Instruction-based System-level Power Evaluation of
System-on-a-chip Peripheral Cores

Tony D. Givargis, Frank Vahid
Department of Computer Science and Engineering
University of California, Riverside, CA 92521
{givargis,vahid} @cs.ucr.edu,
www.cs.ucr.edu/~dalton

Abstract

Various system-level core-based power evaluation approaches
for core types like microprocessors, caches, main memories,
and buses, have been proposed in the past. Approaches for
other types of components have been based either on the gate-
level, register-transfer level, or behavioral-level. We propose a
new technique, suitable for a variety of cores like peripheral
cores, that is the first to combine gate-level power data with a
system-level simulation modd written in C++ or Java. For
that purpose, we investigated peripheral cores and decomposed
their functionality into so-called instructions. Our technique
addresses a core-based system design paradigm. We show that
our technique is sufficiently accurate for making power-related
system-level design decisions, and that its computation time is
orders of magnitude smaller than lower-level simulation
approaches.

Keywords

System-on-a-chip, low-power design, intellectual property,
caches, cores, estimation, silicon platforms, system parameters.

1. Introduction

As mobile computing devices have gained a maor market
share in the computing sector and their functionality (i.e.,
complexity) has increased rapidly, minimizing power
consumption has become one of the most important design
goals. Furthermore, the short life cycles of consumer products
in conjunction with increasing product complexity has led to a
core-based design paradigm. As a consequence, there is a
strong demand for core-based power evauation and
optimization tools.

A coreis a pre-designed processing-level component, such
as a microprocessor, memory, DMA controller, UART, bus
interface, or CODEC, residing on a system-on-a-chip (SOC)
with typically tens of other cores. A core, also known as
Intellectual Property or IP, may come in different forms: a soft
core comes as a synthesizable model in hardware-description
language (HDL), a firm core as a structural model in an HDL,
and a hard core as a technol ogy-specific layout. Core providers
typically parameterize their cores, whether soft, hard, or firm in
form, in order to increase the core's applicability in different
applications and to ease its re-usability. Example parameters
include bit-widths and buffer-sizes. Soft and firm cores may be
parameterized via HDL generics, while hard cores via layout
generators. For example, a UART’s buffer size may be varied

Jorg Henkel
C& C Research Laboratories, NEC USA
4 Independence Way, Princeton, NJ 08540
henkel @ccrl.nj.nec.com

from 1 to 16 bytes, trading off size and power for performance.
An important system-on-a-chip design task is thus the
configuring of al cores’ parameters, such that the configuration
is tuned for the application (i.e., the software running on the
SOC’'s microprocessor core) and for the power, size and
performance constraints of the SOC.

Since the whole SOC has to be optimized in terms of
power and the according parameters are interdependent and
large in number, fast and accurate evaluation and optimization
tools are needed.

A core's power consumption may vary greatly depending
on the application driving the SOC, and on the configuration of
the core itself. Thus, the power tables provided in core
databooks, representing average power data, may yield
inaccurate power numbers for a particular application and
configuration, even when extended to account for a subset of
common configurations.

Therefore, numerous researchers have proposed
techniques for rapid, system-level power evaluation of certain
types of cores, including microprocessor, cache, memory and
bus cores. In our efforts to develop a system-level power
evaluation environment for parameterized SOC's, we found
however that no techniques existed to evaluate general cores as
fast and accurately as a combined gate-level/system-level (i.e.,
executable specification) could provide. Our work uses this
approach and applies it to peripheral cores, i.e., those single-
purpose processing cores that typicaly surround a
microprocessor cores, such as DMA controllers, UARTS, bus
interfaces and CODECs, to explore this promising technol ogy.

The remainder of the paper is organized as follows. In
Section 2, we describe related work. In Section 3, we present
our power evaluation technique. In Section 4, we give our
experimental results. In section 5, we conclude.

2. Previouswork

Previous power evaluation work has been done at various
abstraction levels. Circuit-level approaches simulate the circuit
at the transistor level while monitoring supply current [1][2].
Logic-level, or gate-level, approaches simulate a gate-level
design, and calculate power by considering switching activity
of nodes in the design [3][4], executing orders of magnitude
faster than circuit-level approaches at the expense of some
accuracy. Even so, logic-level approaches are many orders of
magnitude too slow to be used in SOC configuration
exploration, requiring days to obtain data for even one
configuration.

Figure 1: Constructing VHDL models for extraction of gate-
level power estimates.

Note: k and s chosen to maintain error within range
for each paraneter p
for each power-node m
for each instruction i
if i is independent
create a test-bench that sinulates i(randon,
in node m configured as p, k tines
else if(i is dependent on statistical char.)
for each statistical characterization s
create a test-bench that sinulates i(s),
in node m configured as p, k tines
else if(i is dependent directly on input data)
for each cluster of input pattern d
create a test-bench that sinulates i(d),

in node m configured as p, k tines

Figure 2: Augmenting the functional implementation of an
instruction for power eval uation.

/1 functional inplenentation before here
power - node = Next Power Mode(power - node, current-inst);
p = this core’s current paraneter val ues;
m = power - node;
i = current-instruction’s identification nunber;
d = data passed into the current-instruction;
if(i is independent of its data) {
total - power += Power LookupTabl e[p][ni[i];
}
else if(i is statistically dependent on its data) {

total - power +=
Power LookupTabl e[p] [mM[i][[Cet Stats(d)];

}
else if(i is dependent on it data) {
total - power += Power LookupTabl e[p][nm[i][d];

RTL (register-transfer level) power evaluation operates at
an even higher-level of abstraction, modeling power
consumption of more abstract circuit components, such as
adders and multipliers. Simulation is performed at the RT-level
and power is obtained by using these power models, also
known as macro-models. The approach taken here can be
divided into two categories, macro-modeling using table-lookup
techniques and analytical models. Power modeling and
evaluation in 0 was among the first to show the feasibility of
RTL-based approaches that showed a very good accuracy and a
much higher speed than gate-level approaches. Using table-
lookups, each component is modeled via an N-variable
characterization (input density, output density, switching-
probability, etc.) of its power consumption [6][7]. An N-
dimensional lookup table is used to lookup the power
consumption of an RTL component during simulation.
Similarly, analytical models have been devised that compute
power consumption of an RTL component given the actual
input patterns or some form of input pattern characterization
[8][9]. Lookup-tables and the coefficients of the analytical
model s are often derived from the gate-level circuit structure or
lower-level power evaluation and simulation. While RTL
power evaluation is shown to be accurate to within 5% of
actual power consumption O, it too suffers from simulation
times too dlow for extensive system-level exploration.
Furthermore, just synthesizing an RTL design for a given
configuration can take hours, independent of simulation.

Previous behavioral-level approaches seek to estimate
power of a behavioral HDL description before a synthesized
design is obtained. An abstract notion of physical capacitance
and switching activity is used. Switching is estimated using
entropy from circuit input to circuit output by quadratic or
exponential degradation [11][12]. While such behavioral
approaches can provide fast evaluation of power for custom
designs, they will not be nearly as accurate for cores as

approaches that take advantage of the fact that cores are pre-
designed.

Work has been done to evaluate power consumption of
microprocessor cores. One approach, instruction-level power
modeling, is proposed by [13]. Given a program execution
trace, energy is computed as the sum of the energy consumed
by each instruction that is executed, circuit state energy
consumed when a particular instruction is followed by another,
and energy consumed by other effects such as stalls and cache
misses. This approach is sped up in [14] by deriving a shorter
program trace that results in equal power dissipation when
compared to the original trace. In [15], a mathematical generic
power model for 32-bit microprocessors is proposed. The
approach classifies the instruction set into classes like branches
etc. The model has been applied to various 32-bit processors.
Other researchers have focused on fast system-level models for
cache, memory and bus power consumption [16][17][18],
consisting mostly of equations that compute power
consumption as a function of usage/traffic and core parameters.
Further approaches aim at estimating the power consumption of
CPU, cache, memory and bus together. In [19], a cycle-accurate
power simulation tool is introduced for an embedded system
using a StrongARM architecture. The reported results are
accurate within 5% compared to measurements conducted on a
real existing hardware board. A trace-based approach
deploying a mix of analytical models (for instruction cache,
data cache, and main memory) and instruction set simulators is
introduced in [20]. Their Avalanche tool can either conduct a
fast design space exploration or it can be used to determine the
optimum system parameters.

3. Power-evaluation for peripheral cores
3.1 Overview
We examined a variety of peripheral cores, and found that they

all could be viewed as executing a sequence of what we call
“instructions’, using this term in a relaxed manner. Typically,

Table 1: UART's power mode transition function.

Current Instruction | Current Mode Next Mode

Reset Idle Idle
Tx_enabled Idle
Rx_enabled Idle
Tx_rx_enabled | Idle

Enable_tx Idle Tx_enabled
Tx_enabled Tx_enabled
Rx_enabled Tx_rx_enabled
Tx_rx_enabled | Tx_rx_enabled

Enable_rx Idle Rx_enabled
Tx_enabled Tx_rx_enabled
Rx_enabled Rx_enabled
Tx_rx_enabled | Tx_rx_enabled

Send/Receive Idle Idle
Tx_enabled Tx_enabled
Rx_enabled Rx_enabled
Tx_rx_enabled | Tx_rx_enabled

an instruction represents an atomic action available to the
programmer of a microprocessor. But we use “instruction”
more generally as an action that collectively with other actions
describes the range of possible behaviors of a core.
Furthermore, an “instruction” can be better used for power
evaluation since — compared to a classical instruction — our
notation of instruction can denote a smaller or alarger piece of
functionality depending on the power characteristics. Thus, we
have extended the instruction-level power modeling approach,
previously used for microprocessor cores, to peripheral cores.
In developing the approach, we noted that cores typicaly
already come with system-level functional models, written in a
language like C, C++, or Java, and that in fact the VSIA
reguires such modelsin its standard [21].

We informally define the power evaluation problem as
follows. Given a parameterized SOC core, say a UART, we are
to devise a high-level executable model, say in C++, of that
core that can output power dissipation during a system-level
simulation. Furthermore, this model must be sensitive to
changes in the various parameters of that particular core.
Although we define our modeling and evaluation approach for
a single parameterized core, the approach can be applied to
each peripheral core in an SOC to obtain total power.

Our approach can be broken into a number of steps as
follows. The core provider must select a set of appropriate
instructions, perform gate-level power analysis to construct
power lookup tables for each instruction, and create a system-
level core model that utilizes the lookup-tables for power
evaluation. The core user connects the system-level core
models, executes the whole system (which is possible since the

system-level model represents an executable specification), and
thus obtains power data after a system execution/simulation.
We now describe each step in more detail, using a UART core
as an example.

3.2 Peripheral instructions
The core provider must first break the core’s functionality into
a set of instructions. Given an RTL model of a core called C,
we first determine the system-level instructions iy, iz, i3, ... in,
of C. These instructions must have the property that they
collectively cover the entire functionality of C and that no two
instructions cover the same function of C, i.e., i1 [Ji, iz [7 ...
[Jin = Functionality of C & ij nik= [, for 1 < j, k sn. As
with the instructions of an instruction-set processor, each
instruction i; operates on some input data and produces some
output data. In our UART example, we selected the following
instructions: Reset, Enable_tx, Enable _rx, Send, and Receive.

For each instruction, the core provider must determine
how dependent the instruction’s power consumption is on the
instruction’ s input data. We thus define an instruction’s power -
dependency characteristic as one of: dependent directly on its
input data, dependent on a statistical characterization of its
input data (e.g., the density of 1's in a vector of bits), or
independent of its input data. Such determination can be based
on databooks, a core designer’s knowledge, experimental
results or statistical analysis. For our UART example, we ran
experiments that provided different data to each instruction,
and we determined that the power-dependency characteristic
for al instructions was “independent.” For example, the Send
instruction consumes approximately a constant amount of
power regardless of the data being sent; likewise for the
Receive instruction.

Note that thisis just a simple example. In general, there is
a trade-off in choosing the right instructions for power
evaluation: if the granularity is smal, we will have many
instructions leading to a longer simulation time. On the other
hand, a small granularity tends to produce more accurate
results since more subtleties are taken care of. When we have
coarse-grained instructions, then the total number of
instructions is smaller, leading to faster simulation. But
coarser instructions might not be able to take into consideration
subtle effects, and as such may lead to less accurate results.

Very unlike microprocessors, certain instructions executed
on a periphera core can drasticaly change the power
consumption of succeeding instructions. In particular, certain
instructions change the mode of the peripheral core. This
concept of mode is very different from that of measuring inter-
instruction power dependencies (e.g., a load following a store
may consume more power than a load following an add). To
account for a mode, the core provider must determine the set of
modes, My, M, M, ... Min C, referred to as power-modes, that
cause C to consume significantly more or less power per each
execution of its instructions, i1, iz, i3, ... in. In our UART
example, we found four power modes: Idle, Tx_ enabled,
Rx_enabled, Tx_rx_enabled. Given these modes, we define a
power-mode transition function, that gives the next power-
mode given the current power-mode and the most recently
executed instruction of C. For the UART example, the power-
mode transition function is given in Table 1.

Figure 3: Target Architecture.

Table 2: Four mode UART power lookup table.

MIPS Bus Controller < > 2 8 16
1$ [| D$ (bytes) | (bytes) | (bytes) | (bytes)
Mode 1: Idle
R —— WBgem Reset 1pd |13 [14pd | 14d
us
MEM |—| MEM Comtroller Enable_tx 27 |32 (31 (31
Enable_rx 17pd [18pd |19d |18 d
—>| DMA | Send 17pd |19 |19 |20
BUS. R Receive 14pd |15 (17pd [18pd
BRID ;_szP Mode 2: Tx_enabled
GE > -
PSP g1 Reset 13pd |13 [14pd | 14d
| varr | [es | Enable_tx 23 |28 |22pd |24
= x Enable_rx 19 |20pd (293 [19W
Send 133 pJd | 135 pd | 157 pud | 209 pd
3.3 Gatelevd power evaluatlon _ _ Receive 4w |16 |18 |18
The second task consists of using gate-level simulation to
obtain per-instruction power data for the lookup-tables. Given Mode 3: Rx_enabled
an RTL model of acore called C, itsinstructions iy, iz, i3, ... in, Reset 1B3pd |14 [15pd |15
and its modes my, mp, mg, ... m,, we follow the procedure
outlined in Figure 1. This procedure gives a methodical way of Enable_tx 22pd |22pd |21l |21
creating a set of testbench models that, when simulated at gate- Enable rx 18wl |19pud |18ud |18
level, capture the power consumption of a particular r
instruction, in a particular mode with a particular parameter Sen oW |19pd 121 |23
setting. Receive 73pd (83pd |93 | 111
We then simulate each testbench using the gate-level .
model of C, and we analyze the average power consumption of Mode 4: Tx_rx_endbled
the corresponding instruction, mode and parameter value. We Reset Bl |13 (14pd (14
tabulate these power results into our lookup tables. Table 2
gives the lookup table for the UART example. The rows Enable_tx AW j22pd 2l 2l
correspond to instructions while columns correspond to the Enable_rx O (|19 |19 |19
UART’ s buffer size parameter values. The entries are repeated
for each one of the 4 modes. Send 133 pJd | 135 pd | 157 pd | 209 pd
3.4 System-level modeling Receive 743 |81 |93 [107 pd

The next step is to develop a system-level model of each core
that enables rapid power evaluation when executed, i.e., an
executable specification. Given an RTL model of a core called
C, itsinstructions iy, iz, is, ... in, and its modes my, mp, m, ...
my, we implement a functional model of C in terms of its
instructions.

If using method-calling objects [22], the interface to the
object representing C would have the instructions iy, io, is, ...
in, 8 methods and the instruction’s input/output data as
parameters to the corresponding methods. To each object-
oriented model, we add two data objects, called total-power
(initialized to zero) and power-mode (initialized to “1dle’.) We
then augment the implementation of each method of C’s system
level model with the code outlined in Figure 2.

3.5 System-level power evaluation
The above three steps are performed by the core developer.
They may take days to complete, forming part of the months

required to devel op the core. They must be done for each target
technol ogy. But note that those steps have only to be performed
one time. Once done, the resulting data can be used in any
core-based design that is using the particular core.

The core user does not perform the above steps (unless re-
targeting to a new technology, in which case the core provider
may supply the necessary testbenches). Rather, the user
connects the core models and simulates them. Simulation of a
complete SOC, using system-level models, takes on the order
of seconds or minutes. Thus, hundreds or thousands of
configurations can be evaluated. The top-level simulation
model will be designed to output the value of the total-power
variable, for each core of the system, at the end of each
simulation. The sum of these total-power values represents the
system-level estimate of the system’s power consumption for a
given configuration of its parameters.

Table 3: One mode UART power |ookup table.

Table 4: Two mode UART power lookup table.

2 (bytes) | 4 (bytes) | 8 (bytes) | 16 (bytes)
Reset 13 puJ 13 puJ 14 pJ 14 pJ
Enable tx |23 uJ 25 24d 24d
Enable rx | 18 uJ 19 19 19
Send 76 ud 77 89 uJ 115 pd
Receive 44 1 49 55 ud 64 puJ

4. Experiments

4.1 System architecture

To evaluate the accuracy and simulation speed of our approach,
we applied it to three cores within an SOC. We will next
describe our architecture, its three selected cores, relevant
parameters, and application. Then we describe our results.

Our parameterized system-on-a-chip architecture, depicted
in Figure 3, is as follows. A MIPS R2000 processor and
instruction and data caches communicate over a high-speed
processor-local bus. The on-chip memory and direct memory
access (DMA) controller cores are connected to the system bus,
which in turn is bridged to the processor-local bus via a bus
controller. Universal Asynchronous Receiver and Transmitter
(UART) and JPEG decoder cores are connected to the
peripheral bus, which is bridged to the system bus. Both the
UART and JPEG decoder cores are DMA capable. The DMA
controller is capable of transferring data between periphera
cores and memory without the intervention of the processor.
The processor can run concurrent to the DMA until a cache
miss occurs, at which point the processor is blocked waiting for
the DMA transfer to complete. The UART, DMA and JPEG
decoder cores in our architecture are parameterized. The DMA
controller can be instantiated with maximum block transfer
size set to one of 4, 16, 64 or 128 bytes. The UART core's
transmitter/receiver buffer sizes can each be set to one of 2, 4,
8, or 16 bytes. The JPEG decoder core' s pixel resolution can be
set to one of 10 or 12 bits. This architecture is used to
implement a JPEG image decode accelerator. JPEG images are
input serially through the UART, transferred via the DMA to
memory, Huffman decoded by the MIPS, transferred from
memory to the JPEG-decoder and back to the UART to be
outputted to the host device. Most of these operations take
place in a pipelined fashion for maximum throughput. We have
RTL synthesis models for all three of the parameterized cores.

4.2 System-level functional smulation

We implemented system-level functional simulation models, as
described in the previous sections, for all components in the
JPEG image decode accelerator. Our gate-level characterization
procedure for the three parameterized cores took roughly one
week for synthesis, simulation and analysis. After this analysis,
we obtained power |ookup tables (as noted before, this step is
only performed once by a core provider). We have used our
model to evaluate power consumption of the three cores when
processing a 640x480 pixel image, and have compared the

2 4 8 16
(bytes) | (bytes) | (bytes) | (bytes)
Mode 1: Idle
Reset 1M |13 |14 |14
Enable_tx 27 (32pd (31l (31
Enable_rx 17pd |18 |19d (18
Send 17pd |19 (19pd |20
Receive 14pd |15 |17pd (18I
Mode 2 : Enabled
Reset 1B3pd |13 [14pd |14
Enable_tx 2 (25 (24 (24
Enable_rx 18 |19 |19 (19
Send T6pI |77 | 899I | 115
Receive 43 |49pnd |55 |64pd

results to gate-level power evaluations done by the Synopsys
Power Compiler. Only the three cores are simulated at the gate-
level and the remainder of the architecture is ssimulated at a
behavioral VHDL level, for faster simulation, since we are only
interested in power estimates for the peripheral cores. For our
system-level simulation model, all components (including the
MIPS) of the architecture are simulated as an executable binary
obtained from the C++ models.

Our results are summarized in Figure 4. For comparison
purposes, we have provided power estimates based on a cycle-
based databook approach. Here, for each of the three cores, we
measure the amount of time that the core was busy computing
as well as the amount of time that the core spent idle. We then
used idle and average power consumption data from the
databooks (for similar technology to that used during our
synthesis) to compute the total power consumption of each of
the cores. This databook-based approach is similar to that
outlined in [23]. Our results show that average system-level
power error is 2.7% (min=1%, max=5%) when compared to
gate-level power estimation. In contrast, average databook-
based power error is 30% (min=14%, max=38%) when
compared to gate-level simulation. Our simulation model for
processing a 640x480 pixel image ran in just under 14 seconds
while the gate-level simulation required 12 hours, i.e., our
functional system-level approach ran 3000 times faster than
gate-level simulation. In addition, we estimated the cycle-based
simulation time to be about 200 times slower than our system-
level approach.

We performed a second experiment to see the importance
of the concept of power-modes. In this experiment, we
implemented two additional UART system-level models, one
with only a single power-mode and another with two power-
modes. For our single mode model, we measured and recorded

Figure 4: Energy consumption of the JPEG image-decode accel erator.

14%
2000 . . 1793 1%
1800 +{ Evaluation Time 1573 1550
1600 1 Gate-level: 40,980 sec
= MO Dpatabooks: 2,700
,E 1200 U atabooks: 2, Sec 0 Gate-level
= . 0,
> 1000 -H Svstem-level: 14 sec 38% B Databooks
$ 800 [
g 51D O System-level
w600 493
0,
400 S 2
200 13 155 115
e .
UART DMA JPEG

Table 5: UART’s power evaluation accuracy for various

power modes.
Power (mJ) Error
Gate-level | System-level | Ref. Gate-level

Single- 86 23%

mode

modes

Four- 115 1.7%

modes

the lookup table shown in Table 3. The lookup table for our
two-mode UART model is shown in Table 4.

We simulated the same JPEG image-decode accelerator
application as in our first experiment. The power results for the
single-mode, two-mode and four-mode UART are summarized
in Table 5. Using a single mode only, which is the same as not
considering modes, results in an error of 23%. Using two
modes helps, but is still off by 8.6% Our four-mode model gave
only 1.7% error. Thus, a proper selection of modes is important
for accuracy.

In our next experiment, we examined the importance of
proper instruction granularity selection, by using a smaller set
of instructions for the UART core and comparing our power
evaluation technique to our original experiment. The lookup
table for this version of the UART is given in Table 6. Notice
that we aggregated the Send and Receive instructions into a
single Send_or_receive instruction. Such aggregation
performed repeatedly will eventually result in a power
evaluation model that considers the average power
consumption for a core when that core is computing, i.e., a
scheme similar to [23].

We ran our JPEG decode accelerator example using this
UART model (with fewer instructions) and compared the

results to those obtained from our original UART model. The
results are given in Table 7. When compared to gate-level,
selecting a smaller instruction set resulted in 17% error.

Based on our experiments, we conclude that our system-
level, instruction based lookup table power evaluation
technique for general cores is very accurate and fast. We
further have shown that the selection of appropriate power-
modes and instructions for a particular core is important in
obtaining high power evaluation accuracy.

5. Conclusions

We have introduced an instruction-based technique for fast and
accurate power evaluation of peripheral cores. The technique
can be used in conjunction with those previously developed for
microprocessors, caches, memories and buses, to achieve
power evaluation of systems-on-a-chip, and complements
evolving system-level modeling standards. We showed the
importance of the power-mode concept, and showed that
databook lookup approaches can be inaccurate since they are
not sensitive to different data. Our future work includes
generating peripheral instruction traces, and then using trace
simulators to further speedup power estimation, similar to
microprocessor and cache trace-simulator approaches.

6. Acknowledgement

This work was supported by the National Science Foundation
(grants CCR-9811164 and CCR-9876006) and a Design
Automation Conference Graduate Scholarship.

7. References

[1] SM. Kang. Accurate Simulation of Power Disspation in VLS
Circuits. |[EEE Journal of Solid-State Circuits, vol. CS21, no. 5, pp.
889-891, October 1986.

[2] G.Y Yacoub, W.H. Ku. An Accurate Simulation Technique for
Short-Circuit Power Dissipation Based on Current Component
Isolation. |EEE International Symposium on Circuits and Systems,
pp. 1157-1161, 1989.

[3] R. Tjarnstorm. Power Disspation Estimate by Switch Leve
Simulation. |EEE symposium on Circuits and Systems, pp. 881-884,
1989.

[4] T.H.Krode. PowerPlay - Fast Dynamic Power Evaluation Based on
Logic Simulation. |EEE International Conference on Computer
Aided Design, pp. 96-100, Oct. 1991.

Table 6: Four mode UART power |ookup table using coarse
instruction granularity.

2 4 8 16
(bytes) | (bytes) | (bytes) | (bytes)
Mode 1: Idle
Reset 1 |13 [14pd |14
Enable_tx 27 (323 (31pd (31
Enable_rx 17pd |18pJ |19d |18 d
Send_or_receive 15 |17 |18d |19d
Mode 2: Tx_enabled
Reset 1B3pd [13pd [14pd | 14pd
Enable_tx 23 (23 (22 (24
Enable_rx P |20 |19 |19
Send_or_receive 74pd |76 pJ |88 | 114
Mode 3: Rx_enabled
Reset 1Bpd [14pd |15 |15
Enable_tx 21 (223 (21 (21
Enable_rx 18pd |19 |18pJ |18 d
Send_or_receive 46u) |51l |57 |67
Mode 4: Tx_rx_enabled
Reset 1B3pd [13pd [14pd | 14pd
Enable_tx 20 (223 (21 (21
Enable_rx O |19 |19 |19d
Send_or_receive 104 pJ | 108 pJ | 125 puJ | 158 pJd

Table 7: UART's power evaluation accuracy with coarser
instruction granularity.

Power (mJ) Error

Gate-level System- | System-level | Ref.
level (coarse Gate-
granularity) level

UART | 113 115 94 17%

[5] A.Raghunathan, S. Dey, N.K. Jha. Register-transfer level evaluation
techniques for switching activity and power consumption.
International Conference on CAD Aided Design, pp. 158-165, 1996.

[6] S. Gupta, F. Jam. Power Macromodeling for High Level Power
Evaluation. Design Automation Conference, June 1997.

[71 M. Barocci, L. Benini, A. Bogliolo, B. Ricco, G. De Michdli.
Lookup Table Power Macro-Models for Behavioral Library
Components. Design Automation and Test In Europe, March 1998.

[8] P.Landman, J. Rabaey. Architectural Power Analysis The Dual Bit
Type Method. |IEEE Transactions on VLSl Systems, val. 3, no. 2,
June 1995.

[9] H. Mehta, R. Owens, M.J Irwin. Energy Characterization Based on
Clustering. Design Automation Conference, June 1996.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

[22]

[23]

E. Macii, M. Pedram. High-Level Power Modeling, Evaluation, and
Optimization. |EEE Transactions on Computer Aided Design of
Integrated Circuitsand Systems, vol. 17, no. 11, November 1998.

D. Marculescu, R. Marculescu, M. Pedram. Information Theoretic
Measures for Power Analysis. |IEEE Transactions on Computer
Aided Design, val. 15, no. 6, pp. 599-610, 1996.

M. Nemani, F. Ngim. Toward a High Level Power Evaluation
Capability. IEEE Transactions on Computer Aided Design, vol. 15,
no. 6, pp. 588-598, 1996.

V. Tiwari, S. Maik, A. Wolfe Power Analysis of Embedded
Software: A First Step Toward Sofware Power Minimization. |EEE
Transactionson VLS| Systems, vol. 2, no. 4, pp. 437-445, 1994.
C.T. Hdeh, M. Pedram, H. Mehta, F. Rastgar. Profile Driven
Program Synthesis for Evaluation of System Power Disspation.
Design Automation Conference, June 1997.

C. Barndolese, W. Fornaciari, F. Salice, D. Sciuto. Energy
Evaluation for 32-bit Microprocessor. International Workshop on
Hardware/Software Co-Design, 2000.

R. J. Evans, P.D. Franzon. Energy Consumption Modeling and
Optimization for SRAMs, IEEE Journal of Solid-State Circuits, Vol.
30, No. 5, pp. 571-579, 1995.

T.D. Givargis and F. Vahid. Interface Exploration for Reduced
Power in Core-Based Systems, ISSS, 1998, pp. 117-122.

T.D. Givargis, J. Henkd, and F. Vahid. Interface and Cache Power
Exploration for Core-Based Embedded System Design. ICCAD
1999.

T. Smunic, L. Benini, G. De Michdli. Cycle-accurate Evaluation of
Energy Consumption in Embedded Systems. Design Automation
Conference, pp. 876-872, 1999.

Y. Li, J. Henkd. A Framework for Estimating and Minimizing
Energy Disspation of Embedded HW/SW Systems. Design
Automation Conference, pp. 188-193, 1998.

Virtual Socket Interface Association, Architecture Document,
http://mww.vs .org, 1997.

F. Vahid, T.D. Givargis. Incorporating Cores into System-Level
Specification. International Symposum on System Synthess,
November 1998.

T. Simunic, L. Benini, G. De Micheli. Cycle-Accurate Simulation of
Energy Consumption in Embedded Systems. Design Automation
Conference, June 1999.

