
Instruction-based System-level Power Evaluation of
System-on-a-chip Peripheral Cores

Abstract

Various system-level core-based power evaluation approaches
for core types like microprocessors, caches, main memories,
and buses, have been proposed in the past. Approaches for
other types of components have been based either on the gate-
level, register-transfer level, or behavioral-level. We propose a
new technique, suitable for a variety of cores like peripheral
cores, that is the first to combine gate-level power data with a
system-level simulation model written in C++ or Java. For
that purpose, we investigated peripheral cores and decomposed
their functionality into so-called instructions. Our technique
addresses a core-based system design paradigm. We show that
our technique is sufficiently accurate for making power-related
system-level design decisions, and that its computation time is
orders of magnitude smaller than lower-level simulation
approaches.

Keywords
System-on-a-chip, low-power design, intellectual property,
caches, cores, estimation, silicon platforms, system parameters.

1. Introduction
As mobile computing devices have gained a major market
share in the computing sector and their functionality (i.e.,
complexity) has increased rapidly, minimizing power
consumption has become one of the most important design
goals. Furthermore, the short life cycles of consumer products
in conjunction with increasing product complexity has led to a
core-based design paradigm. As a consequence, there is a
strong demand for core-based power evaluation and
optimization tools.

A core is a pre-designed processing-level component, such
as a microprocessor, memory, DMA controller, UART, bus
interface, or CODEC, residing on a system-on-a-chip (SOC)
with typically tens of other cores. A core, also known as
Intellectual Property or IP, may come in different forms: a soft
core comes as a synthesizable model in hardware-description
language (HDL), a firm core as a structural model in an HDL,
and a hard core as a technology-specific layout. Core providers
typically parameterize their cores, whether soft, hard, or firm in
form, in order to increase the core’s applicability in different
applications and to ease its re-usability. Example parameters
include bit-widths and buffer-sizes. Soft and firm cores may be
parameterized via HDL generics, while hard cores via layout
generators. For example, a UART’s buffer size may be varied

from 1 to 16 bytes, trading off size and power for performance.
An important system-on-a-chip design task is thus the
configuring of all cores’ parameters, such that the configuration
is tuned for the application (i.e., the software running on the
SOC’s microprocessor core) and for the power, size and
performance constraints of the SOC.

Since the whole SOC has to be optimized in terms of
power and the according parameters are interdependent and
large in number, fast and accurate evaluation and optimization
tools are needed.

A core’s power consumption may vary greatly depending
on the application driving the SOC, and on the configuration of
the core itself. Thus, the power tables provided in core
databooks, representing average power data, may yield
inaccurate power numbers for a particular application and
configuration, even when extended to account for a subset of
common configurations.

Therefore, numerous researchers have proposed
techniques for rapid, system-level power evaluation of certain
types of cores, including microprocessor, cache, memory and
bus cores. In our efforts to develop a system-level power
evaluation environment for parameterized SOC’s, we found
however that no techniques existed to evaluate general cores as
fast and accurately as a combined gate-level/system-level (i.e.,
executable specification) could provide. Our work uses this
approach and applies it to peripheral cores, i.e., those single-
purpose processing cores that typically surround a
microprocessor cores, such as DMA controllers, UARTs, bus
interfaces and CODECs, to explore this promising technology.

The remainder of the paper is organized as follows. In
Section 2, we describe related work. In Section 3, we present
our power evaluation technique. In Section 4, we give our
experimental results. In section 5, we conclude.

2. Previous work
Previous power evaluation work has been done at various
abstraction levels. Circuit-level approaches simulate the circuit
at the transistor level while monitoring supply current [1][2].
Logic-level, or gate-level, approaches simulate a gate-level
design, and calculate power by considering switching activity
of nodes in the design [3][4], executing orders of magnitude
faster than circuit-level approaches at the expense of some
accuracy. Even so, logic-level approaches are many orders of
magnitude too slow to be used in SOC configuration
exploration, requiring days to obtain data for even one
configuration.

Tony D. Givargis, Frank Vahid
Department of Computer Science and Engineering

University of California, Riverside, CA 92521
{ givargis,vahid} @cs.ucr.edu,

www.cs.ucr.edu/~dalton

Jörg Henkel
C&C Research Laboratories, NEC USA

4 Independence Way, Princeton, NJ 08540
henkel@ccrl.nj.nec.com

RTL (register-transfer level) power evaluation operates at
an even higher-level of abstraction, modeling power
consumption of more abstract circuit components, such as
adders and multipliers. Simulation is performed at the RT-level
and power is obtained by using these power models, also
known as macro-models. The approach taken here can be
divided into two categories, macro-modeling using table-lookup
techniques and analytical models. Power modeling and
evaluation in 0 was among the first to show the feasibility of
RTL-based approaches that showed a very good accuracy and a
much higher speed than gate-level approaches. Using table-
lookups, each component is modeled via an N-variable
characterization (input density, output density, switching-
probability, etc.) of its power consumption [6][7]. An N-
dimensional lookup table is used to lookup the power
consumption of an RTL component during simulation.
Similarly, analytical models have been devised that compute
power consumption of an RTL component given the actual
input patterns or some form of input pattern characterization
[8][9]. Lookup-tables and the coefficients of the analytical
models are often derived from the gate-level circuit structure or
lower-level power evaluation and simulation. While RTL
power evaluation is shown to be accurate to within 5% of
actual power consumption 0, it too suffers from simulation
times too slow for extensive system-level exploration.
Furthermore, just synthesizing an RTL design for a given
configuration can take hours, independent of simulation.

Previous behavioral-level approaches seek to estimate
power of a behavioral HDL description before a synthesized
design is obtained. An abstract notion of physical capacitance
and switching activity is used. Switching is estimated using
entropy from circuit input to circuit output by quadratic or
exponential degradation [11][12]. While such behavioral
approaches can provide fast evaluation of power for custom
designs, they will not be nearly as accurate for cores as

approaches that take advantage of the fact that cores are pre-
designed.

Work has been done to evaluate power consumption of
microprocessor cores. One approach, instruction-level power
modeling, is proposed by [13]. Given a program execution
trace, energy is computed as the sum of the energy consumed
by each instruction that is executed, circuit state energy
consumed when a particular instruction is followed by another,
and energy consumed by other effects such as stalls and cache
misses. This approach is sped up in [14] by deriving a shorter
program trace that results in equal power dissipation when
compared to the original trace. In [15], a mathematical generic
power model for 32-bit microprocessors is proposed. The
approach classifies the instruction set into classes like branches
etc. The model has been applied to various 32-bit processors.
Other researchers have focused on fast system-level models for
cache, memory and bus power consumption [16][17][18],
consisting mostly of equations that compute power
consumption as a function of usage/traffic and core parameters.
Further approaches aim at estimating the power consumption of
CPU, cache, memory and bus together. In [19], a cycle-accurate
power simulation tool is introduced for an embedded system
using a StrongARM architecture. The reported results are
accurate within 5% compared to measurements conducted on a
real existing hardware board. A trace-based approach
deploying a mix of analytical models (for instruction cache,
data cache, and main memory) and instruction set simulators is
introduced in [20]. Their Avalanche tool can either conduct a
fast design space exploration or it can be used to determine the
optimum system parameters.

3. Power-evaluation for peripheral cores
3.1 Overview
We examined a variety of peripheral cores, and found that they
all could be viewed as executing a sequence of what we call
“ instructions” , using this term in a relaxed manner. Typically,

Figure 1: Constructing VHDL models for extraction of gate-
level power estimates.

Figure 2: Augmenting the functional implementation of an
instruction for power evaluation.

Not e: k and s chosen t o mai nt ai n er r or wi t hi n r ange

f or each par amet er p

 f or each power - mode m

 f or each i nst r uct i on i

 i f i i s i ndependent

 cr eat e a t est - bench t hat si mul at es i(random),

 i n mode m, conf i gur ed as p, k t i mes

 el se i f (i i s dependent on st at i st i cal char .)

 f or each st at i st i cal char act er i zat i on s

 cr eat e a t est - bench t hat si mul at es i(s),

 i n mode m, conf i gur ed as p, k t i mes

 el se i f (i i s dependent di r ect l y on i nput dat a)

 f or each cl ust er of i nput pat t er n d

 cr eat e a t est - bench t hat si mul at es i(d),

 i n mode m, conf i gur ed as p, k t i mes

/ / f unct i onal i mpl ement at i on bef or e her e

power - mode = Next Power Mode(power - mode, cur r ent - i nst) ;

p = t hi s cor e’ s cur r ent par amet er val ues;

m = power - mode;

i = cur r ent - i nst r uct i on’ s i dent i f i cat i on number ;

d = dat a passed i nt o t he cur r ent - i nst r uct i on;

i f (i i s i ndependent of i t s dat a) {

 t ot al - power += Power LookupTabl e[p] [m] [i] ;

}

el se i f (i i s st at i st i cal l y dependent on i t s dat a) {

 t ot al - power +=
Power LookupTabl e[p] [m] [i] [[Get St at s(d)] ;

}

el se i f (i i s dependent on i t dat a) {

 t ot al - power += Power LookupTabl e[p] [m] [i] [d] ;

}

an instruction represents an atomic action available to the
programmer of a microprocessor. But we use “ instruction”
more generally as an action that collectively with other actions
describes the range of possible behaviors of a core.
Furthermore, an “ instruction” can be better used for power
evaluation since – compared to a classical instruction – our
notation of instruction can denote a smaller or a larger piece of
functionality depending on the power characteristics. Thus, we
have extended the instruction-level power modeling approach,
previously used for microprocessor cores, to peripheral cores.
In developing the approach, we noted that cores typically
already come with system-level functional models, written in a
language like C, C++, or Java, and that in fact the VSIA
requires such models in its standard [21].

We informally define the power evaluation problem as
follows. Given a parameterized SOC core, say a UART, we are
to devise a high-level executable model, say in C++, of that
core that can output power dissipation during a system-level
simulation. Furthermore, this model must be sensitive to
changes in the various parameters of that particular core.
Although we define our modeling and evaluation approach for
a single parameterized core, the approach can be applied to
each peripheral core in an SOC to obtain total power.

Our approach can be broken into a number of steps as
follows. The core provider must select a set of appropriate
instructions, perform gate-level power analysis to construct
power lookup tables for each instruction, and create a system-
level core model that utilizes the lookup-tables for power
evaluation. The core user connects the system-level core
models, executes the whole system (which is possible since the

system-level model represents an executable specification), and
thus obtains power data after a system execution/simulation.
We now describe each step in more detail, using a UART core
as an example.

3.2 Peripheral instructions
The core provider must first break the core’s functionality into
a set of instructions. Given an RTL model of a core called C,
we first determine the system-level instructions i1, i2, i3, … in,
of C. These instructions must have the property that they
collectively cover the entire functionality of C and that no two
instructions cover the same function of C, i.e., i1 ∪ i2 ∪ i3 ∪ …
∪ in = Functionality of C & i j ∩ ik = ∅, for 1 < j, k ≤ n. As
with the instructions of an instruction-set processor, each
instruction i j operates on some input data and produces some
output data. In our UART example, we selected the following
instructions: Reset, Enable_tx, Enable_rx, Send, and Receive.

For each instruction, the core provider must determine
how dependent the instruction’s power consumption is on the
instruction’s input data. We thus define an instruction’s power-
dependency characteristic as one of: dependent directly on its
input data, dependent on a statistical characterization of its
input data (e.g., the density of 1’s in a vector of bits), or
independent of its input data. Such determination can be based
on databooks, a core designer’s knowledge, experimental
results or statistical analysis. For our UART example, we ran
experiments that provided different data to each instruction,
and we determined that the power-dependency characteristic
for all instructions was “ independent.” For example, the Send
instruction consumes approximately a constant amount of
power regardless of the data being sent; likewise for the
Receive instruction.

Note that this is just a simple example. In general, there is
a trade-off in choosing the right instructions for power
evaluation: if the granularity is small, we will have many
instructions leading to a longer simulation time. On the other
hand, a small granularity tends to produce more accurate
results since more subtleties are taken care of. When we have
coarse-grained instructions, then the total number of
instructions is smaller, leading to faster simulation. But
coarser instructions might not be able to take into consideration
subtle effects, and as such may lead to less accurate results.

Very unlike microprocessors, certain instructions executed
on a peripheral core can drastically change the power
consumption of succeeding instructions. In particular, certain
instructions change the mode of the peripheral core. This
concept of mode is very different from that of measuring inter-
instruction power dependencies (e.g., a load following a store
may consume more power than a load following an add). To
account for a mode, the core provider must determine the set of
modes, m1, m2, m3, … mk in C, referred to as power-modes, that
cause C to consume significantly more or less power per each
execution of its instructions, i1, i2, i3, … in. In our UART
example, we found four power modes: Idle, Tx_enabled,
Rx_enabled, Tx_rx_enabled. Given these modes, we define a
power-mode transition function, that gives the next power-
mode given the current power-mode and the most recently
executed instruction of C. For the UART example, the power-
mode transition function is given in Table 1.

Table 1: UART's power mode transition function.

Current Instruction Current Mode Next Mode

Idle Idle

Tx_enabled Idle

Rx_enabled Idle

Reset

Tx_rx_enabled Idle

Idle Tx_enabled

Tx_enabled Tx_enabled

Rx_enabled Tx_rx_enabled

Enable_tx

Tx_rx_enabled Tx_rx_enabled

Idle Rx_enabled

Tx_enabled Tx_rx_enabled

Rx_enabled Rx_enabled

Enable_rx

Tx_rx_enabled Tx_rx_enabled

Idle Idle

Tx_enabled Tx_enabled

Rx_enabled Rx_enabled

Send/Receive

Tx_rx_enabled Tx_rx_enabled

3.3 Gate-level power evaluation
The second task consists of using gate-level simulation to
obtain per-instruction power data for the lookup-tables. Given
an RTL model of a core called C, its instructions i1, i2, i3, … in,
and its modes m1, m2, m3, … mk, we follow the procedure
outlined in Figure 1. This procedure gives a methodical way of
creating a set of testbench models that, when simulated at gate-
level, capture the power consumption of a particular
instruction, in a particular mode with a particular parameter
setting.

We then simulate each testbench using the gate-level
model of C, and we analyze the average power consumption of
the corresponding instruction, mode and parameter value. We
tabulate these power results into our lookup tables. Table 2
gives the lookup table for the UART example. The rows
correspond to instructions while columns correspond to the
UART’s buffer size parameter values. The entries are repeated
for each one of the 4 modes.

3.4 System-level modeling
The next step is to develop a system-level model of each core
that enables rapid power evaluation when executed, i.e., an
executable specification. Given an RTL model of a core called
C, its instructions i1, i2, i3, … in, and its modes m1, m2, m3, …
mk, we implement a functional model of C in terms of its
instructions.

If using method-calling objects [22], the interface to the
object representing C would have the instructions i1, i2, i3, …
in, as methods and the instruction’s input/output data as
parameters to the corresponding methods. To each object-
oriented model, we add two data objects, called total-power
(initialized to zero) and power-mode (initialized to “ Idle” .) We
then augment the implementation of each method of C’ s system
level model with the code outlined in Figure 2.

3.5 System-level power evaluation
The above three steps are performed by the core developer.
They may take days to complete, forming part of the months

required to develop the core. They must be done for each target
technology. But note that those steps have only to be performed
one time. Once done, the resulting data can be used in any
core-based design that is using the particular core.

The core user does not perform the above steps (unless re-
targeting to a new technology, in which case the core provider
may supply the necessary testbenches). Rather, the user
connects the core models and simulates them. Simulation of a
complete SOC, using system-level models, takes on the order
of seconds or minutes. Thus, hundreds or thousands of
configurations can be evaluated. The top-level simulation
model will be designed to output the value of the total-power
variable, for each core of the system, at the end of each
simulation. The sum of these total-power values represents the
system-level estimate of the system’s power consumption for a
given configuration of its parameters.

Figure 3: Target Architecture.

I$ D$

Bus Controller

MEM MEM Controller

DMA

BUS-
BRID

GE

UART
On Chip Per. Bus

JPEG

System
Bus

Processor Local Bus

MIPS

Table 2: Four mode UART power lookup table.

2
(bytes)

4
(bytes)

8
(bytes)

16
(bytes)

Mode 1: Idle

Reset 11 µJ 13 µJ 14 µJ 14 µJ

Enable_tx 27 µJ 32 µJ 31 µJ 31 µJ

Enable_rx 17 µJ 18 µJ 19 µJ 18 µJ

Send 17 µJ 19 µJ 19 µJ 20 µJ

Receive 14 µJ 15 µJ 17 µJ 18 µJ

Mode 2: Tx_enabled

Reset 13 µJ 13 µJ 14 µJ 14 µJ

Enable_tx 23 µJ 23 µJ 22 µJ 24 µJ

Enable_rx 19 µJ 20 µJ 19 µJ 19 µJ

Send 133 µJ 135 µJ 157 µJ 209 µJ

Receive 14 µJ 16 µJ 18 µJ 18 µJ

Mode 3: Rx_enabled

Reset 13 µJ 14 µJ 15 µJ 15 µJ

Enable_tx 22 µJ 22 µJ 21 µJ 21 µJ

Enable_rx 18 µJ 19 µJ 18 µJ 18 µJ

Send 19 µJ 19 µJ 21 µJ 23 µJ

Receive 73 µJ 83 µJ 93 µJ 111 µJ

Mode 4: Tx_rx_enabled

Reset 13 µJ 13 µJ 14 µJ 14 µJ

Enable_tx 21 µJ 22 µJ 21 µJ 21 µJ

Enable_rx 19 µJ 19 µJ 19 µJ 19 µJ

Send 133 µJ 135 µJ 157 µJ 209 µJ

Receive 74 µJ 81 µJ 93 µJ 107 µJ

4. Experiments
4.1 System architecture
To evaluate the accuracy and simulation speed of our approach,
we applied it to three cores within an SOC. We will next
describe our architecture, its three selected cores, relevant
parameters, and application. Then we describe our results.

Our parameterized system-on-a-chip architecture, depicted
in Figure 3, is as follows. A MIPS R2000 processor and
instruction and data caches communicate over a high-speed
processor-local bus. The on-chip memory and direct memory
access (DMA) controller cores are connected to the system bus,
which in turn is bridged to the processor-local bus via a bus
controller. Universal Asynchronous Receiver and Transmitter
(UART) and JPEG decoder cores are connected to the
peripheral bus, which is bridged to the system bus. Both the
UART and JPEG decoder cores are DMA capable. The DMA
controller is capable of transferring data between peripheral
cores and memory without the intervention of the processor.
The processor can run concurrent to the DMA until a cache
miss occurs, at which point the processor is blocked waiting for
the DMA transfer to complete. The UART, DMA and JPEG
decoder cores in our architecture are parameterized. The DMA
controller can be instantiated with maximum block transfer
size set to one of 4, 16, 64 or 128 bytes. The UART core’s
transmitter/receiver buffer sizes can each be set to one of 2, 4,
8, or 16 bytes. The JPEG decoder core’s pixel resolution can be
set to one of 10 or 12 bits. This architecture is used to
implement a JPEG image decode accelerator. JPEG images are
input serially through the UART, transferred via the DMA to
memory, Huffman decoded by the MIPS, transferred from
memory to the JPEG-decoder and back to the UART to be
outputted to the host device. Most of these operations take
place in a pipelined fashion for maximum throughput. We have
RTL synthesis models for all three of the parameterized cores.

4.2 System-level functional simulation
We implemented system-level functional simulation models, as
described in the previous sections, for all components in the
JPEG image decode accelerator. Our gate-level characterization
procedure for the three parameterized cores took roughly one
week for synthesis, simulation and analysis. After this analysis,
we obtained power lookup tables (as noted before, this step is
only performed once by a core provider). We have used our
model to evaluate power consumption of the three cores when
processing a 640x480 pixel image, and have compared the

results to gate-level power evaluations done by the Synopsys
Power Compiler. Only the three cores are simulated at the gate-
level and the remainder of the architecture is simulated at a
behavioral VHDL level, for faster simulation, since we are only
interested in power estimates for the peripheral cores. For our
system-level simulation model, all components (including the
MIPS) of the architecture are simulated as an executable binary
obtained from the C++ models.

Our results are summarized in Figure 4. For comparison
purposes, we have provided power estimates based on a cycle-
based databook approach. Here, for each of the three cores, we
measure the amount of time that the core was busy computing
as well as the amount of time that the core spent idle. We then
used idle and average power consumption data from the
databooks (for similar technology to that used during our
synthesis) to compute the total power consumption of each of
the cores. This databook-based approach is similar to that
outlined in [23]. Our results show that average system-level
power error is 2.7% (min=1%, max=5%) when compared to
gate-level power estimation. In contrast, average databook-
based power error is 30% (min=14%, max=38%) when
compared to gate-level simulation. Our simulation model for
processing a 640x480 pixel image ran in just under 14 seconds
while the gate-level simulation required 12 hours, i.e., our
functional system-level approach ran 3000 times faster than
gate-level simulation. In addition, we estimated the cycle-based
simulation time to be about 200 times slower than our system-
level approach.

We performed a second experiment to see the importance
of the concept of power-modes. In this experiment, we
implemented two additional UART system-level models, one
with only a single power-mode and another with two power-
modes. For our single mode model, we measured and recorded

Table 4: Two mode UART power lookup table.

2
(bytes)

4
(bytes)

8
(bytes)

16
(bytes)

Mode 1: Idle

Reset 11 µJ 13 µJ 14 µJ 14 µJ

Enable_tx 27 µJ 32 µJ 31 µJ 31 µJ

Enable_rx 17 µJ 18 µJ 19 µJ 18 µJ

Send 17 µJ 19 µJ 19 µJ 20 µJ

Receive 14 µJ 15 µJ 17 µJ 18 µJ

Mode 2 : Enabled

Reset 13 µJ 13 µJ 14 µJ 14 µJ

Enable_tx 23 µJ 25 µJ 24 µJ 24 µJ

Enable_rx 18 µJ 19 µJ 19 µJ 19 µJ

Send 76 µJ 77 µJ 89 µJ 115 µJ

Receive 44 µJ 49 µJ 55 µJ 64 µJ

Table 3: One mode UART power lookup table.

2 (bytes) 4 (bytes) 8 (bytes) 16 (bytes)

Reset 13 µJ 13 µJ 14 µJ 14 µJ

Enable_tx 23 µJ 25 µJ 24 µJ 24 µJ

Enable_rx 18 µJ 19 µJ 19 µJ 19 µJ

Send 76 µJ 77 µJ 89 µJ 115 µJ

Receive 44 µJ 49 µJ 55 µJ 64 µJ

the lookup table shown in Table 3. The lookup table for our
two-mode UART model is shown in Table 4.

We simulated the same JPEG image-decode accelerator
application as in our first experiment. The power results for the
single-mode, two-mode and four-mode UART are summarized
in Table 5. Using a single mode only, which is the same as not
considering modes, results in an error of 23%. Using two
modes helps, but is still off by 8.6% Our four-mode model gave
only 1.7% error. Thus, a proper selection of modes is important
for accuracy.

In our next experiment, we examined the importance of
proper instruction granularity selection, by using a smaller set
of instructions for the UART core and comparing our power
evaluation technique to our original experiment. The lookup
table for this version of the UART is given in Table 6. Notice
that we aggregated the Send and Receive instructions into a
single Send_or_receive instruction. Such aggregation
performed repeatedly will eventually result in a power
evaluation model that considers the average power
consumption for a core when that core is computing, i.e., a
scheme similar to [23].

We ran our JPEG decode accelerator example using this
UART model (with fewer instructions) and compared the

results to those obtained from our original UART model. The
results are given in Table 7. When compared to gate-level,
selecting a smaller instruction set resulted in 17% error.

Based on our experiments, we conclude that our system-
level, instruction based lookup table power evaluation
technique for general cores is very accurate and fast. We
further have shown that the selection of appropriate power-
modes and instructions for a particular core is important in
obtaining high power evaluation accuracy.

5. Conclusions
We have introduced an instruction-based technique for fast and
accurate power evaluation of peripheral cores. The technique
can be used in conjunction with those previously developed for
microprocessors, caches, memories and buses, to achieve
power evaluation of systems-on-a-chip, and complements
evolving system-level modeling standards. We showed the
importance of the power-mode concept, and showed that
databook lookup approaches can be inaccurate since they are
not sensitive to different data. Our future work includes
generating peripheral instruction traces, and then using trace
simulators to further speedup power estimation, similar to
microprocessor and cache trace-simulator approaches.

6. Acknowledgement
This work was supported by the National Science Foundation
(grants CCR-9811164 and CCR-9876006) and a Design
Automation Conference Graduate Scholarship.

7. References
[1] S.M. Kang. Accurate Simulation of Power Dissipation in VLSI

Circuits. IEEE Journal of Solid-State Circuits, vol. CS21, no. 5, pp.
889-891, October 1986.

[2] G.Y Yacoub, W.H. Ku. An Accurate Simulation Technique for
Short-Circuit Power Dissipation Based on Current Component
Isolation. IEEE International Symposium on Circuits and Systems,
pp. 1157-1161, 1989.

[3] R. Tjarnstorm. Power Dissipation Estimate by Switch Level
Simulation. IEEE symposium on Circuits and Systems, pp. 881-884,
1989.

[4] T.H. Krodel. PowerPlay - Fast Dynamic Power Evaluation Based on
Logic Simulation. IEEE International Conference on Computer
Aided Design, pp. 96-100, Oct. 1991.

Figure 4: Energy consumption of the JPEG image-decode accelerator.

113

519

1573

155

717

1793

115

493

1550

0
200

400

600

800

1000

1200
1400

1600

1800

2000

UART DMA JPEG

E
n

er
g

y
(m

J) Gate-level

Databooks

System-level

Evaluation Time

Gate-level: 40,980 sec

Databooks: 2,700 sec

System-level: 14 sec

2%37%

5%
38%

14%
1%

Table 5: UART’s power evaluation accuracy for various
power modes.

Power (mJ) Error

Gate-level System-level Ref. Gate-level

Single-
mode

86 23%

Two-
modes

104 8.6%

Four-
modes

113

115 1.7%

[5] A. Raghunathan, S. Dey, N.K. Jha. Register-transfer level evaluation
techniques for switching activity and power consumption.
International Conference on CAD Aided Design, pp. 158-165, 1996.

[6] S. Gupta, F. Jajm. Power Macromodeling for High Level Power
Evaluation. Design Automation Conference, June 1997.

[7] M. Barocci, L. Benini, A. Bogliolo, B. Ricco, G. De Micheli.
Lookup Table Power Macro-Models for Behavioral Library
Components. Design Automation and Test In Europe, March 1998.

[8] P. Landman, J. Rabaey. Architectural Power Analysis: The Dual Bit
Type Method. IEEE Transactions on VLSI Systems, vol. 3, no. 2,
June 1995.

[9] H. Mehta, R. Owens, M.J Irwin. Energy Characterization Based on
Clustering. Design Automation Conference, June 1996.

[10] E. Macii, M. Pedram. High-Level Power Modeling, Evaluation, and
Optimization. IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, vol. 17, no. 11, November 1998.

[11] D. Marculescu, R. Marculescu, M. Pedram. Information Theoretic
Measures for Power Analysis. IEEE Transactions on Computer
Aided Design, vol. 15, no. 6, pp. 599-610, 1996.

[12] M. Nemani, F. Najm. Toward a High Level Power Evaluation
Capability. IEEE Transactions on Computer Aided Design, vol. 15,
no. 6, pp. 588-598, 1996.

[13] V. Tiwari, S. Malik, A. Wolfe. Power Analysis of Embedded
Software: A First Step Toward Sofware Power Minimization. IEEE
Transactions on VLSI Systems, vol. 2, no. 4, pp. 437-445, 1994.

[14] C.T. Hsieh, M. Pedram, H. Mehta, F. Rastgar. Profile Driven
Program Synthesis for Evaluation of System Power Dissipation.
Design Automation Conference, June 1997.

[15] C. Barndolese, W. Fornaciari, F. Salice, D. Sciuto. Energy
Evaluation for 32-bit Microprocessor. International Workshop on
Hardware/Software Co-Design, 2000.

[16] R. J. Evans, P.D. Franzon. Energy Consumption Modeling and
Optimization for SRAMs, IEEE Journal of Solid-State Circuits, Vol.
30, No. 5, pp. 571-579, 1995.

[17] T.D. Givargis and F. Vahid. Interface Exploration for Reduced
Power in Core-Based Systems, ISSS, 1998, pp. 117-122.

[18] T.D. Givargis, J. Henkel, and F. Vahid. Interface and Cache Power
Exploration for Core--Based Embedded System Design. ICCAD
1999.

[19] T. Simunic, L. Benini, G. De Micheli. Cycle-accurate Evaluation of
Energy Consumption in Embedded Systems. Design Automation
Conference, pp. 876-872, 1999.

[20] Y. Li, J. Henkel. A Framework for Estimating and Minimizing
Energy Dissipation of Embedded HW/SW Systems. Design
Automation Conference, pp. 188-193, 1998.

[21] Virtual Socket Interface Association, Architecture Document,
http://www.vsi.org, 1997.

[22] F. Vahid, T.D. Givargis. Incorporating Cores into System-Level
Specification. International Symposium on System Synthesis,
November 1998.

[23] T. Simunic, L. Benini, G. De Micheli. Cycle-Accurate Simulation of
Energy Consumption in Embedded Systems. Design Automation
Conference, June 1999.

Table 6: Four mode UART power lookup table using coarse
instruction granularity.

2
(bytes)

4
(bytes)

8
(bytes)

16
(bytes)

Mode 1: Idle

Reset 11 µJ 13 µJ 14 µJ 14 µJ

Enable_tx 27 µJ 32 µJ 31 µJ 31 µJ

Enable_rx 17 µJ 18 µJ 19 µJ 18 µJ

Send_or_receive 15 µJ 17 µJ 18 µJ 19 µJ

Mode 2: Tx_enabled

Reset 13 µJ 13 µJ 14 µJ 14 µJ

Enable_tx 23 µJ 23 µJ 22 µJ 24 µJ

Enable_rx 19 µJ 20 µJ 19 µJ 19 µJ

Send_or_receive 74 µJ 76 µJ 88 µJ 114 µJ

Mode 3: Rx_enabled

Reset 13 µJ 14 µJ 15 µJ 15 µJ

Enable_tx 22 µJ 22 µJ 21 µJ 21 µJ

Enable_rx 18 µJ 19 µJ 18 µJ 18 µJ

Send_or_receive 46 µJ 51 µJ 57 µJ 67 µJ

Mode 4: Tx_rx_enabled

Reset 13 µJ 13 µJ 14 µJ 14 µJ

Enable_tx 21 µJ 22 µJ 21 µJ 21 µJ

Enable_rx 19 µJ 19 µJ 19 µJ 19 µJ

Send_or_receive 104 µJ 108 µJ 125 µJ 158 µJ

Table 7: UART’s power evaluation accuracy with coarser
instruction granularity.

Power (mJ) Error

Gate-level System-
level

System-level
(coarse

granularity)

Ref.
Gate-
level

UART 113 115 94 17%

