Clustering for improved system-level functional partitioning

Frank Vahid
Department of Computer Science
University of California, Riverside, CA 92521

Abstract

Partitioning of system functionality for implementation
among multiple system components, such as among hard-
ware and software components, is becoming an increas-
ingly important topic. Various heuristics can accomplish
such partitioning. We demonstrate that clustering can be
used to merge pieces of functionality before applying other
heuristics, resulting in reduced runtimes with little or no
loss in quality, and often with improvements in quality.
In addition, we show that clustering, when used for N-
way partitioning, fills the gap between fast heuristics and
highly-optimizing heuristics.

1 Introduction

A system’s functional specification may have to be par-
titioned into several smaller parts for one of several rea-
sons. First, we may not be able to implement the entire
system on a single package. Second, we may wish to imple-
ment part of a primarily hardware system in software to re-
duce implementation costs, or part of a primarily software
system in hardware to improve performance. Third, we
can often improve the synthesis or manual design process
by concentrating on smaller parts, yielding reduced size or
improved performance, less synthesis runtime and memory
use, and the possibility of concurrent synthesis/design. For
example, we have found that for a 700-line encryption ex-
ample in VHDL, functionally partitioning the specification
into two parts reduced the total runtime of a particular be-
havioral synthesis tool from 1166 seconds down to 230 sec-
onds, and reduced the resulting hardware size from 79,000
gates down to 65,000 gates.

For all of the above reasons for which we perform func-
tional partitioning, the goals are similar. Given a func-
tional specification and a set of target parts, the goal of
functional partitioning is to assign functional objects to
parts, as show in Figure 1, while satisfying constraints on
global metrics like performance, part size, and pin con-

Specification

o000 OG OO
Functional objects

N-way partitioniong

[eee|[eee]

N parts

Pre-assignment clust.

Figure 1: Functional partitioning.

©1995 ACM 0-89791-771-5/95/0011/0028 $3.50

Daniel D. Gajski

Department of Information and Computer Science

28

University of California, Irvine, CA 92717

straints. To achieve this goal, we first functionally decom-
pose the specification into some set of atomic functional ob-
Jects, each representing a piece of the specification, such as
a VHDL process, procedure or variable. We then partition
these objects among parts, where a part represents a stan-
dard or custom processor, comprising a single chip or one
of many blocks on a chip. A partition that doesn’t meet
constraints is said to have a non-zero cost. For example,
Figure 2(a) provides a partial specification of a fuzzy-logic
controller, and Figure 2(b) provides a decomposition of the
specification into 12 functional objects, which in turn must
be assigned to various parts.

Partitioning is a hard problem and is known to be NP-
complete. In current practice, functional partitioning is
done manually by a system designer. However, automated
and interactive approaches are becoming important for
several reasons. First, the trend towards implementation-
independent specifications implies that the specification
writer and the system designer may not be the same per-
son, which means that the designer may not be able to
partition the specification well without extensive exami-
nation. Second, recent efforts demonstrate the advantage
of C-compiler partitioning approaches in which portions of
time-consuming software are automatically compiled to a
reconfigurable coprocessor [1]. Third, experienced design-
ers may use automation to meet shorter design times.

Many automated partitioning heuristics have been de-
veloped. Clustering is a heuristic that successively merges
objects based on local closeness metrics, such as the amount
of data shared between two procedures, rather than based
on global constrained metrics. Other heuristics include
iterative-improvement strategies like group migration and
simulated annealing, in which a given partition is itera-
tively modified and global metrics are re-evaluated in the
hopes of finding a lower-cost partition. In our terminology,
clustering is just one of many partitioning heuristics.

FuzzyMain: process procedure EvaluateRule(num : in integer) is

variable trunc : integer; -- truncated value

variable intval, in2val : integer; begi
type mr_array is array (1 to 384) |1l?num = 1) then
of integer; trunc := Min{mr1 (inval), mr1 (128+intval);

variable mr1, mr2: mr_array;
type tmr_array is amay (1 to 128)
of integer;
beginvariabls tmri, tmr2: tmi_array;

elsif (num = 2) then
n:‘n:fnc = Min{mr2(in2val), mr2(128+in2val));
© i

intval :m int: in2val e in2; forlin 1 t0 128 loop

" if (num = 1) then
Ez::gg}gggz ; ; | t;.(n (i')n = ir‘\‘(‘trunc, mrt(2564i));
, ' elsif (num = 2) then .
S&r;vgl-v ‘(;)'omputeCemroid‘ ng':,':z(') - Jmmum’ mr2(256+i));
watt untif ... ond booﬁ;
end process; end;
(a)
i . Compute-
FuzzyMain in2val mre tmr2 Centroid trunc
b intval b m°r1 ® !&1 .Ccrw.olve .Eva Iu.ate- ain

Rule
(b)

Figure 2: (a) Partial fuzzy-controller specification, (b)
decomposition into functional objects.

Permission to make digitalbard copy of all or part of this material
without fee is granted, provided that copies are not made or distributed
for profit or commercial advantage, the ACM copyright/server notice, the
title of thiy publication ant(li‘l its date appeg‘arband notice Mi; dﬁi‘\l!en that
copying is by permission e Association for Coroputi inery, Inc.
(ACM)). To copy otherwise, to republish, to pos??)gn servers or to
redistribute to lists, requires prior specific permission and/or a fee.

No one heuristic yields the lowest cost partition in the
minimum runtime for all examples. In general, choosing a
heuristic involves making a tradeoff between partition cost
and tool runtime. We have found that clustering provides
a unique cost/runtime point in the tradeoff curve, filling
a gap between existing heuristics. Perhaps more signifi-
cantly, we have found that we can apply clustering before
applying any heuristic, merging a few very close objects,
in order to reduce subsequent heuristic runtime without
incurring much higher partition cost.

Previous efforts in clustering during functional parti-
tioning include clustering of logic operations [2], arith-
metic operations [3, 4], and statements {5]. Other related
functional partitioning efforts include arithmetic-operation
level approaches [6, 7, 8, 9, 10], statement-sequence level
approaches [11, 12], and state level approaches [13, 14].
Our work differs from the above works in two ways. First,
we investigate various combinations of clustering heuristics
with iterative improvement heuristics, rather than just one
or the other. Second, we use coarser-grained functional ob-
jects, such as processes, procedures and variables, which in
turn require new closeness metrics. Such granularity en-
ables shorter runtimes and designer comprehension, and
ensures that inter-part communication times don’t domi-
nate over computation times. The case for procedural-level
granularity during system partitioning has been presented
in [15, 16, 17, 18). We should point out that the procedures
being partitioned need not be the same procedures from
the original specification; some can be eliminated through
inlining, and others can be introduced through exlining
[19].

The paper is organized as follows. In Section 2, we
briefly describe the procedural-level closeness metrics that
we defined for clustering. In Section 3, we demonstrate
two roles of clustering during functional partitioning: pre-
assignment clustering and N-way clustering. In Section 4,
we provide results of a number of experiments. In Sec-
tion 5, we provide conclusions and future work.

2 Closeness metrics for clustering

In this section, we informally describe the various close-
ness metrics that we have defined between functional ob-
jects. Formal definitions can be found in [20]. We treat a
variable as a procedure, which is “called” whenever read or
written. Also, we define the metrics between two groups
of procedures, rather than just between two procedures.
Finally, note that we also consider a concurrent process to
be a procedure that simply repeats itself. To avoid confu-
sion, we will refer to procedures, processes and variables
as functional objects.

In order to define the closeness metrics, we first con-
sidered the three main classes of constrained metrics for
an implementation: interconnect, performance and size.
Intuitively, each closeness metric should focus on one of
those three classes.

2.1 Interconnect

For interconnect, we defined a connectivity metric.
This metric measures the estimated number of wires shared
among two sets of functional objects if they were separated
among two different parts. Grouping objects that would

29

share wires should result in less interconnection between
parts. This metric requires finding the data objects (e.g.,
parameters and global variables) accessed by both sets. In
some cases, we must estimate the wires by encoding these
data objects into bits. Then, the number of wires for a
scalar variable is the number of bits, and the number of
wires for an array variable is the number of address bits
plus the word width. In other cases, the width is already
known. This case arises when the channel between ob-
jects has been assigned to a particular bus, where the bus
already has a specific number of wires.

In order to combine this metric with other metrics, we
wish to normalize it to a number between 0 and 1. To do
this, we can divide by the total number of wires accessed by
either (not necessarily both) sets of objects. Thus, if two
objects only transfer data between themselves, then they
will have a closeness of 1. On the other hand, if either
of those two objects also transfers data to another object,
then the closeness will be less than 1. If they transfer no
data between themselves, the closeness will be 0.

2.2 Performance metrics

There are two ways in which interaction among ob-
jects can affect performance. First, data may need to
be communicated from one object to another ~ group-
ing such objects onto the same part should reduce lengthy
inter-part communication times and hence improve perfor-
mance. Second, two objects may be able execute concur-
rently — grouping such objects onto the same part may
force sequential execution and hence hurt performance,
and should thus be avoided when possible.

We defined a communication metric as the number of
bits transferred between two sets of objects. This metric
differs from the connectivity metric in that it measures the
amount of data transferred between sets of objects, rather
than the number of wires used to transfer that data. For
example, if two objects communicate 16 bits of data 10
times over an 8 bit bus, then the communication metric
would measure 10 x 16 = 160 bits, whereas the connec-
tivity metric would measure only the 8 wires of the bus.
The frequency of data transfer can be determined through
profiling. We compute this metric by summing the bits
transferred between the two sets of objects. We normalize
by dividing by the total number of bits transferred between
either set and any other object.

We noted, however, that some communications do not
affect performance constraints. For example, an object A
may transfer many parameters to another object, but if
A is not constrained, and neither are any of A’s calling
objects, then the transfer is not particularly important.
Thus, we defined a constrained communication met-
ric, which differs from the previous metric in that it eval-
uates to 0 if the communication does not affect the per-
formance of any constrained object. Such a metric might
prove especially useful for hardware/software partitioning,
since constrained objects are more likely to be assigned to
hardware, with other objects being assigned to hardware.

Both of the communication metrics require profiling to
obtain data transfer frequencies. At times, though, pro-
filing information is not available. We thus developed an
indirect performance metric called common accessors.
When two sets of objects are accessed by many of the same

objects, grouping those sets may improve the performance.
This metric requires considering an object to be its own
accessor, to encourage grouping an object with the ob-
jects that access it. To compute this metric, we count the
number of objects that access both sets. We normalize by
dividing by the total number of accessors of either set.
Finally, we defined a sequential execution as the
number of pairs of objects that can execute sequentially,
where a pair consists of one object from each set. We nor-
malize by dividing by the number of possible pairs.

2.3 Size

There are two ways in which grouping objects can affect
size. First, objects grouped onto the same custom part can
often share hardware like a multiplier, thus reducing the
overall hardware size. Second, partitioning objects among
some number of identical parts usually requires that we
maintain a balance among the required size of each group
of objects.

We have defined a shared hardware metric to mea-
sure the hardware shared between two sets of objects B1
and B2. The shared hardware is computed as: size(B1)+
size(B2) — size(B1 + B2). We normalize by dividing by
the minimum of size(B1) and size(B2), since the largest
sharable amount occurs when one object can be imple-
mented completely using the other object’s hardware.

We have also defined a balanced size metric. When
clustering objects for assignment among parts, we usually
want clusters of balanced size. If we don’t make an effort
to balance size, the above metrics will cluster nearly all
objects into one group. Omne way to encourage balanced
sizes is to favor merging smaller objects over larger ones, to
prevent any one group from getting too large. The metric
is computed as the size of an implementation of both sets
of objects. We normalize by dividing by the size of all
objects in the specification.

Most of the above metrics make sense whether we are
partitioning among hardware or software parts. The ex-
ception is the shared hardware metric; we have not found
a software equivalent for this metric.

Note that the connectivity, sequential execution, and
shared hardware metrics have a similar purpose to met-
rics previously defined for logic-operation clustering [2] and
arithmetic-operation clustering [3, 4].

3 Roles of clustering

We have defined two distinct roles of clustering dur-
ing system-level functional partitioning: pre-assignment
clustering, and N-way clustering. Assignment is the task
of assigning each functional object to a particular part.
Pre-assignment clustering merges very close objects before
any assignment considerations. On the other hand, N-way
clustering assigns objects to parts. In pre-assignment clus-
tering, we are not concerned with how many parts among
which we will eventually be partitioning; we are only con-
cerned with merging very close functional objects. For
example, given 100 objects and 3 parts, pre-assignment
clustering might reduce the number of objects down to 75
objects, whereas N-way clustering would assign every ob-
ject to 1 of the 3 parts. The two techniques share the

30

same mechanics, that of clustering objects based on close-
ness, but they have very different uses. We now discuss
each clustering role in more detail.

3.1

In pre-assignment clustering, we merge very close func-
tional objects into a single new object before applying
N-way partitioning heuristics, thus reducing runtime and
possibly lowering costs. Very close objects usually exist in
a specification, since specifications are typically written in
a modular manner. Modularity implies that each proce-
dure does not call every other procedure and access every
global variable; instead, it implies that a procedure has
a small number of neighboring procedures/variables that
it accesses. Those objects are sometimes so close, mean-
ing they only deal with one another and not other parts
of the specification, that they should never be separated.
Pre-assignment clustering combines such objects into a sin-
gle (hierarchical) object, so that a subsequent partitioning
heuristic can not separate them, but instead must treat
them as a single object.

There are two advantages to pre-assignment clustering.
First, fewer objects obtained by pre-assignment clustering
usually means that subsequent partitioning heuristics will
require less runtime and memory. Such reductions are very
significant if we consider that we may apply partitioning
heuristics tens or hundreds of times, once for each possible
configuration of parts. For example, we may try parti-
tioning the specification among a configuration of a slow
processor and an FPGA, then of a fast processor and an
FPGA, then two FPGA'’s, then two different FPGA’s, and
so on. We may even use a meta-algorithm that searches for
the best configuration of parts by first allocating different
configurations, partitioning among each configuration, and
then evaluating the cost of each. Pre-assignment clustering
is done just once, after which any number of partitioning
heuristics may be applied.

Second, pre-assignment clustering may actually lead to
better results. By merging objects into a single object,
we are essentially pruning a portion of the solution space,
i.e., those solutions where the objects are assigned to dif-
ferent parts. If we take care to only cluster objects that
should never have been separated, then the pruned so-
lutions would have represented inferior solutions. By re-
moving such solutions from consideration, we increase the
chances of a partitioning heuristic for finding a good solu-
tion. '

For example, Figure 3(a) demonstrates a pre-assignment
clustering of some of the fuzzy-controller functional ob-
jects. Looking back to Figure 2, we note that EvaluateRule
is the only accessor of #runc and of Min. We thus group
those three objects into one new object so that a subse-
quent N-way partitioning heuristic never tries to separate
those original objects. Any N-way partitioning heuristic
can be applied to the new objects, such as simulated an-
nealing, or even N-way clustering, which we shall now de-
scribe.

Pre-assignment clustering

3.2 N-way clustering

N-way partitioning is the assignment of the specifica-
tion’s functional objects among N parts, such as among 3
FPGA'’s, or among 2 processors. N-way clustering is one

Min _Hw
trunc Oo------- =
v
EvaluateRule T “q
trmr : el ‘4
O’ - , rd ,
tmr ¢ 7 Sm
. , 4 , 4
mlval.__o o - e fm >
7
in2vailg——o o
FuzzyMaing— o o’
(@) (b)

Figure 3: Partitioning functional objects among parts:
(a) Pre-assignment clustering, (b) N-way partitioning.

technique for such partitioning, in which we first cluster
close objects until the number of remaining clusters equals
N, and we then trivially assign each cluster to its own part.

For example, Figure 4 demonstrates N-way clustering
of the fuzzy-controller functional objects. Close objects
are merged until only two objects remain, corresponding
to the two parts among which we are partitioning. No
subsequent partitioning is necessary, although we shall see
that some iterative improvement proves beneficial.

N-way clustering is one of many alternative techniques
for N-way partitioning. However, N-way clustering is par-
ticularly useful when estimators of global metrics, which
are used by improvement heuristics, are very slow (or non-
existent). Such heuristics evaluate global metrics for thou-
sands of different partitions (e.g., in our experiments, sim-
ulated annealing averaged over 20,000 partitions per ex-
ample), so slow estimators make such heuristics infeasible.
Clustering provides a reasonable alternative, since we can
cluster based on metrics derived directly from the speci-
fication, such as connectivity, common accessors and se-
quential execution.

Note that N-way clustering can be preceded by pre-
assignment clustering, just as can any other N-way par-
titioning heuristic. In other words, the starting objects
of Figure 4 could have been the merged objects of Fig-
ure 3(b). Such two-stage clustering is in fact an instance
of the multi-stage clustering technique described in [4]. We
shall see in the next section that each clustering stage re-
quires different closeness metrics.

Min, Hw Hw
trunc,
EvaluateRule,
-
torl b=
tmr2 Sw. —
inlva g) [PP
in2val,
--t>
FuzzyMaing

@ ®)
Figure 4: N-way clustering: (a) With original objects, (b)
With pre-assignment-clustered objects.

31

4 Experiments

We now describe results of a number of experiments
of pre-assignment clustering and of N-way clustering, and
describe how these results help define the role of clustering
during system-level functional partitioning.

Clustering results are compared with results of running
three iterative-improvement partitioning heuristics on four
examples. The Greedy heuristic moves objects from one
part to another as long as cost reductions are obtained,
having a computational complexity of O(m), where m is
the number of objects. The Group Migration (GroupMig)
heuristic [21] yields better results by overcoming some local
minima, and is widely used in network (circuit) partition-
ing. Our implementation has a complexity of O(m” * N)
(versions for circuit partitioning have achieved a complex-
ity of O(m % N)), but the number of iterations often varies
from 1 to 7, yielding unpredictable runtimes. The simu-
lated annealing (SimAnn) heuristic uses random moves to
escape even more local minima, at the expense of gener-
ally long runtimes. Annealing parameters included a tem-
perature range of 50 down to 1, a temperature reduction
factor of 0.93, an equilibrium condition of 200 moves with
no change, and an acceptance function as defined in [21].
Each of the above heuristics started with an initial parti-
tioning generated by a Random partitioning heuristic.

The four examples were VHDL descriptions of a volume-
measuring medical instrument (Ez!), a telephone answer-
ing machine (Ez2), an interactive-TV processor (Ez3), and
an Ethernet coprocessor (Ez{).

Table 1 provides the results of applying each heuris-
tic on each example. The partition cost C is a unitless
number indicating the magnitude of estimated constraint
violations [21]. Constraints on hardware size, software
size, hardware I/0, and execution time were intentionally
formulated such that there would be constraint violations
(non-zero cost), so that we could compare how close each
heuristic came to achieving zero cost. The runtimes T are
the CPU times in seconds running on a Sparc20. Each ex-
ample was partitioned among 2 ASICs (VTI), 3 ASICs, 4
ASICs, and a hardware/software (hs) configuration of one
processor (8086) and one ASIC.

4.1 N-way clustering

Our experiments show that N-way clustering alone does
not yield better cost or time than the above heuristics, but
but that N-way clustering followed by the greedy heuristic
yields very good results.

Table 2 provides results of applying clustering to the
four examples, under the column Nclust. We used a close-
ness function that was a weighted sum of the normalized
connectivity, communication, accessors, and balanced size
metrics. These metrics were chosen after performing a 2*
factorial experiment to determine the best combination of
metrics for the four examples [20]. For the case of hard-
ware/software partitioning, the more tightly-constrained
final cluster was assigned to hardware, the other to soft-
ware.

In addition to the clustering results, the columns la-
beled Nclust_gr, Nclust.gm, and Nclust_sa in the table show
results of using the partition obtained through clustering
as an initial partition for the three improvement heuristics,

Ex P | Random Greedy Groupmig Simann Ex P Nclust Nclust4gr | Nclust+gm | Nclust+sa
C T C T C T| C T C T C T C T C T

1 2 314 0 68 2 40 26 | 156 147 1 21 8 12 59 1441 13 521 33 161
3 43 0 50 3 0 20 | 22 220 31168 13| 96 171 16 90 | 10 227

4 428 0 88 7 29 87 | 16 246 41218 13| 15 20] 15 135 7 282

hs 576 0 61 2 16 21 } 18 148 hs | 88 12| 66 4] 16 471 17 152

2 2 236 0 69 4 43 40 | 47 146 2 2| 141 26 34 29 34 65| 43 175
3 256 0 25 8 7 198 0 174 31 244 29 16 34 9 214 0 188

4 234 0 0 11 2 187 0 208 4 339 29 15 43 17 213 0 221

hs 160 0 0 1 0 7 0 0 hs 0 24 0 25 0 39 0 31

3 2 893 0 90 15 68 804 | 30 403 3 21111 147 | 78 156 78 456 | 36 517
3 | 1081 01115 32 71 953 | 63 609 31154 158 | 142 175] 142 804 90 707
411220 0| 141 60 | 100 2953 | 94 625 4| 141 173 | 137 200 137 1170 | 104 827

hs | 2115 0 83 12 20 296 | 20 379 hs | 147 144 | 67 151 | 20 538 | 20 454

4 2 960 0| 105 16 60 655 7 378 4 2109 363| 62 3781 37 976 | 39 692
31206 O] 114 34| 114 1064 | 97 520 3] 155 390 5 422 5 1635 23 906
411338 0 66 60 39 2036 | 72 693 41193 395| 37 443 | 37 2428 | 34 1069

hs 660 0] 102 20 23 598 0 268 hs | 102 367 | 76 378 20 913 0 665

Avg 758 0 74 18 40 443 | 31 323 Avg [150 143 | 57 156 | 37 611} 29 455

Table 1: Existing N-way partitioning heuristics

rather than using a random initial partition. Time for each
heuristic represents the time for clustering plus the time
for improvement.

The table shows that N-way clustering by itself yields
very poor costs. Group migration and simulated annealing
show small improvements in average cost using the clus-
tered initial partition rather than a random partition; how-
ever, the greedy heuristic shows substantial improvement,
and fills a gap in the cost/time tradeoff curve. Specifically,
consider Figure 5. Note that applying N-way clustering
followed by greedy improvement (Nclust + Greedy) yields
a cost/time point in between the two heuristics of greedy
and simulated annealing. This point indicates better cost
than the greedy heuristic, but less time than simulated
annealing.

Thus, results show that N-way clustering followed by
greedy improvement yields a viable alternative to exist-
ing N-way partitioning heuristics, and would thus prove
beneficial when included in a system-design tool’s suite of
partitioning heuristics.

@ Creedy
70 |\
\
AY
AY
A
60 \
g Nelust+greedy
\
g s N
\\
AN GroupMig
40 \ ® Nclust+GroupMig
\\ []
\\
30 I atetepepa .
SimAND Njust+SimAnn
100 200 300 400 500 600 700
Time

Figure 5: Cost vs. time for N-way partitioning heuristics.

Table 2: N-way clustering results

4.2 Pre-assignment clustering

Our experiments show that pre-assignment clustering
reduces iterative-improvement partitioning runtime with
little or no increase in cost in some cases, and reduces
overall cost with no increase in runtime in other cases.

We applied pre-assignment clustering to the four exam-
ples, followed by random partitioning and each of the three
improvement heuristics. We used a closeness function that
was a weighted sum of the normalized connectivity and
communication metrics. These metrics were chosen after
performing a 2¥ factorial experiment to determine the best
combination of metrics for the four examples [20]. Through
further factorial experiments, we found that the best ter-
mination criteria for the clustering process was a closeness
threshold of 0.3; in other words, we terminate clustering
when no pair of objects has a closeness greater than 0.3.

The plot of Figure 6 summarizes the average effects
of pre-assignment clustering on the cost and time of the
three improvement heuristics. The pre-assignment clus-
tering lowers the cost obtained by the greedy heuristic,
with the same runtime as before. The clustering yields
lower runtimes for group migration and simulated anneal-

70 500
&0
400
50
40 300
g €
%
¥ i
200
20
10 100
o 0
cT cT cT cT cT cT
Geoedy Peusts GroupMig Pclust + SimAnn Pohust +
Greedy GroupMig SimAnn

Figure 6: Cost/time effects of pre-assignment clustering.

ing, with nearly no increase in cost; in fact, in 20 cases,
there was actually a decrease in cost.

To further demonstrate the effect of pre-assignment clus-
tering on improvement heuristic runtime, we experimented
more extensively with the Ethernet coprocessor example.
We followed pre-assignment clustering by random parti-
tioning and group migration. Results are shown in Fig-
ure 7. The number of objects axis represents the number of
objects remaining after pre-assignment clustering. Thus,
the right end of the axis represents no pre-assignment clus-
tering, meaning all 125 original objects are subsequently
partitioned among parts; the center of the axis represents
reduction by pre-assignment clustering down to 70 objects.
Such reductions were obtained by clustering until reaching
a fixed number of objects, rather than using a closeness
threshold as earlier. The cost axis represents the mag-
nitude of constraint violations of the final partition after
group migration was applied to the hierarchical functional
objects. The time axis represents the computation time (in
seconds on a Sparc 2) required by group migration. Re-
sults show that the fewer the number of objects input to
group migration, the lower the runtime. When we reduced
the objects from 125 down to 85, we not only decreased the
runtime by 30%, but also found a lower-cost partition. A
reduction down to 55 objects decreased runtime by nearly
55%, at the expense of slightly higher cost. Further reduc-
tion yields higher-cost partitions, since clustering is then
forced.to merge distant objects.

200 b - 2000

1500

1000

Time .o w

11 ¢ 1 1 t.1 111
10 20 30 40 50 60 70 80 80 100 10 20
Number of objects

Figure 7: Improvement-heuristic runtime reductions
gained by pre-assignment clustering.

5 Conclusions and future work

We have demonstrated two roles of clustering during
system-level partitioning. Pre-assignment clustering leads
to reduced runtimes of subsequent partitioning heuristics,
and in many cases leads to lower cost partitions. Such
reduced runtime is especially significant since subsequent
partitioning heuristics might be applied hundreds of times.
N-way clustering, when followed by a fast improvement-
heuristic, complements a suite of iterative-improvement
heuristics, and is especially useful when global-metric es-
timators are slow.

It may be interesting to examine techniques that ap-
ply many partitioning heuristics, including clustering, in
parallel and select the best result. We could even apply
several clusterings in parallel, each with different closeness
metrics. Additionally, further investigation of multi-stage
clustering may prove beneficial.

33

References

[1] P. Athanas and H. Silverman, “Processor reconfiguration
through instruction-set metamorphosis,” IEEE Computer,
vol. 26, pp. 11-18, March 1993.

R. Camposano and R. Brayton, “Partitioning before logic
synthesis,” in Proceedings of the International Conference
on Computer-Aided Design, 1987.

M. McFarland and T. Kowalski, “Incorporating bottom-
up design into hardware synthesis,” IEEE Transactions on
Computer-Aided Design, pp. 938-950, September 1990.
E. Lagnese and D. Thomas, “Architectural partitioning for
systern level synthesis of integrated circuits,” IEEE Trans-
actions on Computer-Aided Design, July 1991.

X. Xiong, E. Barros, and W. Rosentiel, “A method for par-
titioning UNITY language in hardware and software,” in
Proceedings of the European Design Automation Confer-
ence (EuroDAC), 1994.

R. Gupta and G. DeMicheli, “Partitioning of functional
models of synchronous digital systems,” in Proceedings of
the International Conference on Computer-Aided Design,
pp. 216-219, 1990.

K. Kucukcakar and A. Parker, “CHOP: A constraint-
driven system-level partitioner,” in Proceedings of the De-
sign Automation Conference, pp. 514-519, 1991.

Z. Peng and K. Kuchcinski, “An algorithm for parti-
tioning of application specific systems,” in Proceedings of
the European Conference on Design Automation (EDAC),
pp. 316-321, 1993.

C. Gebotys, “An optimization approach to the synthesis
of multichip architectures,” IEEE Transactions on Very
Large Scale Integration Systems, vol. 2, no. 1, pp. 11-20,
1994.

Y. Chen, Y. Hsu, and C. King, “MULTIPAR: Behavioral
partition for synthesizing multiprocessor architectures,”
IEEE Transactions on Very Large Scale Integration Sys-
tems, vol. 2, pp. 21-32, March 1994.

R. Gupta and G. DeMicheli, “Hardware-software cosynthe-
sis for digital systems,” in JEEE Design €& Test of Com-
puters, pp. 2941, October 1993.

R. Ernst, J. Henkel, and T. Benner, “Hardware-software
cosynthesis for microcontrollers,” in IEEE Design & Test
of Computers, pp. 64-75, December 1994.

T. Ismail, K. O'Brien, and A. Jerraya, “Interactive system-
level partitioning with Partif,” in Proceedings of the Euro-
pean Conference on Design Automation (EDAC), 1994.
S. Antoniazzi, A. Balboni, W. Fornaciari, and D. Sci-
uto, “A methodology for control-dominated systems code-
sign,” in International Workshop on Hardware-Software
Co-Design, pp. 2-9, 1994.

F. Vahid and D.Gajski, “Specification partitioning for sys-
tem design,” in Proceedings of the Design Automation
Conference, pp. 219-224, 1992.

D. Thomas, J. Adams, and H. Schmit, “A model and
methodology for hardware/software codesign,” in IEEE
Design & Test of Computers, pp. 6-15, 1993.

P. Gupta, C. Chen, J. DeSouza-Batista, and A. Parker,
“Experience with image compression chip design using uni-
fied system construction tools,” in Proceedings of the De-
sign Automation Conference, pp. 250-256, 1994.

P. Eles, Z. Peng, and A. Doboli, “VHDL system-level
specification and partitioning in a hardware/software co-
synthesis environment,” in International Workshop on
Hardware-Software Co-Design, pp. 49-55, 1992.

F. Vahid, “Procedure exlining: A transformation for im-
proved system and behavioral synthesis,” in International
Symposium on System Synthesis, 1995.

F. Vahid and D. Gajski, “Closeness metrics for system-level
functional partitioning,” in Proceedings of the European
Design Automation Conference (EuroDAC), 1995.

D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification
and design of embedded systems. New Jersey: Prentice
Hall, 1994.

(1]

(12]

(13

4]

(18]

(19]
[20]

[21]

