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Abstract—Recent work has demonstrated numerous benefits of func- . Somthost
tionally partitioning a behavioral process into mutually exclusive subpro- *P“'"”"’”"g L " :s L
cesses before synthesizing each process into a custom digital-hardware H “ ”l “ I“
processor. A key problem during partitioning is minimizing the in- (Cont /- > 1ol
put/output (I/O) pins or wires between processors. The traditional struc- uny — -\ it Control (- b atapatf Ceo!
tural partitioning approach is strongly restricted by such 1/0. We pre- - 7 wit [ H it
viously showed that the new approach of functional partitioning eases DataC \path “ s T ”
this restriction. We now demonstrate a further relaxation of the 1/O

restriction by introducing the FunctionBus interprocessor bus and the ” H

port-calling functional transformation. The FunctionBus allows choice of (@) (b)

any size for internal 1/O by trading off I/O size for performance, while . . ) .
port calling allows distribution of external /O almost arbitrarily among 19 1. Partitioning approaches: (&) structural and (b) functional.
modules. We describe experiments showing large I/O reductions through

these techniques, with only small performance penalties. easier, i.e., several smaller processes would be easier to work with

Index Terms—C€ommunication synthesis, embedded systems, hardware/ than one large process.
software codesign, high-level synthesis, partitioning, power minimization, Recent experiments have verified this hypothesysithesis runtime
system on a chip, very-large-scale integration (VLSI). was reduced by 85% for numerous examples (reducing full-day
jobs into less than an hour) [5]. The reductions occurred because
l. INTRODUCTION synthesis uses nonlinear (e.g., quadratic) heuristics, so the sum of

Synthesis automatically converts a behavioral process into a Crusr_ltlmes for synthesizing the parts is less than that for synthesizing

; . . whole. Other experiments showed tpatver consumptionvas
tomized digital-hardware processor. However, a large behawoF%Euced by an average of about 50% [6] because each operation

process may pose several problems for synthesis. First, synthesis ; o -
. .executes on a smaller subprocessor having less switching activity
runtime may last tens of hours or more. Second, the resulti

) . . "Wan one large processor, while all other subprocessors are idle
processor may have high power consumption. Third, the resultin . o s

s . and hence naturally isolated from switching activity. Note that no
processor’s size may exceed package [e.g., field-programmable 9%1 e

. y odifications of the synthesis tool are required to obtain such power
array (FPGA)] constraints or may yield a module too large for a : . o :
. . reduction, since the partitioning is done before synthesis. Recent
physical-design tool to handle well. Each of these problems has previ- . L
. . results have shown that functional partitioning can be followed by
ously been addressed by different techniques. For example, synthesis.. . . .
ting lower level power reduction techniques (such as latching of

; ' e €
runtime has been addressed by developing heuristics that tradeft(]}grﬁf?:tional-unitinputs and clock gating) to achieve even greater reduc-

runtime with quality [1], package/module size constraints thrOngtlons.. Also, experiments showed that package/moslizke constraints

_structural partitionir)g of the processor [2] and time-multiplexi_n%vere much more easily met than when using structural partitioning.
inputoutput (I/0) signals over wires [3], and power consumptio gfs is because structural partitioning is typically I/O limited [2],

through isolation of processor subcircuits to avoid unnecessary sign . :
switcging [4] P Y $198%ce structural components are highly interconnected and thus any

We previously hypothesized that functional partitioning could ad)_arnnomng results_ N many wires crossing between _parts. On the
. . .- other hand, functional partitioning of a large behavioral process,
dress many such problems simultaneously. In functional partitioni

. 7 . . being a temporal rather than a spatial partitioning, can usually find
we first divide a large process into smaller mutually exclusive o .
) a partitioning with only a small amount of data shared between

subprocesses, then synthesize a subprocessor for each subprocess, . . :
o o ; arts. Reductions in maximum /O per part ranged 33-53%, and
resulting in communicating mutually exclusive subprocessors, as

reductions in total 1/0 ranged 27-67%, resulting in far fewer required

illustrated in Fig. 1(b). In contrast, in structural partitioning, one - o
. . - arts to implement a system. Other advantages are also possible;
first synthesizes a processor and then partitions that processors -
P . . e or example, we have found performance improvements due to the

components, as shown in Fig. 1(a). While functional partitioning has , . o
been done manually in the past. automated approaches onl recesr,[r|1aller subprocessors’ having shorter critical paths and hence faster
y past, bp y co)ék periods [5]. Some have also observed that physical design

became possible because of the now common practice of descnblrrlgblems, such as clock skew and the high cost of wires in deep

a system's functionality in a machine-readable language like VH submicrometer technologies, could be addressed using functional
or C++. The hypothesis was that such partitioning would make the gies, 9

obs of svnthesis. packadin hvsical desian. and debuaaing mis rtitioning [7]. The main drawback of functional partitioning is an
J Y P ging. phy an. 9ging Increase (typically 20% in our examples) in gates because of less
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penalty. PCSbus  pubkey d pubkey_n
The large-process partitioning problem we address differs from the ilo L“ ],64
more widely studied multlple-prgcess partitioning problem, in which char MIMSE,_SIZE:
numerous processes are partitioned and scheduled among software Long ModExp(char , long b, long n)
void TransmitMsg() {

and/or custom hardware concurrent processors [8]-[14]. The larg
process problem we address focuses on behavior that is inherently

D
I

long c.d; inti;
for (int num=0; num < MSG_SIZE; num++) }:; (i;=siz:of;(long)’8)-1 (i=0iin)
msg =M[num];

. . L {
sequential rather than parallel, and focuses on implementation issues  msg encoded = EncodeMsg(msg); c=24c;
. . . . . SendPCS(msg_encoded); d = (d*d)%n;
like synthesis time, power consumption, and I/O; parallelism may b¢ ) i(f(resmmb.m

a goal, but it is not the main one. We have found such inherentl l)ongEncodeMsg(cmmg)

sequential behavior in large processes to be quite common. For (m“bkeyinlzo)
example, a process representing a direct memory access controller el:r{umModE(mmsg pubkey_d, pubkey_n); ,}emm &
may possess ten different modes, each representing a configuration ) SendPCS(ERRORY; retum(0); )

mode or a different type of block transfer mode, and each having—"'

tens of states—the controller is only in one of these modes ,%. 2. A single-process RSA encryption example.
any given time. Our solution to such a large-process partitioning

problem uses subprocessors that may be mutually exclusive, in stark

contrast to the concurrently executing processors used in the multiﬂ jaxed. V:/f d(_emot?strgtf_ thtrOléth expetrlm_ents tTat thlsfrelaxatlon
process problem. We point out that synthesis-tool vendors typica ows partitioning heuristics to better optimize system performance.

recommend that such large-process partitioning be done manually
before running synthesis (e.g., no process should have moreXthan
states), so our work can be seen as formalizing and automating such
manual partitioning. A. Input
However, note that the ability to execute operations in parallel The input to our single-process functional partitioning problem
within each subprocessor is preserved. This is important since densists of a single functional process, such as a C program or a
speed gained through such operation-level parallelism is likely\@HDL process. The process describes a complex repeating sequential
main reason, along with reduced power consumption and lower higibmputation, often consisting of hundreds of modes or states, and
volume costs, for using custom hardware rather than a softwaypically requiring many hundreds or thousands of lines of sequential
processor despite the lack of process-level parallelism. One shoptldgram code. The input process can be viewed as consisting of a
note that a single custom-hardware processor may have hundreglsof procedured” = {fi, f2, ---, f»}, With one representing a
or thousands of mutually exclusive states, so when combined witfain procedure (in VHDL, the process body is the main procedure).
the fact that gates are becoming cheap, it makes sense to exanvariable or port is treated as a simple procedure, with reads and
ine the benefits of partitioning a single processor into exclusivgrites being procedure calls. Execution Bfconsists of procedures
subprocessors. executing sequentially, starting with the main procedure, which in
Previous work in single-process partitioning has evolved from fin@urn calls other procedures; at any given time, only one procedure
grained arithmetic-operation-level approaches to our coarser graingdctive—in other words, the procedures are mutually exclusive.
procedure-level approach, in order to handle increasingly largérstraightforward synthesis were applied to this process, then the
processes. The early approaches in Yorktown Silicon Compiler (YSggsult would be a single custom-hardware processor, consisting of a
and Aparty [15], [16] focused on the logic and arithmetic-operatiogontroller and a datapath.
levels, with goals including improved synthesis and physical de-Fig. 2 shows a simple single-process example (simplified
sign. Vulcan [17] also partitioned arithmetic operations, but witfrom a 230-line C example). The example describes a portable
the goal of satisfying packaging constraints and extracting sorRévest—Shamir—Adleman (RSA) encryption device that holds a
parallelism. Other arithmetic-operation-level approaches with the geakssage in a character bufféf. The device has a PC serial-port
of multichip partitioning combined with the behavioral synthesis tasksxternal interfacéCSbuswhich we assume requires ten I/O’s. The
of scheduling and component allocation [18]-[20]. Our early workransmitMsgprocedure encodes and then uploads the message to a
shared the multichip partitioning goal but focused at the higher leveC. The actual encoding is done by procedEreodeMsgwhich
granularity of procedures rather than arithmetic operations [21]. Singses two public keys provided as external inputs, each requiring 64
then, we have proposed numerous heuristics and estimation modlggs. This example is quite small and serves only for illustrating
for such partitioning [10f. concepts in this paper.
Regardless of whether we perform single-process partitioning to
improve /O, synthesis time, power, or physical design, we wagt Partitioning Approach
to minimize each subprocessor's l/O. Such l/O exists for one of Partitioning is achieved by first converting the input into a call

two reasons: to connect with an input/output e)fternal tc_> the SySt%rPaph. For example, Fig. 3 shows a call graph for the earlier example.
(external 1/Q or to connect one subprocessor with anottiete¢nal

Fach node represents a procedure (recall that variables and ports are

I/0). In the past, minimizing internal /O (often called the cut size .
dominated research. While functional partitioning can reduce interr%rafated as procedures), and each edge a procedure call (with edge

- Lo L Irection indicating the accessor and accessee, not the direction of
I/O as described above, we describe in this paper two additional tech- . . .
. . ) . ata flow). We have annotated the port edges with their data widths,
niques that further improve I/O. First, tlinctionBusenables us to

: ) . . since those edges will become wires because the system’s external
trade off internal 1/O size with performance. Second, jtbet-calling 9 y

transformation. used in coniunction with the FunctionBus enablgorts are fixed. Further details on the call graph and annotations can
o ! o ' 2 found in [22]. Partitioning of the nodes is achieved using standard
us to distribute external I/O almost arbitrarily among subprocesso

i . . . ) ¥id custom partitioning heuristics. Those heuristics are guided by
With these two techniques, the I/O salisfaction problem is greatéétimates of design metrics. Estimates are computed using two phases.

In the first phase, called preestimation, the call-graph nodes and edges
1See also http://www.cs.ucr.edu/ vahid. are heavily annotated with numerous metric-related values obtained

c=c+1;
d=(d*(long)a)%n
}

II. PROBLEM DESCRIPTION
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PCSbus pubkey d pubkey n ~We will focus in this paper on subprocesses destined for synthe-
*64 ,1\64 sis, although compilation could convert a subprocess into software
running on a standard processor, differing from a synthesized cus-

SendPCS\ tom processor in its cost, performance, power, design time, etc.

10

Hence the approach described can also be applied to some cases
of hardware/software partitioning.

TransmitMsg___ -, EncodeMsg Note that processors are orthogonal to packages. A package, such
as an application-specific integrated circuit or an FPGA, is a physical
structure that implements processors. A package may implement more

M ModExp than one processor, as is often the case now with system-on-a-chip
technology.
Fig. 3. Call graph for the RSA example.
Ill. FuNcTiONBUS
PCS;“:O P“"‘“*y;‘: P“:::Y-" Because we focus on a particular functional partitioning sub-
P — N problem, namely, that of partitioning one Iarge process rather than
\ numerous processes, we can develop a specialized shared bus struc-
L 8 EncodeMsg ture and protocol specifically optimized for that subproblem. In
; 1810 * particular, we require that the multiple processes are synchronized
M ModExp such that only one will ever attempt to write to the bus at a given

time. This assumption is satisfied in the above problem definition,

(a) . .
since the output processes are mutually exclusive.

PCSbus pubkey_d pubkey n
S ?w Jor foo A. Comparison with Earlier Cut-Edges 1/0O Approach
1 | LunctionBus Most previous approaches to functional partitioning among hard-
TaansmitMss | BocodeMs ware parts used a cut-edges 1/0O approach. Specifically, each edge
¢ 3 10 or more l crossing between parts would require a unique /O, as illustrated in
e ModExp Fig. 4(a). Each edge would also require one control line to carry
() out a two-phase handshake data-transfer protocol. A similar cut-

edges approach is also used during structural partitioning. However,
%cause procedures modularize a process into pieces that each operate
on a data subset, the cut-edges approach used during functional
partitioning can yield much less internal 1/0O than when used during
through rough synthesis and profiling, such as the number of contstductural partitioning [5].

steps per procedure and the number of bits transferred over an edgé the FunctionBus approach, all internal 1/O is time-multiplexed

In the second phase, called on-line estimation because it occaver a single bus, as illustrated in Fig. 4(b). The bus protocol must
during the actual execution of a partitioning heuristic, annotatiomsclude an address used to demultiplex the bus data. The FunctionBus
are combined using complex equations to yield estimated values &lows us to choose the internal I/O size, trading off 1/O with
overall design metrics like size, performance, and power. Functiorgrformance. At one extreme, we can choose a size equal to the
partitioning details have been described elsewhere; we refer the readeximum size of data to be transferred, and we can choose a one-

Fig. 4. Partitioned process with alternative internal 1/0 implementations: (
cut-edges and (b) FunctionBus.

to [10]. hot address encoding scheme; note that this extreme is identical to
a cut-edges approach in which time-exclusive edges share the same
C. Partitioning Implementation Model I/0. At the other extreme is a serial bus. We will most often choose

Functional partitioning groups procedures into subse?‘somethlng in between 'these two extremes. .

{p1, ps, -, pm}, each corresponding to a subprocess, such Note that the FunctionBus (as well as the buses created in a

wis » s Pm s ’ P .
. . .~_cut-edges approach) is intended to serve as an internal bus for a

that every procedurg; is assigned to exactly one subprocess, i.e; 9 N bp ) ;

p1UpsU-eep F andp: N p; = 0 for all i, j, i # j. Execution processor” (in quotes because that processor consists of several

7 1 2 ... m = 7 y ] = s .' . b g

of F' is the same as above. Since only one procedurE is active subprocessors), as illustrated in Fig. 5. In particular, the FunctionBus

at a time during execution, then only one subprocess will be acti'genOt intended as a replacement o existing interprocessor system

. . : X uses such as peripheral component interconnect (PCI) or controller
at a time, although this mutual exclusion assumption can be relaxe
ea network (CAN).

to allow for some parallelism. Fig. 4 shows an example partition 8

the RSA example among two subprocesses. )
Each subprocess, will, when generated, consist of a loop thatB: Architecture

detects a request for one of the subprocess’ procedures, receivésg. 5 illustrates the FunctionBus architecture. Multiple subpro-

the necessary input parameters, calls the procedure, and sends baskors are connected by a single bui®: consists ofNV lines, used

any output parameters. Synthesis will convert each subprocess into Zarry address and datdreq is a single line used to indicate a

subprocessor; the collection of subprocessors represents an equivalelid address omdD. Dreq is a single line used to indicate valid

alternative to a single processor implementationfofA procedure data onAD. All lines are bidirectional. Only one subprocessor will

on a subprocessor may be implemented using any one of vari@asitrol the bus at a time, with the others providing high impedance.

techniques, such as a control subroutine, a datapath compongithough conceptuallyv could be as small as one, ahsmaller than

or even inlining. Synthesis may implement some of a procesie size required to encode all addresses could result in significant

procedures in parallel, as long as data dependencies are not violgledormance and size penalties due to the extra cycles and hardware

and no bus contention arises. needed to decode each address.
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Extemnal I/O (including system bus) delay
high
A A Areq I | impedance
Processor V * -t

sub-processor sub-| rocessor hlgh
P S P! Dreq impedance
Callee Caller ar high

AD addr addr >_4nplann>7%<[ﬂ13m n>_imgeaa.r_1€g

(@

FunctionBus
(Internal /O) delay

Areq high
Dreq Areq I impedance

Fig. 5. FunctionBus architecture. Rewan utpar Outpar o l_ugh
AD addr >—<O 1 ) ’ ( n ) impedance

PCSbus pubkey_d pubkey_n (b)
tlo lu La
Fig. 7. Timing diagrams: (a) procedure call and (b) procedure return.
char M[MSG_SIZE]}; void mainQ)
{
void TransmitMsgQ Fi-i“ro'
e o }";B“ v D. Communication
for (int num=0; num < MSG_STZE; num++) N _Rec(FB msg,1);
{ msg = M{num); msg_encoded = BncodeMsg(msg_raw); From the above discussion, we see that there are two types of
T e et j TRSeadFR Trussitvés, mw enemded 91 communications that occur over the FunctionBuspracedure call
- ’ } . . . .
| SeodBCS(s encodod); consists of sending the address, possibly a return address, and input
) }"“_‘r‘;““"w"‘]'s‘f‘;’)‘"”s“’ parameters. Arocedure returrconsists of sending the return address
1l ol
g ModExpimsg, puey.d, ey and output parameters.
. SendPCSERROR); setum(0); Both communications use similar protocols, shown in Fig. 7. Both
begin by placing the address of the receiver procedure [the callee in
ong MOIERY(Ar 1, bng by koog ) (a) and the caller in (b)] ontD and pulsingAreq. The procedure
call protocol then places the return addressddn and pulsereq.

nBoth then send a sequence of data chunks by placing a chunk on
XD and pulsingDreq.
The parameter data must therefore be broken into chunks
of size AD.width. The number of chunks will thus equal
) ) ] ) Ceiling(parms.bits{AD.width). As stated earlier, we require
We illustrate the general behavior of the FunctionBus using thep ,idth to be at least equal to the number of address bits,
earlier example of Fig. 2, partitioned into two processes as shoW[iminating the need to assemble the address bits and thus simplifying
in Fig. 6. Previously, TransmitMsgstepped through its messageinhe FunctionBus control design.
passing each character #ncodeMsg,which in turn passed that  poth of the above communications are composed of just two basic
character along with two keys (from external portsModExp After  protocol actions:Send and Receive. Send places the receiver's
partitioning, TransmitMsgcan no longer calEncodeMsgdirectly, aqqdress and then the sequence of data (return address plus input
since the latter is on a different subprocessor. Inst@eahsmitMsg parameters or output parameters), dhd-cive waits for its address
sends the character over the FunctionBus, with a destination addrgsg then receives and assembles the data. Fig. 8 provides pseudocode
of FB_EncodeMsgand then waits to receive the encoded resulkynctionBus procedures suitable for creating C, VHDL, or Verilog
We assume a FunctionBus of size eight, requiring one data transfgplementations of the send and receive protocols. For efficiency,
by the FB_Sendroutine. Meanwhile, the other process receives thge would likely create unique procedures for each data size being
character, callEncodeMsgand then returns the encoded charactgfsnsmitted (byte, word, etc.), eliminating the need for the third

by sending it over the FunctionBus #B_TransmitMsgNote that parameter. Generating the FunctionBus procedures automatically is
each procedure must know the return address, i.e., the addresg, %f[raightforward task.

the procedure’s caller. A procedure with just one caller has justgince each subprocessor is dedicated to executing one process, each
one return address, so the address can be hard coded. FUNCigpSrespond immediately to its address on the bus. Thus, the length
with multiple callers will have multiple return addresses. In somgs 5 pulse can be just one clock, when all components use the same
cases, the sequence of return addresses from a given procedurecfk. we see that a while a procedure call within a subprocessor has
be determined statically, so we can simply hard-code those addresggs.ommunication overhead, a procedure call to another subprocessor
In other cases, the sequence is data dependent and thus can on/z8€; minimum overhead of one clock cycle for communication, and

known during dynamic execution. In such cases, the caller must sefgtsiply more if the parameter data width exceeds the FunctionBus
its address when calling the procedure. Note that since we requjigiin.

nonrecursive specifications, then there will only be one return address

per procedure at a time, and so no stack is necessary. In the case ] ] o

of the simple example above, the FunctionBus transfers are static&ityRelaxing the Mutual-Exclusion Restriction

determinable, and therefore actually we could eliminate the addresse#/e initially assumed that each procedureFirexecuted in mutual
altogether, but this situation is not the norm. exclusion. This assumption assured us that after partitioning, each

Fig. 6. Refined RSA specification for a partition, using FunctionBus se
and receive procedures.

C. General Behavior



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999 73

FunbusSend(addr, data, num) PCSbus pubkey_d pubkey_n
FunbusRec(addr, data, num)
// Send the address ? 10 ’? 64 'T‘ 64
ﬁ?eq z ?ddr /I Wait for correct address SendPCS AccD
wait for fb.delay wait until Areg=1 and AD=addr T \T— FunctionBus
Areq =0 // Receive the data Q-
// Send the data foriin 1 to num loop TransmitMsg [=EncodeMsg
foriin 1 to num loop base =1 * fb.size
base =i * fb.size - ’ \L
AD = data[base..(base+fb.si it until Dreq=1
Droe 1 [base..(base+fb.size)] w'al 1;111 req; ' M ModExp
wait for delay data[base..(base+fb.size)} AD
Dreq=0 end loo,
end logp P Fig. 9. Port-call transformation enabling redistribution of external I/O in the
/] Release the bus RSA example.

Areq = Dreq = AD = high imped.

Fig. 8. Send and receive protocols.
8 8 address+control
. . 8 3

process was mutually exclusive with respect to the need to send data ~-—»p; 3 A el a
over a shared bus, and therefore we could design the FunctionBus _ dgaw e S 3
without arbitration. We can relax the mutual-exclusion restriction ,ero‘ 3,

e Controller C
further. After partitioning, we can execute same-process procedures 8
as well as different-process procedures in parallel, as long as we Parallel D
can analyze those procedures such that we can guarantee that two /0

procedures will not simultaneously try to access the FunctionBus.

More generally, one can treat the FunctionBus as a shared resourige10. Extended parallel I/O.
and use static scheduling (if possible) to prevent bus contention.
Ideally, after such scheduling, the various processes would oloeratessible expense of a few extra clock cycles required to pass the data

such that no additional global scheduler would need to be add ?'tween the port-call procedure and the accessor procedure.

Otherwise, a global scheduler process would need to be added, like or example, consider the RSA example from Fig. 8. The second

requiring lines in ition he FunctionB rdin h . . X :
equiring lines in addition to the FunctionBus to coordinate ¢ Subprocessor required 128 external 1/0's, while the first only required
processes. . S ; . :

. . N ... ten. We can alleviate this imbalance using port calling. We introduce
Further relaxation would require bus arbitration. Such arbitration .
. . : X - .a port-call procedurdccD for accessing theubkey doort, and then
increases bus cycles and bus logic complexity, but is useful if th - . ;
. . . we repartition by moving that procedure to the first subprocessor, as
input process possesses a large amount of potential parallelism among.
. . - 1n Fig. 9. The external I/O for the subprocessors becomes 64 and 74;
its procedures. Such a process differs from those we are focusing, on .

having a large number of (sequential) states the interal I/O stays the same.
' We must decide which port accesses should have port-call nodes

introduced to achieve improvements. Predicting those accesses that,
when replaced by port-call nodes, would lead to such improvements
) is a difficult task. We note, though, that the number of external ports
A. Overview typically grows only sublinearly with respect to the specification size.
In a FunctionBus approach, the internal 1/O size is fixed (antherefore, we can introduce a port-call node for every port access
typically small, like 16 or 32). Hence the only variation in awithout excessive growth in computational complexity. Thus, our
subprocessor’s 1/0 comes from the external I/O accessed by thaproach is to:
subprocessor’s procedures. The port-calling transformation will allow 1) transform the call graph by introducing port-call nodes for
us to redistribute such external port I/O to subprocessors other than every port access;
the accessing procedure’s subprocessor.
The transformation consists of introducing a new procedure, calle ) S
a port-call procedure, in between the original accessor procedure and) inverse transfornthe call graph by eliminating each port-call
the port itself. This procedure may, upon being called by the accessor node that appears on the same subprocessor as its accessor.
procedure, read the port or write the port (as will be discussed furtherThe inverse transfornstep is necessary to eliminate unnecessary
in the next section) on behalf of that procedure. Thus, from thEort-call nodes, so that only those nodes needed to distribute I/O to
accessor's perspective, accessing the port has been replaced layaiher subprocessor remain. Note that the partitioning heuristics and
procedure call. associated estimation models and cost functions need not be changed
In a call graph, a port-call procedure is represented as any ott@@account for the port-call transformation, since the introduced nodes
procedure, i.e., a node. This node can be partitioned among subpeok just like any other procedures.
cessors just like any other procedure. If this node is separated from itdNote that port calling is a generalization of the commonly used
accessor procedure, any data transfer will take place over the existilegign technique of extended parallel I/O. For example, consider
FunctionBus; since the 1/O for the FunctionBus already exists andfgy. 10. A microcontroller with limited ports must interface to four
fixed, such data transfer does not require any additional interproces8dait external ports A, B, C, and D, using just one 8-bit port P3 and
I/0. Since a port-call node has extremely simple contents, and herctew bits of P2. A common solution to this problem is to introduce
when implemented will not contribute noticeably to a subprocessogsparallel 1/0 (PIO) chip, which multiplexes the four external ports
size, it can be partitioned to nearly any subprocessor. We therefore seer the single 8-bit data port, or demultiplexes the 8-bit data port
that introducing port-call nodes, in conjunction with the FunctionBu$o the four external ports, depending on its input address and control
yields the ability to freely distribute 1/O among subprocessors, at tliaes. The bus between the microcontroller and PIO chip is akin

IV. PORT-CALLING TRANSFORMATION

d2) partition the call graph using existing heuristics;
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datatype PortCallRead() TABLE |
I/O IMPROVEMENTS USING THE FUNCTIONBUS VERSUS A
return(P); CuT-EDGES APPROACH DURING FUNCTIONAL PARTITIONING
i Example| Size0 Sizel{IO0 101 Perf. % improvement
void PortCallWrite(datatype d) (gates) (wires) (cycles)|Max IO Total 10 Perf.
ether 12142 125271119 154 196
P=d ether_fb (11795 12874| 53 34 194]  66% 68% 1%
} fuzzy 52414 59287 43 67 7980
datatype PortCallReadOrWrite(datatype d, bit read) fuzzy fb {51899 59802| 26 34 10888 49% 45% -36%
itv 54746 98386(140 40 9617
if (read) itv.fb  [51649 101483 91 61 10049 35% 16% -4%
return(P) mwt 4734 5224 65 79 759
else mwt_fb | 4511  5447| 40 32 799  49% 50% -5%
{P =d; return(0);} ans 6387 6244|119 66 44
ans_fb 6140 6491| 85 98 44 18% 1% 0%

Fig. 11. Port-calling procedures.

to the FunctionBus, and the control internal to the PIO is essentially other

equivalent to port-call functionality. Port calling is more general sincg 41

we can move the functionality to chips other than just PIO chipg,£ o]

'Z 300

such as to an FPGA during hardware/software partitioning, or evergggg;

another microcontroller. 8
504
o +
B. Port-CaIIing Procedures 318 430 452 474 ‘96 ﬁ ‘sg fi 15; 152 :18 gg 716 738 850 872 394 :x:s fg 332 ?3 19; ;s Zg
After the call graph is partitioned, a new subprocess must he mAYR AN wime max VO. AD wires

generated for each group of procedures representing a subprocessor.
Each subprocess will monitor the FunctionBus for the address pf
one of its procedures, capture any input parameters from the bUSsm,
call the procedure, return by placing a return address and any outfx
parameters on the bus, and resume detecting an address. A call fgeae
procedure of another subprocess is replaced by FunctionBus call aeho

return routines. Port-calling procedures require no special treatm Ntsooo :
appearing as any other procedure. We thus only describe the contgnts® {7 b o

mwt

25 27 29 3 33 35 37 39 41 43 45

of such procedures here; partitioning and subsequent FunctionBus ' = 5 7 2 a1 15 1 17 19 21 = T s 7 e 1] ta 15 17 fo 2
routine insertion will take care of the communication between the
port-call procedure and the accessor procedure. Fig. 12. 1/0 and performance tradeoffs by varying FunctionBus size.

The port-call procedures for accessors that read, write, or both
read and write a port are shown in Fig. 11. Note that each is trivial
to implement, and so could be moved freely among parts. Insertinghumber between one and zero. Table | shows the 1/O improvements

these procedures automatically is a straightforward task. obtained for each example for a FunctionBus data-bus size of 16,
along with the performance penalties. Note that these I/O improve-
V. EXPERIMENTS ments are in addition to those 1/0O improvements already gained over

We have implemented a functional partitioning tool as part of tigructural partitioning; examples of such complexity typically have
SpecSyn system exploration environment [10]. We have extendi®yeral hundred I/O’s for a two-way structural partition.
the tool to support the FunctionBus and port calling. Earlier work
demonstrated that functional partitioning can significantly reduce I/ 1/0 and Performance Tradeoffs Using the FunctionBus
requirements compared with structural partitioning [5]. The above results assumed a fixed data bus of 16 bits. However,
a key feature of the FunctionBus is the ability to trade off I/O with
A. FunctionBus Versus Cut-Edges I/O During Functional Partitioningerformance by varying the data-bus size. Fig. 12 illustrates the I/O
Functional partitioning using a FunctionBus approach can yieRnd performance tradeoffs obtained by varying the FunctionBus size
even further 1/0O improvements. To demonstrate this idea, we ®r several of the examples (given a fixed partition for each example).
perimented with five examples: an Ethernet coprocesstiref, a The numbers on the-axis at the top are the maximum 1/O for
fuzzy logic controller {uzzy, an interactive TV settop boit¢), a €ither subprocessor, while the numbers at the bottom are the bus
microwave transmitter controllemriv), and an answering machinesize. They-axis shows the performance in cycles. We can see that
(ang. Each consisted of a few hundred lines of VHDL algorithmiéhe FunctionBus provides quite a bit of flexibility to trade off I/O
code. We performed two-way partitioning on each example, using théth performance.
simulated annealing heuristic built into the partitioning tool, and using Particular attention should be paid to the values onytagis. Note
a cost function seeking to minimize execution time and /O whilthat thefuzzyexample is extremely sensitive to the bus size, meaning

maintaining balanced subprocessor sizes. In particular, a simplifié@t the partition had significant interprocessor communication. Thus,
version of the cost function looks like a large FunctionBus might be in order for that example if performance

is important. On the other hand, tite example did not demonstrate
this sensitivity, so a smaller FunctionBus might be used. Of course,
whereet is execution timejo is total I/O, sizel and size2 are the sizeshe actual selection of the bus size depends on the relative importance
of the two parts, and th&’s are functions that normalize each term tmf performance, 1/O, and other metrics.

Cost= N (et) + Nio(io) + Nsize(|sizel- sizel)
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TABLE I the internal I/O size arbitrarily, trading off 1/O size with performance.
I/O AND PERFORMANCE IMPROVEMENTS WHEN USING THE Using port calling, 1/0O can be easily redistributed from one subpro-
PORT;:CALL'NG QRA'“DSFORMA'T:'ON IN CONJIL;NCT'ON WITH cessor to another. We showed through experiments that these two
THE FUNCTIONEUS DURING FUNCTIONAL FARTITIONING techniques yield extremely small I/O sizes for several examples, with
Example | Size0 SizeI[IO0 IO1  Perf. % improvement only small overall performance penalty, if any. Thus, port calling and
T 133%”93343 (;"E;rei)s (Cydle;i Max IO Total IO Perf.  the FunctionBus are important features in a functional partitioning
etherfb_pc|13478 11202| 38 37 194 21% 14% oo tool, and su_ch toc_>|s are becoming more important for improving
fuzzy_fb  |51899 59802 26 34 10888 I/0, synthesis runtime, power, cost/flexibility tradeoffs, and physical
fuzzyfb_pc|58511 53193] 34 26  8356| 0% 0% 23%  design problems.
itv_fb 51649 101483| 91 61 10049
itv-fb.pc  [53288 99872} 70 57 9653 23% 16% 4%
mwt_fb 4511  5447| 4D 32 799 REFERENCES
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