
Applications and Experiments with eBlocks – Electronic
Blocks for Basic Sensor-Based Systems

Susan Cotterell*, Kelly Downeyŧ, Frank Vahid*¥
* Department of Computer Science and Engineering

ŧ Department of Electrical Engineering
University of California, Riverside

{susanc, kstephen, vahid}@cs.ucr.edu; http://www.cs.ucr.edu/eblocks
¥ Also with the Center for Embedded Computer Systems at UC Irvine

Abstract
Building a sensor-based system typically requires some
programming and electronics expertise. However, some
applications require only basic logic transformations
and/or state maintenance of sensor information. This
paper describes a set of electronic blocks, called eBlocks,
that enable non-experts to build basic small-scale sensor-
based systems. Each block performs a particular sensing,
logic/state, or output function. A user builds a system by
connecting blocks together. Each block contains a hidden
microprocessor executing a pre-determined low-power
compute and communication protocol. A difference
between eBlocks and widely known sensor-network nodes
is that each eBlock has a specific easy-to-understand
function, and thus does not require programming.
Further, eBlocks are designed to be connected in
particular configurations to create an end application,
while traditional nodes form a wireless network that must
be programmed to form an application. Our physical
prototypes can last for several years or more on a 9-volt
battery, or can receive power from wall outlets. We
describe the domain of applications for which eBlocks are
suitable, including being used to build complete systems
or to interface with existing sensor-network compute
nodes, and we summarize the eBlock
compute/communication protocol. We describe
experiments, involving hundreds of users of varying levels
of expertise, that demonstrate how systems that otherwise
would have taken weeks or more to build can be built by
non-experts in just a few minutes using eBlocks.

1. Introduction
In our efforts related to embedded system design and
sensor-based systems, we found that a large number of
applications need a basic sensor-based system that
transforms sensor data using basic logic and state
functions. The transformed data is then fed directly to
output devices, to a computer, or sensor-network compute
nodes for further processing. Yet, we found that existing
as well as proposed sensor-network technologies required
some amount of programming and/or electronics
knowledge to build even a basic sensor-based system. An
application we encountered is a sleepwalker detector for
use in a nursing home setting (but also useful in a private

home), which uses motion sensors and light sensors
distributed through rooms and hallways to detect motion
in the dark, causing a buzzer to sound at a nursing station
(or bedside in a home). This seemingly simple system
today requires programming and electronics expertise to
interface motion sensors, light sensors, logic integrated
circuits (ICs), and microcontrollers. Contracting the
design of such a system might cost well over $1,500
(excluding part costs), while off-the-shelf systems are
hard to find, costly, and cannot be tuned to one’s unique
situation. Another application we encountered is that of
photographing nocturnal animals when they feed at a
particular location, to detect the presence of endangered
species in a region (a project we are involved with in
Riverside County, California). Again, this system needs a
handful of motion sensors, a light sensor, and basic
Boolean logic, to activate a camera. However, this system
must be battery operated and should last for many
months, further adding to the technical design demands
and hence costs. The scientists on this project had to
contract engineering help to design the system (costing
several thousand dollars).

We have encountered several dozen similar
applications and can easily think of hundreds of potential
applications. Proposed sensor-network nodes, such as
Motes [5], provide a framework for solutions, but still
require programming. As illustrated in Figure 1, the key
difference between eBlocks and sensor-network nodes is
that each eBlock has a fixed and particular functionality,
whereas sensor-network nodes are typically general-
purpose compute/communicate nodes used to build a
wireless infrastructure. In other words, connecting
eBlocks results in a complete working application, while
instantiating sensor-network nodes creates an
infrastructure. In fact, the wireless aspect of eBlocks is
optional – in many cases eBlocks will be hardwired
together. We point out that eBlocks are not a replacement
for sensor-network nodes. For some basic sensor-based
applications, eBlocks can be used exclusively. However,
eBlocks can also be used in conjunction with sensor-
network nodes as a means to combine several sensor
inputs or add basic state to sensor inputs before sensor
data enters a sensor network, as illustrated in Figure 2.

Other solutions, such as Phidgets [14], require a
connection to a personal computer (often not possible in
sensor applications) and may still require some
programming. Off-the-shelf solutions for particular
applications, like sleepwalk detection, sometimes exist,
but can be hard to find, are typically costly due to small
sales volumes, and often do not match the desired
application exactly and cannot be extended easily. We
discuss related work more extensively in Section 6.

We therefore sought to build a set of electronic blocks,
which we call eBlocks, that would enable people with
little or no programming or electronics expertise to create
basic low-power sensor-based systems simply by
connecting together perhaps a few dozen blocks. Some
blocks would be sensors, such as a motion sensor, light
sensor, button, contact switch, etc. Other blocks would
perform basic logic functions (e.g., AND, OR, NOT) or
basic state functions (e.g., prolong, toggle, or trip).
Additional blocks would provide output (e.g., turn on a
light-emitting diode (LED), sound a beeper, control an
electronic relay, or interface to an electronic device).
Blocks should be able to run on a battery if necessary and
last for years. Our basic idea involved adding an
inexpensive low-power microcontroller to each block.
Thus, previously “dumb” components like a button or an
LED would now actually become a tiny compute node,
and connecting those components would create a small
computer network communicating using packets and

obeying a known protocol. By carefully defining the
compute and communication protocols, we were able to
create physical prototypes that last for several years on a
9-volt battery. We estimate current high-volume
production materials costs of $1.50 to $3.50 per block
(depending on the type of block), leading to off-the-shelf
prices ranging from $6 to $14. However, trends continue
to reduce those costs.

Using the physical prototypes, as well as an applet-
based web simulator, we have over the past 12 months
conducted a variety of experiments with hundreds of users
of varying skill levels, to determine whether such users
could build basic but useful sensor-based systems using
eBlocks. Our results show that several systems, which
previously took several weeks to build by skilled
designers, could be built in less than 10 minutes by people
with little or no programming or electronics experience.

In this paper, we will discuss the domain of
applications for which eBlocks may prove useful and will
describe the current state of design for those applications.
We will summarize the compute and communicate
protocol of eBlocks. We then describe the experiments
that we have conducted demonstrating the ease with
which eBlocks can be used to build basic but useful
sensor-based systems. We discuss items learned and
planned future work.

2. Potential Applications
Numerous sectors face everyday problems easily solved
by simple sensor-based systems. However, individuals in
these sectors are either unable to build these systems
because they have insufficient programming or
electronics experience, cannot find or customize
reasonably priced off-the-shelf solutions, or cannot justify
the need or expense to hire an engineer to build a custom
solution. We describe four unique problems found in the
residential, commercial, medical, and environmental
sectors. Numerous other sectors face similar problems.

In the residential sector, one example of a useful
simple sensor-based system is that of a wireless doorbell.
If a homeowner is visiting their neighbor down the street
or working in the backyard, the homeowner may miss
visitors or delivered packages because the homeowner
cannot hear the doorbell. Instead, the homeowner might

Figure 1: Connecting eBlocks: (a) forms an end-application (sleepwalk detector) without any programming but perhaps slight
configuration, (b) while traditional sensor-network nodes form a framework that must still be programmed.

Figure 2: eBlocks as front/back-ends to a more advanced
sensor network.

Light sensor
block

Logic block
Node

Node

Node

Light
sensor

Configured
for AB’

A

B

Must be programmed

Motion Sensor
block

Wireless
transmit block

Wireless
receive block

Beeper
block

(a) (b)

Motion
sensor

Beeper

Node

Node

eBlock
sensor

eBlock
sensor

eBlock
state block

Node

Node

eBlock
Output

Node to
eBlock

interface

Node

eBlock
sensor

eBlock
logic block

Node

find it useful to set up a system such that when a visitor
presses a button, the system would wirelessly transmit a
signal to a hand-held buzzer, alerting the homeowner.
Because wireless communication is utilized, the
homeowner is free to go anywhere within a specified
radius. Other residential applications include detecting
that a garage door has been left open at night, detecting if
someone is approaching the house, detecting if there is
mail in a mailbox, detecting if a side gate has been left
open, detecting that a carpooler has arrived, etc.

A potential commercial application is a cafeteria food
alert system. A cafeteria may be laid out such that there is
a food service line where workers serve the food and a
separate kitchen in which workers prepare the food. When
a particular item on the food service line is running low, a
server must somehow notify the kitchen staff. The
cafeteria food alert system would provide a solution by
placing a button easily accessed by a server for each item,
such that the server simply presses a button when a
particular item needs replenishing. A buzzer or LED
would subsequently alert the kitchen staff. The kitchen
staff would also have access to another button, either so
they can turn the alert off after they have been notified, or
after the item has been replenished.

In the medical arena, institutions such as hospitals or
nursing homes must ensure the safety of their patients.
Many times, this involves nurses needing to know the
location of their patients. Some patients need assistance
when they are out of bed, others may sleepwalk, and some
patients may not be allowed out of their beds at night.
Patients typically outnumber the nurses making it difficult
to be aware of the location of all patients. If nurses
wanted to monitor motion in hallways at night, they could
place motion sensors throughout the various hallways
along with a light sensor. The combination of motion
sensed and darkness would send a signal to the nurses and
trigger a LED or buzzer alerting the nurse to check on a
particular corridor. Depending on the situation at hand,
this type of system has the potential for many variations.

Environmental science field researchers have the
unique problem of monitoring nocturnal endangered
species. Typically, scientists study species by first
trapping individual animals, photographing the animals,
and attaching a tag such that the scientists can identify the
animals later. However, researchers studying an
endangered species may be prohibited by law from
trapping the animals. An alternative solution without
trapping individual animals would be to set up a feeding
station including a simple sensor-based system to detect
motion at night and trigger a camera to take a photograph
of the animals as they feed.

Countless other applications for each sector, and for
other sectors, can be thought of.

Many of the aforementioned systems are highly
specialized and therefore companies are unlikely to
develop off-the-shelf systems, making it hard for users to

readily purchase such systems in the market. For example,
in the environmental science case, the scientists would not
only have to find or build a system to detect motion at
night, but would also have to properly interface the
system to a camera to photograph the animals.
Furthermore, even if one could find the needed products,
such systems are likely to be expensive due to the
systems’ specialized nature and low sales volume. For
example, a garage open at night system can be purchased
for roughly $75 [17][19], but many consumers are not
willing to pay this amount, and are unsatisfied when they
cannot customize the system (to check multiple garage
doors, or to provide alerts in multiple rooms, for
example).

3. Design Task Today
An alternative to buying off-the-shelf products is to
custom build an embedded system for each problem.
While this seems like a simple task, the task is actually
fairly challenging. For example, we observed an industry
design situation of the cafeteria food alert system
described above, requiring two weeks for a young
engineer with a bachelors degree in computer
engineering, just to get the basic functionality working
correctly. Ideally, though, the cafeteria staff should be
able to set up the desired system themselves.

Many of these systems require only a couple of
sensors interfaced to an output device such as a buzzer or
LED. However, upon closer examination of the problem,
we see that there are a multitude of issues quickly making
these systems too complex for an ordinary person with no
training in programming or electronics to build.

For instance, consider building a custom wireless
doorbell system. The basis of the desired system requires
a button and a beeper. When the button is pressed, the
beeper sounds. The first question is what kind of button
should be used? A person would first start by looking at a
parts catalog, such as Jameco [6]. This catalog categorizes
buttons as switches. The catalog contains rocker switches,
lever switches, push button switches, slide switches,
toggle switches, tactile switches, key switches, and so on.
Furthermore, each switch has numerous variations,
involving momentary type, lead spacing, thread diameter,
and contact rating. Clearly, such information is intended
for engineers, as non-experts cannot easily comprehend
such data. A person would face similar issues when
selecting the appropriate beeper output.

Furthermore, the wireless doorbell system requires a
power source. We can consider three options for a power
source, a power supply, a wall outlet, or batteries. It is not
likely that an ordinary user would have a specialized
piece of electronics equipment, thus we eliminate the
power supply option. Secondly, the end goal is a wireless
system, thus we do not want to limit the user only to
locations with a wall outlet. Therefore, the batteries are
the most reasonable choice for a power source. If the
voltage level required by system components differs from

the battery, a person will need to use a voltage regulator.
The person will have to figure out which regulator to buy,
read the datasheet and determine if other components are
required (i.e. capacitors or resistors), and properly connect
the components. The person will also have to purchase
wireless components and interface the components into
the system. Such interfacing requires more components,
datasheets, and knowledge of electronics.

Furthermore, if the person connects the button to the
beeper, the beeper may sound for too short of a time.
Ideally, the system would detect the button press and
sound the buzzer for several seconds or sound several
short pulses. The easiest solution would be to use a
microprocessor to detect the button press and control the
resulting beeper action. The microprocessor could also
debounce the button press, saving the user the need for
more components. However, the use of a microprocessor
further requires that a person knows a programming
language and has the proper tools to compile and
download the program to the microprocessor.

Lastly, if the person does not want to replace the
battery every couple of days, he/she will need to consider
the use of packets during communication, such that the
microprocessor can sleep between packet transmissions,
thereby reducing power consumption.

Finally, the person is ready to put all the components
together, implying the use of breadboards or soldering –
skills that require some expertise. If the system does not
work properly the first time, a person will then require
debugging skills to identify and fix problems.

It quickly becomes apparent that an ordinary person
does not possess the skills necessary to build even the
simplest of sensor-based systems. Even engineers who are
not specifically skilled in embedded system design may
find the aforementioned tasks daunting.

To illustrate the difficulty, we defined a design project
similar in complexity to the sleepwalker detector,
assigning the project to college juniors and seniors who
already completed a class in digital design and
introductory embedded systems. The students had several
months of experience in programming microcontrollers,
assembling basic electronic systems, implementing serial
communication, and interfacing with some sensors and
display devices. The students were given three-weeks.
Their project involved new sensors and output devices
that the students had to research and order themselves.
Furthermore, students had to read electronics datasheets
to figure out how to interface the various components. Of
50 students who attempted the project, only 20 were able
to successfully complete the project in the three weeks.
Many of the problems encountered by students related to
misunderstanding data sheets, errors during interfacing,
and difficulty in debugging. Furthermore, none of the
students were able to design systems that could operate
from batteries for more than a few days.

Evolving sensor-network nodes will certainly help to
simplify the task of building low-power sensor-based
systems. However, such nodes still need to be
programmed. One could consider pre-programming such
nodes such that each node has a fixed function
corresponding to eBlocks, and that indeed is a future
direction we may consider. However, even then, sensor
nodes today focus almost exclusively on wireless
communication, whereas eBlocks are designed to support
wired and wireless. Wired has several advantages,
including making explicit to a user how blocks are
connected, reducing power consumed by wireless
transmission and reception, and enabling low-power
communication over longer distances.

4. eBlocks: Electronic Blocks
We developed eBlocks to address the need of enabling
people with little or no programming or electronics
experience to build basic sensor-based systems similar to
those described in the previous section. We set out to
elevate the abstraction level of basic electronic
components in a sensor-based system, such that each
component has a standard interface, and components
communicate automatically when connected.

To achieve this, we took previously “dumb”
components, such as buttons, light sensors, motion
sensors, LEDs, buzzers, etc., and added a low-cost, low-
power microprocessor (in our case, a PIC microcontroller
costing about ninety cents) as illustrated in Figure 3. We
preprogrammed this processor to execute the block’s
compute function and a communication protocol.

We defined four types of blocks: sensors, logic/state,
communication, and output.

Sensor blocks output either “yes” or “no” (yes
indicating the presence of the event being monitored, such
as motion, light, or a button press). Types of sensor
blocks include motion sensors, light sensors, buttons,
contact switches, manual switches, noise sensors, etc.

Logic/state blocks take one or more yes/no inputs
from other blocks and generate one or more outputs, each

Figure 3: (a) “Dumb” sensors/logic/outputs and (b)
sensors/logic/output with added intelligence.

(b)

light sensor µC to perform logic
transformations

µC

green/red led

(a)

Light
Sensor

µC tx

Green/
Red LED

µC

rx rx
rx

DIP switch

µC tx

DIP switch to specify
logic transformations

block implementing a basic combinational or sequential
function. Logic/state blocks include a 2-input logic block
whose DIP switch can be configured to any logic function
of 2 inputs; a toggle block that changes state between yes
and no for each unique yes input; a tripper block that
changes to a yes state when the block’s main input is a
yes, and that stays in that state until a reset input is a yes;
and a pulse generator block that outputs yes and no at
rates specified by the user using two dials.

Communicate blocks include a splitter, and wireless
transmit and receive blocks that can replace any wire by a
wireless point-to-point link. We intentionally use wired
connections as the default connection among blocks, as
wired connections make the interconnection structure
explicit to the user, consume orders of magnitude less
power, and can enable communication over much longer
distances – we performed a physical experiment in which
eBlocks communicated over a stretched out standalone
wire over two miles long. Nevertheless, we included
wireless transmit/receive blocks for situations requiring
wireless – a pair essentially replaces a wire, forming a
point-to-point link.

Output blocks include an LED, a buzzer, an electric
relay that can control power to any electric appliance, and
a general interface that can be used to control electronic
devices (like a digital camera) or to interface to a personal
computer.

While blocks conceptually always transmit or receive
yes’s or no’s, the microprocessor in fact puts the system
to sleep 99% of the time, sending yes’s or no’s only if
there is a change on the input, or if a timeout has been
reached (presently 3 seconds), in order to save power. We
defined other types of timeouts to ensure comfortable use
when users are connecting and disconnecting eBlocks.
The blocks communication serially using a 4-bit packet,
representing yes, no, or error. For further details on our
compute/communication protocols, see [2].

We have designed physical eBlock prototypes, which
presently are the size of a deck of cards, and we estimate
could be shrunk to matchbox-sized physical components.

Although eBlocks eliminate the need for programming
or electronics experience, users still need to configure the
logic block to specify its functionality by setting positions
on a DIP switch.

Figure 4 presents how one can build the examples
discussed in Section 2 using eBlocks. Users choose
components and connect these components to build the
desired system. Because the user designs and builds the
system, the system can be as specialized as the user
desires. Furthermore, the interfacing and communication
aspects are already taken care of, thus, users do not need
any programming or electronics expertise. Individual
eBlock components can be utilized for a wide range of
systems and would be inexpensive to produce in high
volumes, providing inexpensive, flexible solutions.

5. Experiments
We conducted experiments to determine whether people
of varying skill levels could build basic sensor-based
systems effectively using eBlocks. The experiments
differed in the skill levels of the users and the complexity
of the systems being built.

We categorized the users, most of whom were
university students, into three skill levels: beginner,
intermediate, or advanced. A beginner was a student with
no programming or electronics experience and who was
not in an engineering or science major – most students
were in majors such as business, psychology, history,
dance, etc. Our access to beginners was through a
campus-wide course on computer applications (word
processing, web, etc.). An intermediate student was a
student who had taken anywhere between 7 weeks to 25
weeks of introductory programming, but with no
electronics experience. Our access to these students was
through our lower-division introductory programming

 Figure 4: Various applications built with eBlocks, (a) Wireless Doorbell, (b) Animal-Monitoring System, (c) Cafeteria
Food Alert, (d) Sleepwalker Detector.

Button Wireless
Transmitter Prolonger

1 2 3 4 5 6 7 8 9

Front Door

Beeper
Wireless
Receiver

With Person

(a) Light
Sensor

2-Input Logic

eBlock to
Camera
Interface

(c)

2-Input Logic

Splitter

Toggle
Button

LED

Button

LED

Se
rv

ic
e

lin
e K

itchen

Light
Sensor

2-Input Logic

Wireless
Transmitter

Wireless
Receiver

At nurse’s station
In hallway

LED

(b)

(d)

Motion
Sensor

Motion
Sensor

courses. An advanced student had both programming and
electronics experience. Our access to these students was
through our upper-division embedded systems courses.

We categorized the systems, from simplest to most
complex, as sensor-to-output, sensors-with-logic, sensors-
with-state, and sensors-with-logic-and-state.

Sensor-to-output systems required the user to select
the appropriate sensor and output blocks from about a
dozen possible components and to connect those blocks to
implement a particular application. Such systems included
a doorbell system, a system that sounds a beeper when
someone is in the backyard, a system that turns on a fan
when there is light in a room, and a system that turns on
an LED when someone is standing at a copy machine.
These systems were similar in complexity to the
“Wireless Doorbell” system described in Section 2.

Sensors-with-logic systems required the user to use at
least two sensors and to feed sensors’ outputs through a
logic block before connecting to an output. Examples
include a daytime doorbell system, a garage door open at
night system, and a motion at night detector system.
These systems were similar in complexity to the “Animal
Monitoring” system, and the detect and transmit portion
of the “Sleepwalker Detector” system, described in
Section 2.

Sensor-with-state systems required the user to connect
a sensor with a state block and then an output. These
systems included a blinking doorbell, an 8-second
doorbell, a package delivery system which detects motion
and triggers a beeper until the system is reset by user, and
a front desk notifier which turns on a beeper until a user
presses the same button to turn the beeper off. These
systems were similar in complexity to the receiving
portion of the “Sleepwalker Detector” system in Section
2.

Sensors-with-logic-and-state systems required the
user to connect multiple sensors through logic and state
blocks before connecting to an output block. An example
is the cafeteria food alert system, requiring both a toggle
block and 2-input logic.

Some of our experiments utilized our physical
prototypes, in which users physically plug block inputs
into block outputs. Students had 15 minutes to follow a
small written tutorial describing how to build eBlock
systems before building their own systems. Figure 5

illustrates a typical system, specifically the Garage Door
Open At Night System, built by students. Other
experiments utilized an applet-based web graphical
simulator, which allowed users to construct eBlock
systems and view the outcome of the various systems
given specified inputs. Students were given a short step-
by-step tutorial illustrating the basic idea of eBlocks, how
sensors interacted with one another, how to select blocks
from a library, and how to draw wires to connect the
various blocks within the simulator. Students then used
the simulator to create their own eBlock systems. Figure 6
illustrates a typical system, specifically a Front Desk
Notifier, built by students utilizing the simulator. The
simulator is available at http://www.cs.ucr.edu/eblocks.
Some of our earlier experiments, included in the data
below, used written tests only, which we quickly
determined to be non-ideal. We had to use the simulator
(or written) methods rather than physical prototypes, as
testing large numbers of users with physical prototypes
was not possible due to limited numbers of prototypes.

Because of time limitations in the classes we visited,
our experiments sought to measure what percentage of
users could build the system in a short period of time
(about 8 minutes). Another type of testing, which we have
not yet done, would measure how much time users take to

Figure 5: Garage Door Open At Night System built using
eBlock prototypes.

Figure 6: Front Desk Notifier built using the eBlock
simulator.

Table 1: Percentage of users who correctly built
sensor-to-output systems in less than 10 minutes, for

users with varying experience levels.

 Percentage Number of Students
Beginner 100% 4
Intermediate 40% 63
Advanced 92% 26
Overall 56% 91

Table 2: Percentage of users who correctly built
sensor-with-logic systems in less than 10 minutes, for

users with varying experience levels.

 Percentage Number of Students
Beginner 35% 86
Intermediate 47% 113
Advanced 85% 82
Overall 54% 281

build each system.
Table 1 gives results for our sensor-to-output

experiments. Students had 8-10 minutes to select the
appropriate blocks and connect the blocks correctly. The
beginners used physical blocks, while the intermediate
and advanced used written tests. We observed that the
intermediate students did not read the written tests
carefully, resulting in the low percentages. Nevertheless,
we see that, on average, more than half the students were
able to build the desired systems in less than 10 minutes.

Table 2 gives results for our sensors-with-logic
experiments. The beginners used the simulator. About
half of the intermediate user used written tests while the
other half used the simulator. About half of the advanced
user used written tests while the other half used physical
prototypes. We see that a rather amazing 35% of
beginners were able to build a sensor-based system with
multiple sensors and including a logic block in less than
10 minutes. We also see that more advanced users had
even higher success rates.

Table 3 gives results for our sensor-with-state
experiments. The beginners used physical prototypes,
while the intermediate and advanced users used the
simulator. We see that more than half of users were able
to build sensor-based systems with state in less than 10
minutes.

Table 4 gives results for our sensosr-with-logic-and-
state experiments. Beginner and advanced users used
physical prototypes; intermediate users used the
simulator. We see that only a small percentage of users
were able to complete this task in less than 10 minutes.
This is not surprising. Just understanding the desired task
takes several minutes, and then designing the system
requires some thought and experimentation. We plan to
redo this experiment with an easier-to-understand system
and with more time for the users than just 10 minutes.

Furthermore, we have conducted experiments
involving kids, high-school students, and adults, but the

number of people involved is not yet statistically
significant. Nevertheless, these interactions have helped
to find shortcomings of the blocks and helped us to
redefine the blocks. One redesign resulting from these
experiments was the use of “yes” and “no” rather than “1”
and “0” or “true” and “false,” since we found the latter to
be unnatural. People had a hard time converting the idea
of “motion” and “no motion” to “1” and “0” or to “true”
and “false,” whereas “yes” there is motion and “no” there
is not motion seemed more readily accepted. Further
experiments resulted in our adding small LEDs directly at
every block output – green meaning yes, red meaning no.
This redesign was made because we found that non-
engineers had a difficult time understanding the
abstraction of yes/no being sent all the time; they seemed
to think more in terms of just one yes being sent when
motion started, rather than continuing to be sent as motion
continued to be detected. The lights make explicit what is
being sent. We blink those lights to reduce power
consumption versus keeping them on. Yet another
revision was that of eliminating a sheet describing the
behavior of each block, as we found non-engineers almost
never used this information – instead, we place short
descriptions of each block on the block itself. We also
found that most non-engineers and more than half of the
engineers tested avoided reading through material more
than one page, and thus we redeveloped our tutorial
information to a four-step introduction on one page.

6. Previous Work
Much previous work has been done in examining new
ways to implement old systems using new technology.
We categorize this work into four major categories - pre-
manufactured products, programmable products, board
products, and block products. In this section, we will
examine the work pertaining to each of these categories.

6.1 Pre-manufactured Products
Pre-manufactured products are designed for a specialized
task. The benefit of pre-manufactured products is that
these products are ready to use off the shelf. The
drawback, however, is that each pre-manufactured system
has been designed to solve only one problem and is not
easily customizable to other situations. Smarthome [19] is
one such company that provides over 5,000 pre-
manufactured home automation products such as X10
switches and wall receptacles, motorized drape
controllers, mail alert sensors, etc. Each product serves a
single purpose and cannot easily be customized or re-used
for other applications. For example, if a consumer
purchases a wireless doorbell, they must use the included
button and further cannot customize the doorbell to sound
when motion is detected or only during the day.

6.2 Programmable Products
Programmable products are intended to be easily
programmed by the user so that customized systems can
be constructed. The user determines how the system

Table 3: Percentage of users who correctly built
sensor-with-state systems in less than 10 minutes, for

users with varying experience levels.

 Percentage Number of Students
Beginner 100% 2
Intermediate 56% 101
Advanced 80% 65
Overall 66% 168

Table 4: Percentage of users who correctly built
sensor-with-logic-and-state systems in less than 10
minutes, for users with varying experience levels.

 Percentage Number of Students
Beginner 0% 2
Intermediate 0% 21
Advanced 28% 16
Overall 12% 39

should be linked together and what the desired output
should be. Unlike pre-manufactured products,
programmable products are applicable to many different
situations and must ensure that the user is able to
successfully program the product, where the product’s
intended audience dictates the ease of programming
required.

Programmable products aimed at education and toys
must be easy to understand and program. Users cannot be
required to read extensive datasheets to understand how a
particular product works or be expected to take extensive
programming courses. MIT Crickets, which evolved from
the MIT Programmable Bricks project [12][13], are tiny
computers powered by 9-volt batteries that receive
information from two sensors and control two motors.
Users program Crickets to perform a variety of functions.
Users program Crickets using the Logo language [15] – a
simple, graphical, highly intuitive language. Crickets
provide an introduction to programming and electronics
to kids and are designed for science education. Crickets
also provided the foundation for the Lego Mindstorm
product [21][8], which consists of numerous sensor and
actuator Lego blocks used in conjunction with standard
Lego blocks and connect to a central microprocessor
block. Again, users program the processor using a simple
graphical language. Lego Mindstorms are intended for
building robotic toys.

Programmable products are often aimed at industrial
applications. One such example is Phidgets [14], sensors
and actuators that connect to a central board
communicating with a PC. The PC is used to monitor and
control the corresponding modules over a USB
connection. Programming Phidgets using Visual Basic,
users can quickly prototype systems. Teleo [20] is another
example of a system in which a user selects sensors and
actuators and connects the components to a central
module. The central module is connected to a PC and can
be programmed utilizing a variety of languages. However,
unlike Phidgets, Teleo incorporates memory within the
central module and can be disconnected from the
computer.

Mica Motes [5] are miniature wireless sensing devices
incorporating sensing, communication, and I/O
capabilities and are intended to last years in the field
utilizing only a pair of AA batteries. Each Mica node
consists of processor/radio circuits that are sandwiched
together with sensor circuits. A system designer would
customize the Mica node to their particular application by
selecting which sensors are incorporated. A collection of
Mica nodes are capable of self-configuring a multi-hop
network, utilizing RF communication, and support
dynamic reprogramming within the network. The nodes
also contain the TinyOS operating system and allow
designers to customize communication protocols. The
newest generation of these wireless platforms is Smart
Dust [18], which are on the millimeter scale in size. These

devices share many of the characteristics of the Mica
nodes but utilize optical communication and have more
restrictive power utilization limits. To use either the Mica
Motes or Smart Dust, users must choose which sensors to
utilize, program each node, and decide what
communication protocols best fit the desired system.
These devices are intended for people with programming
and electronics experience.

6.3 Board Products
Board products consist of electronic components that
must be connected on top of a specialized circuit board
typically intended to provide power to the individual
components. Logidules [10] were designed to help
university level students studying electronics to build
hardware systems. Using Logidules students snap
together boxes that represent a range of components from
logic gates to microprocessors. The design of Logidules
eliminates the need for users to connect power to each
component and users need only worry about wiring
between the devices. Magic Blocks [7] were designed to
teach pre-university students basic logic theory before the
students begin university level computer science classes.
Magic Blocks users are guided with an instruction manual
that explores various logic ideas by having students build
various projects. Logidules and Magic Blocks are aimed
more at an educational setting. Using Logidules and
Magic Blocks in real life would be challenging if not
impossible due the physical setup of these systems as well
as the low level components. The various gate level
blocks would be confusing to users who have no
computer science background.

6.4 Block Products
Block products are composed of electronic components
that can be connected together to build the desired system
and do not require a central module or specialized circuit
board to implement the systems. Users simply need to
connect the desired blocks together to build complete
systems. Logiblocs [9] are small plastic blocks that users
snap together to build various systems and consist of light
sensors, buttons, AND, OR, NOT, speakers, bleeps,
LEDs, etc. Logiblocs are intended for education and toys.
Electronic Blocks [3] are blocks that consist of processors
incorporated inside of LEGO Duplo Prima blocks. Users
simply stack the correct combination of blocks to produce
the desired output. Electronic Blocks are aimed at
students between the ages of 3 to 8 years old and are
limited in use for older students due to the simplicity of
the blocks. Currently, most block products are aimed at
younger individuals and therefore the possible systems
that one can build are simplistic with no ability to create
more advanced systems. RoboBrix [16] are components
that users plug together to build functioning robots
quickly. Each part contains a PIC microprocessor
incorporating intelligence to allow components to be
connected together as necessary. RoboBrix are intended

to aid in building robotic systems and are not intended for
monitor/control embedded system applications.

7. Conclusions and Future Work
We have developed a set of electronic blocks, which we
presently call eBlocks, that enable users with little or no
programming or electronics experience to build basic but
useful small-scale, low-power, sensor-based systems.
Potential uses include stand-alone applications as well as
front-end sensor systems to larger sensor-network
systems. We asked students of varying expertise levels to
build a variety of systems involving just sensors and
outputs, sensors with logic and outputs, sensors with state
and outputs, and sensors with logic and state and outputs.
We saw that more than half of all users were able to build
the first three types of systems, in less than 10 minutes.
These 10 minutes can be compared to days or weeks
previously required by advanced students not having
access to eBlocks.

Extensive future work remains. We are presently
performing studies to compare different forms of logic
blocks and state-based blocks to determine relative ease
of use and understanding by users; we are working with a
colleague in human-computer interfacing on this topic.
We are developing methods for blocks to share power
with one another, so that a block with a dead battery can
still operate, and so that a single block with a strong
power source (wall, solar, etc.) can power all connected
blocks and obviate the need for batteries. We are
developing PC-based tools for more advanced users to
specify and automatically synthesize and optimize
eBlock-based systems, which can enable design of
systems with hundreds of blocks. We are also developing
a general programmable eBlock with multiple inputs and
outputs, and environments for basic to advanced users to
program such a block. We are interfacing eBlocks with
existing sensor-based compute nodes (e.g., Motes) to
enable combinations of sensors to connect with each
node. We are also developing a set of eBlocks that can
also operate on integers, rather than just Boolean yes/no
values. We have also developed a CAD framework for
designing eBlocks themselves, and exploring the
implications of various compute and communication
protocols.

8. Acknowledgements
This work was supported by the National Science
Foundation (CCR-0311026) and a Department of
Education GAANN fellowship. We would also like to
thank Ryan Mannion for his contributions in developing a
simulator.

9. References
[1] Beyond Black Boxes

http://llk.media.mit.edu/projects/bbb/, 2004.
[2] Cotterell, S., F. Vahid, W. Najjar, H. Hsieh. First

Results with eBlocks: Embedded Systems Building
Blocks. CODES+ISSS, 2003.

[3] Electronic Blocks,
http://www.itee.uq.edu.au/~peta/Electronic%20Bloc
ks.htm.

[4] Home Depot, Inc., http://www.homedepot.com.
[5] Horton, Mike. et. al. MICA: The Commercialization

of Microsensor Notes. Sensors Online, April 2002.
[6] Jameco Electronics, http://www.jameco.com/.
[7] Kharma, N. and L. Caro. Magic Blocks: A Game Kit

for Exploring Digital Logic. American Society for
Engineering Education Annual Conference, 2002.

[8] LegoMindstorms, http://mindstorms.lego.com.
[9] Logiblocks, http://www.logiblocs.com/.
[10] Logidules,

http://diwww.epfl.ch/lami/teach/logidules.html,
2004.

[11] Lowe’s, http://www.lowes.com.
[12] Martin, F., et. al. The MIT Programmable Brick,

http://llk.media.mit.edu/projects/cricket/.
[13] Martin, F., et. al. Crickets: Tiny Computers for Big

Ideas.
http://lcs.www.media.mit.edu/people/fredm/projects/
cricket/.

[14] Phidgets, http://www.phidgets.com/.
[15] Resnick, M., S. Ocko, and S. Papert, LEGO, Logo,

and Design, Children’s Environments Quarterly 5,
No. 4, pg. 14-18, 1988.

[16] RoboBRiX, http://www.robobrix.com.
[17] SeniorShops, http://www.seniorshops.com.
[18] Smart Dust,

http://robotics.eecs.berkeley.edu/~pister/SmartDust/,
2004.

[19] Smarthome Inc., http://www.smarthome.com.
[20] Teleo, http://www.makingthings.com/.
[21] Wallich, P. Mindstorms Not Just a Kid’s toy. IEEE

Spectrum, September 2001.

