

Propagating Constants Past Software to Hardware
Peripherals in Fixed-Application Embedded Systems

ABSTRACT
Many embedded systems include a microprocessor that executes a
single program for the lifetime of the system. These programs often
contain constants used to initialize control registers in peripheral
hardware components. Now that peripherals are often purchased
in intellectual property (core) form and synthesized along with the
microprocessor onto a single chip, new optimization opportunities
exist. We introduce one such optimization, which involves
propagating the initialization constants past the microprocessor to
the peripheral, such that synthesis can further propagate the
constants inside the peripheral core. While constant propagation in
synthesis tools is commonly done, this work illustrates the benefits
of recognizing initialization constants from the software as really
being constants for hardware. We describe results that
demonstrate 2-3 times reductions in peripheral size, and 10-30%
savings in power, on several common peripheral examples.
Keywords

Cores, system-on-a-chip, embedded systems, synthesis,
low power, constant propagation, platforms, tuning,
intellectual property.

1. INTRODUCTION
Embedded system designers are increasingly composing
their designs from pre-designed intellectual-property cores,
integrating those cores into a single chip model as shown in
Figure 1, and then fabricating a chip [3]. A core is a
description of a system-level component, like a
microprocessor, memory, or peripheral component like a
direct-memory access (DMA) controller or universal
asynchronous receiver/transmitters (UART). Cores come in
three forms. A soft core is a synthesizable hardware
description language (HDL) model. A firm core is a
structural HDL model. A hard core is a technology-specific
layout. Many commercial core libraries now exist, e.g., [4],
and core standards are evolving rapidly [9].

A designer gains many advantages from building a system
from standard cores, such as a standard DMA controller or
UART. Most importantly, the designer gains improved time-
to-market due to familiarity with the standard core and

compatibility with develo pment tools. Such standard cores
typically come with parameters [8]. Some are pre-fabrication
parameters, which are set by a designer before synthesis,
thus influencing the synthesis results. Such parameters are
typically achieved using generics or constants in a
hardware description language (HDL), but can also be
achieved using module generators, which generate unique
HDL models depending on the parameter selection. For
example, a JPEG decompression core might by synthesizable
to have either 12 or 16-bit resolution. Synthesizing for 12-bit
resolution would yield a smaller core.

Other parameters, in contrast, are post-fabrication
parameters, set only after the core has been synthesized.
Such parameters’ settings are typically stored in registers or
non-volatile memory inside the core. They are more
commonly referred to as software configurable parameters.
For example, a DMA controller will have a base register to
indicate the starting address in memory from which the
controller should move data, and a block size register to
indicate the number of words that should be moved. An
arbiter core might have a register whose setting determines
whether arbitration uses a fixed or rotating priority scheme.

We make the observation that an embedded system
typically runs a single program that never changes – the
application is fixed. In fact, in many cases that program
cannot be changed, because it may be burned into ROM
(using mask-programmed ROM) that appears with the
microprocessor and peripherals on a single chip to reduce
chip cost, size and power (at the expense of less flexibility).

A typical embedded system will execute a boot program
upon system reset, and this program will, among other
things, set these software configurable parameters in the
system’s peripherals, as shown in Figure 1. However, if the
embedded system’s program never changes, then those
register values never change during the execution of the
embedded system. For example, a particular embedded
system may use a DMA controller to repeatedly send data
directly from an array, of size 48 and starting from memory
location 100, to a display device. The system's boot
program may set the DMA controller base register to 100,

Frank Vahid

Dept. of Computer Science and Engineering
University of California, Riverside

Also with the Center for Embedded Computer
Systems, UC Irvine

vahid@cs.ucr.edu, http://www.cs.ucr.edu/~vahid

Rilesh Patel
Aristo Technology

 San Jose, California
rilesh@aristotech.com

Greg Stitt
Dept. of Computer Science and

Engineering
University of California, Riverside

gstitt@cs.ucr.edu

and the block size register to 48. These values will never
change for the life of the embedded system.

Previously, when systems were built using discrete off-the-
shelf integrated circuits, such softwa re configuration was
necessary. However, since today’s systems are being built
with cores, we now have an optimization opportunity that
did not previously exist. Specifically, for an embedded
system whose program does not change, the values to
which the software configurable peripheral parameters are
being set are really constants. As compiler writers are well
aware, constants provide excellent optimization capability,
through the well-known compiler optimization known as
constant propagation [1][10]. Such propagation consists of
replacing a variable holding a constant by the constant
itself. This replacement can result, for example, in branch
conditions that always evaluate to false, resulting in turn in
dead code that can then be eliminated. It can also enable
compile -time evaluation of expressions.

Such dead code resulting from constant propagation is
especially common when propagating constants into
subroutines through the subroutine’s parameters. While the
subroutine may have been designed to handle a variety of
sets of parameters, a particular program may only call the
subroutine with certain constant values for those
parameters, resulting in much dead code in the subroutine.

We can think of a peripheral core as similar to a subroutine,
in fact, as a subroutine that has been implemented using
additional hardware. The core may have been designed to
handle a variety of sets of software configurable
parameters. However, a particular program may only use the
core with certain constant values for those parameters,
resulting in much “dead code” in the core. We therefore
propose a deeper propagation of constants than performed
by compilers. In particular, we propose to propagate those
constants beyond the microprocessor's program, to the
microprocessor's peripheral cores – essentially propagating
those constants all the way to peripheral hardware. Those
constants would then be fed into the synthesis tool being

used to synthesize the cores. The synthesis tool could then
perform constant propagations and dead code elimination
during synthesis, where the code here refers to the core's
HDL description. Most commercial synthesis tools already
include such compiler optimizations, but those
optimizations are only applied to the pre-fabrication
parameter constants. We will show that much benefit
would come from enabling the synthesis tool to recognize
the post-fabrication parameter values as constants also.

The end result of such propagation is that the synthesized
core will be optimized for the particular program that is
using the core, something we refer to as architecture
tuning [8]. By optimized, we mean that the core will have
fewer gates, and consume less power, than a standard
version of the same core. Reducing size is important since
such reduction can increase chip yield and reduce chip
cost, and many embedded systems are extremely cost
sensitive, especially those being manufactured in high
volumes. Reducing power is important since many
embedded systems operate on batteries or draw power from
very limited sources, and so power reduction is an
important design criterion.

In this paper, we introduce the concept of propagating
constants past software to hardware peripheral cores. A fter
an introductory example, we’ll describe common core
parameters that are candidates for constant propagation,
discuss methods for achieving such propagation, and
highlight experiments showing the size and power
reductions possible. The results motivate future work on
developing tools that introduce some cooperation between
the compilers and the synthesis tools being used in
developing a system-on-a-chip from cores.

2. EXAMPLE
As a simple illustration of propagating constants to
hardware, let us consider a trivially simple peripheral core
that has two parallel ports. Each port can be configured to
be an input port or an output port. A VHDL description of
part of the core is shown in Figure 2(a). The core
description declares a control register cont_reg with two
bits. The first bit makes port A an output port when set to 0,
and an input port when set to 1. Likewise, the second bit
makes port B an input or output port. The VHDL description
begins with initialization of the control register during a
reset. Next, it would describe the synchronous monitoring
of the bus for an address corresponding to the control
register, and the writing of the control register in this case –
this code is omitted from the figure. Next, the VHDL
description describes the control logic for the tri-state
buffers that implement the port direction functionality.
Finally, other behavior of the core would be described.

Synthesis converts this soft core to hardware structure,
shown in Figure 2(b). Note that logic is generated to handle

Figure 1: Core-based embedded system design.

Micro-
processor

Program
memory

Peripheral Peripheral

Core library

cont_reg cont_reg

Reset()
cont_reg1 = 0x00
cont_reg2 = 0xFF

the bus monitoring and the control of the four required
buffers.

Now, consider the situation where this core is used in an
embedded system and controlled by a microprocessor
executing a fixed C program. We might see the following
assembly code embedded in the reset routine of the C
program:

OUT cont_reg, #”00000010”
Assuming cont_reg is the address of the control register
in the microprocessor’s I/O address space, then this code
would write the constant “00000010” onto the peripheral
bus, resulting in a 0 being written into cont_reg(0) and a 1
into cont_reg(1). The peripheral core would thus be
configured with port A as an output port, and port B as an
input port. The rest of the C program would then access
these ports appropriately.

Now, suppose we could somehow propagate the constant
“10” into the VHDL description of the core, before the core
were synthesized, letting the synthesis tool know that
cont_reg would be written by that constant and only that
constant. If we did this in a way that our synthesis tool
could make use of that information, then the synthesis tool
would find much “dead code” in the VHDL description.
First, the control register would not be needed, since a
constant can be derived directly from power and ground in
hardware. Second, the logic to monitor the bus for the
control register address and then write the register would
not be needed. Third, each buffer control signal if statement
would have one branch that was always true and the other
always false. Finally, the reset code of the core would not

be needed. After all of this dead code is eliminated, the
synthesis tool would output the structure shown in Figure
2(c). The resulting structure in this case requires less
hardware, and would also consume less power due in part
to elimination of the bus monitoring.

3. PARAMETERS IN CORES
We examined a number of common peripheral cores, and
found many software configurable parameters that could be
candidates for constant propagation. Some common
peripheral cores include the Intel 8255A (programmable
peripheral interface), the 8237A (DMA controller), and the
M16550A (UART – Universal Asynchronous Receiver-
Transmitter).

Figure 3 is the block diagram of the 8255A. The 8255A
interfaces with a microprocessor on one side, and provides
three configurable ports on the other side. Its software
configurable parameters include mode of operation, number
of ports in use, and direction of each port (input or output).
These parameters are set by a microprocessor by writing an
8-bit control word into a control register in the 8255A.

The 8237A includes even more software configurable
parameters, including the number of channels, the type of
priority scheme (fixed or rotating) being used to arbitrate
between channels, whether each channel operates in single
transfer mode or block transfer mode, the starting address
and block size for each channel, etc. There are thus several
control registers in the 8237A.

Likewise, the UART’s parameters include the baud rate,
parity type, mode of communication, etc.

Figure 2: A simple example of propagating constants to hardware: (a) soft core, (b) synthesized core structure, (c)
synthesized core structure after propagating constants cont_reg(0)=0 and cont_reg(1)=1.

 if (cont_reg(0) = ‘0’) then
 A_out <= ‘1’; A_in<=’0’;
 else
 A_in <= ‘1’; A_out<=’0’;
 end if;
 if(cont_reg(1) =‘0’) then
 B_out <= ‘1’; B_in<=’0’;
 else
 B_in <= ‘1’; B_out<=’0’;
 end if;
 end if;
-- Other behavior omitted

signal cont_reg: UNSIGNED(1 downto 0);
-- declarations for A, B and buffers omitted.
process(clk, reset)
begin
if (reset) then
 cont_reg = “00”;
 A_out <= ‘1’; A_in <= ‘0’;
 B_out <= ‘1’; B_in <= ‘0’;
end if;
if rising_edge(clk) then
 -- Code to detect write request
 -- from bus to cont_reg, and
 -- to update cont_reg, omitted

(a)

(b)

(c)

A B

1 1

A B cont_reg

logic

bus

In general, peripheral cores tend to have several types of
configurable parameters, related to features such as:

• size of internal data or external data bus
• number of channels or ports
• modes of operation
• I/O direction
• rate of data transfer
• resolution

Supporting numerous parameters is necessary in order for a
peripheral to be applicable in a variety of systems and thus
to sell in large quantities. While some parameters appear in
a core as user-settable constants or generics, others appear
as software configurable control registers. Such software
configurability is used in peripherals for several reasons.
One reason is that, before the advent of cores, software
configuration was the only way to configure a peripheral
integrated circuit (IC). A core may thus be modeling a
widely-used standard peripheral that was defined in the time
of ICs, such as UART and DMA controller cores. A second
reason is that, even for cores representing new peripherals,
the core designer does not know if the peripheral will be
controlled by a microprocessor whose application will not
change. If the core were used in a system whose application
did change, then constant or generic-based parameters
would not be appropriate. Thus, support of software
configurable parameters is very common, but results in extra
hardware size as well as power consumption.

4. PROPAGATING CONSTANTS FROM
SOFTWARE TO HARDWARE
We now describe a method for manually propagating
constants across the software/hardware boundary in a core-
based synthesis methodology, and discuss potential
approaches for automating this method. The method is
summarized in Figure 4. For each core, the first step is to
determine all of the registers in the core that serve as
control registers for the various parameters listed in the

previous section. Next, for each such control register, we
must look for all references to that register in the driving
microprocessor program. If the only access to that register
is a write with a constant, and this write occurs during the
reset or boot routines, as is often the case in embedded
systems, then we have a candidate for constant
propagation to peripheral cores. We replace the register’s
declaration in the core by a constant declaration. We delete
any behavior that involves detecting and carrying out a
write to that register from the peripheral bus. We can then
run the synthesis tool on this modified core. A synthesis
tool will then detect and eliminate the dead code created by
the constants we in troduced in the model, and thus result in
a simpler synthesized structure. Most modern synthesis
tools already carry out standard compiler optimizations like
constant propagation, constant folding, and dead code
elimination.

We can also eliminate the behavior in the microprocessor’s
program relating to writing the control register, but this is
not always necessary. If we do choose to leave it, then we
must ensure that the lack of a response from the core is
acceptable. If a response is needed, like an
acknowledgement, then we leave such behavior in the core.

The above method has the advantage of being immediately
applicable in any existing core-based design process,
without any modification to existing tools. Of course, the
constant propagation across the software/hardware
boundary must be performed manually in the above case.
Thus, we describe a potential approach to automating the
method. A big help to such automation is if a core design
framework is being used. Such frameworks, many of which
are commercially available, manage the retrieval and
instantiation of cores (e.g., [2][5]). They typically already
have support for instantiating cores with specific values for

Figure 3: The Intel 8255A parallel peripheral interface. Figure 4: Method for propagating constants to
peripheral cores.

CPU interface
and control

logic

A

B

C

8255A

To
microprocessor

for each peripheral core P

 for each control register C in P

 find all writes, W, to C in processor’s program

 if W consists of a single write, of a constant X,

 in a reset or boot routine, then

 replace C in P by a constant declaration set to X

 delete behavior related to writing C in P

 end if

 end for

end for

run synthesis as usual

constants or generics (a generic is essentially a parameter
whose value must be chosen before instantiation) and for
keeping track of all register address assignments in a
system of cores. Thus, modifying such frameworks to
handle software configurable parameters can be seen as an
extension of an existing method.

One approach to automation would be to extend the
software compiler to output a list of external I/O addresses
that are assigned a single constant by the program in a reset
or boot routine, along with each address’ associated
constant. This requires that the compiler be aware of the
location of those reset or boot routines. Next, each core
must have its control registers known to the core framework
– this can be done by the framework developer, or the
framework user, without too much effort. Furthermore, the
framework must know where in the core to find the code
that writes the register. Given this setup, the framework can
read the contents of the file output by the software
compiler, and for each address the framework can then
replace the corresponding register declaration by a constant
declaration, and delete write behavior from the core, before
instantiating the core into the design. Then, synthesis can
be run on the instantiated core, and the constants will result
in dead code that can be eliminated.

A second approach is possible, and in fact even simpler
than the above. In particular, we observe that modern core-
based frameworks actually generate the reset or boot code
themselves, including the code for initializing peripherals
[5]. In other words, suppose a user wishes to instantiate a
DMA controller into a system already having a
microprocessor and memory. The framework will query the
user to ask for the values of software configurable
parameters, like transfer mode, base address and block size.
The framework then generates the necessary driver
software on the microprocessor. The second approach
extends the above by having the framework also ask if the
software configurable parameter values will ever change, or
if instead they are in fact constants. If constants, then the
framework can withhold generation of the related driver
software, and instead directly proceed to instantiate the
core with the corresponding register declaration replaced by
a constant, and with the register-write behavior deleted.

5. EXPERIMENTS
We performed several experiments to evaluate the size and
power savings possible by using our method of
propagating constants to peripheral cores. We modeled
three popular peripherals as register-transfer level VHDL
soft cores: the 8255A programmable peripheral interface, the
8237A DMA controller, and the 16550A UART. Each core
model is nearly a fully-functional model. The three soft-core
models required 1045, 920 and 1063 lines of VHDL code,
respectively. We also obtained a discrete cosine transform

(DCT) core (Free-DCT-L) from http://www.opencores.org,
which consisted of 910 lines of code. We manually modified
these models to eliminate dead code that would have
resulted from constant propagation of the software-
configurable parameters described below. We synthesized
the cores twice, once before and once after dead code
elimination, using the Synopsys Design Compiler. Area and
power were measured using Synopsys analysis tools, with
power measured while running a suite of test vectors for
each core. Because we wanted to see first-hand the impact
of the constant propagation on the size of the VHDL code,
we performed the propagation of the constants and the
dead code elimination manually, so we could measure the
resulting lines of code.

The 8255A had only one configuration register used for
selecting the modes of various ports. We examined the
impact of propagating constants for three different
configurations of this register. Mode0 corresponded to a
configuration where port A of the device was used as an
output port. Mode1 corresponded to port A being used as
an output port with handshaking I/O. Mode2 corresponded
to port A being used as a bi-directional port with interrupt
I/O. Each situation resulted in a reduction of the number of
lines in the model from 1045 to an average of only 415 lines.

The 8237A had several configuration registers, including
those that select the arbitration mode, the number of active
channels, and the transfer mode, base address, and block
size of each channel. We examined the situation of using
only a single channel, in single transfer mode. This reduced
the model from 920 to 435 lines.

The PC16550 also had several configuration registers,
including those that enable transmit and receive, select the
interrupt mode, and select the baud rate. We examined two
situations, one where the device was configured for
transmit only at a specific baud rate, and the other where it
was configured for receive only at a specific baud rate. Each
reduced the model’s lines of code from 1063 to roughly 625.

The DCT core had configuration registers for selecting
between forward and inverse DCT, and for selecting among
8, 9, 10, or 12-bit resolution. We tested the configuration of
forward DCT with 8-bit resolution. This configuration
reduced the size of the code from 910 lines to 867 lines.

Note that these parameters were not represented by
constants or generics in the VHDL source. Rather, the cores
were designed to be synthesized to support software
configuration of these parameters, as is common.

The size and power data is summarized in Table 1. We see
that size after synthesis was reduce by an average of 58%,
and power by an average of 22%. The reason that power is
not reduced as much as size is because many of the gates
eliminated through constant propagation were not used
during a core’s execution even when present, so didn’t

consume much power. The power reductions that do occur
result we believe from less switching activity occurring due
to simpler control and datapath switching logic.

These reductions come of course at the cost of not being
able to reprogram the configurable parameters of the core
once the system has been implemented. Thus, if modifying
the microprocessor’s program is a possibility, then
propagating constants across the software/hardware
boundary should either not be done, or should be done
only to the extent that the designer is certain that particular
constants won’t change. However, as mentioned earlier,
many embedded systems have their programs fixed in mask-
programmed ROM, and thus the configurable parameters
could never have been modified anyways, meaning our
approach would have no impact on flexibility in those cases.

6. CONCLUSIONS
As core-based design methodologies grow in popularity,
cores will be heavily parameterized to increase applicability
and hence sales. Pre-fabrication parameters, specified using
HDL generics or constants, can result in optimized
hardware. However, post-fabrication parameters, known as
software configurable parameters, until now had not been
exploited similarly. We introduced the idea of propagating
constants beyond the microprocessor software, to the
peripheral hardware. We showed that such propagation
yielded reductions in size by 2-3 times, and good power
reductions of between 10-30%, using several standard
peripheral examples. This work is part of the UCR Dalton
project, which seeks to develop techniques for
parameterized core-based system-on-a-chip design [7]. This
work motivates the need for future work on system-on-a-
chip frameworks whose compilers are able to detect
“constants” in the sense of software configurable register
values, and are able to coordinate between compilers and
synthesis tools to propagate those constants to hardware.

7. ACKNOWLEDGMENTS
This work was supported by the National Science
Foundation under grant number CCR-9876006.

8. REFERENCES
[1] Aho, A.V., R. Sethi, J.D. Ullman. "Compilers: Principles

Techniques, and Tools," Reading, Addison-Wesley
Publishing Company, March 1998.

[2] Escalade Corporation, http://www.escalade.com/.

[3] Gupta, R., and Y. Zorian. Introducing Core-Based
System Design. IEEE Design & Test, Vol. 14, No. 4,
Oct-Dec 1997, pp. 15-25.

[4] Inventra core library, Mentor Graphics,
http://www.mentor.com/inventra/.

[5] Platform Express. Mentor Graphics,
http://www.mentor.com/soc/platform_ex/.

[6] Stitt, G., F. Vahid, T. Givargis, and R. Lysecky. A First-
step Towards an Architecture Tuning Methodology for
Low Power. Compilers, Architectures, and Synthesis
for Embedded Systems (CASES'00), November 2000,
pp. 187-192.

[7] The UCR Dalton project:
http://www.cs.ucr.edu/~dalton.

[8] Vahid, F., and T. Givargis. Platform Tuning for
Embedded Systems Design. IEEE Computer, Vol. 34,
No. 3, March 2001, pp. 112-114.

[9] Virtual Socket Interface Association, Architecture
Document, http://www.vsi.org, 1997.

[10] Wegman, M., and F.K. Zadeck. Constant Propagation
with Conditional Branches. ACM Transactions on
Programming Languages and Systems, Vol 18, No 2,
April 1991, pp. 181-210.

Table 1: Comparison of cores before and after constant propagation.

Cores
Gates,

original

Gates, with
constant

propagation
% size
savings

Power,
original
(micro-
watts)

Power, with
constant

propagation
(micro-
watts)

% power
savings

8255A mode-0 3069 834 73% 2772 1902 31%
8255A mode-1 3069 918 70% 2915 2098 28%
8255A mode-2 3069 953 69% 2952 2124 28%
8237A single transfer 7276 2344 68% 2453 2097 15%
PC16550 Tx 2503 1169 53% 1461 1249 15%
PC16550 Rx 2503 1188 53% 1449 1307 10%
DCT Forward 8-bit 2295 1861 19% 1391 962 31%
Average savings 58% 22%

