
Cache Configuration Exploration on Prototyping Platforms  
Chuanjun Zhang  

Department of Electrical Engineering  
University of California, Riverside 

czhang@ee.ucr.edu 
 
 
 

Frank Vahid 
Department of Computer Science and Engineering 

University of California, Riverside 
vahid@cs.ucr.edu, http://www.cs.ucr.edu/~vahid 

Also with the Center for Embedded Computer 
Systems at UC Irvine 

 
Abstract 
We describe cache architecture, intended for prototype-oriented 
IC platforms, that automatically finds the best cache 
configuration for a particular application. The cache itself can 
be configured with respect to the total size, associativity, line 
size, and way prediction. The cache architecture includes an 
explorer component that efficiently searches the large space of 
possible configurations for the set of points representing 
meaningful tradeoffs between performance and energy – the 
Pareto-optimal set. We provide results of experiments showing 
that the architecture effectively finds a good set of Pareto points 
for numerous Powerstone and MediaBench embedded system 
benchmarks.  Our architecture eliminates the need for 
time-consuming simulations to determine the best cache 
configuration, and imposes little power overhead and 
reasonable size overhead. 

Keywords 
Configurable cache, architecture tuning, low power, low energy, 
embedded systems, memory hierarchy, system-level exploration. 

1. Introduction 
Programmable IC platforms [15] can greatly improve 
time-to-market of integrated circuit (IC) based systems. An IC 
platform is a pre-fabricated system-level computing architecture, 
often consisting of one or more microprocessors, caches, 
memories, coprocessors, and perhaps configurable logic, all on a 
single chip [5].  Some platforms are intended for insertion into 
final products [4], while others are intended for prototyping [17]. 

Prototype-oriented platforms are typically too big, 
power-hungry and expensive for insertion into final products. 
After using a prototype-oriented platform, a designer would then 
develop an application-specific IC (ASIC) for insertion into a 
final product. Compared to simulation, prototype-oriented 
platforms enable nearly-at-speed execution and hence extensive 
functionality testing. Furthermore, such platforms enable 
in-circuit testing and hence detect many errors before ASIC 
fabrication. 

Numerous recent studies have shown the benefits of tuning 
system architecture to the particular embedded system 
application that will run on that architecture. For example, 
adding a few customized instructions can greatly improve 
performance [1][12]. The memory hierarchy has long been 
known to be especially important in determining an application’s 
performance and power [14]. 

Thus, most customizable processors also come with 
customizable memory hierarchies [16], so that when the designer 
implements a new ASIC, the customized memory will be 
included. However, designers have largely been left on their own 
to determine the best memory architecture. 

Recent work has focused on simulation-based methods to 
determine the best memory architecture [3][5]. The drawback of 
simulation is its slowness. Seconds of real-time work may take 
tens of hours to simulate. With the advent of prototype-oriented 
platforms, system architectural simulations become less 
common, and thus setting up a simulation just to choose the best 
memory architecture becomes less likely. 

We thus sought to develop a method to help designers to use 
a prototype-oriented platform to determine the best memory 
architecture. The method we developed consists of highly 
configurable cache architecture along with on-chip exploration 
hardware. When requested by the designer, the platform 
automatically explores different configurations of the cache 
architecture and tracks the performance of each configuration. 
The platform provides the Pareto-optimal configurations to the 
designer, who can then choose the configuration that best suites 
performance and power constraints. 

2. Putting a Configurable Cache on the 
Platform 

Several cache architectural parameters have long been known to 
have big impacts on performance and power. Typically, a 
microprocessor IC comes with a cache that is designed to work 
well for a large set of benchmarks. In an embedded computing 
system, however, only one or perhaps a few applications will 
actually execute on the microprocessor. Tremendous 
performance and power benefits can be obtained, by tuning the 
cache parameters to those few applications [18][19].  In earlier 
work, we have shown an average of 40% energy savings 
(considering energy related to memory, cache, bus and 
microprocessor stalls) across dozens of Powerstone [8] and 
Mediabench [7] benchmarks, with up to 70% savings in several 
cases [18][19].  

One important cache parameter is cache size. A larger cache 
results in fewer misses, but has a higher cost due to larger silicon, 
and consumes more power due to higher static as well as 
dynamic power dissipation. For a prototype-oriented platform, 
we would like to put the largest possible cache on the platform, 
and then be able to shut down regions of the cache to see how 
that impacts performance.  



Another important cache parameter is associativity. 
Associativity determines how many locations in a cache are 
simultaneously searched for a given address. In a one-way cache, 
known as direct mapped, only one tag and data array is searched. 
In a two-way cache, two tag and data arrays are simultaneously 
searched, requiring that the cache be designed with two separate 
arrays that can be simultaneously searched. One, two, four and 
sometimes eight ways are common. (Recently, highly associative 
caches with 64 ways have been used for low-energy by utilizing 
CAM-based tag arrays, but that is beyond the scope of this paper 
[20].)  Direct-mapped caches are fast and have low power per 
access, but have very low hit rates and hence very poor 
performance on a small percentage of benchmarks. Adding 
associativity to four ways results in good performance for nearly 
all benchmarks, but at the cost of slower time per access, and 
much more power per access (due to multiple simultaneous 
lookups).  

Yet another cache parameter is line size, which is the number 
of bytes brought into the cache whenever there is a cache miss. A 
typical line size is 32 bytes. Decreasing the line size to 16 bytes 
results in less wasted bus transfers in some examples, but a 
higher miss rate in others. Increasing to 64 bytes results in a 
higher hit rate in several examples, but more bus traffic in other 
examples. 

For any particular application, there is a best cache size, 
associativity and line size, and the difference between that best 
configuration and the configuration that works best across a large 
set of benchmarks can be very large, around 70% energy savings. 
Thus, we have developed a highly configurable cache that can be 
configured for size, associativity, and line size [18][19]. A key 
idea is that of way concatenation. We design the cache with the 
maximum number of ways (in our case four) with each way 
being 2 Kbyte, but then just by configuring a bit in a register, two 
ways can be concatenated into one larger way. Another idea is 
that of way shutdown [2], which we set a bit that shuts down a 
particular way. Thus our cache size can range from 8 Kbyte 
(with four, two or one way) down to 2 Kbyte (with one way). 
Surprisingly, creating a way concatenatable cache does not 
increase cache access time over a set-associative cache. We 
simply replace a couple of inverters on the critical path by 
NAND gates resized to have the same delay as the previously 
small delay inverters, to maintain the same access time. We have 
verified these results by layout [19].  

A third idea is to allow for logical line size on top of a 
physical line size. We create a 16-byte physical line size, and 
then modify the cache controller to allow for 16, 32 or 64 byte 
line sizes by setting a couple of bits, with the latter line sizes 
achieved by carrying out 2 or 4 transfers of 16 bytes, 
respectively. 

Recent efforts seek to reduce the power of set associative 
caches. We examined several methods and found way prediction 
[6][10] to be very effective. In way prediction, the cache 
controller tries to find data in one way first, and only checks the 
other ways if that first way misses. We allow way prediction to 
be turned on or off. 

3. Automatic Configurable Cache 
Exploration 

3.1 Overview 
Given a highly configurable cache on a prototype-oriented 
platform, we need a way to determine the best configuration for a 
given application. Actually, there typically will not be a single 
best configuration. Instead, there may be some configurations 
with better performance at the cost of more energy, and others 
with better energy at the cost of worse performance. Our goal is 
thus to find the set of best configurations in terms of performance 
and energy. That set is known as the Pareto-optimal set [5]. A 
configuration is part of the Pareto-optimal set if no other 
configuration has both better performance and energy.  

Our solution is to include an on-chip explorer, as shown in 
Figure 1. The designer downloads and executes the application 
on the platform, something he/she would have already been 
doing anyway to develop and test the application. The designer 
then instructs the platform to determine the best set of cache 
configurations, either by setting a pin on the platform chip, or by 
setting a bit in a register. In either case, the platform will then 
enter an exploration mode while executing the application, after 
which the platform will indicate exploration is complete by 
either setting an acknowledge pin or an acknowledge bit in a 
register. The exploration phase will search through various cache 
configurations, monitor them for performance and energy, and 
create a set of best configurations in a small memory. Finally, the 
designer will upload the set of configurations and pick the one 
best suited for given performance and energy constraints. 

3.2 Performance and Energy evaluation 
The explorer can monitor the miss rate and from this determine 
the performance of the current configuration. The explorer must 
also determine the energy consumed by a given configuration. 
We use the following equations to compute energy. 
 
Equation 1: energy_total = energy_dynamic + energy_static 
Equation 2: energy_dynamic = cache_hits * energy_hit +  

cache_miss * energy_miss 
Equation 3: energy_miss = energy_offchip_access + 

energy_uP_stall + energy_cache_block_fill 
Equation 4: energy_static = cycles * energy_static_per_cycle 
 
The energy dissipation of the cache explorer is computed using 
the following equation: 

 
Equation5: energy_explorer=power_explorer*time*num_search 

 
The cache explorer incorporates these equations to estimate 

energy. energy_hit, energy_miss, energy_offchip_access, 
energy_uP_stall, energy_cache_block_fill, and 
energy_static_per_cycle are all constants in registers that can be 
set by the designer to correspond to the eventual technology to be 
used. cache_hits, cache_miss, and cycles are measured by the 
explorer using simple counters. 

 
 
 
 
 
 
 
 
 

Figure 1: Cache self-exploring hardware 

Micro- 
Processor 

I $ 

D $ 

O
ff 

C
hi

p
M

em
or

y 

Explorer 



3.3 Searching for Pareto Points 
Searching for Pareto points is different from searching for the 
point of least energy dissipation only or the shortest execution 
time point only. Figure 2 shows all the energy-time pairs 
corresponding to the possible cache configurations for 
benchmark bcnt. Figure 3 shows the corresponding Pareto 
optimal cache configurations, from which we can see that there 
are two points, A and B, that must belong to the Pareto set. Point 
A corresponds to the cache configuration that consumes the least 
energy. This cache configuration will be chosen if energy is the 
only consideration.  Point B is the fastest configuration. This 
cache configuration will be chosen if speed is the only 
consideration. The points of cache configuration in region C 
would have neither the lowest energy nor the best performance, 
however they consume reasonably low energy at a good speed. 

Although the performance range is not large in the example 
of Figure 3, the range is often much larger for other examples. 

3.4 Exploration Strategy  
Exploring all possible configurations to find the Pareto set would 
take too much time. For our particular configurable instruction 
and data caches, 729 (27*27) configurations exist. Adding just a 
few more parameter values to each cache would increase that 
number of configurations to 10,000 (100*100), and adding a 
second level of configurable unified cache could increase the 
number to 1,000,000 (100 * 10,000). Thus, exhaustive 
exploration is not feasible. 

We therefore developed heuristics for finding the Pareto set. 
We first heuristically find points A and B, and then search for 
points C. To develop our heuristics, we first simulated 13 of 
Motorola’s Powerstone benchmarks [8] and 6 of Mediabench 
benchmarks [7] for all 27 possible configurations, using 
SimpleScalar [3], to obtain the cache_hits and cache_miss 
values. We obtain the energy_hit from our own CMOS 
0.18-micron layout of our configurable cache (incidentally, we 
found our energy values correspond closely with CACTI [11] 
values). We obtain the energy_offchip_access from a standard 
Samsung memory, and energy_uP_stall from a 0.18 micron 
MIPS microprocessor. Note that our energy_total value captures 
all energy related to memory accesses, which is the value of 
interest when configuring the cache; additional system energy 
would add a constant. Memory access energy often accounts for 
about 50% of total microprocessor system energy [8][13].  

3.5 Searching for Point A 
Point A corresponds to the cache configuration that consumes 
the least energy. We use the following search heuristic: 

1. We begin with a 2 Kbyte cache (direct-mapped, 16 
byte line), and increase to 4 Kbyte. If this yields 
improvement, we increase to 8 Kbyte. We pick the 
cache size yielding the best energy. 

2. For the best cache size, we increase the line size from 
16 to 32 bytes. If this yields improvement, we 
increase to 64 bytes. We pick the line size yielding the 
best energy. 

3. For the best cache size and line size, we increase 
associativity from 1 to 2 ways. If this yields 
improvement, we increase to 4 ways. Of course, for a 
2 Kbyte cache, 2 and 4 ways aren’t possible, while for 
a 4 Kbyte cache, 4 ways aren’t possible, and so we 
don’t consider those. We pick the associativity 
yielding the best energy. 

4. For the best cache size, cache line size and cache 
associativity, we incorporate way prediction. If way 
prediction yields lower energy dissipation, we enable 
it. Otherwise, way prediction will not be used. 

Our heuristic finds the lowest energy configuration in most 
cases, examining about 7 configurations on average, and 
requiring no cache flushes. 

Note that our heuristic can easily be extended for caches 
whose three parameters (cache size, line size, associativity) have 
more possible values. 

3.6 Searching for Point B 
Point B corresponds to the fastest cache configuration. Finding 
this point is more straightforward than Point A. We pick the 
biggest size (8 Kbyte) and highest associativity (four-way)  – 
smaller size or lower associativity almost never improves the 
performance.  For line size, we found that the largest line size 
(64 bytes) typically have best performance. However, decreasing 
any of these items may have no degradation in performance, so 
we still have to try adjusting each parameter to find point B.  
We use the following search heuristics to find point B: 

3090000

3100000

3110000

3120000

3130000

3140000

3150000

0 0.001 0.002 0.003 0.004 0.005

Energy(mJ)

Ti
m

e(
cy

cl
es

)

 
Figure 2: Energy/time for all cache configurations of both 

I-cache and D-cache of benchmark bcnt. 3090000

3095000

3100000

3105000

3110000

3115000

3120000

3125000

0 0.001 0.002 0.003 0.004 0.005

Energy(mJ)

Ti
m

e(
cy

cl
es

)

Figure 3: Pareto optimal points of benchmark bcnt. Also the 
cache parameters are shown. 

A

C
B

I64D32I2KD2KI1D1
I64D64I2KD2KI1D1
I64D64I4KD2KI1D1
I64D64I8KD2KI1D1
I64D64I8KD2KI2D1
I64D64I8KD8KI4D1
I64D64I8KD8KI4D4



1. Cache size is fixed at 8 Kbyte. 
2. Instruction cache line size is fixed at 64 bytes. For data 

cache line size, we start from 64 bytes and reduce the 
line size to find the best. 

3. Cache associativity starts from a 4 way set associative 
cache. We then decrease to 2 ways, and if this 
improves the performance, we try a direct mapped 
cache; otherwise we stop searching. 

4.  Way prediction is not used, as it will decrease 
performance. 

3.7 Searching for Points C 
Cache configuration parameters in region C are very important 
because they represent the trade off between energy and 
performance. We use the following search heuristic:  

1. We choose the value of the cache parameters between 
points A and B. For example, if the cache size at 
points A and B are 8K and 4K respectively, then the 
cache size of points in region C will be tested at 8K 
and 4K.   

2. Then different combinations of the parameters of 
point A and B are tested. 

As an example, Figure 3 shows the Pareto optimal points of 
benchmark bcnt. The cache configuration of point A is 
I64D32I2KD2KI1D1, meaning an I-cache with line size 64 
bytes, D-cache with line size 32 bytes, I-cache with size 2 Kbyte, 
D-cache with size 2 Kbyte, I-cache with 1 way associativity, and 
D-cache with 1 way associativity. The configuration for point B 
is I64D64I8KD8KI4D4. Table 1 lists the instruction cache 
parameters of points A and B. Because points A and B have the 
same line size, 64 bytes, then we will assume points in region C 
have line size 64 too. For associativity, points in region C may 

have one way or two ways. The cache size may be 2k, 4k, and 
8k. So we have four candidate parameters for region C, 
I64I4K1W, I64I4K2W, I648K2W, and I648K1W. From our 
exhaustive simulations, we note that three out of four candidate 
cache configurations are Pareto optimal cache configurations.  

3.8 Implementing the Heuristic in Hardware 
Implementing the search heuristic in hardware is achieved using 
a simple state machine, shown in Figure 4. In the datapath, there 
are eighteen registers and a 16-word memory to hold the Pareto 
optimal configurations. Three registers collect the run time 
information, the total number of cache hits and misses, and the 
total cycles in designated tuning time. Six registers store the 
cache hit energy per cache access, which correspond to 8 Kbyte 
four way, two way and one way; 4 Kbyte two way and one way 
and 2 Kbyte one way configuration. The physical line size is 16 
bytes, so the cache hit energy for different cache line sizes is the 
same. There are three registers to store the miss energy, which 
correspond to the line sizes of 16 bytes, 32 bytes, and 64 bytes 
respectively. Static power dissipation depends on the cache size 

only, so there are three registers to store the static power 
dissipation corresponding to 8 Kbytes, 4 Kbytes, and 2 Kbytes 
cache, respectively. These fifteen registers are all 16 bits wide. 
We also need one register to hold the result of energy calculated 
and another register to hold the lowest energy of the cache 
configuration tested. These two registers are 32 bits wide. The 
last register is the configure register that is used to configure the 
cache. Now we have four cache parameters to configure. Cache 
size, line size and associativity have three possible values, while 
prediction is on or off. So the configure register is seven bits 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: FSM and datapath of the cache explorer. The “input” 

includes clock, reset, and start signals. The “control” is the output 
of the FSM to control the registers and muxes; the output of the 

comparator is fed back to the FSM. 

 
 
 

 

Figure 5: FSM of the cache explorer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Sub-FSM “A” for searching for point A of the cache 

explorer. 

 
 
 
 
 

Table 1:Cache parameters for point A , B and candidate 
parameters for region C, four configurations, I64I4K1W, 

I64I4K2W,  I648K2W, and I648K1W for benchmark bcnt 

A B C s 

Parameter 
state 

machine 

Value state
machine 

Calculation 
state 

machine 

P0 P1 P2 P4P3 

Start=0
cache size line size associativity 

V1 V2 V3 

C1 C2 C3 

C0 

V0 

prediction 

      Point         A      B          C          
   Line size      64     64          64 
   Cache size    2K     8K       4K  8K 

Associativity   1W    4W      1W   2W  
   

in
pu

t 

hit energy 
miss energy 
static energy 

hit num 
miss num 
exe time 

multiplier 

mux mux 

adder 

register 

FS
M

 

comparator 

lowest energy 

control 

com_out 

com_out 

configure register 

memory 



wide. The datapath is controlled through the signal “control” 
from the FSM. The output of the comparator is fed to the FSM in 
Figure 5. There are four states, state “S” is the start state, state 
“A” is the state machine for searching the point A, and states “B” 
and “C” are the state machines for searching for points B and C, 
respectively.  
    The FSM corresponding to searching for point A of the 
cache explorer is shown in Figure 6.  We have three simple sets 
of states. The first state machine is for cache parameters, which 
we call a parameter state machine (PSM). The first state of the 
PSM is the start state, which has to wait for the start signal to 
start the cache tuning. The second state, state P1, is for tuning the 
cache size, where the best cache size is determined in this state. 
The other states P2, P3, and P4 are for cache line size, cache 
associativity, and prediction, respectively.  The second state 
machine is used to determine the energy dissipation at the 
possible values of each cache parameter. We call it the value 
state machine (VSM).  The highest possible value of these 
cache parameters is three, so we use four states in the VSM. If 
the state of PSM is A1, which is for cache size, then the second 
state of the VSM is used to determine the energy of 2k cache; the 
third state, V2 is for a 4k cache, and V3 is for an 8k cache. The 
first state V0 is used as an interface state between PSM and 
VSM. If the PSM is A2, which is for line size tuning, then the 
second state of the VSM, V1, is for a line size of 16 byte, the 
third state of VSM, V2 is for a line size of 32 byte, and the last 
state, V3 is for a line size of 64 byte. We also need the third state 
machine to control the calculation of the energy. Because we 
have three multiplications, and only one multiplier, we need a 
state machine that has four states. It is called calculate state 
machine (CSM). The first state is also an interface state between 
VSM and CSM. 

In Figure 6, the solid lines show state transitions in the three 
state machines, respectively. The dotted lines show the 
dependence of upper level state machines on the lower level state 
machines, for example, the dotted lines between PA1 and V0 
shows that P1 state has to wait for VSM to finish before go to the 
next state P2. Our experimental results show that the average 

searching of all the benchmarks is around 5.4 configurations, out 
of 27 total configurations.  

The state machines corresponding to point B and C may be 
constructed as that of point A in a similar way. The parameter 
state machine for point B will have three states instead of five as 
that of point A, because at point B, the cache size is fixed at 8K 
and way prediction is not used. In the value state the value of the 
cache parameters will start from the maximum value to minim.  
For point C, there are only two states in the parameter state 
machine, one is start state and the other is the state that all the 
possible combinations of cache parameters obtain from the 
results of point A and point B are tested. Value state machine is 
not needed for point C, because the cache parameters have been 
set by state machine A and B. All the three state machine for A, 
B, and C will use the same calculation state machine to compute 
the energy and time.  

4. Experiments 
Figure 2 and Figure 3 show the result of benchmark bcnt. The 
results of benchmark brev are shown in Figure 7 and Figure 8. 
Figure 7 shows the total cache parameter configurations. Figure 
8 shows the six Pareto optimal configurations found by our 
heuristic method. From Figure 8, we can see the data cache 
parameter remains the same for all Pareto optimal configurations 
except the line size, for which a line size of 32 corresponds to the 
least energy dissipation cache configuration and a line size of 64 
corresponds to the best performance. This also means that no 
other point exists in region C for data cache. For the instruction 
cache, the least energy dissipation configuration is for a line size 
of 64 bytes, a cache size of 4 Kbytes and an associativity of one. 
The best performance cache configuration has a line size of 64 
bytes, cache size of 8 Kbytes and associativity of four. So we can 
assume that the points in region C have a cache line size of 64 
bytes, a cache size of 4 Kbytes and 8 Kbytes, associativity of one 
way and two ways (the four way case has already been occupied 
by point B which corresponds to the best performance case). Just 
as in the analysis in Table 1, there are only three candidate cache 
configurations in region C: I64I4K2W, I64I8K1W, and 
I64I8K2W. Two of them are Pareto points as shown in Figure 8.  

0

2000000

4000000

6000000

8000000

10000000

12000000

0 0.005 0.01 0.015 0.02

Energy(mJ)

Ti
m

e(
cy

cl
es

)

 
 

Figure 7: All cache parameter combinations including both I-cache 
and Dcache of benchmark brev 

4194000

4196000

4198000

4200000

4202000

4204000

4206000

0 0.001 0.002 0.003 0.004 0.005

Energy(mJ)

Ti
m

e(
cy

cl
es

)

 
Figure 8: Pareto optimal points of benchmark brev. The cache 

parameters are also shown. 

I64D32I4KD2KI1D1
I64D64I4KD2KI1D1
I64D64I8KD2KI1D1
I64D64I8KD2KI1D1
I64D64I8KD2KI2D1
I64D64I8KD2KI4D1



Figure 9 shows the Pareto optimal configurations for our 
other six benchmarks.  
  We can see that the most important part of searching for 
Pareto points is the searching for point A. For instruction and 
data cache configurations, respectively, our heuristic searches on 
average just over 5 configurations compared to 27 for 
exhaustive. Just as expected, the searching of point B is easy. All 
benchmarks have the best performance with an 8 Kbytes cache 
size, a cache line size of 64 bytes, and 4 way set associativity, 
with only few exceptions. For example, 9 out of 19 benchmarks 
achieved their best performance with a two way or one way 
cache, while the other 10 out of 19 benchmarks achieved their 
best performance with a four way set associative cache. The 
searching of Pareto optimal points in region C is straightforward.  

 We also compared the results to some other search 
heuristics for point A, one of which searched in the order of line 
size, associativity, way prediction and cache size. That heuristic 
did not find the optimal configuration in 11 out of 18 examples 
for the instruction cache, and in 7 out of 18 examples for the data 
cache. For both caches, the sub-optimal configuration was off by 
up to 7%.  

The exploring hardware does not impose much overhead. 
The hardware consists of a few registers, a small custom circuit 
implementing the state machine (synthesized to hardware), and 
an arithmetic unit capable of performing addition and slow 
multipliers (fast multipliers are not necessary since the equations 
are only occasionally computed), a small control circuit that uses 
the arithmetic unit to compute energy, and a comparator. The 
cache explorer is synthesized by using Synopsys. The total size 
is about 4,200 gates, or 0.041 mm2 in 0.18 micron CMOS 
technology. Compared to the reported size of the MIPS 4Kp with 
cache [9], this represents just over a 3% area overhead. The 
power consumption is 2.69 mW at 200 MHz. The power 
overhead for the MIPS would be less than 0.5%.  Furthermore, 
the exploring hardware is used only during the exploring stage, 
and can be shut down after the best configuration is determined.   

From the simulation of the cache explorer, the total cycles 
used to compute the energy is 164 cycles. When working at 200 

MHz, and with the average number of cache configurations 
searched for point A being 5.4, the average energy consumption 
of the cache explorer is then:  

    energy_explorer  =2.69 mW * 164*5ns*5.4 = 11.9nJ.  

   Compared with the total energy dissipation of the 
benchmarks that ranged from 1.64E-4J to 3.03 J with an average 
of 2.34J, the energy dissipation of the cache explorer is 
negligible. 

In order to show the impact of data cache flushing, we 
compute the energy consumption of the benchmarks when cache 
size is configured from 8k to 2k. The average energy 
consumption due to dirty data cache write-back ranges from 
9.48e-6 J to 2.1e-2 J with an average 5.38E-3J.  So if the cache 
size is configured from a large to a small one, the extra energy 
dissipation due to cache flush will be 5.38E-3J/11.19nJ =4.8e5 
times larger than that of cache explorer.  

5. Conclusions 
We have introduced a cache architecture that can find the best set 
of cache configurations for a given application. Such architecture 
would be very useful in prototyping platforms, eliminating the 
need for time-consuming simulations to find the best cache 
configurations. Our architecture imposes little area and power 
overhead, and no performance overhead. Our heuristics 
effectively find a good set of Pareto points trading off 
performance and energy. 

6. Acknowledgements 
This work was supported in part by the National Science   
Foundation grants CCR-9876006 and by the Semiconductor 
Research Corporation. 

References 
[1] S.Aditya, B.R.Rau, and V.Kathail, “Automatic 

Architectural Synthesis of VLIW and EPIC Processors,” 
Int. Symp. on System Synthesis , pp. 107-113, Nov. 1999. 

padpcm

132000
134000
136000
138000
140000
142000
144000
146000

0.174 0.175 0.176 0.177 0.178 0.179 0.18

Energy(nJ)

Ti
m

e(
cy

cl
es

)

binary

202000

204000

206000

208000

210000

212000

0 0.05 0.1 0.15 0.2 0.25

Energy(nJ)

Ti
m

e(
cy

cl
es

)

bliv

11233000
11234000
11235000
11236000
11237000
11238000
11239000

0 0.002 0.004 0.006 0.008 0.01

Energy(mJ)

Ti
m

e(
cy

cl
es

)

 
pegwit

58000000
60000000
62000000
64000000
66000000
68000000
70000000
72000000

0 0.05 0.1 0.15 0.2

Energy(mJ)

Ti
m

e(
cy

cl
es

)

auto2

29000000

30000000

31000000

32000000

33000000

34000000

0.054 0.056 0.058 0.06 0.062 0.064

Energy(mJ)

Ti
m

e(
cy

cl
es

)

crc

3090000
3092000
3094000
3096000
3098000
3100000
3102000
3104000

0 0.001 0.002 0.003 0.004

Energy(mJ)

Ti
m

e(
cy

cl
es

)

 
 

Figure 9: Pareto optimal configurations found by the cache explorer for benchmarks padpcm, binary, blit, pegwit, auto2 and crc. 



[2] D.H. Albonesi, “Selective Cache Ways: On-Demand Cache 
Resource Allocation,” Journal of Instruction Level 
Parallelism, May 2000. 

[3] D. Burger and T.M. Austin, “The SimpleScalar Tool Set, 
Version 2.0,” Univ. of Wisconsin-Madison Computer 
Sciences Dept. Technical Report #1342. June 1997. 

[4] E5 and A7 platforms, http://www.triscend.com. 
[5] T. Givargis and F. Vahid, “Platune: A Tuning Framework 

for System-on-a-Chip Platforms,” IEEE Trans. on CAD, 
Vol. 21, No. 11, Nov. 2002. 

[6] K. Inoue, T. Ishihara, and K. Murakami, “Way-Predictive 
Set-Associative Cache for High performance and Low 
Energy Consumption,” Int. Symp. on Low Power 
Electronic Design , 1999. 

[7] C. Lee, M. Potkonjak and W. Mangione-Smith, 
“MediaBench: A Tool for Evaluating and Synthesizing 
Multimedia and Communications Systems,” Int. Symp. On 
Microarchitecture , 1997. 

[8] A. Malik, B. Moyer and D. Cermak, “A Low Power Unified 
Cache Architecture Providing Power and Performance 
Flexibility,” Int. Symp. on Low Power Electronics and 
Design , June 2000. 

[9] MIPS Technologies, 
http://www.mips.com/products/s2p3.html 

[10] M. Powell, A. Agaewal, T. Vijaykumar, B. Falsafi, and K. 
Roy, “Reducing Set-Associative Cache Energy via 
Way-Prediction and Selective Direct Mapping,” Int. 
Symposium on Microarchitecture, 2001. 

[11] Glen Reinman and N.P. Jouppi, “CACTI2.0: An Integrated 
Cache Timing and Power Model,” COMPAQ Western 
Research Lab, 1999. 

[12] M.Sima, S. Cotofana, S.Vassiliadis, J. T. J. van Eijndhoven, 
and K.A. Vissers, “MPEG Macroblock Parsing and Pel 
Reconstruction on an FPGA-augmented TriMedia 
Processor,” Int. Conference on Computer Design, Sep. 
2001. 

[13] S. Segars, “Low Power Design Techniques for 
Microprocessors,” IEEE International Solid-State Circuits 
Conference Tutorial, 2001. 

[14] C. Su and A. M. Despain,  “Cache Design Trade-offs for 
Power and Performance Optimization: A Case Study,” Int. 
Symp. on Low Power Electronics and Design , 1995. 

[15] Semiconductor Industry Association. International 
Technology Roadmap for Semiconductors: 1999 edition.  

[16] Tensillica, http://www.tensilica.com/ 
[17] Velocity and RSP platform, 

http://www.semiconductors.philips.com. 
[18] C. Zhang, F. Vahid and W. Najjar, “Energy Benefits of a 

Configurable Line Size Cache for Embedded Systems,” Int. 
Symposium on VLSI design, Feb. 2003. 

[19] C. Zhang, F. Vahid, and W. Najjar, “A Highly Configurable 
Cache Architecture for Embedded Systems,” to appear in 
Int. Symp. on Computer Architecture, June 2003. 

[20] M. Zhang and K. Asanović, “Highly-Associative Caches 
for Low-Power Processors,” Kool Chips Workshop, in 
conjunction with the 33rd International Symposium on 
Microarchitecture, Dec. 2000  


