
A Way-Halting Cache for Low-Energy
High-Performance Systems

CHUANJUN ZHANG
San Diego State University
and
FRANK VAHID, JUN YANG, and WALID NAJJAR
University of California, Riverside

Caches contribute to much of a microprocessor system’s power and energy consumption. Numer-
ous new cache architectures, such as phased, pseudo-set-associative, way predicting, reactive-
associative, way-shutdown, way-concatenating, and highly-associative, are intended to reduce
power and/or energy, but they all impose some performance overhead. We have developed a new
cache architecture, called a way-halting cache, that reduces energy further than previously men-
tioned architectures, while imposing no performance overhead. Our way-halting cache is a four-way
set-associative cache that stores the four lowest-order bits of all ways’ tags into a fully associative
memory, which we call the halt tag array. The lookup in the halt tag array is done in parallel
with, and is no slower than, the set-index decoding. The halt tag array predetermines which tags
cannot match due to their low-order 4 bits mismatching. Further accesses to ways with known
mismatching tags are then halted, thus saving power. Our halt tag array has an additional feature
of using static logic only, rather than dynamic logic used in highly associative caches, making our
cache simpler to design with existing tools. We provide data from experiments on 29 benchmarks
drawn from Powerstone, Mediabench, and Spec 2000, based on our layouts in 0.18 micron CMOS
technology. On average, we obtained 55% savings of memory-access related energy over a conven-
tional four-way set-associative cache. We show that savings are greater than previous methods,
and nearly twice that of highly associative caches, while imposing no performance overhead and
only 2% cache area overhead.

Categories and Subject Descriptors: [Memory Structures]: Design Styles—Cache memories

General Terms: Design, Experimentation, and Performance

Additional Key Words and Phrases: Cache, low power, low energy, embedded systems, dynamic
optimization

This work was supported by the National Science Foundation under NSF: CCR-0203829 and by
the Semiconductor Research Corporation: SRC: 2003-HJ-1046G.
Frank Vahid is also with the Center for Embedded Computer Systems, UC Irvine.
Authors’ addresses: Chuanjan Zhang, Department of Electrical and Computer Engineering, San
Diego State University, 5500 Campanile DR, San Diego, CA 92182-1309; email: czhang@mail.
sdsu.edu; Frank Vahid, Jun Yang, and Walid Najjar, University of California, Riverside.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1544-3566/05/0300-0034 $5.00

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 1, March 2005, Pages 34–54.

A Way-Halting Cache for Low-Energy High-Performance Systems • 35

1. INTRODUCTION
Reducing the power consumption of both high-end processors and embedded
processors is an increasingly important task. High-end processor chips are be-
coming very high in temperature, calling for lower power solutions. Embedded
processor chips often have little cooling capability and thus require low power,
and are often powered by batteries and thus require low energy to prolong
battery life.

Caches may consume nearly 50% of a microprocessor’s power [Malik et al.
2000; Segars 2000]. Most of that power is due to dynamic power—the switching
of bits during accesses. Some of that power is due to static power—current leak-
ing even when the cache is not being accessed. Cache designers, for both high-
end and embedded processors, must compromise between performance, cost,
size, and power/energy dissipation. A fundamental cache design trade-off is be-
tween a direct-mapped cache and set-associative cache. A conventional direct-
mapped cache accesses only one tag array and one data array per cache access,
whereas a conventional four-way set-associative cache accesses four tags arrays
and four data arrays per cache access. Thus, a conventional direct-mapped
cache consumes much less dynamic power per access than a set-associative
cache, roughly a 55% reduction per access [Reinmann and Jouppi 1999]. A
direct-mapped cache has the additional benefit of not requiring a multiplexor
to combine multiple accessed data items from multiple ways, and hence can
have faster access time. However, a direct-mapped cache may have a higher
miss rate than a set-associative cache, depending on the access pattern of the
executing application, with a higher miss rate meaning more power consumed
in off-chip accesses and stalled processor cycles. Therefore, a direct-mapped
cache may or may not result in less overall power and/or energy consumption
for a particular application.

Generally, we can view the low-dynamic power cache design goal as that
of minimizing the internal activity during a cache access. That activity comes
from reading and comparing tags in tag arrays, and from reading/writing data
in data arrays. Ideally, on a hit, the cache would have only read and compared
one tag entry and accessed one data entry—we cannot do much better than that.
Furthermore, on a miss, ideally the cache would have only read and compared
one tag entry, and accessed no data entries. In fact, on a miss, the cache does
not even have to access a complete tag entry—seeing even one mismatched tag
bit is enough to determine a miss. This last point provides the motivation for
our way-halting cache.

In this paper, we introduce a new cache design, which we call a way-halting
cache, that reduces the cache’s internal activity to nearly the ideal minimums
described above, without any performance overhead—neither in the critical
path, nor in the hit rate.

Our cache is four-way set-associative, though the method can be applied to
any number of ways. We divide each of the four tag arrays into two subarrays:
the first subarray (the halt tag array) holds only the low-order 4 bits of each tag
(we will explain later why we chose to use 4 bits), and the other subarray (the
main tag array) holds the remaining bits of each tag. A way-halting cache checks
all the (4-bit) tags in the halt tag array in parallel with set index decoding, in

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 1, March 2005.

36 • C. Zhang et al.

contrast to other approaches that only check the tags in the cache set specified
by the set index. The decoded index activates only the main tag array and data
arrays of ways that have not been predetermined by the halt tag array check
to be a mismatch—predetermined mismatches effectively halt the access to a
way’s main tag array and data array. Note that way-halting does not impact
the hit rate, as the hit rate is identical to that of a four-way cache—we have
merely caused early termination of accesses to ways that are predetermined
to be misses. Furthermore, through careful design, we can create the halt tag
array access and comparisons so they do not extend the cache’s critical path. We
will show that a way-halting cache comes very close to the ideal of halting three
ways on a hit (and hence accessing only one way), and of halting all ways on a
miss (and hence accessing no data)—both approaching the ideal minimums of
cache access described earlier.

A way-halting cache makes use of a fully associative memory for the 4-bit-
wide halt tag array. A key question is whether the power consumed by the fully
associative comparison in the halt tag array outweighs the power savings in
the rest of the cache. Our experiments clearly show that the power savings are
far greater. We also took special care to design the fully associative memory
using static circuits, in contrast to the dynamic circuits used in the content-
addressable memories (CAMs) found in some modern highly associative cache
architectures of embedded processors. Thus, our cache does not need special
tools or libraries, and is therefore more widely usable by designers.

The rest of this paper is organized as follows. In Section 2, we briefly review
related work. We introduce our way-halting cache architecture in Section 3.
The design of the halt tag array is discussed in Section 4. Energy savings of
a way-halting cache are presented in Section 5. We compare way halting with
other low-power caches in Section 6. We conclude in Section 7.

2. PREVIOUS ENERGY-EFFICIENT CACHE DESIGNS

Numerous attempts to reduce cache dynamic power have been proposed in re-
cent years. The technique that is closest to our design is partial address match-
ing [Efthymiou and Garside 2002; Juan et al. 1996; Liu 1994]. These previous
efforts seek to reduce the access time or energy dissipation of set-associative
caches. Liu [1994] investigated the possibility of improving the access time of a
set-associative cache to an approximation of a direct-mapped cache with faster
matches of five tag bits. Using the same observation, Juan et al. [1996] used
one tag bit to distinguish the two ways of a two-way set-associative cache to
achieve an access time close to or equal to that of a direct-mapped cache. To
reduce energy dissipation, an adaptive serial-parallel highly associative cache
[Efthymiou and Garside 2002] reduces power by first checking only the least
four significant tag bits of each tag, and then only checking the remaining bits
if the first four match. The method thus reduces tag comparison power only,
at the expense of performance (a 25% slowdown is reported in Efthymiou and
Garside 2002]). The cache can operate in that serial mode, or in the traditional
parallel mode in which the complete tag is checked at once (but with no power
savings). In contrast, our way-halting cache targets a conventional four-way

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 1, March 2005.

A Way-Halting Cache for Low-Energy High-Performance Systems • 37

set-associative cache, reduces power consumed by both the tag and data ways,
and has no performance overhead.

Among other schemes, most of them create designs that are a compro-
mise between set-associative and direct-mapped caches. A phased-lookup set-
associative cache [Calder et al. 1996; Hasegawa et al. 1995] accesses the tag
arrays in the first phase, and then accesses only the one data array correspond-
ing to the matching tag (if any) in a second phase. Power is saved by accessing
at most only one data array, but at the cost of performance overhead due to two
phases and hence longer cache access time. A way-predicting set-associative
cache [Inoue et al. 1999] [Powell et al. 2001] first accesses only the tag ar-
ray and data array of one way that is predicted to be a hit. If a misprediction
occurred, the rest of the ways are accessed in the following cycle. The predic-
tion accuracy for instruction and data caches is reported to be 90% and 80%,
respectively [Powell et al. 2001]. However, the mispredictions result in perfor-
mance overhead. A reactive-associative cache (RAC) [Batson and Vijaykumar
2000] uses both selective direct mapping and way prediction. Selective map-
ping places most of the blocks in direct-mapped positions that are accessed
first. If those miss, the other ways are accessed following way prediction. The
tag array in a RAC is arranged as a set-associative cache; however, the data
array is arranged as a direct-mapped cache without the multiplexors as needed
in set-associative cache. A pseudoset-associative cache [Huang et al. 2001] is
a set-associative cache having one tag array and one data array like a direct-
mapped cache. On a miss, an index bit is flipped and a second cache entry is
checked for a hit—the first and second locations thus form a pseudo-set. Again,
dynamic power is reduced at the expense of performance. Panwar and Rennels
[1995] proposed a method to skip tag comparisons when accessing the same
cache line as the last cache access.

Some techniques require software assistance. A programmable tag size cache
[Petrov and Orailoglu 2001] allows software to define the number of tag bits
that should be compared—a useful situation in loops where only a few bits
change from one address to the next. A direct-addressed cache [Witchel et al.
2001] utilizes a special compiler that eliminates tag checking when the compiler
knows the accessed line is the same as the previous access, resulting in 9–40%
data cache energy savings at the expense of the need for a special compiler and
special tag check directives.

Some methods, complementary to those above, seek to tune the cache configu-
ration to a particular application. A way-shutdown cache [Albonesi 2000; Malik
et al. 2000] is a configurable set-associative cache where some ways can be shut-
down. For applications not needing all the available ways and total cache size,
shutting down ways can save dynamic power per access without much perfor-
mance overhead. Furthermore, by adding sleep transistors to the cache’s SRAM
cells, way shutdown can also save static power [Zhang et al. 2003], although
sleep transistors may slow SRAM access and hence impose performance over-
head. A way-concatenation cache [Zhang et al. 2003] is a set-associative cache
where ways can be logically concatenated to result in a four-way, two-way, or
direct-mapped cache, all of the same total size. Way concatenation and way
shutdown can be combined to allow for even better tuning of the number of

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 1, March 2005.

38 • C. Zhang et al.

ways and total size to a particular application, resulting in an average 35% re-
duction in memory-related energy compared to a conventional four-way cache
[Zhang et al. 2003]. Further combining such a cache with a configurable line
size, having a 16 byte physical line size but up to a 64 byte logical line size,
improves energy reductions to 40% [Zhang et al. 2005].

Highly associative caches using CAM (content-addressable memory) tags
have been utilized in low-energy embedded processors, such as the StrongArm
processor [Santhanam et al. 1998]. A highly associative cache is a phased cache.
In a traditional four-way set-associative phased-cache access, four tags are read
from four tag arrays corresponding to the particular set determined by the ad-
dress index, and compared in parallel using four comparators. With the advent
of fast, low-power fully associative CAMs, the four tags of a set could instead be
stored in a single four-word CAM, so that the four parallel comparisons could
be done more efficiently. Of course, a four-word CAM is quite small—a 32 or
64 word CAM is still very efficient, and thus increasing the set size to 32 or
64 (or even higher) makes sense. So the high associativity in such caches is
not for performance—beyond four or eight ways, the hit rate does not increase
much with higher associativity for most applications—but rather due to the
use of CAMs for tag comparisons. Although our cache also uses a fully asso-
ciative memory, our parallel comparisons are among all the tags in an array
(actually, among just 4 bits of all those tags), rather than among all the tags in
a particular set as in a highly associative cache.

Each previous approach reduces power in exchange for some cost. A phased-
lookup cache requires more time for every access. A way-predicting, reactive-
associative, or pseudo-set-associative cache requires extra time whenever the
first way accessed results in a miss. Way-shutdown and way-concatenation
caches require profiling, and also save no power if four ways are needed (though
the approaches can be combined with the other approaches), or could instead
create more misses if configured with too low of associativity. Methods that re-
quire special compilers impose tool cost. Highly associative caches are phased
cache and hence require more time to access, and they also require special CAM
tag memories and clocking. Note that any method that reduces power per cache
access but increases time per access and/or increases the miss rate may actually
result in higher overall energy, since energy equals power times time. This fact
makes the total memory-access related energy, not just the power per access,
an extremely important metric when evaluating cache designs, and thus the
metric we will utilize.

3. WAY-HALTING CACHE ARCHITECTURE

3.1 Baseline Architecture

Our way-halting cache architecture is shown in Figure 1. We utilize a four-way
set-associative cache as our baseline architecture, since four ways yields a suf-
ficiently good hit rate for most applications. We use an 8 Kbyte total cache size
and a 32-byte line size, though our approach can be applied straightforwardly
to caches with other numbers of ways, total size and line size. Our baseline

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 1, March 2005.

A Way-Halting Cache for Low-Energy High-Performance Systems • 39

Fig. 1. Way-halting four-way set-associative cache architecture. Four bits of each tag is stored in
a separate halt tag array for each way. The first inverter of the word line driver is replaced by a
NAND gate.

Fig. 2. Tags of a set commonly do not match in their low-order bits.

cache thus has 64 sets. The architecture includes a 6 × 64 decoder, word line
drivers, four tag arrays, four data arrays, sense amplifiers (SA), comparators,
one multiplexor, and output drivers. The architecture also includes precharging
circuits and write circuits that are not shown in the figure. For such a cache, a
memory address will be divided into a 6-bit index to determine the set, a 21-bit
tag to determine a match, and a 5-bit offset to extract the appropriate bytes
from a line. The index bits from a desired address are fed into the decoder. One
decoder output will become high and is strengthened by a word line driver con-
sisting of a pair of cascaded inverters (not shown in the figure), activating four
cache lines of the one set of the cache. Four tags and data arrays are thus read
out simultaneously through the sense amplifiers. Four comparators compare
the desired address tag with the tags read from the tag array to see which way
(if any) is a hit. The data of the hit way is sent to microprocessor through the
mux and output driver.

3.2 Main Idea—Early Detection of Misses

Given a four-way set-associative cache, four tags are checked for each cache
access. At most, one of those tags may match, with the other three being mis-
matches. Usually, the mismatches can be detected in the low-order bits. This
phenomenon is illustrated in Figure 2, which represents a 21-bit tag in hexadec-
imal. Because memory accesses tend to exhibit spatial locality, the high-order
tag bits of cache items frequently match. Instead, the differences between two

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 1, March 2005.

40 • C. Zhang et al.

tags tend to appear in the low-order bits. If the probability of a match in a sin-
gle low-order bit is 50%, then the probability of the four lowest-order tag bits
matching would be 0.54 = 6.25%. In other words, the probability of a mismatch
in the least four tag bits would be 100% – 6.25% = 93.75%. This result matches
our experimental results shown in Figures 3 and 4.

Therefore, if we can somehow check the low-order bits of a tag early, we can
detect most misses early, and so we can terminate the access to the full 21 bits
of tag as well as to the data arrays before they consume power. We will show
the impact of the number of low-order bits on the early miss detection shortly.

3.3 Basic Architecture

To enable early detection of misses, we store the low-order 4 bits of each tag in a
separate n-bit-wide memory. We call this memory the halt tag array, as shown
in Figure 1. We call the remaining (21-n)-bit-wide tag array the main tag array.
In a conventional cache, the desired address’ index is decoded, and the resulting
decoder output line activates the read of the appropriate tag from the tag array,
which is then compared with the desired tag. Decoding takes some time, during
which the cache can check the halt tag array without increasing delay. Because
the index has not been decoded yet, the cache does not know which tag in the halt
tag array to read and compare—the cache therefore compares all the halt tags
to the lower n bits of the desired address’ tag. We accomplish this by implement-
ing the halt tag array as a fully associative memory, which we point out is only n
bits wide (and 64 rows long), where n is small, making such a memory feasible
in terms of size and power. We will study the value range of n in Section 4.1.

In a conventional cache, the address decoder would assert a single output
line high, and that line would be strengthened by a pair of cascaded inverters
to enable reading the appropriate row from the tag and data arrays. In our
way-halting cache, that output line should be ANDed by the results of the halt
tag array comparison for that row. In other words, only if the low-order 4 bits
match should the cache continue to access the main tag array and the data
array; if the halt tag was a mismatch, the output line should not go high.

Adding an AND gate after the double inverters would lengthen the critical
path. Instead, we can achieve the same logic by replacing the first inverter by a
NAND gate, as shown in Figure 1; the second inverter makes the total logic an
AND. A NAND gate would normally be slower than an inverter. However, the
first inverter of the cascaded inverters is typically small—the second inverter
is instead appropriately sized larger to drive the signal. Thus, when replacing
the first inverter by a NAND gate, we can increase the size of the NAND gate
(actually, of its transistors) so that the gate’s switching speed is the same as
the original inverter. The identical technique of replacing the first inverter
by a resized NAND gate was used by Zhang in the way-concatenate cache in
[Zhang et al. 2003], with detailed layout and timing analysis results showing
no lengthening of the critical path.

We point out that we have not changed the cache subarray organization
to implement the way-halting cache. Based on the CACTI model, the data
memory is divided into four subarrays for cache sizes of 8 Kbytes, 16 Kbytes, and

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 1, March 2005.

A Way-Halting Cache for Low-Energy High-Performance Systems • 41

F
ig

.3
.

A
ve

ra
ge

n
u

m
be

r
of

w
ay

s
of

in
st

ru
ct

io
n

ca
ch

e
op

en
ed

w
h

en
2

bi
ts

,3
bi

ts
,a

n
d

4
bi

ts
ar

e
co

m
pa

re
d

in
a

h
al

t-
ta

g
ar

ra
y

in
pa

ra
ll

el
w

it
h

th
e

ad
dr

es
s

de
co

de
r.

A
ve

ps
,A

ve
m

d
,a

n
d

A
ve

sp
st

an
d

fo
r

av
er

ag
e

of
P

ow
er

st
on

e,
M

ed
ia

be
n

ch
,a

n
d

S
pe

c
20

00
,r

es
pe

ct
iv

el
y.

F
ig

.4
.

A
ve

ra
ge

n
u

m
be

r
of

w
ay

s
of

da
ta

ca
ch

e
op

en
ed

w
h

en
2

bi
ts

,3
bi

ts
,a

n
d

4
bi

ts
ar

e
co

m
pa

re
d

in
a

h
al

t-
ta

g
ar

ra
y

in
pa

ra
ll

el
w

it
h

th
e

ad
dr

es
s

de
co

de
r.

A
ve

ps
,A

ve
m

d
,a

n
d

A
ve

sp
st

an
d

fo
r

av
er

ag
e

of
P

ow
er

st
on

e,
M

ed
ia

be
n

ch
,a

n
d

S
pe

c
20

00
,r

es
pe

ct
iv

el
y.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 1, March 2005.

42 • C. Zhang et al.

32 Kbytes, to achieve the best trade-offs of cache size, performance, and energy
consumption.

3.4 Issues with Virtually/Physically Addressed/Tagged Caches

Our scheme requires that the tags are available no later than the set index.
If the tag, but not the set index, needs to be first translated by a translation
look aside buffer (TLB), a problem exists since the halt tag array lookup cannot
proceed. Such situations happen in a virtually indexed and physically tagged
(V/P) cache, as appear in processors like the AMD K6 [Advanced Micro Devices],
MIPS R10K [MIPS Technologies], PowerPC [IBM], etc. Here, we briefly summa-
rize four combinations of tag and data array addressing using either the virtual
address or the physical address: virtually indexed, virtually tagged (V/V); virtu-
ally indexed, physically tagged (V/P); physically indexed, virtually tagged (P/V),
and physically indexed, physically tagged (P/P) cache.

Apart from V/P, all other three cases, namely, the V/V, P/V, and P/P cases,
meet our requirement that the tags are available before or at the same time
as the index. For V/P caches, the physical tag will not be available until the ad-
dress translation is finished through the translation look ahead buffer (TLB).
This will influence the access time of our way-halting cache. To solve this prob-
lem, we use a technique called page alignment or page coloring [Taylor et al.
1990].

The main idea of the page alignment here is that we require the least 4 bits
of the virtual tags from the processor to be equal to the least 4 bits of the
physical tags stored in the cache tags, with the help of the operating system. For
example, the version of UNIX from Sun Microsystems guarantees the virtual
address and physical address are identical in the last 18 address bits [Hennessy
and Patterson 2002]. With such an implementation, the halt tag array lookup
can proceed before the physical tag is obtained from the TLB, avoiding delays
in the original design. Therefore, the way-halting cache can be used in all four
types of caches. The main drawback of page coloring is that the cache cannot
be larger than a page (for each way), but this is typically not a limitation for
embedded systems.

4. DESIGNING THE HALT TAG ARRAY

The most important component in a way-halting cache is the halt tag array,
which must be designed not only to be faster than the index decoder does, but
also to consume low enough energy so that we obtain overall energy savings.
The two most important considerations in the design of the halt tag array are
(1) the bit width of the array and (2) the implementation of the fully associative
comparison circuitry.

4.1 Bit Width of the Halt Tag Array

We examined the impact of the halt tag array’s bit width on the number of
ways that can be halted. Our goal is to find the minimum number of bits that
halts nearly three of the four ways per hit, or conversely stated, activates only
one of the four ways per hit. Theoretically, there are at least 2 bits across the

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 1, March 2005.

A Way-Halting Cache for Low-Energy High-Performance Systems • 43

four tags that can be used to differentiate any one from the others. However,
to determine which such 2 bits to use is not an easy job since the location of
those 2 bits may vary from set to set. Dynamically determining the 2 bits is
even more expensive in both delay and energy. Thus, a better solution is to use
more bits in fixed positions to accommodate all the cache sets.

The spatial locality of memory accesses implies that the address sequences
sent to the cache tend to be in the “near neighborhood.” In other words, only
the low-order bits of addresses toggle most of the time. Thus, it is reasonable
to use the low-order tag bits in the halt tag array. Subsequently, the number of
low-order tag bits, that is, the halt tag array bit width, needs to be determined.
The wider the array is, the more accurate the way filtering is, yet the higher the
energy and time. We varied the bit width from 2 to 4 and measured the average
number of ways that are activated. We simulated a variety of benchmarks for
an 8 Kbyte, 32-byte line size cache having a random replacement policy, using
SimpleScalar [Burger and Austin 1997]. The benchmarks included programs
from Motorola’s Powerstone embedded suite [Malik 1997] (pjpeg, padpcm,
auto2, bcnt, bilv, binary, blit, brev, crc, ucbqsort, fir, g3fax, and v42), Media-
Bench [Lee et al. 1997] (g721, jpeg, mpeg2, adpcm, epic, and pegwit), and 11
programs from Spec2000 (gcc, art, mcf, parser, vpr, bzip, gzip, mesa, equake,
ammp, and votex). To reduce simulation time, we selected a random subset of
benchmarks from each benchmark suites. We used the reference input vectors
with each benchmark as program stimuli.

The results are shown in Figures 3 and 4 for instruction and data caches,
respectively, with averages for each benchmark suite circled. Looking at the
Spec2000 results for an instruction cache (Figure 3, the ideal average number
of ways that should be opened (i.e., accessed) is 0.97 (1 for hits and 0 for misses).
Using 2, 3, and 4 bits in our halt tag array, the average number of ways opened is
1.55, 1.23, and 1.06, respectively. The other benchmarks and Figure 4 display
similar averages. We see that a bit width of 4 comes very close to the ideal
situation of only accessing one way per hit and zero way per miss. Further
increasing the number of halt-tag array bits to 5 or more cannot significantly
reduce the number of ways opened, but may instead increase area, power, and
performance overhead. Therefore, we use 4 bits in the halt-tag array, because
that number is the smallest number that achieves close to the ideal.

We also ran the experiments using cache sizes of 16 Kbytes and 32 Kbytes
and four-way set associativity, obtaining similar results. We did not do experi-
ments for caches with associativity more than four, because when associativity
is higher than four, the benefits of hit rate are small, and instead the cache has
a longer cache access time that impacts a microprocessor’s performance.

4.2 Halt Tag Array Fully Associative Memory Design

Each halt tag array is a 64 × 4 fully associative memory. If we do not design that
array properly, it may consume too much energy and hence mitigate savings
obtained from halting ways.

We first designed the halt tag array using traditional 10-transistor CAM cells
utilizing dynamic circuit techniques, as found in highly associative CAM-tag

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 1, March 2005.

44 • C. Zhang et al.

Fig. 5. A simple for loop example.

based caches. We laid out the halt tag array, as well as the rest of the cache
including the main tag array and the data array SRAM, in a TSMC 0.18 micron
CMOS technology obtained through MOSIS [The Mosis Service]. We utilized
several low-power SRAM design techniques, such as pulse word line control, to
limit the bit line swing, and word line segmentation such that only one word
(32 bits) is read [Amrutur and Horowitz 1998].

However, we found that designing the halt tag array as a fully associative
memory built using static circuit (SRAM-based) techniques resulted in a lower
energy per access. This is because the switching activity in the halt tag array
is not very high. Static circuits only consume power (dynamic power, that is)
when the circuit’s inputs change, while dynamic circuits consume power even
when there is no switching activity. Locality exists both in instruction and
data cache accesses. The tag addresses sent out to the level-one on-chip caches
do not change frequently. For example, Figure 5 shows a simple for loop. The
instructions of this for loop may reside in several cache lines (the line size is
32 bytes in our experiments). It is obvious that only the index to the instruction
cache would be changed to locate those instructions. On the other hand, the
tags will remain the same for about 1000 iterations.

We measured the percentage of the tag changes from the address streams
sent to the instruction and data caches, respectively, for the earlier-mentioned
benchmarks. The results are shown in Figure 6. We observed that the data cache
tag changes more frequently due to less spatial locality than the instruction
cache, but changes are still not high on average. Furthermore, even when there
is a change in tag bits, only a few comparator output bits change in the halt
tag array, keeping the dynamic power low for our static circuit. Using a static
circuit approach also has the advantage of enabling adoption of standard SRAM
and off-the-shelf logic tools.

The design of our halt tag array is shown in Figure 7. Only one word of the
array is depicted, which consists of four standard SRAM cells (two are shown).
We also show a static comparator on the right of the figure. The static compara-
tor component must execute as fast as the address decoder component to avoid
lengthening the critical path. We employed the same decoder architecture as in
CACTI [Reinmann and Jouppi 1999]. Both components have two levels of gates.
We designed our XOR and NOR gates of the comparator to be as fast as the
address decoder, through laying out our cache using Cadence with a technology
of 0.18 µm, as shown in Figure 8. We extracted the cache layout, obtained the
net lists, and did the timing simulation of the cache using Spectra, a tool from
Cadence. The size of one static comparator is 3 µm × 16 µm. The total area
overhead is less than 2% of the total cache area.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 1, March 2005.

A Way-Halting Cache for Low-Energy High-Performance Systems • 45

F
ig

.6
.

T
ag

ad
dr

es
s

ch
an

ge
fr

eq
u

en
cy

of
da

ta
an

d
in

st
ru

ct
io

n
ca

ch
e.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 1, March 2005.

46 • C. Zhang et al.

Fig. 7. Design of a fully associative memory for the halt tag array, based on a static circuit only.
The 16 input static comparator is composed of 4 XOR gates and 1 NOR gate. Eight inputs come
from the SRAM cells that store the halt tag, while the other eight inputs come from the desired
address’ least four-tag bits.

Fig. 8. Layout of an SRAM cell.

5. WAY-HALTING CACHE ENERGY SAVINGS RESULTS

5.1 Energy Modeling

In order to evaluate the difference of energy dissipation between a way-halting
and conventional set-associative cache, we consider only the energy dissipation
per cache access in this section. In a later section, we will consider energy
dissipation related to cache misses such as off chip memory and microprocessor
stall energy.

We computed energy as follows. We use Edec, Etag, Edata, Epre, Ecom, Emux, ESA,
and ECMP to represent the energy dissipation of the address decoder, one tag
array, one data array, one way’s precharging circuit, one way’s comparator
circuit, the mux and output driver, one way’s sense amplifier circuit, and a
comparator, respectively. We use Econ and Ewh to represent the energy dissi-
pation of a conventional four-way set-associative cache and of our way-halting
cache, respectively. Thus, the energy of a way-halting and conventional four-way

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 1, March 2005.

A Way-Halting Cache for Low-Energy High-Performance Systems • 47

set-associative cache can be computed as follows:

Econ = Edec + Emux + 4 * (Etag + Edata + Epre + Ecom + ESA)

Ewh = Edec + Emux + n * (Etag + Edata + Epre + Ecom + ESA) + 4 * Etha

n is the average number of ways that are activated of way-halting cache. It is
easy to see that way-halting and conventional four-way set-associative caches
share the common decoder and mux. The difference is that a way-halting cache
may access less than four ways of data and tag arrays. In addition, in our
way-halting cache, we have to consider the energy overhead of halt tag array,
which is Etha. We laid out the cache using Cadence in a technology of 0.18 µm
and measured the energy consumption of each cache component using SPICE
simulations.

5.2 Energy Savings

Figure 9 provides energy savings, compared to a conventional four-way set-
associative cache (whose energy is represented as 100%), of our way-halting
cache using a 4-bit wide halt tag array. We show data for both the static and
dynamic circuit implementations of the halt tag array. We see that a way-halting
instruction cache using a static halt tag array (I$-static) consumes only about
30% of the energy of a conventional cache, meaning a 70% savings. Likewise,
the data cache (D$-static) results in a 65% savings. In contrast, the designs
using dynamic halt tag arrays yield only about 45% savings for instruction and
data caches. Energy savings were lower for all caches when we used 3 or 2 bit
wide halt tag arrays—ranging from 2% to 18% lower.

6. COMPARISON WITH OTHER LOW-POWER CACHE ARCHITECTURES

In this section, we compare the performance and energy consumption of the
way-halting cache with previously proposed low-power cache architectures, in-
cluding CAM-based highly associative, direct-mapped, way predicting, phased,
and pseudo-set-associative caches, in terms of performance and energy.

6.1 Performance

A highly associative CAM-based cache is inherently a phased cache. This
phased feature has been described by designers of the StrongARM [Santhanam
et al. 1998] and Amulet2e [Garside et al. 1996]. A dynamic circuit (which is usu-
ally favored due to low power) CAM needs a precharging phase and an eval-
uation phase. In the high phase of the clock, the tag CAM evaluates whether
there is a hit. The comparison result is stored in a latch and will be used in
the low phase of the clock to read data from SRAM. In addition, in the low
phase of the clock, the tag CAM is precharged to prepare for the evaluation in
the following high phase of the clock. Normally, a clock is a 50% duty pulse,
so the critical time of accessing cache should not be the simple addition of the
CAM comparison time and data read time. The access time should be the double
of the longer phase time that is the low phase for data reading. In a conven-
tional four-way set-associative cache, normally the critical path is on the tag

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 1, March 2005.

48 • C. Zhang et al.

F
ig

.9
.

N
or

m
al

iz
ed

en
er

gy
di

ss
ip

at
io

n
w

h
en

st
at

ic
an

d
C

A
M

co
m

pa
ra

to
r

ar
e

u
se

d
in

pa
ra

ll
el

w
it

h
de

co
de

r
u

si
n

g
st

at
ic

co
m

pa
ra

to
r.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 1, March 2005.

A Way-Halting Cache for Low-Energy High-Performance Systems • 49

side, which is around 10% longer than the data read side [Reinmann 1990].
Therefore, we can see that the conventional four-way set-associative cache has
a shorter access time than a CAM-based highly associative cache.

Zhang and Asanovic [2000] argues that a CAM-based tag array has compara-
ble access latency with an SRAM-based tag array. In order to improve the speed
of the CAM tag comparison, they split the match line and employ single-ended
sense amplifiers on both segments of the split match lines. Their CAM timing
process was not described in detail; a special timing pulse may be employed in
their scheme.

From the above discussion, we can conclude that a conventional cache, and
hence our way-halting cache, has better, or as good, performance compared with
a highly associative cache.

Way-prediction does not lengthen access latency, but incurs extra cycles when
there is a misprediction. On average, the correct way is predicted for instruction
and data accesses 90% and 80% of the time, respectively [Powell et al. 2001].
The performance overhead of way prediction is around 3% due to misprediction.
A direct-mapped cache has a faster access time than a four-way set-associative
cache. In fact that access time can be as high as 20% faster than a same size
four-way set-associative cache [Reinmann and Jouppi 1999]. A phased cache
will not prolong the access time, but needs two cycles instead of one cycle in
a four-way set-associative cache. A pseudo-set-associative cache requires two
extra cycles when there is a misprediction.

Figures 10 and 11 compare number of cycles needed to execute each bench-
mark using the different cache architectures. A CAM-based highly associative
cache needs the lowest number of cycles, 97.9% of the conventional four-way
set-associative cache. A way-halting cache needs the same number of cycles as
the conventional four-way cache. Way prediction is the next best performing,
followed by pseudo-set-associative and then phased caches.

6.2 Energy

Section 5.2 only considers energy per cache (both instruction and data) hit. In
this section, we compute the overall energy consumption taking into account
the off-chip memory and the processor core. The energy model is given in the
following equations:

overall energy = no of hits * hit energy + no of misses* miss energy (1)

miss energy = offchip access energy+uP stall energy + cache block fill energy
(2)

In the first equation, the no of hits and no of misses are obtained by running
SimpleScalar with different cache configurations. The hit energy is computed
through simulation of circuits extracted from our layout of SRAM cache using
Cadence.

Determining the miss energy in the second equation is more involved. The
offchip access energy value is the energy for accessing off-chip memory, and the
uP stall energy is the energy for the microprocessor when it is stalled due to
cache misses. The cache block fill energy is the energy to fill the cache with

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 1, March 2005.

50 • C. Zhang et al.

F
ig

.1
0.

T
ot

al
cy

cl
es

fo
r

va
ri

ou
s

ca
ch

e
de

si
gn

s,
fo

r
P

ow
er

st
on

e
be

n
ch

m
ar

ks
,n

or
m

al
iz

ed
to

a
co

n
ve

n
ti

on
al

fo
u

r-
w

ay
ca

ch
e.

F
ig

.1
1.

T
ot

al
cy

cl
es

fo
r

va
ri

ou
s

ca
ch

e
de

si
gn

s,
fo

r
M

ed
ia

B
en

ch
an

d
S

pe
c2

00
0

be
n

ch
m

ar
ks

,n
or

m
al

iz
ed

to
a

co
n

ve
n

ti
on

al
fo

u
r-

w
ay

ca
ch

e.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 1, March 2005.

A Way-Halting Cache for Low-Energy High-Performance Systems • 51

a new block. The first two terms are highly dependent on the memory model
and microprocessor model used in a system. Results from one real system may
be entirely different from another. Therefore, we choose instead to create a
“realistic” system, and then to vary the configurations to see the impacts on en-
ergy distribution. We examined all three terms in Eq. (2) for typical commercial
memories and microprocessors. We found that miss energy is 50 to 200 times the
hit energy. Thus, we remodeled the miss energy using the following equation:

miss energy = k miss energy * hit energy (3)

We will consider the situations where k miss energy is equal to 50 and 200,
respectively.

To make a fair comparison with highly associative caches, we use the same
number of subbanks in our way-halting and four-way set-associative cache so
that the two caches have mostly the same features, such as data array ac-
cess time, interconnection areas and length, etc. A CAM tag based cache has
larger area than an SRAM cache. Thus, our four-way way-halting cache will
have shorter interconnections, and hence less access time. However, we still
assume both of them have the same access latency when comparing the en-
ergy dissipation and performance (thus, we are giving highly associative caches
an advantage). Figures 12 and 13 show the energy dissipation of the way-
halting, CAM-based highly-associative, direct mapped, way predicting, phased,
and pseudo-set-associative caches, using k miss energy = 50. The energy is nor-
malized with respect to a conventional four-way set-associative cache equaling
100%. We see that a way-halting cache is most energy efficient. Although the en-
ergy difference compared with some of the other cache designs may seem small,
bear in mind that these savings come with no performance penalty compared
to a four-way cache—refer back to Figures 12 and 11 to see the performance
penalties of the other approaches.

We also generated the data for k miss energy = 200. Way-halting still dis-
sipated the least energy on average, although highly associative was more
competitive—a high-energy penalty (200) for off-chip access means that the
slightly lower miss rate due to high-associativity saves more energy than the
case of just a high penalty of 50.

7. CONCLUSION

A way-halting cache is able to save, across three different benchmark suites, an
average of 45% to 60% of the energy of a conventional four-way set-associative
cache, with only 2% area overhead, and no performance penalty—neither ad-
ditional cycles nor longer critical path. That energy savings is better than pre-
vious approaches using regular associativity—although the energy savings are
only slightly better than some of those approaches, all those other approaches
introduce performance overhead. Way-halting also saves energy over a highly
associative approach (which has a slight performance advantage on average),
while also using static circuits (SRAM) only and hence using standard memory
compilers and tools. We designed the way-halting cache using a combination of
architectural and layout methods. A key feature of our design is the use of a
small fully associative memory for the halt tag array based on a static circuit

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 1, March 2005.

52 • C. Zhang et al.

F
ig

.1
2.

E
n

er
gy

di
ss

ip
at

io
n

fo
r

va
ri

ou
s

ca
ch

e
de

si
gn

s,
fo

r
P

ow
er

st
on

e
be

n
ch

m
ar

ks
,n

or
m

al
iz

ed
to

a
co

n
ve

n
ti

on
al

fo
u

r-
w

ay
ca

ch
e.

F
ig

.1
3.

E
n

er
gy

di
ss

ip
at

io
n

fo
r

va
ri

ou
s

ca
ch

e
de

si
gn

s,
fo

r
M

ed
ia

B
en

ch
an

d
S

pe
c2

00
0

be
n

ch
m

ar
ks

,n
or

m
al

iz
ed

to
a

co
n

ve
n

ti
on

al
fo

u
r-

w
ay

ca
ch

e.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 1, March 2005.

A Way-Halting Cache for Low-Energy High-Performance Systems • 53

rather than a dynamic one, with the static circuit saving more power because
of the tendency of address tags to stay the same.

REFERENCES

ADVANCED MICRO DEVICES. http://www.amd.com.
ALBONESI, D. H. 2000. Selective cache ways: On-demand cache resource allocation. Journal of

Instruction Level Parallelism.
AMRUTUR, B. AND HOROWITZ, M. 1998. A replica technique for word line and sense control in low-

power SRAM’s. IEEE Journal of Solid-State Circuits 33, 8, 1208–1218.
BATSON, B. AND VIJAYKUMAR, T. N. 2000. Reactive-associative caches. In International Conference

on Parallel Architectures and Compilation Techniques.
BURGER, D. AND AUSTIN, T. M. 1997. The SimpleScalar tool set, version 2.0. University of

Wisconsin-Madison Computer Sciences Dept., Technical Report #1342.
CADENCE. http://www.cadence.com.
CALDER, B., GRUNWALL, D., AND EMER, J. 1996. Predictive sequential associative cache. In Interna-

tional Symposium on High Performance Computer Architecture.
CKELOV, M. AND DUBOIS, M. 1997. Virtual-address caches. Part 1: Problems and Solutions in

Uniprocessors. IEEE Micro 17, 5, 64–71.
EDMONDSON, J. H. AND RUBINFIELD, P. I. 1995. Internal organization of the Alpha 21164 a 300-MHz

64-bit quad-issue CMOS RISC microprocessor. Digital Technical Journal 7, 1, 119–135.
EFTHYMIOU, A. AND GARSIDE, J. D. 2002. An adaptive serial-parallel CAM architecture for low-

power cache blocks. In Proceedings of the International Symposium on Low Power Electronics
and Design.

FURBER, S. B., EFTHYMIOU, A., GARSIDE, J. D., LLOYD, D. W., LEWIS, M. J. G., AND TEMPLE, S. 2001.
Power management in the Amulet microprocessors. IEEE Design & Test of Computers 18, 2,
42–52.

GARSIDE, J. D., TEMPLE, S., AND MEHRA, R. 1996. The AMULET2e cache system. In 2nd Interna-
tional Symposium on Advanced Research in Asynchronous Circuits and Systems.

HASEGAWA, A., KAWASAKI, I., YAMADA, K., YOSHIOKA, S., KAWASAKI, S., AND BISWAS, P. 1995. SH3: High
code density, low power. IEEE Micro, Dec.

HENNESSY, J. L. AND PATTERSON, D. A. 2002. Computer Architecture: A Quantitative Approach, 3rd
ed., International Student Edition. Morgan Kaufman, San Mateo, CA.

HUANG, M., RENAU, J., YOO, S. M., AND TORRELLAS, J. 2001. L1 data cache decomposition for energy
efficiency. In International Symposium on Low Power Electronics and Design.

IBM. http://www.ibm.com.
http://www.specbench.org/osg/cpu2000/.
INOUE, K., ISHIHARA, T., AND MURAKAMI, K. 1999. Way-predictive set-associative cache for high

performance and low energy consumption. In International Symposium on Low Power Electronics
and Design.

JUAN, LANG, T., AND NAVARRO, J. 1996. The difference-bit cache. In Proceedings of the 27th Annual
International Symposium on Computer Architecture.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. 1997. MediaBench: A tool for evaluating and
synthesizing multimedia and communications systems. In International Symposium on Microar-
chitecture.

LIU, L. 1994. Cache design with partial address matching. In Proceedings of the 27th Annual
International Symposium on Microarchitecture.

MALIK, A., MOYER, B., AND CERMAK, D. 2000. A low power unified cache architecture providing
power and poerformance flexibility. In International Symposium on Low Power Electronics and
Design.

MIPS TECHNOLOGIES, INC. http://www.mips.com.
MONTANARO, J., WITEK, R. T., ANNE, K., BLACK, A. J., COOPER, E. M., DOBBERPUHL, D. W., DONAHUE,

P. M., ENO, J., FARELL, A., HOEPPNER, G. W., KRUCKEMYER, D., LEE, T. H., LIN, P., MADDEN, L., MURRAY,
D., PEARCE, M., SANTHANAM, S., SNYDER, K. J., STEPHANY, R., AND THIERAUF, S. C. 1996. A 160 MHz
32 b 0.5 W CMOS RISC microprocessor. In IEEE International Solid-State Circuits Conference.

THE MOSIS SERVICE. http://www.mosis.org.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 1, March 2005.

54 • C. Zhang et al.

PETROV, P. AND ORAILOGLU, A. 2001. Data cache energy minimizations through programmable tag
size matching to the applications. In International Symposium on System Synthesis.

POWELL, M., AGARWAL, A., VIJAYKUMAR, T. N., FALSAFI, B., AND ROY, K. 2001. Reducing set-associative
cache energy via way-prediction and selective direct-mapping. In International Symposium on
Microarchitecture.

PANWAR, R. AND RENNELS, D. 1995. Reducing the frequency of tag compares for low power I-cache
design. In SLPE, pp. 57–62.

REINMANN, G. AND JOUPPI, N. P. 1999. CACTI2.0: An Integrated Cache Timing and Power Model.
COMPAQ Western Research Lab.

SANTHANAM, S., ET AL. 1998. A low-cost, 300-MHz, RISC CPU with attached media processor.
IEEE Journal of Solid-State Circuits 33, 11.

SEGARS, S. 2000. Low power design techniques for microprocessors. In International Solid-State
Circuits Conference Tutorial.

TAYLOR, G., DAVIS, P., AND FARMWALD, M. 1990. The TLB slice—A low-cost high-speed address
translation mechanisms. In Proceedings of the 17th Annual International Symposium on Com-
puter Architecture.

WITCHEL, E., LARSEN, S., ANANIAN, C. S., AND ASANOVIC, K. 2001. Direct addressed caches for reduced
power consumption. In International Symposium on Microarchitecture.

YANG, J. AND GUPTA, R. 2002. Energy efficient frequent value data cache design. In International
Symposium on Microarchitecture.

ZHANG, C., VAHID, F., YANG, J., AND NAJJAR, W. 2004. A way-halting cache for low-energy high
performance systems. In International Symposium on Low Power Electronics and Design.

ZHANG, C., VAHID, F., AND NAJJAR, W. 2003. A highly-configurable cache architecture for embedded
systems. In International Symposium on Computer Architecture.

ZHANG, C., VAHID, F., AND NAJJAR, W. 2005. A highly-configurable cache architecture for embedded
systems. ACM Transactions on Embedded Computing Systems.

ZHANG, M. AND ASANOVIC, K. 2000. Highly-associative caches for low-power processors. In Kool
Chips Workshop, in conjunction with International Symposium on Microarchitecture.

Received October 2004; revised February 2005; accepted February 2005

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 1, March 2005.

