Procedure Exlining:

A Transformation for Improved System and Behavioral Synthesis

Frank Vahid
Department of Computer Science
University of California, Riverside, CA 92521

Abstract

We present techniques for solving the inverse problem
of procedure inlining, namely the problem of replacing se-
quences of statements with procedure calls. Two techniques
are provided, one for finding redundant sequences of state-
ments that can be replaced by calls to one procedure, and
another for dividing a large set of statements into several
procedures, where each procedure performs a distinct com-
putation. Such procedure ezlining can transform a behav-
toral specification, originally written for readability, into
a specification that can be tmplemented efficiently, because
procedures can greatly improve the results of synthesis tools.
We demonstrate the usefulness of the techniques on several
examples.

1 Introduction

A functional specification serves the purpose of pre-
cisely defining a system’s intended behavior. Such a speci-
fication usually will be read by humans as well as input to
synthesis tools. Unfortunately, a specification written for
readability may not directly lead to the best synthesized
design. Designers often try to juggle such synthesis consid-
erations with readability considerations while writing the
initial functional specification. Such juggling usually leads
to lower readability, less portability, and more functional
errors. Alternatively, we have observed specification writ-
ers rewriting their specifications to explore different imple-
mentation options, e.g., creating one specification that is
sequential, another one concurrent, another one pipelined,
etc. Such rewriting is tedious and time-consuming, and
hence prone to human error. We can reduce the juggling,
or the rewriting effort, by providing an interactive trans-
formation tool. With such a tool, the designer may focus
on readability of the initial specification, confident that
the tool will enable easy conversion of the specification for
synthesis. Well-known transformations that such a tool
might support include process splitting, process merging,
procedure inlining, and loop unrolling.

Procedure exlining is a new transformation that can
be particularly useful in such a tool. We define proce-
dure exlining as the inverse of procedure inlining (hence its
name), namely, finding and replacing sequences of state-
ments by procedure calls. For example, Figure 1(a) illus-
trates an initial specification consisting of several state-
ments, one set of which is already part of a procedure.
Figure 1(b) demonstrates the exlining of several sequences
of statements into procedures. There are many benefits of
introducing more procedures into a specification when we
plan to subsequently use system or behavioral synthesis
tools. First, a procedure can represent a basic indivisible

©1995 ACM 0-89791-771-5/95/0011/0084 $3.50

84

Specification

Specification

(a)
e o [I
System parts Functional objects
@ ©

Fig. 1: Procedure exlining during system partitioning:
(a) Initial specification, (b) after exlining procedures, (c)
after decomposition based on procedures, (d) after func-
tional partitioning.

computation, thus defining the granularity of functional
partitioning [1, 2, 3, 4, 5]. Second, a procedure can be
converted to a process to represent a separate controller,
in order to simpify the synthesized control logic [6, 7], or
to achieve more concurrent execution [8). Third, proce-
dures can be input separately to synthesis tools, in order
to reduce the memory and runtime requirements of a syn-
thesis tool (which are typically polynomial in the size of
the specification), as successfully done at the logic level in
[7]. Fourth, procedures provide a variety of implementa-
tion options to a behavioral synthesis tool [9], including a
complex functional unit [10, 11], a control subroutine, a
concurrent controller, or an inlined behavior. Figure 1(c)
shows how the original specification can be decomposed
into a set of functional objects, where each object repre-
sents a procedure. Those objects can then be partitioned
among parts, as illustrated in Figure 1(d), where each part
represents a system component, a processor, or an input
to a synthesis tool.

Procedure exlining transformations create procedures
for one of two purposes:

¢ Redundancy elimination: we find redundant se-
quences of statements, and replace those sequences
by calls to a single procedure.

¢ Distinct-computation isolation: we divide a large
sequence of statements into several subsequences,
where each subsequence performs a distinct compu-
tation, and we replace each subsequence by a call to
a distinct procedure.

Each problem requires a different solution technique.

Permission to make digif
without fee is granted, provided that
for profit or commercial advantage, the ACM copyright/server notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of the Assodiation for Computing Machinery, Inc.
(ACM)). To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee,

This paper is organized as follows. Section 2 describes
our technique for redundancy elimination, and Section 3
highlights results of two examples. Section 4 describes our
technique for distinct-computation isolation, and Section 5
highlights several experiments. Section 6 provides conclu-
sions.

2 Redundancy elimination

‘We often wish to replace redundant sequences of state-
ments by a call to a single procedure. Such a procedure
may have been initially omitted if it wasn’t necessary for
readability or if the redundancy simply wasn’t noticed;
adding the procedure will likely improve synthesis results.
Unfortunately, humans have a hard time finding redun-
dant sequences in thousands of lines of code. Current
tools, such as text searching tools, graph matching tools,
state-machine factorization tools, and program equivalence
tools, are not ideally suited for finding such sequences.
For example, suppose we wish to find all if-then-else state-
ments that compute the maximum of two integers, such as
statements 2-6 of Figure 3(a). Text-searching tools aren’t
by themselves sufficient because we can’t pick a pattern to
search for: statement keywords (such as if) are too general,
while symbol names (such as z) are too specific. Graph-
matching tools, which first convert the specification to a
graph form and then search for a particular subgraph in
the graph [12, 13], might prove useful except for the fact
that they would require decomposing the specification to a
granularity finer than statements, making designer interac-
tion nearly impossible. State-machine factorization tools
[14] also eliminate designer interaction due to their gran-
ularity, and they consider only the control, not the data
computations. Finally, program equivalence tools don’t
help because we don’t have two programs that we wish
to compare; instead, we have one “program” (the state-
ment sequence), and a large specification in which we are
searching for equivalent subprograms (and to make mat-
ters worse, we don’t even want exact equivalence, but in-
stead must allow for variation).

The technique that we have developed to solve this
problem operates at the statement level, since this level
enables designer interaction. We decided that the problem
of finding sequences having identical computations was too
constrained, because we wanted to allow for some variation
in the way the statements were written (as is often the
case), and because that problem seemed intractable. In-
stead, we focused on the problem of finding sequences with
similar form, which makes the problem more tractable.
Such a problem requires designer input to decide when
such sequences are actually redundant, but this require-
ment is acceptable since we assume interactivity.

In our approach, the designer provides a statement pat-
tern, which is a sequence of statements, and we then
search for candidate sequences throughout the specifi-
cation. Alternatively, the pattern can also be obtained
automatically by tabulating the number of occurences of
all patterns of a certain length, and picking the pattern
with the most occurrences. There are three criteria that
can be used when searching for candidates, as will now be
discussed.

85

Statement type

assert

case

olse

olsif

ond case

end it

end loop

exit

for loop

it

loop

null

procedure call
return

signal assignment
variable assignment
wait

when

while foop

Encoding

XXgf<0®OTI-—"Oo3-aQ oo

Fig. 2: Statement-type encoding characters for VHDL

2.1 Imitial criteria: statement types

Here, we simply look for a candidate sequence whose
types are similar to the pattern’s types. We encode each
statement of the pattern into a single character represent-
ing that statement’s type, and concatenate those charac-
ters into a string called the encoded pattern. The char-
acters used to encode VHDL sequential statements are
shown in Figure 2. We encode the specification’s state-
ments similarly; the resulting characters are concatenated
into one string called the encoded string. We then use
the agrep pattern matching tool [15] to search for matches
of the encoded pattern in the encoded string. We then
display all candidate matches to the designer.

For example, consider the example specification of Fig-
ure 3(a), which is trivially small and is used only to demon-
strate the technique. We wish to search this specification
for a sequence of statements that computes the maximum
of two numbers; the pattern appears in lines 2-6. The
encoded pattern is therefore the following:

ivevj
while the encoded string is:
vivevjivevjwfivevim

Applying a pattern-matching tool yields matches at the
second, seventh, and thirteenth characters of the encoded
string, meaning there are matches at those line numbers,
as shown in column A of Figure 3(c).

2.2 Refined criteria: target/source consistency

Matching based solely on statement types will result
in many candidates that perform very different computa-
tions from the pattern. We can reduce the number of can-~
didates by requiring target consistency. A target is the
variable identifier being updated in a variable assignment
statement (likewise for VHDL signals). Target consistency
means that if the pattern writes a variable v with its i'th
and j’'th statements, then a candidate must also write some
variable u (possibly different than v) with its i’th and j’th
statements. For example, in Figure 3, we note that al-
though all three candidates possess two variable assign-
ments, only the first two candidates use the same target

1: z=a+b; —a-B-c-n
2: if (x <y) then 2: if (81 <s2) then X X X X
3: max:=y; 3 thi=s2
4: else 4: else
5 max:=x; 5: tlu=sl;
6: end if; 6: end if;
7:if(a>b+ 1) then 7: if (s1>s2+ 1) then x X x
8: m:=a; 8 tl:=sl;
9: else 9: else
10: m:=b+1; 10: tl:=s2+1;
11: end if; 11: end if;
12: wait until p=1;
13: for jin 1to 3 loop
14: if (i<j) then 14: if (s1 <s2) then x
15: n=n+l; 15: tle=tl+1;
16: else 16: else
17: m:=n+l; 17 2=tl+1;
18: endif; 18: endif;
19: end loop;
@) ®) ()

Fig. 3: Exline example: (a) specification, (b) target and
source symbolic replacements, (c) matches with various
criteria.

for both assignments, as does the pattern; the third can-
didate, however, uses two different targets. Likewise, we
can require source consistency. A source of a statement
is any identifier that is read by that statement.

To extend our encoding with target consistency, we first
replace all targets by symbolic identifiers. We then create
an encoded pattern from the pattern’s statements. Each
statement is encoded as ¢T'tz, where c is the statement
type, and ¢z is the target’s symbolic identifier. For source
consistency, symbols have the form sz instead of ¢z, and
the encoded pattern is cT'tz.Sls, where ls is a list of syrabols
of the form sz_sy...sz. If a statement does not have a
target or any sources, then the corresponding target or
source part is omitted from the encoding. As before, we
concatenate the code for each statement into an encoded
pattern.

After encoding the pattern, we encode each candidate.
Finally, we search for “occurences” of the encoded pat-
tern string in each encoded candidate string using agrep.
If the encoded pattern string matches the encoded candi-
date string, then one occurence will be found, otherwise
no occurence will be found and the candidate is discarded.

For example, Figure 3(b) shows the initial candidates of
Figure 3(a), where targets and sources have been replaced
by symbols. For target consistency, the pattern (lines 2-6)
would be encoded as: 1 vTtl e vTt1 5. Likewise, the can-
didates corresponding to lines 7-11 and lines 14-18 would
be encoded as i vTt1 e vTt1 jand i vTtl e vT12 j, respec-
tively. Thus, note that lines 14-18 no longer match the
pattern, as indicated in column B of the figure, because of
the appearance of £2 rather than t1 at the end of the en-
coded candidate string. For source consistency, lines 7-11
would no longer match either, as indicated by column C
of the figure, because the symbols s1 and s2 are used in

86

different statements than in the pattern.

Note that we can not initially search the specification
for matches based on target (or source) consistency. The
reason is that consistency is based on a target’s order of
appearance in the pattern and in the candidate. If we
didn’t already select candidates based on statement types,
then we wouldn’t be able to determine the z values of the
targets in the specification’s statements.

2.3 Approximate and regular expr. matching

- A powerful advantage of using string matching is that
we can perform efficient approximate-matching. For exam-
ple, statements may appear in a slightly different order,
a statement may have additional sources (which usually
means an expression would be passed to the procedure), or
a sequence may have a few extra statements (again requir-
ing a parameter to indicate when those statements should
be executed). Several fast approximate matching tech-
niques have evolved recently. The approximate matching
problem is to find all substrings that are no more than a
certain distance from the pattern. A string S is of distance
d from a string T if we can transform S to be the same
as T with a sequence of d insertions of single characters
in T, deletions of single characters from T, or substitu-
tions of characters. A fast (sub-linear) approach to ap-
proximate text searching is described in [15]. We use their
text searching tool, agrep, rather than using the standard
Unix grep, because of the tool’s ability to find approximate
matches. Therefore, for any of the matching criteria listed
above, we can request a distance d to obtain approximate
matches. For example, if we allow a distance of two when
performing source consistency matching in Figure 3, then
lines 7-11 will match the pattern, even though there are
two differences from the pattern.

A second very powerful advantage of using string match-
ing is the ability to use regular expressions. String match-
ing tools typically allow a pattern to be a regular expres-
sion. Such expressions enable one to pose advanced match-
ing criteria, such as in the following example: find all se-
quences of statements of a wait statement followed by a
for loop followed by either a wait statement or a signal
assignment, where the loop body contains any number of
variable or signal assignments. Also, because most Unix
users are familiar with regular expressions, little additional
learning time is needed to take advantage of this powerful
feature.

3 Redundancy elimination examples

We have implemented the procedure exlining technique
as part of a VHDL transformation tool. The tool reads
VHDL, after which the designer can interactively apply
several transformations, including procedure inlining, pro-
cedure exlining, and conversion of a procedure to a process.
The tool comnsists of 26,000 lines of C code, which includes
the code for VHDL parsing and internal representation.

To demonstrate the usefulness of our procedure exlining
technique, we obtained a 780-line VHDL image-processing
example written by an outside source for simulation pur-
poses. We began looking for potential statement patterns,
and found the following twice:

for i in 0 to (c_Pheight - 1) loop
c_temp := c_temp or Pimage(c_PC);
c.PC := c_PC + c_Width;

end loop;

The exlining tool created the encoded pattern “f v v
m” for those statements. The tool then found 14 initial
candidates. Interactively, we refined the matching criteria
to target consistency; all candidates still matched. We re-
fined the criteria to target and source consistency, looking
for candidates encoded as “fSs1 vTt1Ss2_s3.s4 vTt2Ss2.ub
m”, which eliminated all but three candidates. We then
determined that those three represented the same com-
putation; so we replaced all three occurences by a single
procedure call.

We used one of the 11 remaining candidates as a pat-
tern. Following the same steps as above led to replacing 9
of those candidates by a procedure call. The last two were
then replaced by yet another procedure call.

Further examination of the specification led to find-
ing another potential pattern, which yielded 4 target and
source consistent candidates. However, a particular fea-
ture of the exline tool enabled us to detect something we
might not have otherwise seen: the exline tool optionally
prints a few statements that precede and follow each can-
didate, which led us to note that our initial pattern was
too small, as all of the candidates were enclosed in a while
loop. After iterating with a new, larger pattern, we re-
placed all four candidates by a procedure, with three pa-
rameters to account for variations. Overall, we introduced
4 new procedures, replaced statement sequences by 18 pro-
cedure calls, and reduced the overall code size by 57 lines.
The entire process of scanning the specification, selecting
patterns, and searching for candidates took only 10 min-
utes with the assistance of the exlining tool.

We also applied the exline tool to a high-level synthesis
benchmark example: the i8251 serial 10 device. Taking a
similar approach to that of the earlier example, we intro-
duced five procedures and eleven procedure calls (which in
turn reduced the code size by 40 statements). Also signif-
icant was an error that was detected in the example with
the aid of the exlining tool. In particular, the pattern “i
s j s” appeared to be a promising exline candidate. The
exline tool found two initial matches, and upon brief ex-
amination of the surrounding statements, we extended our
pattern to “i s j s w s w s s”. However, this new pattern
resulted in just one match. Looking more closely, we no-
ticed that the other sequence of statements was missing a
wait statement. Specifically, one sequence of statements
was as follows:

if rrdy = ’1’ then
oeset <= ’17;
end if;
rdata <= ldata;
wait for 1fs;
rrdyset <= ’17;
wait for ifs;
rrdyset <= '0’;
oeset <= ’0’;

87

The other sequence was identical, except it was missing the
first wait statement. Clearly, one or the other sequence was
incorrect. (Since we are not the authors of the example, we
do not know which is the correct sequence). We decided
to add the wait statement, and we replaced each sequence
by a procedure call. The exlining tool was able to help
us find the error because it provides a unique “slicing” of
the specification, bringing distant parts of the specification
together for viewing based on potential redundancy.

4 Distinct-computation isolation

Some procedures are used primarily to break a large
computation into smaller computations. Even though each
procedure is only called once, those procedures still prove
very useful for synthesis as they can serve as the granular-
ity for functional partitioning, can be converted to concur-
rent processes to improve parallelism, can be mapped to a
custom functional unit, or can reduce the runtime or mem-
ory requirements of the behavioral synthesis task. Such
procedures are often omitted from the original specifica-
tion for several reasons. First, we may be able to describe
a computation with one page of code, using comments to
describe the distinct sub-computations. Such code is of-
ten easier to write and more readable than code broken
into procedures; the latter not only yields more lines of
code resulting from the overhead of declaring each pro-
cedure and its parameters, but also requires a reader to
jump around the specification file or flip between pages to
comprehend the entire computation. Second, there is of-
ten no good identifier that describes a particular complex
computation, making the procedure more of a hindrance
than help. Third, procedures in the original specification
may not correspond to good procedures for synthesis; in
this case, we may inline those procedures, and then exline
new procedures.

Once again, we chose to solve this problem at the state-
ment level to maintain designer interaction and to provide
readable output; techniques at the arithmetic-operation
level can be found in [16]. We first convert the statements
to a representation that indicates the valid groupings of
statements. Such a representation is necessary so that we
don’t group half the statements of a loop with statements
preceding the loop, for example. We use a straightforward
tree representation, where each node represents a state-
ment, and non-leaf nodes represent hierarchical statements
such as loops, if-then-else, cases, and procedure calls; the
root node represents the process itself. For example, Fig-
ure 4(a) shows the tree representation of the example of
Figure 3(a). We extend the representation by adding spe-
cial edges, called sibling edges, between sibling nodes in
the tree if and only if the corresponding statements always
occur in the same execution thread through the process;
several sibling edges are shown in the figure. In general,
the branches of an if-then-else or a case statement will
never have sibling edges between them. The significance
of the sibling edge is as follows: only nodes with a sibling
edge between them can be merged into a procedure. Only
by merging at the appropriate level of hierarchy can we in-
clude entire if-then-else statements or case statements into
a procedure.

Fig. 4: Tree representation: (a) initial tree, (b) after
procedure insertion, (c) after change.

Figure 4(b) shows how the tree is updated when a pro-
cedure is introduced. Our problem is to insert such pro-
cedure nodes in a manner that results in the best decom-
position of the initial statements. To determine the best
decomposition, we use a cost function that is a weighted
sum of the following terms:

® Procedure size — This number is the variation (smaller
or larger) from a designer-specified number of state-
ments per procedure, summed over all procedures.
The designer specifies the desired number of state-
ments per procedure depending on his intended use
of the procedures.

e Control transfer — This is the number of transfers of
control to procedures over the entire tree. Control
transfer is computed from an execution frequency
associated with each node (obtained through pro-
filing). An introduced procedure node inherits the
frequency of its children, and this frequency corre-
sponds to the number of control transfers to this
procedure.

e Data interconnect — This is the size of the data that
must be transferred to or from each procedure. Size
is measured by encoding each data item into bits.
Bits for arrays are the address plus the data word
bits.

e Data transfer — This is the amount of data that must
be transferred to each procedure. It is equal to the
data interconnect size multiplied with the control
transfer frequency.

e Hardware size — This is the total synthesized hard-
ware size assuming each procedure is synthesized
independently. This term encourages groupings in
which large hardware items (e.g., multipliers) ap-
pear in the same procedure so can be shared.

88

Note that the control transfer, data interconnect, and
hardware size terms are similar to those terms proposed
in [16], but defined on a higher-level of abstraction. The
designer may weigh each term as heavily as desired, de-
pending on his design goals.

We have defined three solution techniques for the above
problem, spanning the spectrum of fast heuristics to com-
putationally intensive heuristics. The first technique, which
we call the nasve hueristic, simply inserts a procedure node
for every hierarchical statement. The complexity of this
heuristic is O(n), where n is the number of nodes.

The second technique is a clustering heuristic, where we
compute a closeness for all pairs of nodes connected by a
sibling edge, merge the closest into a new procedure, and
repeat. The closest nodes are those whose resulting proce-
dure’s control transfer value would be the smallest over all
pairs. Alternatively, closeness can be defined as a weighted
sum of the control transfers, data interconnect, data trans-
fers, and hardware size terms. A merge of two nodes has
the following effect: (1) If the two nodes were not proce-
dure nodes, then a new procedure node is created as the
parent of the two nodes, as in Figure 4(b); (2) If one node
is a procedure node and the other is not, then the subtree
rooted at the other node is made a child of the procedure
node, as shown in Figure 4(c); (3) If both nodes are pro-
cedure nodes, then one node’s children are made children
of the other node, and the first node is deleted. We pro-
hibit merges that would exceed the maximum procedure
size, which in turn provides a condition for terminating
the clustering. The complexity of the clustering heuristic
is O(e?), where e is the number of sibling edges, which we
note is less than n.

The third technique uses simulated annealing. Given
an initial tree with procedure nodes, perhaps created with
one of the above heuristics, we attempt to immprove the cost
function value through a series of changes. The set of pos-
sible changes is determined by looking at each sibling edge;
for each edge, we can merge the edge’s nodes (the merge
operation was described above), or, if the nodes’ parent is
a procedure node, we can move one of the nodes outside of
the procedure. An example merge is shown in Figure 4(c);
an unmerge is obtained by returning to Figure 4(b). The
complexity of simulated annealing is difficult to determine,
but usually requires long runtimes.

5 Distinct-computation experiments

We applied the above three algorithms on several ex-
amples taken from an image processing VHDL file and an
MPEG decoder VHDL file, both of which came from out-
side sources. Bach example was a 100+ line procedure
taken from one of the above two files. Table 1 summa-
rizes the results. The resulting cost function value is given
before and after applying each heuristic.

The naive algorithm displayed runtimes on the order of
one second, clustering averaged twenty seconds, and sim-
ulated annealing averaged eight minutes. The simulated
annealing heuristic resulted in an average of 16 procedures
with an average size of 14 statements each (based on the
designer-specified procedure size of 15 statements).

Example | Original Naive Cluster Sim. Ann.
Ex1 2019 1169 1144 828
Ex2 2543 1999 1068 721
Ex3 2040 695 455 434
Ex4 2002 1096 330 221
Ex5 1965 1482 1411 1192

Table 1: Results of three exlining heuristics

We plan to perform experiments that demonstrate the
usefulness of the newly introduced procedures on several
examples, though we have performed several preliminary
experiments to date. In one example, the exlined pro-
cedures were converted to forked processes, leading to a
reduction from 87 clock cycles to 31 cycles for a part of
the specification. Such coarse parallelisin would have been
difficult to find by a synthesis tool alone. In another ex-
ample, the introduced procedures increased the granularity
of functional partitioning from 8 procedures to 48 proce-
dures, leading to a hardware/software functional partition-
ing with 30% less hardware (27000 gates reduced to 16250
gates) and 10 less pins that still satisfied performance con-
straints. It is interesting to note that if we had chosen
an even finer granularity of statements, as in many other
hardware/software codesign environments, the number of
partitions examined by an n?log(n) algorithm would have
increased from 13824 (for the 48 procedures) to 6,400,000
(for 800 statements). Clearly, the latter makes any inter-
active approach almost impossible.

We also experimented with a 700-line encryption ex-
ample in VHDL. We exlined eight additional procedures
in a process that originally used only four procedures, par-
titioned the twelve procedures among two parts, and ap-
plied a behavioral synthesis tool to each part. The im-
provements over synthesizing the original 700-line example
were substantial: exlining and partitioning reduced the to-
tal runtime of a particular behavioral synthesis tool from
1166 seconds down to 230 seconds, and reduced the result-
ing hardware size from 79,000 gates down to 65,000 gates.

Other works, including [9, 17], also demonstrate the
usefulness of procedures in functional partitioning and in
behavioral synthesis.

6 Conclusion

We have introduced techniques for procedure exlining.
Our encoded string matching solution to finding redundant
sequences of statements enabled us to solve the problem
with designer interaction and with possible variations in
the sequences. Our tree representation and heuristics for
finding distinct computations permit a range of solutions
based on the quality of results desired by the designer. The
procedures created with our technique can have substantial
impact on the quality of synthesis tool results, permitting
greater potential for better functional partitioning, use of
complex functional units, use of multiple controllers, and
reduced synthesis memory and runtime requirements.

In summary, the technique serves as a useful part of

89

a system-level transformation tool, helping a specification
writer to focus on writing readable specification by provid-
ing the means to easily convert such a specification to one
suited for synthesis. We plan to develop a tool possessing
a suite of system-level transformations (called VITRANS -
VHDL Transformations) to assist the designer in modify-
ing the specification before invoking synthesis tools.

References

[1) D. Thomas, J. Adams, and H. Schmit, “A model and
methodology for hardware/software codesign,” in IEEE
Design & Test of Computers, pp. 6-15, 1993.

P. Gupta, C. Chen, J. DeSouza-Batista, and A. Parker,
“Experience with image compression chip design using uni-
fied system construction tools,” in Proceedings of the De-
sign Automation Conference, pp. 250-256, 1994.

F. Vahid and D.Gajski, “Specification partitioning for sys-
tem design,” in Proceedings of the Design Automation
Conference, pp. 219-224, 1992.

D. Gajski, F. Vahid, and S. Narayan, “A system-design
methodology: Executable-specification refinement,” in
Proceedings of the European Conference on Design Au-
tomation (EDAC), pp. 458-463, 1994.

N. Kumar, R. Vemuri, and R. Vemuri, “Partitioning for
multicomponent synthesis from VHDL specifications,” in
VHDL International Users’ Forum, pp. 19-28, 1993.

R. Camposano, L. Saunders, and R. Tabet, “VHDL as
input for high level synthesis,” IEEE Design & Test of
Computers, pp. 43-49, March 1991.

R. Camposano and R. Brayton, “Partitioning before logic
synthesis,” in Proceedings of the International Conference
on Computer-Aided Design, 1987.

R. Walker and D. Thomas, “Behavioral transformation
for algorithmic level IC design,” IEEE Transactions on
Computer-Aided Design, pp. 1115-1128, October 1989.

L. Ramachandran, S. Narayan, F. Vahid, and D. Gajski,
“Synthesis of functions and procedures in behavioral
VHDL,” in Proceedings of the European Design Automa-
tion Conference (EuroVHDL), 1993.

P. Gutberlet and W. Rosentiel, “Specification of interface
components for synchronous data paths,” in Proceedings
of the International Workshop on High-Level Synthesis,
pp. 134-139, 1993.

A. Jerraya, 1. Park, and K. O’Brien, “Amical: An inter-
active high-level synthesis environment,” in Proceedings of
the European Conference on Design Automation (EDAC),
pp. 58-62, 1993.

D. Rao and F. Kurdahi, “Partitioning by regularity ex-
traction,” in Proceedings of the Design Automation Con-
ference, pp. 235-238, 1992.

K. Keutzer, “DAGON: Technology binding and local opti-
mization by DAG matching,” in Proceedings of the Design
Automation Conference, pp. 617-623, 1987.

S. Devadas and A. Newton, “Decomposition and factoriza-
tion of sequential FSM’s,” in Proceedings of the Interna-
tional Conference on Computer-Aided Design, 1988.

S. Wu and U. Manber, “Fast text searching allowing
errors,” Communications of the ACM, vol. 35, no. 10,
pp. 83-91, 1992.

E. Lagnese and D. Thomas, “Architectural partitioning for
system level synthesis of integrated circuits,” IEEE Trans-
actions on Computer-Aided Design, July 1991.

F. Vahid and D. Gajski, “Clustering for improved system-
level functional partitioning,” in International Symposium
on System Synthesis, 1995.

(2]

(9

10]

[11]

(12]

(13]

(14]

[15]

(16]

[17)

