
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999 69

Short Papers

Techniques for Minimizing and Balancing
I/O During Functional Partitioning

Frank Vahid

Abstract—Recent work has demonstrated numerous benefits of func-
tionally partitioning a behavioral process into mutually exclusive subpro-
cesses before synthesizing each process into a custom digital-hardware
processor. A key problem during partitioning is minimizing the in-
put/output (I/O) pins or wires between processors. The traditional struc-
tural partitioning approach is strongly restricted by such I/O. We pre-
viously showed that the new approach of functional partitioning eases
this restriction. We now demonstrate a further relaxation of the I/O
restriction by introducing the FunctionBus interprocessor bus and the
port-calling functional transformation. The FunctionBus allows choice of
any size for internal I/O by trading off I/O size for performance, while
port calling allows distribution of external I/O almost arbitrarily among
modules. We describe experiments showing large I/O reductions through
these techniques, with only small performance penalties.

Index Terms—Communication synthesis, embedded systems, hardware/
software codesign, high-level synthesis, partitioning, power minimization,
system on a chip, very-large-scale integration (VLSI).

I. INTRODUCTION

Synthesis automatically converts a behavioral process into a cus-
tomized digital-hardware processor. However, a large behavioral
process may pose several problems for synthesis. First, synthesis
runtime may last tens of hours or more. Second, the resulting
processor may have high power consumption. Third, the resulting
processor’s size may exceed package [e.g., field-programmable gate
array (FPGA)] constraints or may yield a module too large for a
physical-design tool to handle well. Each of these problems has previ-
ously been addressed by different techniques. For example, synthesis
runtime has been addressed by developing heuristics that trade off
runtime with quality [1], package/module size constraints through
structural partitioning of the processor [2] and time-multiplexing
input/output (I/O) signals over wires [3], and power consumption
through isolation of processor subcircuits to avoid unnecessary signal
switching [4].

We previously hypothesized that functional partitioning could ad-
dress many such problems simultaneously. In functional partitioning,
we first divide a large process into smaller mutually exclusive
subprocesses, then synthesize a subprocessor for each subprocess,
resulting in communicating mutually exclusive subprocessors, as
illustrated in Fig. 1(b). In contrast, in structural partitioning, one
first synthesizes a processor and then partitions that processor’s
components, as shown in Fig. 1(a). While functional partitioning has
been done manually in the past, automated approaches only recently
became possible because of the now common practice of describing
a system’s functionality in a machine-readable language like VHDL
or C++. The hypothesis was that such partitioning would make the
jobs of synthesis, packaging, physical design, and debugging much

Manuscript received March 30, 1998; revised August 21, 1998. This paper
was recommended by Associate Editor G. Borriello.

The author is with the Department of Computer Science and Engi-
neering, University of California, Riverside, CA 92521 USA (e-mail:
vahid@cs.ucr.edu).

Publisher Item Identifier S 0278-0070(99)00808-8.

(a) (b)

Fig. 1. Partitioning approaches: (a) structural and (b) functional.

easier, i.e., several smaller processes would be easier to work with
than one large process.

Recent experiments have verified this hypothesis.Synthesis runtime
was reduced by 85% for numerous examples (reducing full-day
jobs into less than an hour) [5]. The reductions occurred because
synthesis uses nonlinear (e.g., quadratic) heuristics, so the sum of
runtimes for synthesizing the parts is less than that for synthesizing
the whole. Other experiments showed thatpower consumptionwas
reduced by an average of about 50% [6] because each operation
executes on a smaller subprocessor having less switching activity
than one large processor, while all other subprocessors are idle
and hence naturally isolated from switching activity. Note that no
modifications of the synthesis tool are required to obtain such power
reduction, since the partitioning is done before synthesis. Recent
results have shown that functional partitioning can be followed by
existing lower level power reduction techniques (such as latching of
functional-unit inputs and clock gating) to achieve even greater reduc-
tions. Also, experiments showed that package/modulesize constraints
were much more easily met than when using structural partitioning.
This is because structural partitioning is typically I/O limited [2],
since structural components are highly interconnected and thus any
partitioning results in many wires crossing between parts. On the
other hand, functional partitioning of a large behavioral process,
being a temporal rather than a spatial partitioning, can usually find
a partitioning with only a small amount of data shared between
parts. Reductions in maximum I/O per part ranged 33–53%, and
reductions in total I/O ranged 27–67%, resulting in far fewer required
parts to implement a system. Other advantages are also possible;
for example, we have found performance improvements due to the
smaller subprocessors’ having shorter critical paths and hence faster
clock periods [5]. Some have also observed that physical design
problems, such as clock skew and the high cost of wires in deep
submicrometer technologies, could be addressed using functional
partitioning [7]. The main drawback of functional partitioning is an
increase (typically 20% in our examples) in gates because of less
component sharing, but as chip capacities have continued to grow
exponentially and hence gates have become cheaper, this increase is
not a problem in many if not most applications. Also, if an example
does not have a natural temporal partitioning, then communication
between subprocessors may be heavy, resulting in a performance

0278–0070/99$10.00 1999 IEEE

70 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

penalty.
The large-process partitioning problem we address differs from the

more widely studied multiple-process partitioning problem, in which
numerous processes are partitioned and scheduled among software
and/or custom hardware concurrent processors [8]–[14]. The large-
process problem we address focuses on behavior that is inherently
sequential rather than parallel, and focuses on implementation issues
like synthesis time, power consumption, and I/O; parallelism may be
a goal, but it is not the main one. We have found such inherently
sequential behavior in large processes to be quite common. For
example, a process representing a direct memory access controller
may possess ten different modes, each representing a configuration
mode or a different type of block transfer mode, and each having
tens of states—the controller is only in one of these modes at
any given time. Our solution to such a large-process partitioning
problem uses subprocessors that may be mutually exclusive, in stark
contrast to the concurrently executing processors used in the multiple-
process problem. We point out that synthesis-tool vendors typically
recommend that such large-process partitioning be done manually
before running synthesis (e.g., no process should have more thanX

states), so our work can be seen as formalizing and automating such
manual partitioning.

However, note that the ability to execute operations in parallel
within each subprocessor is preserved. This is important since the
speed gained through such operation-level parallelism is likely a
main reason, along with reduced power consumption and lower high-
volume costs, for using custom hardware rather than a software
processor despite the lack of process-level parallelism. One should
note that a single custom-hardware processor may have hundreds
or thousands of mutually exclusive states, so when combined with
the fact that gates are becoming cheap, it makes sense to exam-
ine the benefits of partitioning a single processor into exclusive
subprocessors.

Previous work in single-process partitioning has evolved from fine-
grained arithmetic-operation-level approaches to our coarser grained
procedure-level approach, in order to handle increasingly larger
processes. The early approaches in Yorktown Silicon Compiler (YSC)
and Aparty [15], [16] focused on the logic and arithmetic-operation
levels, with goals including improved synthesis and physical de-
sign. Vulcan [17] also partitioned arithmetic operations, but with
the goal of satisfying packaging constraints and extracting some
parallelism. Other arithmetic-operation-level approaches with the goal
of multichip partitioning combined with the behavioral synthesis tasks
of scheduling and component allocation [18]–[20]. Our early work
shared the multichip partitioning goal but focused at the higher level
granularity of procedures rather than arithmetic operations [21]. Since
then, we have proposed numerous heuristics and estimation models
for such partitioning [10].1

Regardless of whether we perform single-process partitioning to
improve I/O, synthesis time, power, or physical design, we want
to minimize each subprocessor’s I/O. Such I/O exists for one of
two reasons: to connect with an input/output external to the system
(external I/O) or to connect one subprocessor with another (internal
I/O). In the past, minimizing internal I/O (often called the cut size)
dominated research. While functional partitioning can reduce internal
I/O as described above, we describe in this paper two additional tech-
niques that further improve I/O. First, theFunctionBusenables us to
trade off internal I/O size with performance. Second, theport-calling
transformation, used in conjunction with the FunctionBus, enables
us to distribute external I/O almost arbitrarily among subprocessors.
With these two techniques, the I/O satisfaction problem is greatly

1See also http://www.cs.ucr.edu/˜vahid.

Fig. 2. A single-process RSA encryption example.

relaxed. We demonstrate through experiments that this relaxation
allows partitioning heuristics to better optimize system performance.

II. PROBLEM DESCRIPTION

A. Input

The input to our single-process functional partitioning problem
consists of a single functional process, such as a C program or a
VHDL process. The process describes a complex repeating sequential
computation, often consisting of hundreds of modes or states, and
typically requiring many hundreds or thousands of lines of sequential
program code. The input process can be viewed as consisting of a
set of proceduresF = ff1; f2; � � � ; fng, with one representing a
main procedure (in VHDL, the process body is the main procedure).
A variable or port is treated as a simple procedure, with reads and
writes being procedure calls. Execution ofF consists of procedures
executing sequentially, starting with the main procedure, which in
turn calls other procedures; at any given time, only one procedure
is active—in other words, the procedures are mutually exclusive.
If straightforward synthesis were applied to this process, then the
result would be a single custom-hardware processor, consisting of a
controller and a datapath.

Fig. 2 shows a simple single-process example (simplified
from a 230-line C example). The example describes a portable
Rivest–Shamir–Adleman (RSA) encryption device that holds a
message in a character bufferM . The device has a PC serial-port
external interfacePCSbus,which we assume requires ten I/O’s. The
TransmitMsgprocedure encodes and then uploads the message to a
PC. The actual encoding is done by procedureEncodeMsg,which
uses two public keys provided as external inputs, each requiring 64
I/O’s. This example is quite small and serves only for illustrating
concepts in this paper.

B. Partitioning Approach

Partitioning is achieved by first converting the input into a call
graph. For example, Fig. 3 shows a call graph for the earlier example.
Each node represents a procedure (recall that variables and ports are
treated as procedures), and each edge a procedure call (with edge
direction indicating the accessor and accessee, not the direction of
data flow). We have annotated the port edges with their data widths,
since those edges will become wires because the system’s external
ports are fixed. Further details on the call graph and annotations can
be found in [22]. Partitioning of the nodes is achieved using standard
and custom partitioning heuristics. Those heuristics are guided by
estimates of design metrics. Estimates are computed using two phases.
In the first phase, called preestimation, the call-graph nodes and edges
are heavily annotated with numerous metric-related values obtained

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999 71

Fig. 3. Call graph for the RSA example.

(a)

(b)

Fig. 4. Partitioned process with alternative internal I/O implementations: (a)
cut-edges and (b) FunctionBus.

through rough synthesis and profiling, such as the number of control
steps per procedure and the number of bits transferred over an edge.
In the second phase, called on-line estimation because it occurs
during the actual execution of a partitioning heuristic, annotations
are combined using complex equations to yield estimated values for
overall design metrics like size, performance, and power. Functional
partitioning details have been described elsewhere; we refer the reader
to [10].

C. Partitioning Implementation Model

Functional partitioning groups procedures into subsets
fp1; p2; � � � ; pmg, each corresponding to a subprocess, such
that every procedurefi is assigned to exactly one subprocess, i.e.,
p1 [p2 [� � � pm = F andpi \ pj = ; for all i; j; i 6= j. Execution
of F is the same as above. Since only one procedure inF is active
at a time during execution, then only one subprocess will be active
at a time, although this mutual exclusion assumption can be relaxed
to allow for some parallelism. Fig. 4 shows an example partition of
the RSA example among two subprocesses.

Each subprocesspj will, when generated, consist of a loop that
detects a request for one of the subprocess’ procedures, receives
the necessary input parameters, calls the procedure, and sends back
any output parameters. Synthesis will convert each subprocess into a
subprocessor; the collection of subprocessors represents an equivalent
alternative to a single processor implementation ofF . A procedure
on a subprocessor may be implemented using any one of various
techniques, such as a control subroutine, a datapath component,
or even inlining. Synthesis may implement some of a process’
procedures in parallel, as long as data dependencies are not violated
and no bus contention arises.

We will focus in this paper on subprocesses destined for synthe-
sis, although compilation could convert a subprocess into software
running on a standard processor, differing from a synthesized cus-
tom processor in its cost, performance, power, design time, etc.
Hence the approach described can also be applied to some cases
of hardware/software partitioning.

Note that processors are orthogonal to packages. A package, such
as an application-specific integrated circuit or an FPGA, is a physical
structure that implements processors. A package may implement more
than one processor, as is often the case now with system-on-a-chip
technology.

III. FUNCTIONBUS

Because we focus on a particular functional partitioning sub-
problem, namely, that of partitioning one large process rather than
numerous processes, we can develop a specialized shared bus struc-
ture and protocol specifically optimized for that subproblem. In
particular, we require that the multiple processes are synchronized
such that only one will ever attempt to write to the bus at a given
time. This assumption is satisfied in the above problem definition,
since the output processes are mutually exclusive.

A. Comparison with Earlier Cut-Edges I/O Approach

Most previous approaches to functional partitioning among hard-
ware parts used a cut-edges I/O approach. Specifically, each edge
crossing between parts would require a unique I/O, as illustrated in
Fig. 4(a). Each edge would also require one control line to carry
out a two-phase handshake data-transfer protocol. A similar cut-
edges approach is also used during structural partitioning. However,
because procedures modularize a process into pieces that each operate
on a data subset, the cut-edges approach used during functional
partitioning can yield much less internal I/O than when used during
structural partitioning [5].

In the FunctionBus approach, all internal I/O is time-multiplexed
over a single bus, as illustrated in Fig. 4(b). The bus protocol must
include an address used to demultiplex the bus data. The FunctionBus
allows us to choose the internal I/O size, trading off I/O with
performance. At one extreme, we can choose a size equal to the
maximum size of data to be transferred, and we can choose a one-
hot address encoding scheme; note that this extreme is identical to
a cut-edges approach in which time-exclusive edges share the same
I/O. At the other extreme is a serial bus. We will most often choose
something in between these two extremes.

Note that the FunctionBus (as well as the buses created in a
cut-edges approach) is intended to serve as an internal bus for a
“processor” (in quotes because that processor consists of several
subprocessors), as illustrated in Fig. 5. In particular, the FunctionBus
is not intended as a replacement to existing interprocessor system
buses such as peripheral component interconnect (PCI) or controller
area network (CAN).

B. Architecture

Fig. 5 illustrates the FunctionBus architecture. Multiple subpro-
cessors are connected by a single bus.AD consists ofN lines, used
to carry address and data.Areq is a single line used to indicate a
valid address onAD. Dreq is a single line used to indicate valid
data onAD. All lines are bidirectional. Only one subprocessor will
control the bus at a time, with the others providing high impedance.
Although conceptuallyN could be as small as one, anN smaller than
the size required to encode all addresses could result in significant
performance and size penalties due to the extra cycles and hardware
needed to decode each address.

72 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

Fig. 5. FunctionBus architecture.

Fig. 6. Refined RSA specification for a partition, using FunctionBus send
and receive procedures.

C. General Behavior

We illustrate the general behavior of the FunctionBus using the
earlier example of Fig. 2, partitioned into two processes as shown
in Fig. 6. Previously,TransmitMsgstepped through its message,
passing each character toEncodeMsg,which in turn passed that
character along with two keys (from external ports) toModExp. After
partitioning, TransmitMsgcan no longer callEncodeMsgdirectly,
since the latter is on a different subprocessor. Instead,TransmitMsg
sends the character over the FunctionBus, with a destination address
of FB_EncodeMsg,and then waits to receive the encoded result.
We assume a FunctionBus of size eight, requiring one data transfer
by the FB_Sendroutine. Meanwhile, the other process receives the
character, callsEncodeMsg,and then returns the encoded character
by sending it over the FunctionBus toFB_TransmitMsg. Note that
each procedure must know the return address, i.e., the address of
the procedure’s caller. A procedure with just one caller has just
one return address, so the address can be hard coded. Functions
with multiple callers will have multiple return addresses. In some
cases, the sequence of return addresses from a given procedure can
be determined statically, so we can simply hard-code those addresses.
In other cases, the sequence is data dependent and thus can only be
known during dynamic execution. In such cases, the caller must send
its address when calling the procedure. Note that since we require
nonrecursive specifications, then there will only be one return address
per procedure at a time, and so no stack is necessary. In the case
of the simple example above, the FunctionBus transfers are statically
determinable, and therefore actually we could eliminate the addresses
altogether, but this situation is not the norm.

(a)

(b)

Fig. 7. Timing diagrams: (a) procedure call and (b) procedure return.

D. Communication

From the above discussion, we see that there are two types of
communications that occur over the FunctionBus. Aprocedure call
consists of sending the address, possibly a return address, and input
parameters. Aprocedure returnconsists of sending the return address
and output parameters.

Both communications use similar protocols, shown in Fig. 7. Both
begin by placing the address of the receiver procedure [the callee in
(a) and the caller in (b)] onAD and pulsingAreq. The procedure
call protocol then places the return address onAD and pulsesDreq.
Both then send a sequence of data chunks by placing a chunk on
AD and pulsingDreq.

The parameter data must therefore be broken into chunks
of size AD:width. The number of chunks will thus equal
Ceiling(parms:bits=AD:width). As stated earlier, we require
AD:width to be at least equal to the number of address bits,
eliminating the need to assemble the address bits and thus simplifying
the FunctionBus control design.

Both of the above communications are composed of just two basic
protocol actions:Send and Receive. Send places the receiver’s
address and then the sequence of data (return address plus input
parameters or output parameters), andReceive waits for its address
and then receives and assembles the data. Fig. 8 provides pseudocode
FunctionBus procedures suitable for creating C, VHDL, or Verilog
implementations of the send and receive protocols. For efficiency,
we would likely create unique procedures for each data size being
transmitted (byte, word, etc.), eliminating the need for the third
parameter. Generating the FunctionBus procedures automatically is
a straightforward task.

Since each subprocessor is dedicated to executing one process, each
can respond immediately to its address on the bus. Thus, the length
of a pulse can be just one clock, when all components use the same
clock. We see that a while a procedure call within a subprocessor has
no communication overhead, a procedure call to another subprocessor
has a minimum overhead of one clock cycle for communication, and
possibly more if the parameter data width exceeds the FunctionBus
width.

E. Relaxing the Mutual-Exclusion Restriction

We initially assumed that each procedure inF executed in mutual
exclusion. This assumption assured us that after partitioning, each

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999 73

Fig. 8. Send and receive protocols.

process was mutually exclusive with respect to the need to send data
over a shared bus, and therefore we could design the FunctionBus
without arbitration. We can relax the mutual-exclusion restriction
further. After partitioning, we can execute same-process procedures
as well as different-process procedures in parallel, as long as we
can analyze those procedures such that we can guarantee that two
procedures will not simultaneously try to access the FunctionBus.
More generally, one can treat the FunctionBus as a shared resource
and use static scheduling (if possible) to prevent bus contention.
Ideally, after such scheduling, the various processes would operate
such that no additional global scheduler would need to be added.
Otherwise, a global scheduler process would need to be added, likely
requiring lines in addition to the FunctionBus to coordinate the
processes.

Further relaxation would require bus arbitration. Such arbitration
increases bus cycles and bus logic complexity, but is useful if the
input process possesses a large amount of potential parallelism among
its procedures. Such a process differs from those we are focusing on
having a large number of (sequential) states.

IV. PORT-CALLING TRANSFORMATION

A. Overview

In a FunctionBus approach, the internal I/O size is fixed (and
typically small, like 16 or 32). Hence the only variation in a
subprocessor’s I/O comes from the external I/O accessed by that
subprocessor’s procedures. The port-calling transformation will allow
us to redistribute such external port I/O to subprocessors other than
the accessing procedure’s subprocessor.

The transformation consists of introducing a new procedure, called
a port-call procedure, in between the original accessor procedure and
the port itself. This procedure may, upon being called by the accessor
procedure, read the port or write the port (as will be discussed further
in the next section) on behalf of that procedure. Thus, from the
accessor’s perspective, accessing the port has been replaced by a
procedure call.

In a call graph, a port-call procedure is represented as any other
procedure, i.e., a node. This node can be partitioned among subpro-
cessors just like any other procedure. If this node is separated from its
accessor procedure, any data transfer will take place over the existing
FunctionBus; since the I/O for the FunctionBus already exists and is
fixed, such data transfer does not require any additional interprocessor
I/O. Since a port-call node has extremely simple contents, and hence
when implemented will not contribute noticeably to a subprocessor’s
size, it can be partitioned to nearly any subprocessor. We therefore see
that introducing port-call nodes, in conjunction with the FunctionBus,
yields the ability to freely distribute I/O among subprocessors, at the

Fig. 9. Port-call transformation enabling redistribution of external I/O in the
RSA example.

Fig. 10. Extended parallel I/O.

possible expense of a few extra clock cycles required to pass the data
between the port-call procedure and the accessor procedure.

For example, consider the RSA example from Fig. 8. The second
subprocessor required 128 external I/O’s, while the first only required
ten. We can alleviate this imbalance using port calling. We introduce
a port-call procedureAccD for accessing thepubkey_dport, and then
we repartition by moving that procedure to the first subprocessor, as
in Fig. 9. The external I/O for the subprocessors becomes 64 and 74;
the internal I/O stays the same.

We must decide which port accesses should have port-call nodes
introduced to achieve improvements. Predicting those accesses that,
when replaced by port-call nodes, would lead to such improvements
is a difficult task. We note, though, that the number of external ports
typically grows only sublinearly with respect to the specification size.
Therefore, we can introduce a port-call node for every port access
without excessive growth in computational complexity. Thus, our
approach is to:

1) transform the call graph by introducing port-call nodes for
every port access;

2) partition the call graph using existing heuristics;

3) inverse transformthe call graph by eliminating each port-call
node that appears on the same subprocessor as its accessor.

The inverse transformstep is necessary to eliminate unnecessary
port-call nodes, so that only those nodes needed to distribute I/O to
another subprocessor remain. Note that the partitioning heuristics and
associated estimation models and cost functions need not be changed
to account for the port-call transformation, since the introduced nodes
look just like any other procedures.

Note that port calling is a generalization of the commonly used
design technique of extended parallel I/O. For example, consider
Fig. 10. A microcontroller with limited ports must interface to four
8-bit external ports A, B, C, and D, using just one 8-bit port P3 and
a few bits of P2. A common solution to this problem is to introduce
a parallel I/O (PIO) chip, which multiplexes the four external ports
over the single 8-bit data port, or demultiplexes the 8-bit data port
to the four external ports, depending on its input address and control
lines. The bus between the microcontroller and PIO chip is akin

74 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

Fig. 11. Port-calling procedures.

to the FunctionBus, and the control internal to the PIO is essentially
equivalent to port-call functionality. Port calling is more general since
we can move the functionality to chips other than just PIO chips,
such as to an FPGA during hardware/software partitioning, or even
another microcontroller.

B. Port-Calling Procedures

After the call graph is partitioned, a new subprocess must be
generated for each group of procedures representing a subprocessor.
Each subprocess will monitor the FunctionBus for the address of
one of its procedures, capture any input parameters from the bus,
call the procedure, return by placing a return address and any output
parameters on the bus, and resume detecting an address. A call to a
procedure of another subprocess is replaced by FunctionBus call and
return routines. Port-calling procedures require no special treatment,
appearing as any other procedure. We thus only describe the contents
of such procedures here; partitioning and subsequent FunctionBus
routine insertion will take care of the communication between the
port-call procedure and the accessor procedure.

The port-call procedures for accessors that read, write, or both
read and write a port are shown in Fig. 11. Note that each is trivial
to implement, and so could be moved freely among parts. Inserting
these procedures automatically is a straightforward task.

V. EXPERIMENTS

We have implemented a functional partitioning tool as part of the
SpecSyn system exploration environment [10]. We have extended
the tool to support the FunctionBus and port calling. Earlier work
demonstrated that functional partitioning can significantly reduce I/O
requirements compared with structural partitioning [5].

A. FunctionBus Versus Cut-Edges I/O During Functional Partitioning

Functional partitioning using a FunctionBus approach can yield
even further I/O improvements. To demonstrate this idea, we ex-
perimented with five examples: an Ethernet coprocessor (ether), a
fuzzy logic controller (fuzzy), an interactive TV settop box (itv), a
microwave transmitter controller (mwt), and an answering machine
(ans). Each consisted of a few hundred lines of VHDL algorithmic
code. We performed two-way partitioning on each example, using the
simulated annealing heuristic built into the partitioning tool, and using
a cost function seeking to minimize execution time and I/O while
maintaining balanced subprocessor sizes. In particular, a simplified
version of the cost function looks like

Cost= Net(et) +Nio(io) +Nsize(jsize1� size2j)

whereet is execution time,io is total I/O, size1 and size2 are the sizes
of the two parts, and theN ’s are functions that normalize each term to

TABLE I
I/O IMPROVEMENTS USING THE FUNCTIONBUS VERSUS A

CUT-EDGES APPROACH DURING FUNCTIONAL PARTITIONING

Fig. 12. I/O and performance tradeoffs by varying FunctionBus size.

a number between one and zero. Table I shows the I/O improvements
obtained for each example for a FunctionBus data-bus size of 16,
along with the performance penalties. Note that these I/O improve-
ments are in addition to those I/O improvements already gained over
structural partitioning; examples of such complexity typically have
several hundred I/O’s for a two-way structural partition.

B. I/O and Performance Tradeoffs Using the FunctionBus

The above results assumed a fixed data bus of 16 bits. However,
a key feature of the FunctionBus is the ability to trade off I/O with
performance by varying the data-bus size. Fig. 12 illustrates the I/O
and performance tradeoffs obtained by varying the FunctionBus size
for several of the examples (given a fixed partition for each example).
The numbers on thex-axis at the top are the maximum I/O for
either subprocessor, while the numbers at the bottom are the bus
size. They-axis shows the performance in cycles. We can see that
the FunctionBus provides quite a bit of flexibility to trade off I/O
with performance.

Particular attention should be paid to the values on they-axis. Note
that thefuzzyexample is extremely sensitive to the bus size, meaning
that the partition had significant interprocessor communication. Thus,
a large FunctionBus might be in order for that example if performance
is important. On the other hand, theitv example did not demonstrate
this sensitivity, so a smaller FunctionBus might be used. Of course,
the actual selection of the bus size depends on the relative importance
of performance, I/O, and other metrics.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999 75

TABLE II
I/O AND PERFORMANCE IMPROVEMENTS WHEN USING THE

PORT-CALLING TRANSFORMATION IN CONJUNCTION WITH

THE FUNCTIONBUS DURING FUNCTIONAL PARTITIONING

C. Port Calling

The FunctionBus reduces the number of internal I/O’s, thus re-
ducing maximum I/O per subprocessor as well as total I/O. The
maximum I/O per subprocessor can be reduced further using port
calling. We applied the same partitioning heuristic on the examples,
but this time applying the port-call transform before partitioning and
the port-call inverse transform after partitioning. Table II summarizes
results comparing maximum I/O, total I/O, and performance when
partitioning using a FunctionBus without and with port calling.
They show improvements in maximum I/O averaging 24%, with the
improvement in one case reaching 64%. Again, these improvements
are in addition to those obtained using the FunctionBus over the
cut-edges.

Before performing the port-calling experiments, we expected port
calling to decrease maximum I/O, but we expected total I/O to stay
the same (recall that we fixed the FunctionBus size at 16 for these
partitioning experiments). However, we were surprised to see that
total I/O actually decreasedsignificantly. Upon investigation, we
discovered the reason for this decrease. In many cases, multiple
procedures access the same external port. When these procedures
exist on different subprocessors, then each subprocessor requires
external I/O to connect to the port. However, because port-call
procedures are small and our cost function sought to minimize
I/O, the introduced port-call procedures of one port were almost
always partitioned to a single subprocessor, so only that subprocessor
required external I/O for the port.

We also expected that performance would suffer slightly, due to
the increased time to transfer external port data through a port-call
procedure over the FunctionBus to/from the accessing procedure.
However, again in all the examples, there was actually anim-
provement in performance or no change at all. We believe this
can be explained as follows. Before introducing port calling, the
partitioning heuristic had to simultaneously satisfy three difficult
metrics: minimize I/O, minimize execution time, and keep sizes
balanced. After introducing port calling, the I/O metric became much
easier to satisfy, therefore freeing the heuristic to investigate many
other partitions previously prohibitive due to I/O, and thus finding
partitions with lower execution times.

VI. CONCLUSIONS

We have introduced two related techniques that relax I/O problems
during functional partitioning. Using the FunctionBus, we can reduce

the internal I/O size arbitrarily, trading off I/O size with performance.
Using port calling, I/O can be easily redistributed from one subpro-
cessor to another. We showed through experiments that these two
techniques yield extremely small I/O sizes for several examples, with
only small overall performance penalty, if any. Thus, port calling and
the FunctionBus are important features in a functional partitioning
tool, and such tools are becoming more important for improving
I/O, synthesis runtime, power, cost/flexibility tradeoffs, and physical
design problems.

REFERENCES

[1] G. DeMicheli, Synthesis and Optimization of Digital Circuits.New
York: McGraw-Hill, 1994.

[2] F. Johannes, “Partitioning of VLSI circuits and systems,” inProc.
Design Automation Conf.,1996.

[3] R. Tessier, J. Babb, M. Dahl, S. Hanono, and A. Agarwal, “The
virtual wires emulation system: A gate-efficient ASIC prototyping
environment,” in Proc. Int. Symp. Field-Programmable Gate Arrays
(FPGA), 1994.

[4] E. Macii, M. Pedram, and F. Somenzi, “High-level power modeling,
estimation and optimization,” inProc. Design Automation Conf.,1997.

[5] E. Hwang, F. Vahid, and Y. C. Hsu, “Functional partitioning for reduced
power,” in Proc. Design Automation and Test in Europe (DATE),to be
published.

[6] E. Hwang, F. Vahid, and Y. C. Hsu, “Experiments on functional
partitioning for reduced power consumption,” Computer Science Dept.,
University of California, Riverside, Tech. Rep. 98-2, 1998.

[7] L. Hammond, B. Nayfeh, and K. Olukotun, “A single-chip multiproces-
sor,” IEEE Comput. Mag.,vol. 30, no. 9, pp. 79–85, Sept. 1997.

[8] R. Gupta and G. DeMicheli, “Hardware-software cosynthesis for digital
systems,”IEEE Design Test Comput. Mag.,pp. 29–41, Oct. 1993.

[9] R. Ernst, J. Henkel, and T. Benner, “Hardware-software cosynthesis for
microcontrollers,” IEEE Design Test Comput. Mag.,pp. 64–75, Dec.
1994.

[10] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong,Specification and
Design of Embedded Systems.Englewood Cliffs, NJ: Prentice-Hall,
1994.

[11] A. Kalavade and E. A. Lee, “A global criticality/local phase driven
algorithm for the constrained hardware/software partitioning problem,”
in Proc. Int. Workshop Hardware-Software Co-Design,1994, pp. 42–48.

[12] P. Eles, Z. Peng, and A. Doboli, “VHDL system-level specification and
partitioning in a hardware/software co-synthesis environment,” inProc.
Int. Workshop Hardware-Software Co-Design,1992, pp. 49–55.

[13] A. Balboni, W. Fornaciari, and D. Sciuto, “Partitioning and explo-
ration strategies in the Tosca co-design flow,” inProc. Int. Workshop
Hardware-Software Co-Design,1996, pp. 62–69.

[14] J. Hou and W. Wolf, “Process partitioning for distributed systems,” in
Proc. Int. Workshop Hardware-Software Co-Design,1996, pp. 70–75.

[15] R. Camposano and J. T. van Eijndhoven, “Partitioning a design in
structural synthesis,” inProc. Int. Conf. Computer Design,1987.

[16] E. D. Lagnese and D. E. Thomas, “Architectural partitioning for system
level synthesis of integrated circuits,”IEEE Trans. Computer-Aided
Design,vol. 10, pp. 847–860, July 1991.

[17] R. Gupta and G. DeMicheli, “Partitioning of functional models of syn-
chronous digital systems,” inProc. Int. Conf. Computer-Aided Design,
1990, pp. 216–219.

[18] C. H. Gebotys, “An optimization approach to the synthesis of multichip
architectures,”IEEE Trans. VLSI Syst.,vol. 2, no. 1, pp. 11–20, 1994.

[19] Y. Y. Chen, Y. C. Hsu, and C. T. King, “MULTIPAR: Behavioral
partition for synthesizing multiprocessor architectures,”IEEE Trans.
VLSI Syst.,vol. 2, pp. 21–32, Mar. 1994.

[20] K. Kucukcakar and A. Parker, “CHOP: A constraint-driven system-level
partitioner,” in Proc. Design Automation Conf.,1991, pp. 514–519.

[21] F. Vahid and D. Gajski, “Specification partitioning for system design,”
in Proc. Design Automation Conf.,1992, pp. 219–224.

[22] , “SLIF: A specification-level intermediate format for system
design,” inProc. Eur. Design and Test Conf. (EDTC),1995, pp. 185–189.

