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ABSTRACT

Memory accesses account for a large percentage of total power
in microprocessor-based embedded systems. The increasing use
of microprocessor cores and synthesis, rather than prefabricated
microprocessor chips, creates the opportunity to tune a memory
hierarchy to the one program that will execute in the embedded
system. Such tuning requires fast and accurate estimation of the
power and performance of different memory configurations. We
describe a general three-step approach to developing such
estimators, based on our experiences on several different
projects. Each step is increasingly fast, using the previous step
to gauge accuracy. The first step uses high-level functional
simulation, the second step uses trace simulation, and the third
step uses equations. A tool developer can follow these three steps
to create a powerful environment for core users to support
synthesis of the best memory hierarchy for a particular
embedded system. The approach can be applied to components
other than memory also.
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1. INTRODUCTION
Accesses to instruction and data memory in a microprocessor-
based system can consume a significant amount of total system
power, nearly 50% for several common processors [36][40].
Thus, increased attention has been placed on reducing memory-
related power. Various efforts have focused on designing low-
power cache architectures [2][5][10][26][27][35][43], on
introducing tiny filter [31] or loop [6][23][32][33] caches to
reduce accesses to the regular memory hierarchy while executing
small loops, on encoding bus traffic to minimize dynamic bus
power [8][24][42], on compressing instructions [7][28][34] and
data [11][48][49] to reduce storage requirements and bus traffic,
on compiling to reduce memory accesses [29], and more.
Memory access is also a key contributor to overall system
performance [25].

Meanwhile, modern core-based design methods enable
designers to tune an architecture to a given program. In a typical
embedded system, such as a set-top box or a digital camera, the
program running on a microprocessor is fixed, or at least the
program’s general characteristics are well known. Ideally, a
designer would be able to tune a microprocessor system to best
execute that fixed program. Core-based design methods enable
such tuning. In core-based design, a designer integrates

processor-level components, like a microprocessor, memory, and
peripherals, in an HDL (hardware-description language)
environment. Once satisfied with the design, the designer
fabricates an integrated circuit (IC). Core-based design contrasts
sharply with standard design practice in the past, in which
designers purchased existing ICs. Those existing ICs were
designed to perform best over a large set of programs, but not for
any one program in particular.

With the advent of core-based design, much recent research
and commercial tools have focused on tuning the microprocessor
instruction set to one fixed program [1][3][4][14][15][21]. In our
work, we focus on the complementary problem of tuning the
memory hierarchy to a fixed program.

Several related efforts demonstrate the benefits of tuning the
memory hierarchy to a particular program. Dutt and Panda use an
exploration strategy to find the best configuration of on-chip
scratchpad memory size and certain cache parameters [12][38].
Kavvadias et al create additional layers of small memories to
store frequent data to reduce power [30]. Nachtergaele et al
present an exploration environment that utilizes a two phase
memory exploration scheme along with system level
transformations to reduce memory size and power [37]. Shiue
and Chakrabarti reduce power consumption by reducing memory
traffic using memory optimizing transformations, storing
frequently accessed variables in register files and on-chip cache,
reducing misses by configuring the cache size correctly and data
placement [41].

In this paper, we define the problem of memory tuning and
discuss the need for a memory tuning tool, we describe the three
steps to developing a fast memory tuning tool, and we highlight
results of various experiments.

2. MEMORY TUNING
We have investigated the problem of developing a memory
tuning environment in the context of a parameterized platform. A
platform is a pre-integrated design of processor-level
components, components such as microprocessors, caches,
memories, coprocessors, peripherals, and buses. We focus on the
platforms that come in the form of intellectual property (IP),
typically captured in an HDL, referred to as IP platforms. An IP
platform may come in a synthesizable HDL form or a lower-level
form, such as a gate-level HDL form, or even a layout form. A
parameterized platform is a platform whose components come
with configurable features that can be set to one of a limited
number of values in order to set the component’s operating
mode, as shown in Figure 1. For example, a cache may have
several configurable features, including total size, line size, and



associativity. A bus may have a configurable data encoder that
can be activated or deactivated. A voltage source may be
configurable to several voltage levels, while a clock may be
configurable to different frequencies. A peripheral may have
configurable buffer sizes, resolutions, or operating modes. A
particular parameter setting for a component may result in a new
customized HDL or layout representation being generated for
that component. For example, a cache of a particular total size,
line size, and associativity may be generated. In particular, the
parameterization of the platform will not exist in the final
version of the platform – instead, a particular customized
instance of the platform will be generated.

IP platforms typically come with numerous configurable
components. However, platform developers typically leave the
platform user on his/her own to choose the best configuration of
the platform’s parameters. Instead, platform developers typically
provide, in addition to basic software design tools, simulation
support for the platform. The lowest-level design of platform,
such as a gate-level design, can typically be simulated in an HDL
environment. Likewise, the synthesizable version of the platform,
if provided, can also be simulated in an HDL environment.
Because such simulations are extremely slow, platform
developers often provide even higher-level simulators, such as
non-synthesizable high-level behavioral HDL models, or even
functional simulators written in perhaps C or C++. These
higher-level simulators are functional only – while mirroring the
lower-level representations, one cannot automatically derive an
efficient lower-level implementation from these higher-level
models.

In addition to simulation models, the platform developer may
provide a menu-driven tool for selecting a particular
configuration of parameterized components. This tool typically
does not provide any guidance as to what the best configuration
might be, but does eliminate the need for the platform user to
modify HDL code. Such a tool may even generate customized
software drivers for the particular platform configuration. Thus,
the details of creating a customized platform instance are hidden.

However, the platform user must still determine the best
configuration of the platform for a given program. The user is on
his/her own in this respect – the user typically takes an educated
guess as to the best configuration, or may run a few high-level
simulations to compare some configurations he/she considers
likely candidates. Unfortunately, finding the best configuration is
a difficult task. There may be billions of possible configurations,
with delicate relationships among the various parameters. For
example, cache line size can have a tremendous impact on
system performance depending on a particular program’s
behavior, and that line size can heavily impact bus traffic and
hence has a relationship with any bus parameters. We refer to
tuning as the task of selecting the best configuration, in terms or
power, performance, area and other metrics, of a platform’s
parameters considering the relationships of these parameters to a
program’s behavior and the relationships among parameters. A
properly selected set of parameters can yield perhaps order of
magnitude differences in terms of power and performance, while
having a big impact on system area, compared to un-tuned
parameters [17].

Based on the above, we see a need for an automated tuning
tool for parameterized platforms. Such a tool would take a given

program, and find the best parameter configuration for that
program’s behavior and a particular set of design constraints.

Such a tool has two main parts – exploration methods, and
estimation methods, as shown in Figure 2. Exploration methods
guide the search through the huge configuration space, narrowing
the space down to the best set of candidate configurations.
Exploration methods differ with respect to runtime and quality –
longer running methods typically yield better quality. Ideally, the
exploration tool will output a set of Pareto-optimal configurations
– configurations such that no other configuration is better in all
design metrics. That set represents the set of configurations with
meaningful tradeoffs among the metrics.

Exploration requires methods of evaluating candidate
configurations. Those methods are estimation methods. The
estimation methods return information on power, performance,
size, and other design metrics, for a given program executing on
a given configuration. As with exploration, estimation methods
differ with respect to runtime and quality – longer running
estimation methods typically yield better accuracy.

However, in the case of both types of methods, quality does
not only come from longer runtimes, meaning more complex
algorithms. Instead, careful design of a method can also yield
better quality. Thus, careful design of an exploration method that
incorporates problem knowledge into the algorithm can often
yield excellent results in short runtimes (e.g., carefully designed
algorithms for solving the complex and well-known traveling
salesman problem can solve very large problem sizes quickly).

Just as effort can be placed on developing problem-specific
exploration methods to obtain quality results in reasonable
runtimes, effort can be placed on developing estimation methods.
A platform developer can focus on creating increasingly fast but
still high-quality means for quickly determining the power,
performance, and size of platform configurations.

In our work of developing parameterized memory
components in the context of platforms, we have developed a
general three-step approach that platform developers can follow
to build increasingly fast estimators for their platforms.

We have looked at two types of parameterized memories.
One type is a parameterized regular (level 1) cache architecture,
with the cache parameters including total size, line size, and
associativity. The other type is parameterized filter and loop
cache architectures, with the parameters including selecting
between filter and loop cache styles, cache sizing, and selecting
the number of supported loops. A filter cache [31] is an
extremely small level 0 direct-mapped cache (e.g., 32 to perhaps
512 entries) that will have a high miss rate, but an extremely low
power per hit that results in reduced overall energy for program
execution. A loop cache [32] is also a small level 0 cache, but
that is only filled when a simple loop is detected in the
instruction stream. By using a simple controller that detects loop
entries and exits, tag comparisons can be completely eliminated
in a loop cache, and misses are completely eliminated.

Our three step approach consists of high-level functional
simulation, trace-based simulation, and equation-based
estimation, providing increasingly fast methods for estimating
power and performance. The approach is summarized in Figure
3. We now describe each step, and describe how we applied each
step to our two types of parameterized memories.



3. HIGH-LEVEL FUNCTIONAL
SIMULATION
A key idea of tuning is that the best parameter configuration for a
platform depends not only on static constraints on the design
metrics of power, performance, size, etc., but also on the
dynamic behavior of the particular program mapped to the
platform [20]. Thus, to determine the design metric values for a
particular configuration, some form of simulation will be
necessary. Though a platform typically comes with a gate-level or
register-transfer level HDL representation, performing gate-level
or even register-transfer level simulation for each configuration
is very slow. Simulating even just one second of real time may
take tens of hours or even days for any reasonable-sized platform.
(Size can usually be determined from the configuration alone
without simulation, but power and performance require
simulation).

Thus, a platform developer should provide (and typically
already does provide) a high-level simulation tool for a platform,
as illustrated in Figure 3. Though behavioral-level HDL code is
faster than register-transfer or gate level, even faster are
C/C++/Java simulators. Such simulators may execute 1 second of
real time in just tens of minutes. Those simulators are typically
created to verify functionality and to provide performance data.
They typically consist of a program module for each platform
component. For example, Figure 4 shows a simplified high-level
simulator for a basic memory. The simulator declares a variable
representing the memory, and then based on input read and write
signals, the simulator either reads or writes the memory variable.
Thus, the simulator preserves the functionality of the memory.
We refer to such simulators as functional simulators.

In Step 1 of our approach, the platform developer extends
such a high-level simulator to also evaluate power, as shown in
Figure 4, using back-annotation. The developer first determines
the basic operations of the component for which power must be
measured.

For a memory, those operations may include reads and
writes. For a cache memory, those operations may be broken
down further into read hits and read misses, and write hits and
write misses. The developer must then determine the power for
each such operation, for each possible parameter configuration.
Such power determination may be done through an
understanding of layout issues, through multiple simulations for
different configurations, or through a combination of these two
approaches

In our efforts for regular caches, we deduce a physical model
based on the cache parameter settings and technology feature
size, similar to the approach used in the CACTI models [39]. The
physical model allows estimation of bit-line, word-line,
comparator, storage transistors, and address decoding logic
capacitive loads. Then, switching activity from the simulation
phase is applied to obtain average power consumption of the
cache for its various operations. We then annotated a high-level
cache simulator with this power data.

We also applied the back annotation approach for our filter
and loop caches. A filter cache is essentially a very small level 0
direct-mapped cache, and thus we simply used the same
approach as for regular cache. However, loop caches are quite
different from regular caches. Loop caches come in several
varieties [23]. A dynamic loop cache [32] detects a short

backwards branch in the instruction stream; such branches
usually represent the end of a small loop. Hence, the branch
triggers the filling of the loop cache during the second iteration
of that loop (note that no processor stall occurs during this fill –
instructions are simply copied from the instruction bus during
execution). On the third iteration, instruction fetching switches
from the power-costly instruction memory, which may be cache
or a regular memory, to the very small low-power loop cache.
Fetching continues from the loop cache until a control of flow
change within the loop is executed. Another variety of loop
cache, known as a preloaded loop cache [23], gets preloaded
with the most frequent loops as determined through profiling.
Such preloading has the advantage of supporting control of flow
changes within the loop (dynamically-loaded loop caches only fill
what they saw on the second loop iteration, so can’t handle flow
changes), thus supporting a wider range of loops and hence
reducing power further. A hybrid loop cache [22] combines
dynamic and preloaded loop caching, by only preloading those
loops that do execute control of flow changes, and dynamically
loading the rest, thus increasing the effective size of the
preloaded loop storage.

We developed a functional loop cache simulator able to
simulate any of the above loop cache varieties. Additional
configuration information that the simulator could take included
the size of the loop cache, the number of loops supported (for a
preloaded or hybrid type), and miscellaneous options for each
loop cache type.

We then proceeded to back-annotate the loop cache simulator
with power information, by also deducing a physical model for
the storage, as done for regular cache above. Furthermore, we
had to determine the power for the loop cache controller. To do
this, we first synthesized a variety of controllers and examined
the power consumed by their various parts. We then determined
the dependence of that power on the various configurations of the
loop cache, including number of loops supported, fill strategy,
etc.

The platform developer extends a high-level functional
simulator by adding in calls to power estimation routines, as
shown in Step 1 of Figure 4. Each determined operation of the
component will have its own routine. Each routine will have the
current parameter configuration passed to it. The routine will
then return a power value, and the simulator simply accumulates
these power values as it executes.

The high-level simulator can now compute power and
performance as it executes a program. The simulator can be
incorporated with a configuration selector as shown in Figure 5,
which selects candidate configurations to evaluate. Such
selection may be done manually by the platform user, or using
automated search heuristics. However, such heuristics are
limited in their search by the slowness of evaluation – executing
a program using a functional simulator for a given configuration
may take tens of minutes or even hours. Thus, those heuristics
can only try tens of possible configurations.

We can also apply our approach to other components in a
platform, such as processors, peripherals and buses. For a
processor, an instruction based power modeling is applied that is
based on models developed in [9] and [45]. Similarly, for each
bus segment, a rough layout is inferred that is based on the chip
technology, chip area, bus widths, and relative size of the various



cores, in order to obtain the average bus capacitance. Then,
switching activity from the simulation phase is applied to obtain
average power consumption of various buses. Average accuracy
of a high-level simulation based technique is experimentally
shown to be 5% to 15% of gate-level measurements [17]. We
apply a similar method for peripherals [18].

4. TRACE-BASED SIMULATION
Although high-level functional simulations are far faster than
lower-level simulations, the tens of minutes or hours required per
simulation limits exploration methods to examining only a few
configurations. Thus, we sought to develop a method that would
provide reasonable accuracy in less time.

Most of the execution time of a high-level simulator is spent
emulating the functionality of the platform. For example, in Step
1 of Figure 4, reading and writing of the memory variable takes
time. Simulating more complex functionality, such as cache fills,
or loop cache control, takes even more time. However, notice that
the simulation of that functionality is not really necessary for
determining the power or performance. For those metrics, we
really just need to know how many times each operation is
carried out.

Developers of cache simulators have long recognized this
principle. Hence, they developed trace-based cache simulators
[13][44]. In such an approach, a functional simulator generates a
trace of memory address references as the simulator executes.
Once this trace is generated, the trace-based cache simulator can
be executed multiple times with different configurations of
common cache parameters, such as line size, associativity, total
size, replacement policy, write policy, etc. The trace-based cache
simulator does not maintain the actual data stored in the cache.
Instead, it merely maintains the tags of items in the cache, and
thus can determine whether an access would represent a hit or a
miss. Not only is such trace-based simulation faster than a
functional cache simulation, but trace-based simulation does not
require re-simulation of the rest of the system for different cache
configurations. We therefore developed a trace-based cache
simulator that could support all the parameters we needed for our
platform.

For example, Step 2 of Figure 4 shows how the earlier
functional memory simulator would be modified to become a
trace simulator; notice that the functional aspects of the simulator
have been removed, while the power estimation aspects remain.
Thus, we can obtain power and performance data for each cache
configuration in minutes or tens of minutes, as illustrated in Step
2 of Figure 5. Notice that the time-consuming functional
simulation is only done once, and is not in the main configuration
exploration loop.

We also developed a trace-based simulator for our loop
cache. In this case, we modified the functional simulator to
generate a trace of the instruction opcodes and addresses, rather
than just the addresses as for the regular cache simulator. The
trace-based loop cache simulator processes each instruction and
determines for that instruction whether the loop cache will be
idle, or will perform a detect operation, a fill operation, or a fetch
operation. Using the back-annotated information, the trace-based
loop cache simulator computes power.

Further methods can be applied to speed up such trace
simulators, such as trace compaction [46], trace stripping [47], or
evaluating multiple configurations in a single trace simulation

[44]. For our loop cache, a simple method of reducing trace size
was to only include branch instructions in the trace – the loop
cache simulator could determine how many instructions existed
between branches simply through address calculation.

Despite methods to reduce trace file size, one of the main
disadvantages of a trace-based approach is that the trace files can
become extremely large – many gigabytes in the Mediabench
benchmarks we tried.

We have also developed trace-based simulators for the bus
and processing components of a platform [17][18]. However, care
must be taken to regenerate trace files when a configuration
change demands such regeneration. For example, changing a
cache’s parameters will change the bus traffic between cache and
memory, requiring a new bus traffic trace to be generated.
Likewise, changing the resolution of a JPEG encoder will change
the memory access patterns. A platform developer must carefully
consider the impact of different configurations on the system’s
execution, and may have to regenerate new traces for certain
classes of configurations.

5. EQUATION-BASED ESTIMATION
Trace-based simulation can reduce estimation time to just
minutes, enabling exploration tools to examine perhaps hundreds
of configurations. However, we would really like to explore
thousands or tens of thousands of configurations to find the best
configuration. In order to reduce estimation time further, we
sought a method for eliminating all or most of time-consuming
simulations from the exploration loop. For this purpose, we
developed equation-based estimators.

The basic idea of equation-based estimation is to statistically
characterize the trace, such that we can combine those statistics
with a particular configuration’s values in an equation or
function to compute power. For example, Step 3 of Figure 4
shows an equation-based estimator that makes use of statistics on
the number of reads and writes in the trace.

Such equation-based estimation is extremely fast, but may
lose accuracy, since in many cases the statistical characterization
loses information necessary for accurate prediction. Notice in
Step 3 of Figure 5 that functional simulation is executed once to
generate a trace, and trace-based simulation is executed once to
generate statistics. Neither of those simulations are in the
configuration exploration loop.

For our regular cache, we determined that we actually needed
to run the trace-based simulator six times, not just once, to
generate statistics for six key cache configurations. From those
six, we could interpolate remaining configurations with
reasonably accuracy. We define the equation-based cache
estimation problem as follows. Given a trace of memory
references, we are to compute the number of cache misses1,
denoted N, for all different caches. Two caches are different if
they differ in their total cache size S, line size (block size) L or
degree of associativity A. We limit each of these three
distinguishing parameters to a finite range:

S = { 2i, i = Smin … Smax }
L = { 2i, i = Lmin … Lmax }

1 Other metrics, e.g., number of write backs, can be estimated,
using our approach, in a similar manner.



A = { 2i, i = Amin … Amax }

Note that, for practical purposes, we only consider values that are
powers of two for each of these parameters. Given a trace-file,
we must define a function:

f : S × L × A → N

to compute the number of cache misses N for any cache
configuration. We assume that, with the aid of a cache simulator,
we are able to compute the above function, for any value from
the sets S, L and A, in linear time with respect to the size of the
trace-file. Intuitively, our approach works as follows. We know
that at low cache sizes, higher line size and associativity have a
greater positive effect than they do at high cache sizes. For
example, doubling the line size when cache size is 512B may
reduce cache miss rate by 30%, but when the cache size is 8K, it
may not reduce the miss rate at all. Thus, we are interested in
finding these improvement ratios at both low and high cache
sizes, so that, by line fitting, the improvement ratio for any cache
size can be estimated. This assumes a smooth design space
between these points. We next describe our approach for
estimating this function for all range values.

Our approach consists of three steps. First we simulate the
trace-file for some selected S, L and A values and obtain the
corresponding cache misses. Then we calculate a linear equation,
using the least square approximation method. Last we use our
linear equations to compute N for all cache parameters. We first
simulate the following points in our domain space:

f(Smin × Lmin × Amin) = N1

f(Smax × Lmin × Amin) = N2

f(Smin × Lmax × Amin) = N3

f(Smin × Lmin × Amax) = N4

f(Smax × Lmax × Amin) = N5

f(Smax × Lmin × Amax) = N6

Then we compute the following ratios:

R1 = N1 / N3, R2 = N1 / N4

R3 = N2 / N5, R4 = N2 / N6

Here, R1/R2 denotes the improvement we obtain by using
maximum line-size/associativity when cache size is at its
minimum. Likewise R3/R4 denote the positive improvement we
obtain by using maximum line-size/associativity when the cache
size is at its maximum. Given these ratios we estimate N for a
given cache size S, line size L, and associativity A as follows:

The first three equations, s, l and a, normalize our
parameters to be within a unit range. The next equation, t1,

estimates cache misses using lowest line size and associativity,
by computing a linear line through the points N1 and N2. If more
simulation data is available, the least square approximation is
used to compute t1. The next two equations, t2 and t3, estimate
the expected improvement gained from higher line size or
associativity. The last equation combines the previous equations
to estimate cache miss rate.

Further details of our equation-based cache estimation can be
found in [19].

We can apply a similar method for filter caches. However,
loop caches require a very different approach. In our approach,
we developed a tool to parse the trace file and generate a
statistical characterization of the loop behavior of the program.
For every loop, we compute statistics (average, minimum,
maximum, and standard deviation) of the number of visits to this
loop, the number of iterations of this loop per visit, and the
number of instructions executed by this loop per iteration. The
tool also examines the program code itself to determine the static
size of each loop and the number of branch statements within the
loop.

We then developed an estimation tool that tries to estimate
the behavior of the various loop cache configurations based on
the generated loop statistics. For example, suppose a loop’s
statistics indicate that the loop iterates 100 times per visit, with a
standard deviation of 0. Suppose that loop executes 10
instructions per iterations, with a standard deviation of 0. We can
see that this is likely a loop with a fixed iteration count and
containing straight-line code. For a dynamically-loaded loop
cache, we know that for each visit, this loop will generate 10 fill
operations (during the second iteration), and then for the
remaining 98 iterations, the loop will be fetched from loop cache,
resulting in 98*10=980 fetch operations from the loop cache. For
a preloaded loop cache, each visit will result in 100*10=1000
fetch operations.

We apply a similar process for all loop cache variations. We
consider additional details such as detect operations necessary
for preloaded loop caches.

Note that the above approach can result in inaccuracy. For
example, when the standard deviation of a loop’s instructions per
iteration is non-zero, we do not know how the iterations look
across loop visits. We must make some assumptions.

To improve the accuracy, we can try to find additional
statistics that would help – these are highly-dependent on the
loop cache style, and thus this step requires careful attention by
the platform developer.

6. RESULTS
The three steps outlined above provide increasingly fast power
estimation at the expense of some accuracy loss. We now
highlight some data showing the speed and accuracy of the
methods we developed for regular cache and for loop cache.

Figure 6 provides performance and energy (power times
time) estimation data for our trace-based cache simulation
approach compared with our equation-based estimation
approach, for a regular cache executing a diesel engine controller
example. That data also includes a configurable bus, for which
trace and equation-based simulators were also developed [16].
We evaluated over 45,000 different configurations of the
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cache/bus system – the figure shows 10 of those configurations,
selected to reflect worst, average and best case estimates. Notice
that the equation-based method is quite accurate. For two
different examples and all 45,000 configurations, average error
was only 2%, and worst case error was 18% [16][19]. Obtaining
these values for all possible cache/bus configurations using
equation-based estimation required only 84 minutes, instead of 7
days for the trace-based simulation approach – a speedup of 120
times.

Figure 7 summarizes power savings estimations for a JPEG
decoder benchmark using a variety of loop cache configurations.
We examined 72 different configurations, including different
sizes and types of dynamically-loaded loop caches
(configurations 1 to 16), of preloaded loop caches looking for a
loop’s starting address (configurations 17 to 32), and preloaded
loop caches looking for a loop’s ending address (configurations
33 to 72). The white bars represent the trace-based simulator
results, while the black bars represent the equation-based
estimator results, for each configuration. Notice that the
equation-based method is extremely accurate – averaging only
1% error. We applied these methods to the PowerStone set of
benchmarks [40], and obtained an average error of only 2%. The
trace-based loop cache simulator required an average of 300
seconds per configuration, while the equation-based estimator
took less than 0.01 seconds – a speedup of 30,000.

In both of the above cases, we examined all configurations of
the parameterized components. Related to the above work is
work we have done to more efficiently search the configuration
space, using knowledge of the parameter interdependencies to
enable extensive search space pruning [17].

7. CONCLUSIONS
A need exists for platform developers to provide tuning tools that
assist platform users to select the best configuration of platform
parameters. Platform developers can follow the three-step
approach described in this paper to create fast yet accurate tuning
tools. The first step involves creating high-level functional
simulators (really, just extending existing such simulators)
accumulate for each operation the power and performance data
that has been back-annotated from low-level simulations. The
second step involves modifying a high-level simulator to output
instruction traces for every component, and developing trace
simulators for each component. The third step involves
developing equations that can predict the power and performance
data from statistical summaries of the traces. With this third type
of estimator, the platform developer can develop exploration
methods that thoroughly search the configuration space, enabling
the platform user to effectively tune the platform to a specific
program. The net result is a lower power, higher performing,
more size efficient synthesized platform implementation.

We are continuing to develop parameterized memory and bus
components that provide good power/performance tradeoff
capability for core-based systems. We are also investigating the
idea of heavily parameterized pre-fabricated platforms, whose
parameters would be configured by setting bits in registers on the
chip. In particular, we are developing new highly parameterized
memory components for such platforms, along with methods for
tuning such components to a program.
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Figure 1: Parameterizable Platform and the Corresponding Configurations

Parameter Description Configuration

A Cache capacity 1 – 256K byte

B Cache line size 32, 64, 128 byte

C Data block size 32, 64 byte

D Memory size 1-16M

E Tiny cache size 8 – 256 entries

F Tiny cache type filter, loop, preloaded loop

G Ethernet transfer rate 10M, 100M, 1G - bit

H 802.11 transfer rate 1M, 2M, 11M – bit

I Bus encode/decode
scheme
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J Supply voltage 1.5 – 2.5 Volts

K Clock Frequency 50 – 300 MHz
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Figure 2: Design Methodology
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Figure 3: Three step approach for developing fast tuning methods: Step 1 – high-level functional simulation, Step 2 – Trace-based
simulation, Step 3 – Equation-based estimation
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Figure 4: Power estimator example for a memory M with one simple parameter H that selects between high performance/power mode
and low power/performance mode.

Step 1 Step 2 Step 3

High-Level Simulator

int M[64k];
while (1) {

if (rd==’1’)
out = M[ad];

else if (wr==’1’)
M[ad] = in;

end if;
}

High-Level Simulator

int M[64k];
while (1) {

if (rd==’1’) {
out = M[ad];
pwr += RdPwr(H);

}
else if (wr==’1’) {

M[ad] = in;
pwr += WrPwr(H);

}
}

Trace-Based Simulator

while (1) {
instr = RdNextInstr();
if (instr == Rd) {

pwr += RdPwr(H);
}
else if (instr == Wr) {

pwr += WrPwr(H);
}

}

Equation-Based Estimator

pwr += num_rds*RdPwr(H);

pwr += num_wrs*WRPwr(H);



Figure 5: Evaluating configurations.
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Figure 6: Performance (left, in seconds) and energy (right, in millJoules) estimates from trace-based simulation (white bars) versus
equation-based estimation (black bars) for 10 different regular cache configurations, using a diesel engine controller example running on

a MIPS processor.
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Figure 7: Instruction-fetch power savings estimated by trace-based simulation (white bars) versus equation-based estimation (black bars)
for 72 different loop cache configurations, executing the JPEG benchmark on a MIPS processor. Loop caching does not impact

performance, so no performance estimates are shown.
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