A Power-Configurable Bus for Embedded Systems

Chuanjun Zhang
Dept. of Electrical Engineering
University of California, Riverside
czhang@ee.ucr.edu

Abstract

Pre-designed configurable platforms, possessing
microprocessors, memories, and numerous peripherals on a
single chip, are increasing in popularity in embedded system
design. Platform configurability enables use in more products,
which results in lower cost platforms due to higher volume
production. Common configurable features include voltage
scaling and cache organization. We introduce a new bus
architecture that can be configured for normal performance or
low power. The additional hardware that provides this
configurability imposes almost no performance overhead in
normal mode compared to a non-configurable bus. We show
the substantial range of power and performances that such a
bus provides, and we show that the low-power configuration
can result in energy savings, using a set of benchmarks.

Keywords
Bus, low power, configurable systems, system-on-a-chip,
platforms, architecture tuning.

1. Introduction
Platforms are becoming popular in embedded system design. A
platform is an off-the-shelf system-on-a-chip (SOC) typically
consisting of a microprocessor, cache, memories, Coprocessors,
peripherals, and a hierarchy of buses [13]. A platform is
typically targeted to a particular application domain, such as
network switches, digital cameras, set-top boxes, or portable
audio devices. While some platforms are intended for
prototyping only, others are intended for use in final products.
Embedded system designers gain two key advantages by
using an off-the-shelf platform integrated circuit (IC) in a
product compared with developing a semi-custom IC. First,
they reduce time-to-market, both by performing extensive in-
circuit verification and thus eliminating costly errors early, and
by eliminating the months required for IC design and
fabrication. Second, they may achieve low product cost due to
the low platform cost, which is possible due to the platform
manufacturer selling the platform in high volumes to designers
of avariety of products. Use of the same platform in a variety
of products enables the platform designer to amortize non-
recurring engineering costs over larger volumes than possible
for a semi-custom IC intended for a single product.

Frank Vahid

Dept. of Computer Science & Engineering
University of California, Riverside

vahid @cs.ucr.edu, www.cs.ucr.edu/~vahid

Also with the Center for Embedded Computer
Systems at UC Irvine

For a platform to be usable in a variety of products, it must
be configurable to the varying power and performance demands
of different products [11]. In the same application domain, one
product may require higher performance, while another may
require lower power. In fact, even the same product may have
changing requirements over time — high performance when
plugged in to a power supply, low power when running on
battery, for example.

Thus, a need exists for new architectural components that
can be configured for either high performance or low power. In
this paper, we highlight previous work on components that
have appeared in recent products or been proposed in research.
We then introduce a new bus architecture that can be
configured to execute in normal (high performance) mode, or a
slower low power mode. We provide power and performance
data for several examples from the Powerstone benchmark
suite, showing a good range of power and performance. We
also provide energy data demonstrating that the bus can reduce
the total energy required for many examples.

2. Related Work

Voltage scalable microprocessors represent one form of
performance/power configurable component appearing in
several recent devices [5]. Such microprocessors can have their
source voltage reduced, with a corresponding reduction in clock
frequency, to reduce power. Since much power consumption in
CMOS circuits is proportional to the square of the source
voltage [12], power reductions can be huge, with a single
processor having active operation power consumption ranging
from a few Watts down to just milliwatts.

Figure 1: Base architecture.

I nstruction
memory bus

>
—> >

Microprocessor
A datard addr

data rd addr
Proaram Memory (ROM)

Figure 2: Power-configurable bus architecture. The critical path when encoding is activated is shown.

5 > 46+ »0 x 45
® = ®
> addr_ I.; 1 S
o % on_bus [v
3 | c 4 S <]
55| e 5@ S 5
— 0 1 alD e} > | :
2l B "1 Tateh = S5 S &
> mux Id | F g — st —~
c S 2 =
o - = > 8 = 8
Q = D i —r
2 ctrl_ Jie latc / addr_inc =
S J_>Iogicl Id | [}
g_ ° L4 > P g
5 X =
S : || S
° < o)
D > o
IatchId R S &
data_inv /) latch Dl ctrl 3 'g
Idj¢—eo Iogic_2 < > data_on_bus
©
g /o8 B B
o 18 /="

Configurable caches are also beginning to appear. Adding
an on-chip cache is a well-known method for improving
microprocessor performance. An N-way set-associative cache
(where common values for N range from 2 to 32) is a popular
cache design. However, because the N ways must be
simultaneously searched during each cache access, N-way
caches can consume a large percentage of system power. Thus,
caches that can have some of their ways shut down have
recently been proposed [1] and have appeared in commercial
products [7]. For some applications that didn’t really need all
the ways, the impact of shutting down some ways on misses
(and hence performance) may be very small, resulting in less
power per cache access with little performance loss. For other
applications, the impact on misses may be greater, but the
power savings per cache access may still outweigh the extra
power consumed by the additional transfers between memory
and cache due to misses. Thus, power is reduced at the expense
of performance. For yet other applications, however, the extra
miss power outweighs the cache access power savings, so for
those examples, shutting down ways actually increases power.
Thus, determining the number of ways to shut down when
lower power is needed is highly dependent on the application.

The voltage scaling and cache way shutdown methods can
obviously be combined in a single platform. At the lowest
voltage setting, one might shut down the optimal number of
ways for a given application to further reduce power. For the
highest voltage setting, one might enable all ways to give best
performance. For voltage levels in between the highest and the
lowest, one might use the configurable ways to provide more
power/performance points, resulting in finer-grained tradeoffs.

3. A Power-Configurable Bus Architecture

3.1 Overview

While voltage scaling provides tremendous ability to tradeoff
performance and power, more can be done. Without additional
configurable architectural components, we have the rather odd
situation of a system whose voltage can be scaled down to
reduce power, but whose cache, bus and other architectural
components are still configured as if high performance were the
goal. Furthermore, voltage scaling requires fairly costly DC-to-
DC converters, accompanied by clock frequency scaling
circuitry, so may not be feasible in all platforms. Configurable
architectural components, like a cache whose ways can be shut
down, can be used to address these problems.

We introduce a configurable bus, which can also be used to
tradeoff power and performance. Buses can consume much
power in an SOC, which may be as high as 80% of the total
power dissipation [9]. This is especially true as features
continue to shrink, making wires even more costly [13].

There are three components in CMOS power consumption:
dynamic power consumption, short circuit power consumption,
and static power consumption. In many cases, the dynamic
consumption is dominant. The dynamic power consumption in
a CMOS circuit can be described by the equation Py =
CiV2udfp,, Where f, is the switching frequency, C; is the average
capacitance loading of the circuit, and Vg4 is the supply voltage.
Our configurable bus seeks to reduce the switching frequency.
Other techniques, such as those that reduce voltage, can
additionally be applied to reduce power further.

We introduce our configurable bus between a
microprocessor and a program memory. However, the same
concepts can be applied to other buses, such as those between
microprocessor and cache, between cache and memory, and
even to buses connecting coprocessors or peripherals.

In our base architecture, shown in Figure 1, an Intel 8051
microprocessor is connected with a program memory (ROM)
via an instruction memory bus. This bus consists of 16 address
lines (addr), 8 data lines (data), a read line (read), and a clock
line (clk).

We extend this base architecture as shown in Figure 2.
There are two main extensions. At the top of the figure is logic
to encode (on the processor side) and decode (on the memory
side) addresses. At the bottom of the figure is the logic to
encode (on the memory side) and decode (on the processor
side) data. The goal of encoding is to transmit the same
information while minimizing bit switching on the buses. The
key assumption is that switching on a bus wire consumes far
more power, perhaps 100 to 1000 times, than switching of
internal logic wires [10].

3.2 Data Encoding

For the data bus, we have chosen to use bus invert
encoding [10]. The idea of this approach is to compare the
current data to be transmitted with the previously transmitted
data. If more bits would switch than would stay the same, we
instead transmit the complement of the current data, plus an
additional bit indicating that the data has been complemented.

In Figure 2, the data_on_bus latch stores the previously
transmitted data. When current data comes from the ROM, it is
compared with the previous data through 8 XOR gates that each
compare 1 bit position of the current and previous data. The
majority voter circuit outputs a one if its input has more ones
than zeros, which would mean more bits are different than are
the same. In this case, the complement of the current data is
obtained using an XNOR gate, the data_inv signal is set to one,
and the data and data_inv signals are stored in latches that
drive the data bus, all under the control of the ctrl_logic2
control logic block. If the majority_voter circuit outputs a zero,
then the true value of data is stored in the bus latch, and
data_inv is set to zero. The latches that drive the data bus are
necessary to prevent glitches, which occur as the encoding logic
computes, from appearing on the bus. They do not use the clock
and thus do not add an extra clock cycle.

On the microprocessor side, we simply feed the data
through 8 XNOR gates that each compare 1 bit of the data with
the data_inv signal. If data_inv is zero, data propagates
unchanged. If data_inv is one, the data gets complemented.

3.3 Address Encoding

For addresses, we have chosen to use TO encoding [3].
Although we could have chosen to use bus-invert for addresses
also, TO can do better when the values appearing on the bus are
mostly sequential (incremented by one over the previous
value). This is indeed the case for instruction bus addresses.
The idea of TO encoding is to compare the current address with
the previous address. If the current address is the previous
address plus one, we hold the bus steady and instead set an
additional line that tells the memory to increment the previous
address.

In Figure 2, the previous address plus one is stored in
addr_save. The current address is compared with this
incremented value. If equal, then the current address equals the
previous address plus one. In this case, the previous bus value,
stored in addr_on_bus, passes through a multiplexor and is

stored in the latch that drives the address bus. This prevents
the bus from switching. Meanwhile, the control logic
ctrl_logicl stores the one coming from the comparator into the
latch that drives the addr_inc line. If the current address was
not equal to the previous address plus one, then the current
address is passed through the mux into the latch that drives the
address bus, and the addr_inc latch is set to zero.

On the memory side, if the addr_inc line is zero, the
address bus passes through a mux to the ROM. If the addr_inc
line is one, then the previous value fed to the ROM plus one,
stored in register addr_to_rom on every clock cycle, is passed
through the mux to the ROM.

3.4 Configuration Logic

All of the encoding and decoding logic we have described is
enabled by the signal enable coming from the microprocessor.
This signal can be software programmable, or alternatively can
be directly connected to an external pin on the IC.

When enable is zero, the tri-state drivers at the top and
bottom of the center of Figure 2 pass the data and address
signals unchanged. Notice that when enable is zero, the signals
pass through no logic other than the tri-state drivers. As the
base architecture had bus drivers too, the extra delay imposed
by using tri-state driversis very small if any.

When enable is one, the tri-state drivers pass the encoded
values onto the buses. For encoding, the signals must pass
through additional logic. The additional logic that must be
passed through for a complete instruction fetch is shown in
Figure 2. Note that none of the additional logic is clocked. In
other words, we have designed the encoding logic to ensure
that we do not introduce additional clock cycles, since this
could require expensive changes to the microprocessor control
logic.

Instead, we have lengthened the instruction fetch time. If
instruction fetch time represented the system’s critical path (as
it often does), then enabling encoding lengthens the critical
path. This in turn means that the system clock frequency must
be reduced for proper operation when encoding is enabled.

While Figure 2 graphically shows the encoding/decoding
logic as quite large, this does not reflect the physical design. In
particular, the bus lines themselves may be very large. In our
case, the bus lines connect to an in-system programmable
ROM, which is separated from the microprocessor by a long
distance. Those wires are thus long and wide. In other words,
the wires internal to the encoding/decoding logic will be much
shorter and narrower than the bus wires. Also recall that the
transistors and wires related to encoding/decoding logic
consume far less power than the long bus wires.

4. Experiments

We have implemented our configurable bus as the instruction
bus of a system consisting of an Intel 8051 microcontroller
interfaced with a ROM program memory. We modeled the
entire system as a gate-level VHDL file. The 8051 was
synthesized from the model available at [6].

We performed simulations and power analysis of numerous
benchmarks executing on the 8051 using Synopsys tools. The
benchmarks were examples taken from the Powerstone
benchmark suite [8]. Binary is a binary search for the array of
15 integer elements; Insert is a insertion sort for 10 integer

Figure 3: Power results.

Benchmark | addr power (mW) data power (mW) | total power (MW) cycles cycle (ns) total energy (mJ)
len en % len en % len en % len en len en %
Binary 050 0,15 71%| 1,27 066 48%| 2,12 146 31% 17.274) 50 60 1,83 151 18%
Insert 0,38 0,15 59%| 0,71 055 22%| 1,90 1,40 26% 53.366| 50 60 5,06 4,47 12%
Matmul 043 0,05 89%| 0,75 048 36%| 2,05 1,31 36% 507.536/ 50 60| 51,92 39,80 23%
Ucbgsort 044 0,08 82%| 0,62 046 27%| 1,98 1,36 31% 260.000f 50 60| 2571 21,14 18%
Blit 0,73 0,02 97%| 0,98 0,36 63%| 2,15 1,06 50%| 20.895.620| 50 60| 2243,14 1333,98 41%
Brev 0,35 0,08 78%| 0,70 046 35%| 1,82 1,07 41%| 1402772 50 60[127,93 90,31 29%
Average 047 009 79%| 0,84 049 38%| 2,00 128 36%| 3.856.095] 50 60[386,00 294,99 23%
en = encoding enabled
numbers; Matmul is a matrix multiplication for 5x5 integer References

matrices; Uchgsort performs quick sort, and Blit is a graphics
application. The power we report includes the power on the bus
and the encoding/decoding logic. We use a bus capacitance to
internal wire capacitance ratio of 1000:1 [2].

The critical path of the 8051/memory system without
encoding was 50 ns. The encoding/decoding logic when
activated added 10 ns to this path, making the path 60 ns. In
other words, without encoding, the fastest system clock
frequency is 20 MHz. With encoding, the frequency must be
reduced to 16.7 MHz.

The results are summarized in Figure 3. The power due to
the address bus and data bus, with encoding disabled ('en) and
enabled (en), are shown separately. Address bus power savings
ranged from 59% to 97%, with the variation being due to some
applications have more sequential address access than others.
Likewise, data bus power reductions ranged from 22% to 63%,
with the variation due to different applications having differing
correl ations between successive data items. Total system power
reductions, which now include the power consumed by the
microprocessor and memory plus the bus encoding/decoding
logic, ranged from 26% to 50%, averaging 36%.

The energy required to perform a computation is another
metric of interest, equal to power times time. Note that
reducing power does not necessarily imply energy reduction,
because the time increase could outweigh the power decrease.
However, in our architecture, energy savings do occur, ranging
from 12% to 41%, and averaging 23% across all the examples.

5. Conclusions

We have presented a bus architecture that can be configured for
regular performance or for low power. The architecture uses
encoding logic that can be enabled to reduce switching on the
bus and hence reducing power, at the expense of performance.
The design is such that the performance and power overhead
when the encoding logic is disabled is minimal. Such a bus can
be used in a platform along with other configurable features,
such as voltage scaling or cache configuration, to provide for
power and performance tradeoffs. Our future plans include
integrating this bus with configurable cache and loop cache
components [4].

6. Acknowledgments
This work was supported by the National Science Foundation
(grant #CCR-9876006).

[1] D.H. Albonesi, “Selective cache ways: on-demand cache
resource allocation,” Journal of Instruction-Level
Parallelism 2(2000) 1-6.

[2] H.B.Bakoglu, Circuits, Interconnections, and Packaging
for VLSI.Addison-Wesley 1990.

[3] L.Benini, G. De Micheli, E. Macii, D.Scjuto, C.Silvano.
“Asymptotic Zero-Transition Activity Encoding for
Address Busses in Low-Power Microprocessor-Based
Systems,” GLS-VLSI-97:IEEE 7™ Great Lake Symposium
on VLSI.pp.77-82:Urbana-Champaign:IL:March 1997.

[4] A. Gordon-Ross, S. Cotterell and F. Vahid. Exploiting
Fixed Programs in Embedded Systems: A Loop Cache
Example. IEEE Computer Architecture Letters, Jan. 2002.

[5] http://developer.intel.com/design/intelxscale/benchmarks.
htm.

[6] The UCR Dalton Project, http://www.cs.ucr.edu/~dalton.

[71 A. Malik, B. Moyer and D. Cermak. “A Low Power
Unified Cache Architecture Providing Power and
Performance Flexibility.” International Symposium on
Low Power Electronics and Design. June. 2000.

[8] A. Malik, B.Moyer, and D. Cermak, “A Low Power
Unified Cache Architecture Providing Power and
Performance Flexibility”. Proceedings of
ISLPED2000,Rapallo, Italy, 26-27 July 2000.

[9] C. A. Neugebauer, R. O. Carlson, "Comparison of Wafer
Scale Integration with VLSI Packaging Approaches, “
IEEE Transactions on Components, Hybrids, and
Manufacturing Technology, pp. 184-189, June 1987.

[10] M. R. Stan, W. P. Burleson, “Bus-Invert Coding for Low-
Power 1/0,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol. 3, No. 1, pp. 49-58,
March 1995

[11] F. Vahid and T. Givargis. Platform Tuning for Embedded
Systems Design. IEEE Computer, Vol. 34, No. 3, pp. 112-
114, March 2001.

[12] N.H.E. Weste and K.Eshraghian, "Principles of CMOS
VLSI Design, A System Perspective” Second Edition.
Addison-Wesley. 1993 pp. 233-235.

[13] Semiconductor Industry Association. International
Technology Roadmap for Semiconductors: 1999 edition.
Austin, TX: International SEMATECH, 1999.

