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ABSTRACT 
Many embedded systems include a microprocessor that executes a 
single program for the lifetime of the system. These programs often 
contain constants used to initialize control registers in peripheral 
hardware components. Now that peripherals are often purchased 
in intellectual property (core) form and synthesized along with the 
microprocessor onto a single chip, new optimization opportunities 
exist. We introduce one such optimization, which involves 
propagating the initialization constants past the microprocessor to 
the peripheral, such that synthesis can further propagate the 
constants inside the peripheral core. While constant propagation in 
synthesis tools is commonly done, this work illustrates the benefits 
of recognizing initialization constants from the software as really 
being constants for hardware. We describe results that 
demonstrate 2-3 times reductions in peripheral size, and 10-30% 
savings in power, on several common peripheral examples. 
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1. INTRODUCTION 
Embedded system designers are increasingly composing 
their designs from pre-designed intellectual-property cores, 
integrating those cores into a single chip model as shown in 
Figure 1, and then fabricating a chip [3]. A core is a 
description of a system-level component, like a 
microprocessor, memory, or peripheral component like a 
direct-memory access (DMA) controller or universal 
asynchronous receiver/transmitters (UART). Cores come in 
three forms. A soft core is a synthesizable hardware 
description language (HDL) model. A firm core is a 
structural HDL model. A hard core is a technology-specific 
layout. Many commercial core libraries now exist, e.g., [4], 
and core standards are evolving rapidly [9]. 

A designer gains many advantages from building a system 
from standard cores, such as a standard DMA controller or 
UART. Most importantly, the designer gains improved time-
to-market due to familiarity with the standard core and 

compatibility with develo pment tools. Such standard cores 
typically come with parameters [8]. Some are pre-fabrication 
parameters, which are set by a designer before synthesis, 
thus influencing the synthesis results. Such parameters are 
typically achieved using generics or constants in a 
hardware description language (HDL), but can also be 
achieved using module generators, which generate unique 
HDL models depending on the parameter selection. For 
example, a JPEG decompression core might by synthesizable 
to have either 12 or 16-bit resolution. Synthesizing for 12-bit 
resolution would yield a smaller core.  

Other parameters, in contrast, are post-fabrication 
parameters, set only after the core has been synthesized. 
Such parameters’ settings are typically stored in registers or 
non-volatile memory inside the core. They are more 
commonly referred to as software configurable parameters. 
For example, a DMA controller will have a base register to 
indicate the starting address in memory from which the 
controller should move data, and a block size register to 
indicate the number of words that should be moved. An 
arbiter core might have a register whose setting determines 
whether arbitration uses a fixed or rotating priority scheme. 

We make the observation that an embedded system 
typically runs a single program that never changes – the 
application is fixed. In fact, in many cases that program 
cannot  be changed, because it may be burned into ROM 
(using mask-programmed ROM) that appears with the 
microprocessor and peripherals on a single chip to reduce 
chip cost, size and power (at the expense of less flexibility).  

A typical embedded system will execute a boot program 
upon system reset, and this program will, among other 
things, set these software configurable parameters in the 
system’s peripherals, as shown in Figure 1. However, if the 
embedded system’s program never changes, then those 
register values never change during the execution of the 
embedded system.  For example, a particular embedded 
system may use a DMA controller to repeatedly send data 
directly from an array, of size 48 and starting from memory 
location 100, to a display device.  The system's boot 
program may set the DMA controller base register to 100, 
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and the block size register to 48. These values will never 
change for the life of the embedded system.  

Previously, when systems were built using discrete off-the-
shelf integrated circuits, such softwa re configuration was 
necessary. However, since today’s systems are being built 
with cores, we now have an optimization opportunity that 
did not previously exist. Specifically, for an embedded 
system whose program does not change, the values to 
which the software configurable peripheral parameters are 
being set are really constants. As compiler writers are well 
aware, constants provide excellent optimization capability, 
through the well-known compiler optimization known as 
constant propagation [1][10]. Such propagation consists of 
replacing a variable holding a constant by the constant 
itself. This replacement can result, for example, in branch 
conditions that always evaluate to false, resulting in turn in 
dead code that can then be eliminated. It can also enable 
compile -time evaluation of expressions. 

Such dead code resulting from constant propagation is 
especially common when propagating constants into 
subroutines through the subroutine’s parameters. While the 
subroutine may have been designed to handle a variety of 
sets of parameters, a particular program may only call the 
subroutine with certain constant values for those 
parameters, resulting in much dead code in the subroutine. 

We can think of a peripheral core as similar to a subroutine, 
in fact, as a subroutine that has been implemented using 
additional hardware. The core may have been designed to 
handle a variety of sets of software configurable 
parameters. However, a particular program may only use the 
core with certain constant values for those parameters, 
resulting in much “dead code” in the core.  We therefore 
propose a deeper propagation of constants than performed 
by compilers. In particular, we propose to propagate those 
constants beyond the microprocessor's program, to the 
microprocessor's peripheral cores – essentially propagating 
those constants all the way to peripheral hardware. Those 
constants would then be fed into the synthesis tool being 

used to synthesize the cores. The synthesis tool could then 
perform constant propagations and dead code elimination 
during synthesis, where the code here refers to the core's 
HDL description. Most commercial synthesis tools already 
include such compiler optimizations, but those 
optimizations are only applied to the pre-fabrication 
parameter constants.  We will show that much benefit 
would come from enabling the synthesis tool to recognize 
the post-fabrication parameter values as constants also. 

The end result of such propagation is that the synthesized 
core will be optimized for the particular program that is 
using the core, something we refer to as architecture 
tuning [8]. By optimized, we mean that the core will have 
fewer gates, and consume less power, than a standard 
version of the same core.  Reducing size is important since 
such reduction can increase chip yield and reduce chip 
cost, and many embedded systems are extremely cost 
sensitive, especially those being manufactured in high 
volumes. Reducing power is important since many 
embedded systems operate on batteries or draw power from 
very limited sources, and so power reduction is an 
important design criterion. 

In this paper, we introduce the concept of propagating 
constants past software to hardware peripheral cores. A fter 
an introductory example, we’ll describe common core 
parameters that are candidates for constant propagation, 
discuss methods for achieving such propagation, and 
highlight experiments showing the size and power 
reductions possible. The results motivate future work on 
developing tools that introduce some cooperation between 
the compilers and the synthesis tools being used in 
developing a system-on-a-chip from cores. 

2. EXAMPLE 
As a simple illustration of propagating constants to 
hardware, let us consider a trivially simple peripheral core 
that has two parallel ports. Each port can be configured to 
be an input port or an output port.  A VHDL description of 
part of the core is shown in Figure 2(a). The core 
description declares a control register cont_reg  with two 
bits. The first bit makes port A an output port when set to 0, 
and an input port when set to 1. Likewise, the second bit 
makes port B an input or output port. The VHDL description 
begins with initialization of the control register during a 
reset. Next, it would describe the synchronous monitoring 
of the bus for an address corresponding to the control 
register, and the writing of the control register in this case – 
this code is omitted from the figure. Next, the VHDL 
description describes the control logic for the tri-state 
buffers that implement the port direction functionality. 
Finally, other behavior of the core would be described.  

Synthesis converts this soft core to hardware structure, 
shown in Figure 2(b). Note that logic is generated to handle 

Figure 1: Core-based embedded system design. 

Micro-
processor 

Program 
memory 

Peripheral Peripheral 

 

Core library 

cont_reg cont_reg

Reset() 
cont_reg1 = 0x00 
cont_reg2 = 0xFF 



 

the bus monitoring and the control of the four required 
buffers.  

Now, consider the situation where this core is used in an 
embedded system and controlled by a microprocessor 
executing a fixed C program. We might see the following 
assembly code embedded in the reset routine of the C 
program: 

OUT cont_reg, #”00000010” 
Assuming cont_reg is the address of the control register 
in the microprocessor’s I/O address space, then this code 
would write the constant “00000010” onto the peripheral 
bus, resulting in a 0 being written into cont_reg(0) and a 1 
into cont_reg(1). The peripheral core would thus be 
configured with port A as an output port, and port B as an 
input port. The rest of the C program would then access 
these ports appropriately.  

Now, suppose we could somehow propagate the constant 
“10” into the VHDL description of the core, before the core 
were synthesized, letting the synthesis tool know that 
cont_reg would be written by that constant and only that 
constant. If we did this in a way that our synthesis tool 
could make use of that information, then the synthesis tool 
would find much “dead code” in the VHDL description. 
First, the control register would not be needed, since a 
constant can be derived directly from power and ground in 
hardware. Second, the logic to monitor the bus for the 
control register address and then write the register would 
not be needed. Third, each buffer control signal if statement 
would have one branch that was always true and the other 
always false. Finally, the reset code of the core would not 

be needed. After all of this dead code is eliminated, the 
synthesis tool would output the structure shown in Figure 
2(c). The resulting structure in this case requires less 
hardware, and would also consume less power due in part 
to elimination of the bus monitoring.   

3. PARAMETERS IN CORES 
We examined a number of common peripheral cores, and 
found many software configurable parameters that could be 
candidates for constant propagation. Some common 
peripheral cores include the Intel 8255A (programmable 
peripheral interface), the 8237A (DMA controller), and the 
M16550A (UART – Universal Asynchronous Receiver-
Transmitter). 

Figure 3 is the block diagram of the 8255A. The 8255A 
interfaces with a microprocessor on one side, and provides 
three configurable ports on the other side.  Its software 
configurable parameters include mode of operation, number 
of ports in use, and direction of each port (input or output). 
These parameters are set by a microprocessor by writing an 
8-bit control word into a control register in the 8255A. 

The 8237A includes even more software configurable 
parameters, including the number of channels, the type of 
priority scheme (fixed or rotating) being used to arbitrate 
between channels, whether each channel operates in single 
transfer mode or block transfer mode, the starting address 
and block size for each channel, etc. There are thus several 
control registers in the 8237A. 

Likewise, the UART’s parameters include the baud rate, 
parity type, mode of communication, etc.  

Figure 2: A simple example of propagating constants to hardware: (a) soft  core, (b) synthesized core structure, (c) 
synthesized core structure after propagating constants cont_reg(0)=0 and cont_reg(1)=1.  

   if (cont_reg(0) = ‘0’) then 
         A_out <= ‘1’; A_in<=’0’; 
      else 
         A_in <= ‘1’; A_out<=’0’; 
      end if; 
   if( cont_reg(1) =‘0’) then 
         B_out <= ‘1’; B_in<=’0’; 
      else 
         B_in <= ‘1’; B_out<=’0’; 
      end if; 
   end if; 
-- Other behavior omitted 

signal cont_reg: UNSIGNED(1 downto 0); 
-- declarations for A, B and buffers omitted. 
process(clk, reset) 
begin 
if (reset) then 
   cont_reg = “00”; 
   A_out <= ‘1’;  A_in <= ‘0’; 
   B_out <= ‘1’; B_in <= ‘0’; 
end if; 
if rising_edge(clk) then 
   -- Code to detect write request 
   -- from bus to cont_reg, and 
   -- to update cont_reg, omitted 
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In general, peripheral cores tend to have several types of 
configurable parameters, related to features such as:  

• size of internal data or external data bus 
• number of channels or ports  
• modes of operation 
• I/O direction 
• rate of data transfer 
• resolution 

Supporting numerous parameters is necessary in order for a 
peripheral to be applicable in a variety of systems and thus 
to sell in large quantities. While some parameters appear in 
a core as user-settable constants or generics, others appear 
as software configurable control registers. Such software 
configurability is used in peripherals for several reasons. 
One reason is that, before the advent of cores, software 
configuration was the only way to configure a peripheral 
integrated circuit (IC). A core may thus be modeling a 
widely-used standard peripheral that was defined in the time 
of ICs, such as UART and DMA controller cores. A second 
reason is that, even for cores representing new peripherals, 
the core designer does not know if the peripheral will be 
controlled by a microprocessor whose application will not 
change. If the core were used in a system whose application 
did change, then constant or generic-based parameters 
would not be appropriate. Thus, support of software 
configurable parameters is very common, but results in extra 
hardware size as well as power consumption. 

4. PROPAGATING CONSTANTS FROM 
SOFTWARE TO HARDWARE 
We now describe a method for manually propagating 
constants across the software/hardware boundary in a core-
based synthesis methodology, and discuss potential 
approaches for automating this method. The method is 
summarized in Figure 4. For each core, the first step is to 
determine all of the registers in the core that serve as 
control registers for the various parameters listed in the 

previous section. Next, for each such control register, we 
must look for all references to that register in the driving 
microprocessor program. If the only access to that register 
is a write with a constant, and this write occurs during the 
reset or boot routines, as is often the case in embedded 
systems, then we have a candidate for constant 
propagation to peripheral cores. We replace the register’s 
declaration in the core by a constant declaration. We delete 
any behavior that involves detecting and carrying out a 
write to that register from the peripheral bus. We can then 
run the synthesis tool on this modified core. A synthesis 
tool will then detect and eliminate the dead code created by 
the constants we in troduced in the model, and thus result in 
a simpler synthesized structure. Most modern synthesis 
tools already carry out standard compiler optimizations like 
constant propagation, constant folding, and dead code 
elimination. 

We can also eliminate the behavior in the microprocessor’s 
program relating to writing the control register, but this is 
not always necessary. If we do choose to leave it, then we 
must ensure that the lack of a response from the core is 
acceptable. If a response is needed, like an 
acknowledgement, then we leave such behavior in the core. 

The above method has the advantage of being immediately 
applicable in any existing core-based design process, 
without any modification to existing tools. Of course, the 
constant propagation across the software/hardware 
boundary must be performed manually in the above case. 
Thus, we describe a potential approach to automating the 
method. A big help to such automation is if a core design 
framework is being used. Such frameworks, many of which 
are commercially available, manage the retrieval and 
instantiation of cores (e.g., [2][5]). They typically already 
have support for instantiating cores with specific values for 

Figure 3: The Intel 8255A parallel peripheral interface. Figure 4: Method for propagating constants to 
peripheral cores. 
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constants or generics (a generic is  essentially a parameter 
whose value must be chosen before instantiation) and for 
keeping track of all register address assignments in a 
system of cores. Thus, modifying such frameworks to 
handle software configurable parameters can be seen as an 
extension of an existing method.  

One approach to automation would be to extend the 
software compiler to output a list of external I/O addresses 
that are assigned a single constant by the program in a reset 
or boot routine, along with each address’ associated 
constant. This requires that the compiler be aware of the 
location of those reset or boot routines. Next, each core 
must have its control registers known to the core framework 
– this can be done by the framework developer, or the 
framework user, without too much effort. Furthermore, the 
framework must know where in the core to find the code 
that writes the register. Given this setup, the framework can 
read the contents of the file output by the software 
compiler, and for each address the framework can then 
replace the corresponding register declaration by a constant 
declaration, and delete write behavior from the core, before 
instantiating the core into the design. Then, synthesis can 
be run on the instantiated core, and the constants will result 
in dead code that can be eliminated. 

A second approach is possible, and in fact even simpler 
than the above. In particular, we observe that modern core-
based frameworks actually generate the reset or boot code 
themselves, including the code for initializing peripherals 
[5]. In other words, suppose a user wishes to instantiate a 
DMA controller into a system already having a 
microprocessor and memory. The framework will query the 
user to ask for the values of software configurable 
parameters, like transfer mode, base address and block size. 
The framework then generates the necessary driver 
software on the microprocessor. The second approach 
extends the above by having the framework also ask if the 
software configurable parameter values will ever change, or 
if instead they are in fact constants. If constants, then the 
framework can withhold generation of the related driver 
software, and instead directly proceed to instantiate the 
core with the corresponding register declaration replaced by 
a constant, and with the register-write behavior deleted. 

5. EXPERIMENTS 
We performed several experiments to evaluate the size and 
power savings possible by using our method of 
propagating constants to peripheral cores.  We modeled 
three popular peripherals as register-transfer level VHDL 
soft cores: the 8255A programmable peripheral interface, the 
8237A DMA controller, and the 16550A UART. Each core 
model is nearly a fully-functional model. The three soft-core 
models required 1045, 920 and 1063 lines of VHDL code, 
respectively. We also obtained a discrete cosine transform 

(DCT) core (Free-DCT-L) from http://www.opencores.org, 
which consisted of 910 lines of code. We manually modified 
these models to eliminate dead code that would have 
resulted from constant propagation of the software-
configurable parameters described below. We synthesized 
the cores twice, once before and once after dead code 
elimination, using the Synopsys Design Compiler. Area and 
power were measured using Synopsys analysis tools, with 
power measured while running a suite of test vectors for 
each core. Because we wanted to see first-hand the impact 
of the constant propagation on the size of the VHDL code, 
we performed the propagation of the constants and the 
dead code elimination manually, so we could measure the 
resulting lines of code.    

The 8255A had only one configuration register used for 
selecting the modes of various ports. We examined the 
impact of propagating constants for three different 
configurations of this register. Mode0 corresponded to a 
configuration where port A of the device was used as an 
output port. Mode1 corresponded to port A being used as 
an output port with handshaking I/O. Mode2 corresponded 
to port A being used as a bi-directional port with interrupt 
I/O. Each situation resulted in a reduction of the number of 
lines in the model from 1045 to an average of only 415 lines. 

The 8237A had several configuration registers, including 
those that select the arbitration mode, the number of active 
channels, and the transfer mode, base address, and block 
size of each channel. We examined the situation of using 
only a single channel, in single transfer mode. This reduced 
the model from 920 to 435 lines. 

The PC16550 also had several configuration registers, 
including those that enable transmit and receive, select the 
interrupt mode, and select the baud rate. We examined two 
situations, one where the device was configured for 
transmit only at a specific baud rate, and the other where it 
was configured for receive only at a specific baud rate. Each 
reduced the model’s lines of code from 1063 to roughly 625.  

The DCT core had configuration registers for selecting 
between forward and inverse DCT, and for selecting among 
8, 9, 10, or 12-bit resolution.  We tested the configuration of 
forward DCT with 8-bit resolution.  This configuration 
reduced the size of the code from 910 lines to 867 lines.   

Note that these parameters were not represented by 
constants or generics in the VHDL source. Rather, the cores 
were designed to be synthesized to support software 
configuration of these parameters, as is common.  

The size and power data is summarized in Table 1. We see 
that size after synthesis was reduce by an average of 58%, 
and power by an average of 22%. The reason that power is  
not reduced as much as size is because many of the gates 
eliminated through constant propagation were not used 
during a core’s execution even when present, so didn’t 



 

consume much power. The power reductions that do occur 
result we believe from less switching activity occurring due 
to simpler control and datapath switching logic.  

These reductions come of course at the cost of not being 
able to reprogram the configurable parameters of the core 
once the system has been implemented. Thus, if modifying 
the microprocessor’s program is a possibility, then 
propagating constants across the software/hardware 
boundary should either not be done, or should be done 
only to the extent that the designer is certain that particular 
constants won’t change. However, as mentioned earlier, 
many embedded systems have their programs fixed in mask-
programmed ROM, and thus the configurable parameters 
could never have been modified anyways, meaning our 
approach would have no impact on flexibility in those cases. 

6. CONCLUSIONS 
As core-based design methodologies grow in popularity, 
cores will be heavily parameterized to increase applicability 
and hence sales. Pre-fabrication parameters, specified using 
HDL generics or constants, can result in optimized 
hardware. However, post-fabrication parameters, known as 
software configurable parameters, until now had not been 
exploited similarly. We introduced the idea of propagating 
constants beyond the microprocessor software, to the 
peripheral hardware. We showed that such propagation 
yielded reductions in size by 2-3 times, and good power 
reductions of between 10-30%, using several standard 
peripheral examples. This work is part of the UCR Dalton 
project, which seeks to develop techniques for 
parameterized core-based system-on-a-chip design [7]. This 
work motivates the need for future work on system-on-a-
chip frameworks whose compilers are able to detect 
“constants” in the sense of software configurable register 
values, and are able to coordinate between compilers and 
synthesis tools to propagate those constants to hardware. 
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Table 1: Comparison of cores before and after constant propagation.  

Cores
Gates, 

original

Gates, with 
constant 

propagation
% size 
savings

Power, 
original 
(micro-
watts)

Power, with 
constant 

propagation 
(micro-
watts)

% power 
savings

8255A mode-0 3069 834 73% 2772 1902 31%
8255A mode-1 3069 918 70% 2915 2098 28%
8255A mode-2 3069 953 69% 2952 2124 28%
8237A single transfer 7276 2344 68% 2453 2097 15%
PC16550 Tx 2503 1169 53% 1461 1249 15%
PC16550 Rx 2503 1188 53% 1449 1307 10%
DCT Forward 8-bit 2295 1861 19% 1391 962 31%
Average savings 58% 22%  


