown logic uses sleep
transistors to reduce static power dissipation, which is becoming increasingly
important [Agarwal et al. 2002], and increases the critical path by roughly 5%
with less than a 1% increase in area.

2.3 Line Size: Line Concatenation

Designers can also select the cache line size as 16, 32, or 64 bytes, by configuring
a small register in the cache controller. We implement line size configurability
using a base physical line size of 16 bytes, with the larger line sizes imple-
mented logically as multiple physical lines [Zhang et al. 2003], as illustrated in
Figure 2.
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Fig. 2. Architecture of a line size configurable cache.

2.4 Way Prediction

When multiple ways are activated, we can also configure the cache to support
way prediction. Way prediction first accesses only one way of the cache. If there
is a miss in the first way, the cache will then access the remaining ways. Way
prediction [Inoue et al. 1999; Powell et al. 2001] saves energy of per cache
access by only accessing one way initially, with the drawback of requiring an
extra cycle when there is a misprediction.

2.5 Energy Evaluation

Power dissipation in CMOS circuits is comprised of two main components, static
power dissipation due to leakage current and dynamic power dissipation due
to logic switching current and the charging and discharging of the load ca-
pacitance. Dynamic energy consumption contributes to most of the total en-
ergy dissipation in micrometer-scale technologies, but static energy dissipation
will contribute an increasingly larger portion of total energy consumption in
nanometer-scale technologies. Therefore, we consider both types of energies.

We should not disregard energy consumption due to accessing off-chip mem-
ory, since fetching instructions and data from off-chip memory is energy costly
because of the high off-chip capacitance and large off-chip memory storage. Ad-
ditionally, when accessing the off-chip memory, the microprocessor may stall
while waiting for the instruction and/or data, and such waiting still consumes
some energy. Thus, we calculate the total energy due to memory accesses using
equation (1), which considers all these factors. We compute the energy dissipa-
tion of the cache tuner using equation (2).

Etotal = Edynamic + Estatic

Edynamic = Cachetotal ∗ Ehit + CacheMisses ∗ Emiss

Emiss = Eoffchip access + EuP stall + Ecache block fill

Estatic = Cyclestotal ∗ Estatic per cycle

(1)

Etuner = Ptuner ∗ Timetotal ∗NumSearch (2)

To see the potential benefits of tuning a cache to an application, we sim-
ulated all possible configurations of our configurable cache for numerous
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Powerstone [Malik et al. 2000] and MediaBench [Lee et al. 1997] bench-
marks using SimpleScalar [Burger et al. 1997], a cycle-accurate simulator
that includes a MIPS-like microprocessor model, to obtain the total cache
accesses, Cachetotal, and cache misses, Cachemisses. We obtained the energy
of a cache hit, Ehit, from our own CMOS 0.18-µm layout of our config-
urable cache (incidentally, we found our energy values correspond closely with
CACTI [Reinman 1999] values). We obtained the off-chip memory access en-
ergy, Eoff chip access, from a standard Samsung memory and the stall energy,
EuP stall, from a 0.18-µm MIPS microprocessor. Our total energy, Etotal, cap-
tures all energy related to memory accesses, which is the value of interest
when configuring the cache. Furthermore, we obtained the power consumed
by our cache tuner, which we will describe later, through simulation of a
synthesized version of our cache tuner written in VHDL. From the simula-
tion, we also obtained the time required by the tuner to search the cache
configurations.

Some researchers have done work on building analytical cache performance
models. Agarwal et al. [1989] proposed an analytical model of cache perfor-
mance, which uses parameters extracted from address traces of programs to
estimate the cache performance at different cache parameters. Specifically, the
miss rate of a given trace for a program is described as a function of cache
size, associativity, line size, and other parameters. The analytical cache per-
formance model not only saves simulation time, which may be prohibitively
long, but also provides insight to the dependence of miss rate on the program
and workload parameters. As far as we know, we have not seen an analytical
model of energy dissipation for a specific application at different cache param-
eters. CACTI [Reinman et al. 1999] only provides an analytical energy model
of per cache access. To get the energy dissipation for a specific application, we
must run simulations to obtain the necessary information, such as miss rate
and number of accesses to both instruction and data caches. One possible way
to simplify the energy calculation is to combine these analytical cache models
with the CACTI model, obtaining the miss rate from the cache performance
models and energy dissipation per cache access from CACTI. However, we can-
not use these cache performance models on-chip to dynamically predict the
performance. While developing a model capable of dynamically estimating the
performance and energy dissipation of a specific application at varying cache
parameters could be very useful in a variety of applications, this will be left as
future work.

2.6 Benefits of a Configurable Cache

As illustrated in Figure 3, the energy benefits of optimally tuning a cache to
an application is quite significant, resulting in an average of over 40% memory
access energy savings for Powerstone and MediaBench benchmarks, and up to
70% on certain benchmarks. While certain cache configurations will result in
a decrease in performance, our configurable cache typically only results in a
performance overhead of less than 2%.
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Fig. 3. Memory access energy of Powerstone and MediaBench benchmarks, for our 8 Kbytes config-
urable cache (cfg) tuned to the best configuration for each benchmark, compared to a conventional
4-way set-associative 8 Kbytes cache with a line size of 32 bytes (cnv4w32) and a conventional
direct mapped 8 Kbytes cache with a line size of 32 bytes (cnv1w32). Energies are normalized to
the cnv4w32 value for each example. Note that tuning the cache to each example (cfg) yields very
significant energy reductions.

Fig. 4. Cache self-tuning hardware.

3. SELF-TUNING STRATEGY

3.1 Problem Overview

Given the many different possible configurations of our cache, our goal is to
automatically tune a configurable cache dynamically as an application exe-
cutes, thus eliminating the need for tuning via simulation or manual platform
configuration and measurement. We accomplish this using a small amount of
additional hardware, as shown in Figure 4, that can be enabled and disabled by
software. Our goal is for the tuning process and required additional hardware
to be as size, power, and performance efficient as possible.

A naive tuning approach exhaustively tries all possible cache configurations,
in some arbitrary order. For each configuration, the approach measures the
cache miss rate and estimates a configuration’s energy from this miss rate.
After trying all configurations, the approach selects the lowest energy config-
uration seen. Such an exhaustive approach has two main drawbacks. First,
an exhaustive search method may involve too many configurations. While our
configurable cache has 27 configurations, increasing the number of values of
each parameter could easily result in over 100 configurations. Consider also
that many other components within the system may have configurable settings
as well—such as a second level of cache, a bus, and even the microprocessor
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Fig. 5. Miss rate of benchmark parser at cache sizes from 1 Kbytes to 1 Mbytes.

itself. If we tune our system by considering all possible configurations, the
number of configurations of our cache multiplies the configuration numbers
for other components, quickly reaching millions of possible configurations (e.g.,
100× 100× 100 = 1,000,000). Thus, we need an approach that minimizes the
number of configurations examined. The second drawback is that the naive ap-
proach may require too many cache flushes, which are very time and power
costly. Without flushing, the new cache configuration could yield incorrect
results.

Therefore, we want to develop a tuning heuristic that minimizes the number
of cache configurations examined and minimizes or eliminates cache flushing,
while still finding a near-optimal cache configuration

3.2 Heuristic Development Through Analysis

We develop the heuristic through analyzing the impaction of each cache param-
eter to the energy dissipation. From equation (1), the total energy consumption
of memory accesses is comprised of two main elements, specifically the energy
dissipated by on-chip cache, which includes dynamic cache access energy and
static energy, and energy consumed by off-chip memory accesses.

Figure 5 shows the miss rate of the benchmark parser from Spec 2000 [SPEC]
considering cache sizes ranging from 1 Kbytes to 1 Mbytes. Figure 6 provides
the energy dissipation of on-chip cache, off-chip memory, and total energy dis-
sipation of the benchmark parser. When the cache size is increased from 1 to
16 Kbytes, the miss rate dramatically decreases, which results in a decrease
in off-chip memory accesses and a decrease in off-chip memory energy con-
sumption. As we further increase the cache size, the energy consumption of
off-chip memory decreases very little. However, the energy dissipated by the
on-chip cache continues to increase as the cache size increases. Therefore, the
increase in on-chip cache energy dissipation will eventually outweigh the de-
crease in energy of the off-chip memory. For the benchmark parser, this turning
point is at a cache size of 16 Kbytes at which increasing the cache size will
not improve performance greatly but will risk increasing energy dissipation
significantly.
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Fig. 6. Energy dissipation on on-chip cache, off chip memory and the total of benchmark parser
at cache size from 1 Kbytes to 1 Mbytes.

Unfortunately, this tradeoff point is different for every application and exists
not only for cache size but also for cache associativity and line size. For many
applications, when associativity is increased from 4-way to 8-way, the perfor-
mance improvement is very limited, but the energy dissipation is increased
greatly because more data and tag ways are accessed concurrently. Therefore,
in developing our search heuristic to find the best cache configuration, for each
possible cache parameter we attempt to iteratively adjust each parameter with
the intention of increasing cache performance as long as a decrease in total
energy dissipation is observed.

To help us develop the heuristic for efficiently searching the configuration
space, we first analyzed each parameter—cache size, associativity, line size,
and way prediction—to determine their impacts on miss rate and energy.
The parameter with the greatest impact would likely be the best parame-
ter to configure first. We executed 13 of Motorola’s Powerstone benchmarks
and six MediaBench benchmarks for all 27 possible cache configurations. Al-
though there are three cache parameters each with three possible values, and
way prediction as on or off, there are less than 3 × 3 × 3 × 2 = 54 config-
urations, because not all configurations are possible—e.g., size is decreased
by shutting down ways, so a 4-way 2 Kbytes cache is not possible. A com-
mon way to evaluate the impact of several variables is to fix some variables
and vary the others. We therefore fix three parameters and vary the fourth
one.

Figure 7 shows the average instruction miss rate of all the benchmarks sim-
ulated and the average energy consumption of the instruction cache for the
examined configurations.

Figure 8 shows the average data miss rate of all the benchmarks simulated
and the average energy consumption of the data cache. Total cache sizes are
shown as 8, 4, and 2 Kbytes, line sizes as 16, 32, and 64 bytes, and associativity
as 1-way, 2-way, and 4-way. The energy dissipation of a set-associative cache
with way prediction is not shown, as way prediction does not impact the miss
rate.
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Fig. 7. Average instruction cache miss rate (top) and normalized instruction fetch energy (bottom)
of the benchmarks.

Fig. 8. Average data cache miss rate (top) and normalized data fetch energy (bottom) of the
benchmarks.

By looking at the varying bar heights in each group of bars, we see in general
that total cache size has the biggest average impact on energy and miss rate—
changing cache size can impact energy by a factor of two or more. By looking
at the difference in the same colored bar for different line sizes, we notice very
little energy variation for different instruction cache line size. However, we
do see more variation in data cache energy due to line size, especially for a
2 Kbytes cache. This result is not surprising, since data addresses tend not to
have as strong of a spatial locality compared with instruction addresses. Finally,
by examining the same colored bars for different associativity, we notice very
little change in energy consumption, indicating that associativity has a smaller
impact on energy consumption than either cache size or line size. From our
analysis, we developed a search heuristic that finds the best cache size first,
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Fig. 9. Cache size configuration: increasing size avoids flushing, while decreasing size does incur
flushing. The tag’s width is fixed, which is four bits in this example.

determines the best line size, determines the best associativity, and finally if
the best associativity is more than one, our heuristic determines whether to
use way prediction.

3.3 Minimizing Cache Flushing

In the previous section, we determined a heuristic order in which to vary the
parameters. However, the order in which we vary the values of each parameter
also matters—one order may require cache flushing and/or incur extra misses,
while a different order may not.

For cache size, starting with the smallest cache and increasing the size is
preferable over decreasing the size, as illustrated in Figure 9. When decreasing
the size, an original hit may turn into a miss after the cache memory bank
is shutdown. For example, addresses 00000 (index=000, tag=0000) and 00100
(index=100, tag=0010) are both hits before shutdown but will be mapped to
the same block indexed by 00, resulting in a miss. While the width of the tag
is fixed, the width of the index changes as the cache configuration changes. For
the data cache, we have to write back such items when the data in the shutdown
ways is dirty. Such flushing is expensive in terms of power and time.

Alternatively, increasing the cache size does not require flushing. For exam-
ple, before the cache size is increased, addresses 00100 and 00000 are mapped
to the cache block indexed at 00. After the cache size is increased, the address
00100 will be mapped to index 100, possibly incurring an extra miss. However,
no write back is necessary for the data cache in this case, and we thus avoid
flushing.

For associativity, increasing associativity is preferable over decreasing, as
shown in Figure 10. When associativity is increased, there will be no extra
misses or errors incurred because more ways are activated to read the data.
For example, if addresses 00000 and 00100 are both hits before the increase
in associativity, then both addresses will still be hits after the associativity is
increased. However, decreasing the associativity may turn a hit into a miss,
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Fig. 10. Cache flushing analysis when associativity is increased or decreased. The tag’s width is
fixed, which is four bits in this example.

increasing the miss rate. For example, if address 00000 is a hit at bank 3, and
the associativity is decreased to a direct mapped cache, the cache will try to
locate the address in bank 0, resulting in a miss. In either case, the cache does
not need to flush the data and no errors will occur if we design the configurable
cache to always check the full tag, instead of reducing the tag to two bits in
the direct mapped case. Furthermore, reducing the cache’s tag to two bits when
configured as a direct mapped cache yields no significant power advantage.
Therefore, checking the full tag is reasonable.

In determining the best line size, increasing or decreasing the line size will
result in the same behavior, since we use a physical line size of 16 bytes. There-
fore, no extra misses will occur and no flushing is needed.

We only use way prediction in a set-associative cache. The accuracy of way
prediction depends on each application. Generally, prediction accuracy for a set-
associative instruction cache is around 90% and around 70% for a data cache
[Powell 2001]. An incorrect prediction will incur extra energy dissipation and
an extra cycle to read the data.

3.4 Search Heuristic

Based on the above analyses, we use a heuristic to search for the best cache
parameters. The input of the heuristic is:r Cache size: C[i], 1 ≤ i ≤ n, n is the number of possible cache size, n = 3 in

our configurable cache, where C[1] = 2 Kbytes, C[2] = 4 Kbytes, and C[3] =
8 Kbytes;r Cache associativity: A[ j ], 1 ≤ j ≤ m, m is the number of possible cache
associativity, m = 3 in our configurable cache, where A[1] = 1-way, A[2] =
2-way, and A[3] = 4-way;r Cache line size: L[k], 1 ≤ k ≤ p, p is the number of possible cache line size,
p = 3 in our configurable cache, where L[1] = 16 bytes, L[2] = 32 bytes, and
L[3] = 64 bytes; andr Way prediction: W [1] = off, W [2] = on.
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Fig. 11. Search heuristic for determining best cache configuration.

Figure 11 provides pseudocode for our search heuristic, which we use to
determine the best cache configuration. Our heuristic starts with a 2 Kbytes
direct mapped cache where the line size is 16 bytes. We then gradually increase
the total cache size to our largest possible size of 8 Kbytes as long as increasing
the size of the cache results in a decrease in total energy. After determining the
best cache size, we begin increasing the line size from 16 to 32 bytes and finally
64 bytes. Once again, as we increase the line size of the cache, if we do not notice
a decrease in energy consumption, we choose the best line size configuration
we have seen so far. Similarly, we then determine the best associativity by
gradually increasing the associativity until we see no further improvement in
energy consumption. Finally, we determine if enabling way prediction results
in any energy savings.

The best cache size, cache line size, associativity, and way prediction have
been determined in an efficient manner. While our search heuristic is scalable
to larger caches, which have more possible settings for cache size, line size, and
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associativity, we have not analyzed the accuracy of our heuristic with larger
caches but plan to do so as future work.

3.5 The Efficiency of the Heuristic

We can generalize the efficiency of our search heuristic in the following way.
Suppose there are n configurable parameters, each parameter has m values,
then there are total mn different combinations, assuming the m values of the n
parameters are independent of each other. However, the heuristic only searches
m × n combinations at most. For example, suppose we have 10 parameters of
which each has 10 values. Brute force searching searches 10,000,000,000 con-
figurations, while our heuristic would only search 100 configurations instead.

We can also use the heuristic to search through a multilevel cache memory
system. Suppose we have a 16 Kbytes 8-way instruction and data cache with
line sizes of 8, 16, 32, and 64 bytes. Suppose there is also a second-level unified
L2 cache, which is 256 Kbytes 8-way with line sizes of 64, 128, 256, and 512
bytes. The total solution space size is 40×40×40 = 64,000. However, by using
our heuristic, we search 10+ 10+ 10 = 30 configurations at most.

3.6 Implementing the Heuristic in Hardware

We could implement our cache tuning heuristic in either software or hardware.
However, in a software-based approach, the system processor would execute
the search heuristic. Executing the heuristic on the system processor would not
only change the run-time behavior of the application but also affect the cache
behavior, possibly resulting in the search heuristic choosing a nonoptimal cache
configuration. Therefore, a hardware-based approach that does not significantly
impact the system’s area or power consumption is more desirable.

We implemented the search heuristic in hardware using a simple state ma-
chine controlling a simple datapath, shown in Figure 12. In the datapath, there
are 18 registers. We use three of the registers to collect run-time information, to-
tal cache hits, total cache misses, and total cycles. Six additional registers store
the cache hit energy per cache access, which correspond to 8 Kbytes 4-way,
2-way, and 1-way; 4 Kbytes 2-way and 1-way; and 2 Kbytes 1-way configura-
tions. The physical line size is 16 bytes, so the cache hit energy for different
cache line sizes is the same. We use three registers to store the miss energy,
which corresponds to line sizes of 16, 32, and 64 bytes, respectively. Because
static power dissipation depends on the cache size only, we use three more reg-
isters to store the static power dissipation corresponding to 8, 4, and 2 Kbytes
caches, respectively. All 15 registers are 16 bits wide. We also need one register
to hold the result of energy calculations and another register to hold the lowest
energy of the cache configurations tested. Both of these registers are 32 bits
wide. The last register is the configure register that is used to configure the
cache. We have four cache parameters to configure, where cache size, line size,
and associativity have three possible values, and prediction can either be on or
off. Therefore, the configure register is seven bits wide. The FSM controls the
datapath using the signal “control” and the output of the comparator within
the datapath is an input to the FSM.
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Fig. 12. FSM+D of the cache tuner. The “input” includes clock, reset, and start signal. The “control”
is the output of FSM to control the registers and muxes; the output of the comparator is fed back
to FSM.

Fig. 13. FSM of the cache tuner.

Figure 13 shows the FSM of the cache tuner composed of three smaller state
machines. The first state machine is for cache parameters, which we will refer
to as the parameter state machine (PSM). The first state of the PSM is the
start state, which has to wait for the start signal to start the cache tuning.
The second state, state P1, is for tuning the cache size, where the best cache
size is determined in this state. The other states P2, P3, and P4 are for cache
line size, cache associativity, and way prediction, respectively. The second state
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machine determines the energy dissipation for the many possible values of each
cache parameter. We will refer to this state machine as the value state machine
(VSM). The highest possible value of these cache parameters is three, so we
use four states in the VSM. If the current state of PSM is P1, corresponding to
determining the best cache size, the second state of the VSM will determine the
energy of 2 Kbytes cache; the third state, V2, is for a 4 Kbytes cache, and V3
is for an 8 Kbytes cache. The first state, V0, is an interface state between PSM
and VSM. If the PSM is P2, which is for line size tuning, then the second state
of the VSM, V1, is for a line size of 16 bytes, the third state of VSM, V2, is for a
line size of 32 bytes, and the last state, V3, is for a line size of 64 bytes. We also
need a third state machine to control the calculation of the energy. Because we
have three multiplications, and only one multiplier, we use a state machine that
has four states to compute the energy. We call this state machine the calculate
state machine (CSM). The first state is also an interface state between VSM
and CSM.

In Figure 13, the solid lines show state transitions in the three state ma-
chines, respectively. The dotted lines show the dependence of upper level state
machines on the lower level state machines, for example, the dotted lines be-
tween P1 and V0 shows that P1 must wait for VSM to finish before going to the
next state, P2.

4. EXPERIMENTS

Table 1 show the results of our search heuristic, for instruction and data cache
configurations. Our search heuristic only searches on average 5.8 configura-
tions compared to 27 configurations that an exhaustive approach would ana-
lyze. Furthermore, the heuristic finds the optimal configuration in nearly all
cases. Additionally, our results demonstrate that way prediction is only bene-
ficial for instruction caches and that only a 4-way set-associative instruction
cache had lower energy consumption when way prediction is used. While way
prediction is typically beneficial when considering a set-associative cache, for
the benchmarks we examined, the cache configurations with the lowest en-
ergy dissipation were mostly direct mapped caches where way prediction is not
applicable.

For the benchmarks mpeg2 and pjpeg, our heuristic search does not choose
the optimal cache configuration, selecting configurations that 5% and 12%
worse than the optimal configuration, respectively. The optimal data cache con-
figuration of mpeg2 is an 8 Kbytes 2-way set-associative cache with a line size of
16 bytes, whereas our heuristic selects a 4 Kbytes 2-way set-associative cache
with a line size of 16 bytes. For a direct mapped cache with a line size of 16
bytes, the miss rate of the data cache for mpeg2 is 0.82% using a 4 Kbytes cache
and 0.58% using an 8 Kbytes cache. By increasing the cache size from 4 to 8
Kbytes, we only achieve a reduction in miss rate of 1.4×. However, a larger
cache is only preferable if the improved miss rate results in a large enough
reduction in energy consumption in the off-chip memory to overcome the in-
creased energy consumption of the larger cache. For mpeg2, the reduced miss
rate achieved using an 8 Kbytes cache is not large enough to overcome the
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Table I. Results of Search Heuristic

Ben. I-cache cfg. No. D-cache cfg. No. E%
padpcm 8K 1W 64B 7 8K 1W 32B 7 23%
crc 2K 1W 32B 4 4K 1W 64B 6 70%
auto 8K 2W 16B 7 4K 1W 32B 6 3%
bcnt 2K 1W 32B 4 2K 1W 64B 4 70%
bilv 4K 1W 64B 6 2K 1W 64B 4 64%
binary 2K 1W 32B 4 2K 1W 64B 4 54%
blit 2K 1W 32B 4 8K 2W 32B 8 60%
brev 4K 1W 32B 6 2K 1W 64B 4 63%
g3fax 4K 1W 32B 6 4K 1W 16B 5 60%
fir 4K 1W 32B 6 2K 1W 64B 4 29%
jpeg 8K 4W 32B 8 4K 2W 32B 7 6%
pjepg 4K 1W 32B 6 4K 1W 16B 5 51%

optimal 4K 2W 64B
ucbqsort 4K 1W 16B 6 4K 1W 64B 6 63%
tv 8K 1W 16B 7 8K 2W 16B 7 37%
adpcm 2K 1W 16B 5 4K 1W 16B 5 64%
epic 2K 1W 64B 5 8K 1W 16B 6 39%
g721 8K 4W 16B P 8 2K 1W 16B 3 15%
pegwit 4K 1W 16B 5 4K 1W 16B 5 37%
mpeg2 4K 1W 32B 6 4k 2w 16B 6 40%

optimal 8K 2W 16B
Average: 5.8 Average: 5.4 45%

Ben. is the benchmark considered, cfg. is the cache configuration selected,
No. is the number of configurations examined by our heuristic, and E% is
the energy savings of both I-cache and D-cache.

added energy consumed by the cache itself, and we therefore select a cache
size of 4 Kbytes. When cache associativity is considered, the miss rate of the 8
Kbytes cache is significantly reduced when the associativity is increased to a
2-way set-associative cache, which results in a 5× reduction in miss rate. When
our heuristic is determining the best cache size, we cannot predict what will
happen when associativity is increased. Therefore, our heuristic did not choose
the optimal cache configurations in the cases of mpeg2 and pjpeg.

We also tried several different search heuristics to compare with our final
choice. One particular search heuristic we analyzed searched in the order of
line size, associativity, way prediction, and cache size. This heuristic did not
find the optimal configuration in 11 out of 18 examples for the instruction cache
and in 7 out of 18 examples for the data cache. For both caches, the suboptimal
configurations consumed up to 7% more energy.

We also required that the tuning hardware impose as little of an overhead on
area and overall system power. We implemented our cache tuner using VHDL
and synthesized the tuner using Synopsys Design Compiler. The total size of
our cache tuner is roughly 4,000 gates, or 0.039 mm2, using a 0.18-µm CMOS
technology. Compared to the reported size of the MIPS 4 Kp with caches [MIPS
Technologies Inc. 2003], this represents an increase in area of just over a 3%.

From gate-level simulations of the cache tuner, we determined the total num-
ber of cycles used to find the best cache configuration is 164. Additionally, the
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power consumed by our cache tuner is 2.69 mW executing at 200 MHz. There-
fore, our cache tuner, which searches an average of 5.4 configurations to find the
best configuration, has a very low energy consumption of 11.9 nJ on average.
Compared with the total energy dissipation of the benchmarks, which ranged
from 0.16 mJ to 3.03 J with an average of 2.34 J, the energy dissipation of the
cache tuner is negligible.

In order to show the impact that data cache flushing would have had, we
calculated the energy consumption of the benchmarks when the cache size is
configured in the order of 8 down to 2 Kbytes. The average energy consumption
due to writing back dirty data is 5.38 mJ. Thus, if we search the possible cache
size configurations from largest to smallest, the additional energy dissipation
due to cache flushes would be 480,000 times larger than that of our cache
tuner.

5. CONCLUSIONS

A configurable cache enables tuning of the cache to a particular program, which
can significantly reduce memory access power that often accounts for half a mi-
croprocessor system’s power. Our self-tuning on-chip CAD method relieves de-
signers from the burden of having to perform simulations or manual physical
measurements to determine the best configuration, finding the best configu-
ration automatically. Our heuristic minimizes the number of configurations
examined during tuning, and minimizes the need for cache flushing. Energy
savings of such a cache average 40% compared to a standard cache. The self-
tuning cache can be used in a variety of approaches.
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