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Abstract—Dynamic software optimization methods are becoming increasingly popular for improving software performance and power.

The first step in dynamic optimization consists of detecting frequently executed code, or “critical regions.” Most previous critical region

detectors have been targeted to desktop processors. We introduce a critical region detector targeted to embedded processors, with the

unique features of being very size and power efficient and being completely nonintrusive to the software’s execution—features needed

in timing-sensitive embedded systems. Our detector not only finds the critical regions, but also determines their relative frequencies, a

potentially important feature for selecting among alternative dynamic optimization methods. Our detector uses a tiny cache-like

structure coupled with a small amount of logic. We provide results of extensive explorations across 19 embedded system benchmarks.

We show that highly accurate results can be achieved with only a 0.02 percent power overhead, acceptable size overhead, and zero

runtime overhead. Our detector is currently being used as part of a dynamic hardware/software partitioning approach, but is applicable

to a wide variety of situations.

Index Terms—Frequent value profiling, runtime profiling, on-chip profiling, hardware profiling, frequent loop detection, hot spot

detection, dynamic optimization.
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1 INTRODUCTION

DYNAMIC software optimization methods are becoming
increasingly popular for improving software perfor-

mance and power. The main reason for this trend is that
dynamic optimizations have several important advantages
over static approaches. Dynamic optimizations allow for a
system to be optimized based on runtime behavior and
values, whichmay be hard to determine using staticmethods
or costly simulations and which also may change during
runtime. A generic microprocessor with dynamic optimiza-
tion capabilities canalso tune itself to anyapplication running
on the microprocessor. Furthermore, dynamic optimizations
require no intervention from the application designer and are
applied transparently during runtime, meaning there is no
disruption to standard software tool flows.

Researchers have explored many dynamic optimization

techniques. For instance, Warp Processing [28], [29], [34]

determines the most frequently executed regions of code

and dynamically moves those regions of code to hardware

reducing energy consumption and increasing performance.

Dynamo [6] performs dynamic software optimizations on

the most frequently executed regions of code. Other

approaches reduce high-power memory accesses through

instruction compression [18], [22] or by locking instructions

into a special low-power cache [10], [17]. Dynamic binary

translation methods store translation results from fre-

quently executed code regions to improve performance as

well as power [16], [25].

For dynamic optimizations to be most effective, optimi-

zations are typically applied to the most frequently

executed regions of code. In embedded system applications,

much of the execution time is spent in a small amount of

code. Fig. 1 shows the percentage of execution time spent in

the corresponding percentage of code size for all of the

benchmarks studied. Approximately 90 percent of the

execution time is spent in only 10 percent of the code,

obeying the well-known 90-10 rule for embedded applica-

tions. We will refer to the code comprising the 90 percent of

execution time as the critical regions of code. Suresh et al.

[35] studied this rule further and determined that this

phenomena was demonstrated for an even wider set of

embedded applications, with roughly 90 percent of the

execution time spent in the first two to four most frequently

executed loops.
Previous profiling methods are mostly targeted for a

desktop computing environment and applications where

significant information must be gathered about the execu-

tion of an application such as information necessary for

determining the cause of pipeline stalls. Gathering large

quantities of information can incur significant runtime

overhead that can be unacceptable in an embedded

environment, especially for timing-sensitive embedded

systems with very tight timing constraints. However,

timing-sensitive systems, such as a video decoder or a

fingerprint scanner, can benefit significantly from runtime

dynamic optimizations, but may not tolerate even minimal

runtime overhead, possibly causing the system to miss hard

deadlines. To minimize overhead, very low overhead

hardware-based profiling methods exist; however, most of

them do not provide the percentage of execution time spent

in critical regions of code. Additionally, previous methods

do not report area and power overhead of the profiling
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hardware, information that is critical to the design of small,
low-power embedded systems.

In this paper, we present a new on-chip profiler that
determines critical regions for use in dynamic optimiza-
tions. The profiler improves upon previous approaches by
being completely nonintrusive, small, and low power, and

also by providing information on the percentage of
execution time spent in each region—information useful
for guiding on-chip dynamic optimization decisions. The
profiling step of the dynamic hardware/software partition-
ing approach presented in [34] effectively utilizes the
profiling methodology described in this paper.

2 RELATED WORK

The most common methods for runtime profiling are
software based. One such method is code instrumentation
[13], [19], wherein code is added to a program to count the
execution frequencies of subroutines, loops, or even blocks.

Edge profiling [32] determines the transition frequency
between basic blocks by incrementing a counter each time a
branch instruction is executed. Edge profiling determines the
most frequently executed paths through an application by
following the highest frequency edges. Whereas edge

profiling is typically used for link-time optimizations, the
concept of edge profiling could be adapted to a runtime
mechanism by instrumenting the application. However,
incrementing a counter on each basic block transition
introduces significant overhead. Ball and Larus [7] use
instrumentation for a low-overhead path profiling method
to determine howmany times each acyclic path in a routine is
executed. Path profiling improves upon the overhead
incurred by edge profiling by reducing the overhead from

an average of 31 percent for edge profiling down to an
average of 16 percent for path profiling. The reduction in
overhead is achieved through the reduction of counter
updates. In edge profiling, each instrumented edge has a
counter that is incremented each time an edge executes,while
path profiling only increments a counter after the completion
of execution through a unique path through the code.

While popular in desktop systems, instrumentation
imposes program and data memory overhead and perfor-
mance overhead—overheads not acceptable in many tightly

constrained embedded systems. Overhead of instrumented
code is commonly in the range of 30-1,000 percent [3], [8],
[12] with reports of an overhead as high as 10,000 percent
(100 times slower) [12].

Arnold and Ryder [4] present a method for reducing the
overhead incurred by code instrumentation. Code duplica-
tion and instrumentation sampling is used to reduce
overhead. Code duplication allows for two copies of the
code to be available—an instrumented copy of the code and
a noninstrumented copy of the code. A sampling method
determines how often the instrumented code is executed.
This method can achieve profiles 93-98 percent accurate
with an average total overhead of only 3 percent.

Even with the possibility of drastically reduced
instrumentation overheads, even the slightest overhead
may be unacceptable for rigid timing-sensitive systems
with hard deadlines. Furthermore, instrumentation may
pollute instruction and data caches and may cause
register spills, resulting in very different timing behavior.
Instrumentation also requires special compilers or binary
instrumentation tools.

Another software-based profiling method is sampling.
At certain intervals, the microprocessor is interrupted and
register values are sampled [1], [14], resulting in a statistical
profile. Anderson et al. [2] describe the Digital Continuous
Profiling Infrastructure (DCPI) tools for transparent, low-
overhead profiling of complete systems. The DCPI tools are
the profiling step used in ProfileMe [14]. The DCPI tools
identify events and the instructions that cause these events
by profiling on a per instruction bases at a specified
sampling rate. Profiling is done with specialized hardware
to record information about the instruction as the instruc-
tion moves through the pipeline. Upon instruction comple-
tion, software reads the sampling information into a
database. The database may then be analyzed to determine
which instructions may benefit from various optimization
methods. Typically, statistical sampling gathers much more
information about an application than what would be
needed for determining the critical regions of code. To
further reduce the overhead of gathering information
during the interrupt, only information related to determin-
ing critical regions could be recorded.

While sampling reduces code and data overhead over
instrumentation, the sampling rate can be reduced to
minimize performance overhead at the expense of accuracy,
and only information pertinent to determining critical
regions would be gathered, interrupting is still intrusive
and can cause problems in timing-sensitive systems. Even
minimal performance overhead can cause hard deadlines in
critical timing-sensitive systems to be missed. Furthermore,
care must also be taken to avoid undesirable correlations
between the sampling rate and the program’s task periods,
which could lead to aliasing problems, although rando-
mized sampling alleviates this problem. A method similar
to interrupt-based sampling assumes a multitask environ-
ment where an additional task performs profiling in place
of an interrupt [42]. However, this method has the same
disadvantages as the interrupt-based approach.

Another type of statistical sampling is program phase
identification [9], [15]. As a program executes, the program
passes through many different phases, each of which can
have vastly different performance. Hardware counters with
little to no runtime overhead record information about the
executing program. An interrupt then triggers either the
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Fig. 1. Average percentage of execution time spent in corresponding
percentage of code size for the top N most critical code regions, for the
benchmarks studied.



hardware or software to transfer the hardware counter
values to auxiliary data storage and analyzes the recorded
information to determine the phases of the application.
Optimizations can then be applied to the most critical
phases. Most phase identification methods induce runtime
overhead and those that do not induce runtime overhead do
not discuss the impacts of phase identification on area and
power consumption.

Another approach to profiling uses simulation. This
approach uses an instruction set simulator to run the
application and keep track of profiling information.
Whereas a simulation-based approach can give accurate
profiling information if a realistic input stimulus is
available, complex external environments may be difficult,
if not impossible, to model accurately—setting up an
accurate simulation often takes longer than designing the
application itself. Furthermore, simulation of entire systems
can be extremely slow, especially for SOCs, with hours or
days of simulation time correlating to only seconds of real
execution time.

Many processors today come with hardware event
counters that count various hardware events, such as cache
misses, pipeline stalls, and branch mispredictions [21], [39],
[41]. Though nonintrusive, event counters do not by
themselves detect critical regions of code—sampling must
be used to read the counters at given intervals, thus again
introducing performance overhead.

To overcome problems associated with earlier profiling
methods, embedded systemdesigners havepreviously relied
on logic analyzers to nonintrusively profile their system.
However, with current systems-on-a-chip (SOCs), designers
can no longer connect a logic analyzer to internal signals. To
assist in internal signalmonitoring, SOCs typically comewith
a means of reading internal registers via external pins
utilizing the JTAG standard [20]. However, the processor
must be interrupted to read the internal register values and
transfer them to external pins, incurring runtime overhead
and potentially altering execution behavior. This method is
typically used for testing and debugging and not system
profiling. Fortunately, the increase in transistor capacity has
also enabled on-chip profiling environments. Recent meth-
odshavebeen introduced thatuse specializedon-chip logic to
profile executing applications.

One hardware-based nonintrusive profiling method [30]
utilizes a cache to determine critical regions, or “hot spots.”
Branch addresses and their execution frequencies are stored
in a cache-like structure. Frequent branches are determined
when branch frequencies reach a defined threshold value.
Further analysis of branch frequencies is done to determine
collections of branches that form hot spots in the code.
However, this method does not focus on power efficiency or
area overhead and also does not store relative frequencies.

Another hardware-based methodology proposes dy-
namic loop detection for control speculation in multi-
threaded processors [37]. This method uses a stack to
monitor the currently executing loops, with the innermost
nested loop stored at the top of the stack and all remaining
loops stored according to nesting order. When execution
leaves a loop, information about loop behavior is stored into
two fully associative tables. Whereas the methodology

presented may be modified to provide the loop information
we require, the design was not intended for an embedded
environment where power and area must be considered
during the design of the profiler.

Yang and Gupta [40] proposed a very simple profiling
method with low power embedded systems in mind.
However, this profiling method was intended for data
profiling, not code profiling. The method monitors data
cache accesses and stores data values in a fully associative
table along with a small counter (2-3 bits). Each use of the
data value causes the counter to be incremented. Upon
counter saturation, the saturated data value is swapped
with the data value in the location directly above the
saturated data value in the table, effectively sorting the
table, leaving the more frequent values near the top. The
frequent value table is small, simple, low power, and
nonintrusive. However, we found that the swapping
method is not accurate for code profiling, which we will
elaborate on in Section 3.2.

3 FREQUENT LOOP DETECTION ARCHITECTURE

3.1 Problem Overview and Motivation

Our studies of the Powerstone [33] benchmark suite shows
that a large percentage of time is spent in small loops [38].
Averaged across all benchmarks, 66 percent of the total
execution time spent in loops only is spent in loops of size
256 instructions or less. However, we also noticed that
77 percent of this time is spent in loops of size 32 instruc-
tions or less. The loops of size 32 instructions or less account
for 51 percent of the total execution time spent in loops
only. For the Powerstone and MediaBench [27] benchmarks
studied, we observed that about 85 percent of the critical
regions of code were these small inner loops (or near-inner
loops—typically no more than two to four levels of nesting)
with the remaining 15 percent of the critical regions being
subroutines with no inner loops that were called from a
frequently executed loop. Since 85 percent of the critical
regions can be determined by simply finding the most
frequently executed inner loops, we translate the critical
code region detection problem to that of detecting frequent
loops. Detecting only frequent loops does not limit the
usefulness of our tool in applications where many critical
regions are in the form of subroutines with no loops.
Through observation, we concluded that we could assume
that any dynamically executed subroutine called by a
critical loop was indeed critical regions of code as well.
Furthermore, the incident of frequent subroutines with no
inner loops can be reduced by inlining functions. However,
in the cases where function inlining is not available or an
application has a large number of critical subroutines, the
frequent loop detection methodology described here may
be easily adapted to identify subroutines as well as loops.

A loop in an application is typically denoted by the last
instruction being a short backward branch (sbb) that jumps to
the first instruction of the loop [17], [27]. The sbb instruction is
not a special instruction; rather, an sbb is any jump instruction
with a small negative offset. We examined the output of
several popular C and C++ compilers using standard
optimizations and found that they indeed generate code
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using sbbs. In fact, we found no inner loops that were not
formed using sbbs in the 19 benchmarks we examined.
However, unstructured assembly code generated by hand,
or certain compiler optimizations, could result in loops
with different structures. We leave frequent loop detection
in these situations as future work.

In addition to detecting the most frequent loops, we also
want to know those loops’ percentage contribution to total
execution time. Knowing the percentage contribution is
important for optimization decisions. For example, suppose
application X has the following loop execution breakdown:
loop A 80 percent, loop B 5 percent, and loop C 5 percent,
and application Y has the following loop execution break-
down: loop A 25 percent, loop B 25 percent, and loop C
25 percent. If just the order of frequent loops is known and
optimizations are to be done only on the single most
frequent loop, application X would yield optimizations on
80 percent of the execution time and application Y would
yield optimizations on only 25 percent of the execution
time. If the execution frequencies are known along with the
loop ordering, optimizations on application Y can be done
on the top three loops yielding optimizations on 75 percent
of the execution time. Furthermore, with knowledge that
application X’s A loop takes 80 percent of execution time,
we might perform more aggressive optimizations—such a
frequent loop might be a candidate for partitioning to
hardware, for example. Certain optimizations may only be
applied when certain percentage thresholds are met.

We have imposed several operational requirements for
our frequent loop detector: nonintrusion, low power, and
small area. Nonintrusion is important for real-time systems
where changes in execution behavior could significantly
affect the performance of the system. Additionally, non-
intrusion minimizes the impact on current tool chains,
avoiding special compilers or binary modification tools.
Minimal impact is important in commercial environments,
where significant capital may already be invested in a
development environment. Minimizing power is important
in low-power embedded systems, such as battery-operated
systems or systems with limited cooling capabilities. Small
area is also important, but is becoming less significant given
the large transistor capacities of recent and future chips [24].
Another concern is that of accuracy, but our loop detector
does not require exact results—instead, just reasonable
accuracy is acceptable.

3.2 Methods Considered

We initially considered many methods for determining
frequent loops. We first attempted to satisfy only our first
requirement of detecting the ordering of the most frequent
loops by modifying the frequent data value detector design
by Yang and Gupta [40] to count sbb instructions instead of
data values. However, the frequent loops were not ordered
correctly at the top of the table. The reason for the
inaccurate results was because swapping of items occurs
whenever an item’s small counter saturates, even though
the item further up in the table may have had a much
higher frequency. The frequent data value method is
concerned with detecting the top set of values and is not
concerned with their actual ordering. We explored larger
counter fields, but then the counter saturations did not

happen frequently enough to allow swapping to order the
frequent loops in the table.

Next, we tried using a fully associative memory to store
the frequent loop addresses and their frequencies. The sbb
address would be used as the tag and the tag’s associated
data would be incremented upon a hit. However, a fully
associative memory raised many questions such as the
trade-off between a large enough memory to give accurate
results and the power consumption of that memory, as well
as finding an efficient replacement policy when the memory
becomes full.

We also looked into using a hash table to store frequent
loops and their associated frequencies. Sbb addresses
would be hashed using a subset of the address bits. By
using a simple hash function and not doing too much
probing, the hash table is a reasonable solution. The hashing
and match detection would have to be hardware based to be
nonintrusive. Incorporating hashing and match detection in
hardware began to lead to a design that looked very much
like a cache, which ultimately led us to the cache-based
approach described in the following section.

3.3 Cache-Based Architecture

Fig. 2 shows our loop detection architecture. The frequent
loop cache is a simple cache used to store frequency counts
and is indexed into using sbb instruction addresses. The
cache has an added feature, to be described later, that will
shift every data value right by one, which is achieved by
asserting the saturation signal to the cache. The frequent loop
cache controller orchestrates updates to the frequent loop
cache. An incrementor is also included to increment the
frequency count. An additional signal, sbb, is required from
the microprocessor, similar to that implemented in Motor-
ola’s M*CORE microprocessor [33], and that signal is
asserted whenever an sbb is taken. Alternatively, if the
sbb signal is not available, the cache controller could
determine when an sbb is taken by replicating a small
portion of the instruction decode logic.

The frequent loop cache controller handles the operation
of the frequent loop cache. When the sbb signal is asserted,
a read of the frequent loop cache is done using the
sbb address as the index. If the result is a hit, the frequency
is read from the cache, incremented, and written back in the
next cycle. If the result is a compulsory miss, the instruction
is added to the cache with a frequency data value of one. If
there is a conflict miss, the new address replaces the old
address in the cache with a frequency of one. By evicting the
conflicting address, any frequency information gathered
about that address is lost. To save that information, the
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Fig. 2. Frequent loop detection architecture.



address and corresponding frequency would need to be
stored in an auxiliary memory structure, such as the main
memory of the microprocessor. However, this method leads
to increased complexity to ensure that no conflicts exist
between the loop detection logic and the application while
accessing main memory. Furthermore, on subsequent
conflict misses, an efficient method for searching evicted
addresses is required and may be difficult to do since the
number of sbb instructions can be very large. To avoid these
added complexities, the evicted address is simply removed
from the cache.

However, on a conflict miss, replacing the old address in
the cache with the new address could cause inaccurate
results, especially if two frequent loops map to the same
location in the cache. One solution is to add associativity to
the cache. Associativity will allow for multiple frequent
loops to map to the same set without conflict. If conflicts
still occur, the replacement policy used will replace the least
frequent value in the set with the new incoming sbb.
Whereas associativity may alleviate cache contention,
situations may occur where the most frequent loops are
continually replaced in the cache—a situation known as
thrashing. A victim buffer may be added to the architecture
to deal with cache contentions that are not solved by
associativity. However, in the benchmarks we studied, a
victim buffer was not necessary to achieve accurate results.

When an increment results in a frequency counter
saturating, all frequency counts in the cache are divided
by two using a simple right shift. The right shift operation is
implemented as a special feature of the cache architecture.
Such a division keeps the frequency ratios reasonably
accurate. While the right shifting operation can be quite
power expensive, we will show that the infrequency of
saturations makes the power consumed by the right shift
operation insignificant with regard to the increase in
average power consumption of the system.

4 EXPERIMENTS

4.1 Setup and Evaluation Framework

We performed extensive experiments to determine the best
size, associativity, and frequency count field width of our
cache architecture to minimize area and power consump-
tion. We chose benchmarks from both the Powerstone [33]

benchmark suite running on a 32-bit MIPS instruction set
simulator and the MediaBench [26] benchmark suite
running on SimpleScalar [11]. Table 1 lists, for each
benchmark, the size of the assembly code in bytes and a
short description. We were unable to run the remaining
MediaBench benchmarks because our experimental method
requires instruction traces of the application and the
remaining MediaBench benchmarks produce very large
and cumbersome instruction traces.

To model power consumption of the cache memory
itself, we used the Artisan memory compiler [5]. We
modeled the additional logic and functionality in synthesiz-
able VHDL using the Synopsys Design Compiler [36] to
obtain power and area estimates. Both tools used UMC
0.18-micron CMOS technology running at 250 MHz at 1.8 V.

To determine the accuracy of each possible cache
configuration, we wrote a trace simulator for the cache
architecture in C++. The simulator reads in an instruction
trace file for each benchmark and simulates each possible
cache configuration, outputting a list of loop addresses and
frequencies for each configuration.

We simulated 336 different cache configurations for each
benchmark. We tested cache sizes of 16, 32, and 64 entries
with direct-mapped, 2, 4, and 8-way associativities, and we
varied the frequency counter field width from 4 to 32 bits.
We determined the accuracy of the results by calculating the
average difference between the actual loop execution time
percentage and the calculated loop execution time percen-
tage. For each cache configuration, we use the following
formula to compute the averaged sum of differences
squared (SOD) for the 10 most frequently executed loops:

P10

i¼1

%execactuali �%execpredictedi
�
�

�
�1=2

10
:

%execactual is the actual percent of execution time of a
loop and %execpredicted is the predicted percentage of
execution time output by our simulator for the same loop
for a given cache configuration. If our profiler does not
predict a loop’s execution time, the predicted value is set to
0 for that loop; however, this situation rarely happened and,
when it did occur, the unpredicted loop typically con-
tributed to only a very small fraction of execution time. The
actual and predicted execution times are both in decimal
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representation. The result of the SOD formula gives a value
between 0 and 1, with 0 being perfect accuracy, meaning no
difference between the actual and predicted execution
percentages. To further penalize differences between actual
and predicted execution times, the difference between the
two is raised to the 1/2 power. Raising the difference to the
1/2 power may at first seem counterintuitive, however,
keep in mind that the percentages are in decimal form and
we wish to keep the value between 0 and 1. Table 2 shows
the SOD calculation for the epic benchmark. The table shows
that the SOD method heavily penalizes differences in
frequencies. For example, the difference in percentage of
execution time for loop 1 is 9.2 percent and the SOD value is
30.4 percent—significantly penalizing this small difference.

Originally, we computed the average SOD for all loops.
However, for benchmarks with a large number of loops, we
found the SOD did not accurately represent the ability of
the approach to calculate execution percentage of the most
frequent loops. Fig. 1 shows that, on average, the first
10 frequent loops comprise over 90 percent of the execution
time, while the remaining infrequent loops (possibly
hundreds) share 10 percent of the execution time. If a
critical loop detector does not identify the frequency of an
infrequent loop correctly, the difference between the actual
percentage of execution time and the predicted percentage
of execution time will be very small. Since we are only
interested in predicting the frequent loops, taking the

averaged SOD for all loops can be misleading in bench-

marks with many infrequent loops. The reason that the

averaged SOD is misleading for benchmarks with many

infrequent loops is because the slight difference in mis-

predictions of many infrequent loop execution times may

dominate over the greater difference in mispredictions of

frequent loop execution times. For better analysis of our

frequent loop detector, we will only consider the top 10

most frequent loops in our average SOD calculations.

4.2 Results

Fig. 3 shows the average SOD results over all benchmarks in

each benchmark suite. The x-axis shows the cache configura-

tion, giving the cache size in number of entries, followed by

the frequencywidth in bits, followed by the associativity. The

cache configurations are ordered first by increasing number

of entries, second by increasing frequency width size, and,

last, by increasing associativity. The cache configurations are

ordered in this manner so that the cache size essentially

increases from left to right—smaller cache configurations are

toward the left and larger cache configurations are toward the

right. This ordering method makes choosing the best cache

configuration with the smallest size very easy to determine.

For brevity, only frequency widths of 8, 12, 16, 24, and 32 bits

are listed. The y-axis shows one minus the SOD so that a

perfect accuracy will result in a value of 1.
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TABLE 2
Sum of Differences Squared (SOD) Calculation for the Top 10 Most Frequently Executed Loops for epic

Fig. 3. Sum of differences results for (a) Powerstone and (b) Mediabench. The x-axis shows the cache configuration with cache size in number of

entries, followed by the frequency width in bits, followed by the associativity.



We compared the predicted loop frequencies and the
actual loop frequencies for each benchmark for each cache
configuration and concluded that we do not require that the
results be 100 percent correct—near 80 to 90 percent or so is
likely acceptable. Results 80 to 90 percent accurate correctly
identified the most critical loops in all but two benchmarks.
Given this threshold, we see that a good cache for both
benchmark suites can be very small. By varying the
frequency counter width, we are able to determine the
smallest possible cache necessary to give good results
because each cache entry only contains one counter. The
best cache configuration for Powerstone is a 2-way 16-entry
cache with a frequency width of 16 bits and the best cache
configuration for MediaBench is a 2-way 32-entry cache
with a frequency width of 24 bits. Overall, we conclude that
the best overall cache configuration is a 2-way 32-entry
cache with a frequency width of 24 bits. We will refer to this
cache configuration as the best cache configuration. The
best cache configuration is the smallest cache size that gives
good results for both benchmarks suites. The 2-way/32-
entry/24-bit cache yields accuracies near 95 percent and
85 percent for the Powerstone and MediaBench benchmarks
suites, respectively.

Fig. 3 also shows that the Powerstone benchmarks tend
to perform better with smaller cache configurations than
does MediaBench. Thus, larger examples could require a

larger cache. However, we point out that the rate of increase
of the necessary cache size is low. A 16-entry cache (good
for Powerstone) captures on average only 1.2 percent of the
instructions for each Powerstone benchmark, while a
32-entry cache (good for MediaBench) captures, on average,
only 0.13 percent of the instructions for each MediaBench
benchmark. For even larger examples, the cache size may
need to be increased, but the cache size increase is much
less than the program size increase.

Fig. 4 more closely inspects the effectiveness of the best
cache configuration (32-entry, 2-way set-associative, 24-bit
frequency field). Fig. 4 shows the sum of differences results
for each benchmark for the best cache configuration. For
10 benchmarks, the best cache configuration produces
perfect or near perfect results. For all but two benchmarks,
results are at least 80 percent accurate—still very reasonable
accuracy. For two benchmarks, pegwit and gsmToast, the
results are only 72 percent accurate. Table 3 further explores
the details of these benchmarks.

Table 3 shows the actual and predicted percentage
execution times for a selection of interesting benchmarks—
benchmarks with an SOD value of 100 percent are not
shown. Table 3 shows that, even though some loop
frequencies are not predicted accurately, the information
obtained is very useful. For instance, one of the worst SOD
values obtained was for the gsmToast benchmark. GsmToast
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TABLE 3
Actual (Act.) and Predicted (Pred.) Percentage Execution Times for the Top 10 Most Frequently Executed Loops for a Selection of

Benchmarks for the Best Cache Configuration (2-Wy/32-Entry/24-Bit)

Empty cells are loops that were not predicted by the frequent loop detector.



has one very frequent loop comprising 33 percent of the
execution time and all other loops account for less than
9 percent of the execution time. The frequent loop detector
predicted loop one to account for 67 percent of the
execution time and did not even predict a value for most
of the loops with less than 9 percent of the execution time. A
designer applying optimizations would most likely only be
interested in loops comprising at least 10 percent to
20 percent of the execution time. Even though the frequent
loop detector did not predict the exact frequency of loop
one, the most important information is still conveyed—the
benchmark has one very critical region of code. Other
benchmarks, such as jpegdecode, g721, and mpegDecode, show
similar trends.

Empty cells in Table 3 indicate situations where the
frequent loop detector did not predict a frequency for a
particular loop. For compress and pegwit, the frequent loop
detector does not identify the third and second most
frequently executed loop, accounting for 17 percent and
33 percent of the execution time, due to conflicts in the
cache. Increased associativity could have eliminated this
anomaly, but we point out that, for all 19 benchmarks, the
frequent loop detector only missed these two loops and still
correctly identified the other critical loops for these
applications. Additionally, the frequent loop detector never
identified a noncritical loop as being a critical loop.

Fig. 5 further investigates three benchmarks with low
accuracy: Powerstone jpeg, MediaBench jpegdecode, and

MediaBench mpegdecode. The accuracy for jpeg increases to

nearly perfect results by simply increasing to 4-way set

associativity. Similarly, the accuracy for jpegdecode increases

to 90 percent by increasing to 8-way associativity. For the

third benchmark, mpegdecode, both the size and the

associativity need to increase to 64-entry and 4-way,

respectively. We observed that these benchmarks tended

to have a significantly larger number of loops than the other

benchmarks studied. The changes to the frequent loop

cache required to produce more accurate results are needed

to deal with the larger number of loops to keep track of.

Increasing the size of the cache to 64 entries and the

associativity to 4-way increased the accuracies for all three

benchmarks to over 90 percent. Nevertheless, the 32-entry/

2-way/24-bit frequency configuration works well enough

across all the benchmarks, yielding average accuracy of

over 90 percent across all benchmarks and no lower than

80 percent for any of the benchmarks, which is acceptable.

Thus, we decided to keep the 32-entry/2-way/24-bit

frequency configuration for the profiler to minimize the

size and power impact of the profiler on a microprocessor

system. However, a 64-entry configuration might also be

reasonable. In Section 6, we will show that we can improve

the accuracy of the least-accurate benchmarks using a

sampling technique.
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Fig. 5. Sum of difference results for (a) the Powerstone benchmark jpeg, (b) the MediaBench benchmark jpegDecode, and (c) the MediaBench

benchmark mpegDecode. The x-axis shows the cache configuration with cache size in number of entries, followed by the frequency width in bits,

followed by the associativity.



4.3 Area and Power Overhead

We now consider the power overhead of the frequent loop
detector. We consider the MIPS32 4Kp microprocessor core
[31], a small, low power embedded processor with a cache,
having an area of 1.4 mm2 to 2.5 mm2. The average power
consumption for the 4Kp running at 240 MHz in
0.18-micron technology is 528 mW. The frequent loop
detection hardware with the best cache configuration
consumes 142 mW for each frequent loop cache read and
increment and consumes 156 mW for each frequent loop
cache write, averaged over both benchmark suites. How-
ever, since only sbb instructions cause updates to the
frequent loop cache, cache updates only occur an average of
4.25 percent of the time across all benchmarks. One
saturation operation consumes 20.7 mW of power and
saturations occur only 0.000051 percent of the time for the
best cache configuration. Thus, the resulting increase in the
average power consumption of the total system with the
frequent loop detector is only 2.4 percent.

The power consumed by the frequent loop cache can be
further reduced using known methods to decrease cache
power consumption, such as phased lookup or pseudo set-
associative caching. Phased lookup accesses the tag arrays
first and then only accesses the hit data way. Pseudoset-
associative lookup [23] essentially accesses one way (tag
and data) first and only accesses the other way upon a miss.
Each technique reduces dynamic power by 25 percent to
50 percent, at the expense of multicycle lookups—not a
problem in our case since sbbs do not occur every cycle.
Thus, we can easily reduce our 2.4 percent system power
overhead to something closer to 1.5 percent.

The frequent loop cache controller, incrementor, and
additional control/steering logic consist of 1,400 gates or an
area of 0.012 mm2. Additionally, the cache has an area of
0.167 mm2 including saturation logic. The resulting area
overhead is 6.68 percent to 12.8 percent compared to the
reported size range of the MIPS 4Kp [31]. Area actually
varies greatly depending on technology libraries, foundry,
etc., and, thus, we expect that actual area overheads would
be much smaller (numbers for our cache are pessimistic,
while reported microprocessor areas are likely optimistic).

Nevertheless, with transistor capacity increasing at a
tremendous rate [31], area is becoming less constrained in
nanoscale technologies. With excessive chip area available,
it is not uncommon to see new microprocessor and SOC
designs with dedicated logic for debugging, monitoring, or
tuning of the system.

5 REDUCING POWER OVERHEAD VIA FREQUENCY

UPDATE COALESCING

5.1 Coalescing Methodology

The previously described method gives very good results
with little power overhead, but we can further reduce
power with no loss in accuracy. Frequently executed loops
tend to iterate many times, causing the same sbb frequency
value to be incremented in the cache many times in a row.
Therefore, we can coalesce successive increments into one
addition. For example, if a frequent loop executes 300 times
in a row, the 300 cache frequency increments can be
coalesced into one cache update with the addition of 300 to
the frequency value.

We determined the potential for cache update reduc-
tions. For each benchmark, we processed the execution
trace files and coalesced all of the sbb instructions. The
results in Fig. 6 show average cache update reductions near
80 percent for both benchmark suites.

By only coalescing consecutive sbb increments, nested
loops may, in some cases, not benefit from coalescing, with
the worst case being a very highly iterated outer loop with
an inner loop that iterates only a small number of times,
thus alternating the sbb addresses. Coalescing could be
extended to allow sbb addresses to be coalesced with, for
instance, any of the last N sbb addresses seen, where N
could be 2, 3, etc. We processed the trace files again,
allowing for sbb addresses to be coalesced with different
ranges of previously seen sbb addresses. However, we
found that extended coalescing did not improve signifi-
cantly on the 80 percent savings already achieved by
consecutive sbb address coalescing. Thus, we decided to
extend our frequent loop cache architecture to have the
ability to coalesce only consecutive sbb increments.

5.2 Coalescing Architecture

To implement the coalescing architecture, we added only a
small amount of hardware to the original frequent loop
detection architecture. Fig. 7 shows the new frequent loop
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Fig. 6. Percent reduction in cache updates due to the coalescing of short

backwards branch increments for Powerstone and MediaBench bench-

marks.

Fig. 7. Frequent loop detection architecture with backward branch

coalescing. Additionally, registers and arithmetic units have load and

enable signals, respectively.



detection architecture with coalescing hardware. To imple-

ment coalescing, we added two sets of registers: the

coalescing registers (coal addr and coal freq) and the holding

registers (hold addr and hold freq). We also added an

incrementor to implement the coalescing that is done in the

coalescing registers, a comparator to see if the current sbb

address matches the previous sbb address, and a small

amount of steering logic.We replaced the incrementor,which

was connected to the frequent loop cache in the previous

design, with an adder to perform variable sized additions to

the frequency values in the cache. We also modified the

frequent loop cache controller to drive the new hardware.
The coalescing hardware operates as follows: For each

taken sbb, the current address is compared with the

coalescing address register. If there is a match, the

coalescing freq is incremented to tally this execution. If

there is no match, the address and frequency in the

coalescing registers are moved into the holding registers

and the new sbb address is written to the coalescing

register. The data in the frequent loop cache is then updated

to reflect the values in the holding registers. Cache hits and

misses are handled the same way as they were in the

frequent loop detector without coalescing. Furthermore,

saturations in the coalescing frequency register cause a right

shift by one in both the coalescing register and all values

currently stored in the frequency cache.

5.3 Coalescing Results

The experimental setup for the frequent loop cache detector

with coalescing is the sameas the setup for thedesignwithout

coalescing. We modeled the additional coalescing hardware

in synthesizable VHDL, resulting in an area overhead of

approximately 2,300 gates or an area of 0.020 mm2. Control/

steering logic, registers, and arithmetic units are included in

the gate count. The area of the cache itself remains the same

as the frequent loop detector without coalescing. The cache

with coalescing hardware represents a 7.48 to 13.3 percent

increase to the area overhead of the MIPS 4Kp.
A power savings of 98.9 percent is achieved by

coalescing one sbb instead of doing one cache update, with

the lowest and highest savings being 97.5 percent and

99.7 percent, respectively, depending on frequency size.

Thus, the power consumed by coalescing is insignificant

compared to a cache update.

To see total system power savings by using coalescing,
we must determine the new power overhead related to total
system power using the MIPS system described in Section 4
and the best cache configuration. With the addition of the
coalescing hardware, cache updates now only occur, on
average, 0.91 percent of the time across all benchmarks.
Coalescing one sbb consumes only 2.3 mW of power and
coalescing occurs, on average, 3.3 percent of the time across
all benchmarks. The resulting increase in the average power
consumption of the total system with the frequent loop
detector with coalescing is now reduced to a mere
0.53 percent, i.e., less than 1 percent power overhead.

Along with the benefit of reduced power consumption,
the coalescing hardware still preserves the fidelity of the
results. Since no instruction executions are lost, only
coalesced, the accuracy of the SOD results for each cache
configuration is identical to those achieved with the
frequent loop detector without coalescing.

6 SAMPLING FOR FURTHER REDUCED POWER

OVERHEAD

In conjunction with coalescing, sbb instruction sampling
can also be used to further reduce the power overhead, at
the expense of some accuracy. Instead of tallying every
sbb instruction executed, only sbbs that occur at fixed
sampling intervals will be included in the frequency counts.
This method does not require interruption of the micro-
processor, as previous sampling methods required. The
frequent loop cache controller will only tally sbbs that occur
on the sampling interval—such sampling is easily imple-
mented using a small (e.g., 6-bit) counter.

To see the impact of sbb instruction sampling on the
accuracy of the results, we simulated the best cache
configuration for sampling intervals of 1, 5, 25, and 50 sbb
instructions. Fig. 8 shows the results for each benchmark. For
all Powerstone benchmarks (except jpeg), the average trend is
the degradation of accuracy as the sampling rate gets larger.
On average, for the Powerstone benchmark suite, 5 percent of
accuracy is lost when going from a sampling interval of 1 to
50. However, for the MediaBench benchmark suite, the
average trend is for the accuracy of the results to improve by
approximately 2 percent with a sampling rate of 50. Much of
the inaccuracy is due to conflicts in the cache structure,where
infrequent loops evict frequent loops. Since the MediaBench
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Fig. 8. Sum of differences compared to the perfect loop frequencies for the best cache, a 2-way set-associative 32 entry cache with a frequency

width of 24 bits, for Powerstone and MediaBench benchmarks with short backward branch sampling intervals of 1, 5, 25, and 50 instructions.



benchmarks tend to be much larger than Powerstone bench-
marks,MediaBench benchmarks have amuch larger number
of loops. For benchmarks with a smaller number of loops,
there is not much contention in the cache. However, for
benchmarks with a large number of loops, a large sampling
rate reduces the possibility that an infrequent loop will ever
be cached, thus reducing cache contention. Table 4 further
investigates the benchmarks with the most improved results
due to sampling. Table 4 shows the SOD calculation for each
benchmark for a sampling rate of 1 (s1) and a sampling rate of
50 (s50). For every benchmark, the results show greatly
improved accuracy for all loops accounting for more than
10 percent of the execution time. In the pegwit benchmark, the
frequent loopdetectorwithout samplingwasunable todetect
loop two accounting for 32.6 percent of the execution time.
However, with a sampling rate of 50, the frequent loop
detector not onlydetected this loop, but alsodetected the loop
with a reasonably accurate frequency of 36.6 percent.

Fig. 9 looks at effects of sampling more closely for the jpeg
benchmark for a selection of interesting frequent loop cache
configurations and a larger number of sampling rates. The
effects of the sampling rates are different for different cache
configurations. In a 4-way 16-entry cache with a frequency
width of 12 bits, going fromno sampling to a sampling rate of
50 increases theaccuracyof the cacheby23percent.However,
for a 4-way 16-entry cache with a frequency width of 32 bits
and a sampling rate of 10, the accuracy actually decreases
over no sampling. These unpredictable results are due to
changes in cache contention.

Even though sampling has varying degrees of effect on

accuracy, we notice that the effects on the best cache

configuration are quite favorable. For benchmarks with a

low accuracy before sampling, i.e., jpeg, jpegdecode, mpegde-

code, and mpegwit, sampling tended to increase the accuracy

due to reduced contention in the cache. For the benchmarks

with near perfect accuracies before sampling, sampling

tended to decrease the accuracy due to loss of information,

but by an acceptable amount. Overall, sampling is beneficial

on average across all benchmarks because it improves the

results of the less accurate benchmarks with only minimal

impact on the highly accurate benchmarks.
At a sampling rate of 50, the cache updates and coalesces

decrease even further to rates of 0.03 percent and

0.06 percent, respectively, with no saturations. Coalescing

plus sampling (at a rate of 50) reduces the average system

power overhead to a mere 0.02 percent (0.05 percent

without coalescing).
Thus, to minimize the power overhead of the profiler

without too much loss of accuracy overall, and even

improved accuracy for some benchmarks, we might choose

a sampling rate of 50.

7 EXAMPLE USES

7.1 Warp Processing

The detector has been successfully incorporated into a novel

prototype system-on-a-chip architecture performing what is

presently known as warp processing [28], [29], [34]. The
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TABLE 4
Actual (Act.) and Predicted (Pred.) Percentage Execution Times for the Top 10 Most Frequently Executed Loops for a

Selection of Benchmarks for the Best Cache Configuration (2-Way/32-Entry/24-Bit)
with a Sampling Rate of 1 (s1) and a Sampling Rate of 50 (s50)

Fig. 9. Sum of differences compared to the perfect loop frequencies for a selection of frequent loop cache configurations for jpeg for sampling rates

ranging from 1 to 50 sbb instructions.



architecture consists of microprocessors coupled with field-
programmable gate arrays (FPGAs), along with a single
dynamic partitioning module that itself contains a lean
microprocessor. The dynamic partitioning module monitors
the software executing on each regular microprocessor (one
microprocessor at a time), detects the critical software
kernels, and automatically remaps those kernels to an
FPGA coprocessor.

The warp processor architecture designers successfully
incorporated our frequent loop detector into their architec-
ture and use that detector to find the critical kernels.
Overall, an application speedup of 8 is obtainable on
average by remapping the critical kernels from a 200 MHz
MIPS to FPGA and substantially faster speedups are
projected as more aggressive transformations (e.g., loop
unrolling, loop pipelining) and more efficient FPGA fabrics
are developed. For highly parallel examples, estimated
speedups of greater than 10 can be achieved when
performing aggressive optimizations.

7.2 Frequent Loop Caching

Another architecture focuses on caching frequently exe-
cuted regions of code in a small level 0 cache near the
microprocessor in embedded systems in what is called a
preloaded loop cache [17]. As shown in Fig. 10, the
preloaded loop cache is not simply another level of cache,
but is a small table used to fetch instructions that are
guaranteed not to miss in the frequent loop cache. The small
size of the preloaded loop cache allows the cache to be
placed very close to the microprocessor, resulting in very
fast access times. The small size also allows for very low
power fetches. We showed that the preloaded loop cache
results in a 70 percent reduction in instruction memory
accesses [17].

The preloaded loop cache incurs no performance over-
head since only fetches that are guaranteed not to miss are
sent to the preloaded loop cache. Previous methods perform
an offline profiling step to determine the frequently
executed regions of code for placement into the preloaded
loop cache. The requirement of offline profiling limited the
applicability of the preloaded loop cache because of the
design time required executing the profiling step and the
difficulty of setting up an accurate simulation environment.
Furthermore, difficulty arises in a multiapplication envir-
onment because all applications must be known ahead of
time and profiled with the critical region information stored
on-chip for loading into the preloaded loop cache during
application swap.

The frequent loop detector described in this paper
significantly extends the applicability of the preloaded loop
cache. The frequent loop detector allows for transparent use
of the preloaded loop cache. Instead of an offline profiling
step for determination of the frequent regions of code, the

frequent loop detector can be included on-chip to perform
the profiling step. The frequent regions of code would then
be loaded into the preloaded loop cache and the preloaded
loop cache would service subsequent fetches of instructions
in the critical regions.

The coupling of the preloaded loop cache and the
frequent loop detector also allows for easy incorporation
into a multiapplication environment. The profiling step can
be performed after each application swap and the critical
regions can be loaded into the preloaded loop cache. To
reduce profiling time, the critical regions can be stored for
later lookup when execution returns to the application.

Furthermore, the preloaded loop cache could even be
configured for different execution phases of an application.
Applications typically have different phases of execution,
each of which has different frequently executed regions of
code. The number of accesses bypassing the preloaded loop
cache would be monitored and, when a given threshold is
reached, a phase change would be detected. At that time,
the frequent loop detector would be activated to determine
the new frequently executed regions of code to be loaded in
to the preloaded loop cache. As with a multiapplication
environment, the critical regions for each phase can be
stored for later lookup when execution returns to that phase
in the application.

8 CONCLUSIONS

We introduced a small, power-efficient architecture for
accurately and nonintrusively detecting the most frequent
loops of an executing program, while accurately providing
the relative frequencies of those loops. We displayed the
effectiveness of the architecture using numerous bench-
marks. The architecture uses a 2-way set-associative
32-entry cache, with each entry storing a 24-bit frequency
counter. We show that the power overhead of our loop
detector is only 1-2 percent, compared to a 32-bit embedded
processor, and is easily reducible to well below 0.1 percent
using simple coalescing and sampling methods.
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