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Abstract 
Energy consumption is a major concern in many 
embedded computing systems. Several studies have shown 
that cache memories account for about 50% of the total 
energy consumed in these systems. The performance of a 
given cache architecture is largely determined by the 
behavior of the application using that cache. Desktop 
systems have to accommodate a very wide range of 
applications and therefore the manufacturer usually sets 
the cache architecture as a compromise given current 
applications, technology and cost. Unlike desktop 
systems, embedded systems are designed to run a small 
range of well-defined applications. In this context, a 
cache architecture that is tuned for that narrow range of 
applications can have both increased performance as 
well as lower energy consumption. We introduce a novel 
cache architecture intended for embedded 
microprocessor platforms. The cache can be configured 
by software to be direct-mapped, two-way, or four-way 
set associative, using a technique we call way 
concatenation, having very little size or performance 
overhead. We show that the proposed cache architecture 
reduces energy caused by dynamic power compared to a 
way-shutdown cache. Furthermore, we extend the cache 
architecture to also support a way shutdown method 
designed to reduce the energy from static power that is 
increasing in importance in newer CMOS technologies. 
Our study of 23 programs drawn from Powerstone, 
MediaBench and Spec2000 show that tuning the cache’s 
configuration saves energy for every program compared 
to conventional four-way set-associative as well as direct 
mapped caches, with average savings of 40% compared 
to a  four-way conventional cache. 
Keywords 
Cache, configurable, architecture tuning, low power, low 
energy, embedded systems, microprocessor. 
1. Introduction 
Designers of embedded microprocessor platforms have to 
compromise between performance, cost, and energy 

usage. Caches may consume up to 50% of a 
microprocessor’s energy [18][25]. A direct mapped cache 
is more energy efficient per access, consuming only about 
30% the energy of a same-sized four-way set associative 
cache [23]. This reduction occurs because a direct 
mapped cache accesses only one tag and data array per 
access, while a four-way cache accesses four tag and data 
arrays per access.  A direct mapped cache can also have a 
shorter access time in part because multiple data arrays 
need not be multiplexed. While a direct-mapped cache’s 
hit rate may be acceptable for many applications, for 
some applications a direct-mapped cache exhibits a very 
poor hit rate and hence suffers from poor performance 
and energy consumption. Adding set associativity 
increases the range of applications for which a cache has 
a good hit rate, but for many applications, the additional 
associativity is unnecessary and thus results in wasted 
energy and longer access time.   

Deciding on a cache’s total size involves a similar 
dilemma. A small cache is more energy efficient and has 
a good hit rate for a majority of applications, but a larger 
cache increases the range of applications displaying a 
good hit rate, at the expense of wasted energy for many 
applications. 

Since an embedded system typically executes just a 
small set of applications for the system’s lifetime (in 
contrast to desktop systems), we ideally would like to 
tune the architecture to those applications. 

One option in embedded systems for solving the cache 
design dilemma and tuning the cache architecture to a 
small set of applications is for a manufacturer to produce 
multiple versions of the same processor, each with a 
cache architecture tuned to a specific set of applications. 
Another is to provide a synthesizable processor core 
rather than a physical chip, so that the cache architecture 
can be modified for the intended application. Both 
options unduly increase the unit cost. The second option 
also suffers from a longer time to market [24]. 

The diversity among cache architectures found in 
modern embedded microprocessors, summarized in Table 



1, illustrates that the dilemma of deciding on the best 
cache architecture for mass production has yet to be 
solved. 

We introduce a novel configurable cache architecture 
that to a large extent reduces the dilemma.  By setting a 
few bits in a configuration register, the cache can be 
configured in software as either direct mapped or set 
associative, while still utilizing the full cache capacity. 
We achieve such configurability using a new technique 
we call way concatenation. Furthermore, using previously 
known techniques, the cache can be configured to 
shutdown certain regions in order to effectively reduce 
the cache’s size. Way concatenation has no performance 
overhead. Way shutdown only has a small amount of 
performance overhead. Both have very small size 
overhead, compared to a regular four-way set-associative 
cache, as verified by our own physical layout of the cache 
in a 0.18-micron CMOS technology. 

In this paper, we provide the details of our 
configurable way concatenation and shutdown cache 
architecture. Section 2 describes our base cache 
architecture and illustrates the impact of cache 
associativity on performance and energy, motivating the 
need for a cache with a configurable number of ways. 
Section 3 summarizes previous work. Section 4 
introduces our way concatenation cache architecture and 
provides experimental results showing reductions in 
dynamic power compared to non-configurable caches, 
using applications drawn from the Powerstone [18], 
MediaBench [16] and the Spec2000 [12] benchmark 
suites. Section 5 extends the architecture to include way 
shutdown and provides experimental results showing 
reductions in static power. Section 6 describes methods 
for using a configurable cache. Section 7 provides 
conclusions and future work. 
2. Cache Associativity’s Influence on Energy 
2.1 Energy  
Energy is the product of power and time. There are two 
main components that result in power dissipation in  
CMOS circuits, namely static power dissipation due to 

leakage current and dynamic power dissipation due to 
logic switching current and the charging and discharging 
of the load capacitance. 

Dynamic energy contributes to most of the total 
energy dissipation in micrometer-scale technologies, but 
static energy dissipation will contribute an increasing 
portion of energy in nanometer-scale technologies [1] 
[20][24]. We consider both types of energy in our 
evaluation. 

Energy consumption due to accessing off-chip 
memory should not be disregarded, since fetching 
instruction and data from off-chip memory is energy 
costly because of the high off-chip capacitance and large 
off-chip memory storage. Also, when accessing off-chip 
memory, energy is consumed when the microprocessor 
stalls while waiting for the instruction and/or data. Off-
chip and stall energies have often been overlooked in 
previous works. Thus, our equation for computing the 
total energy due to memory accesses is as follows:   

Equation 1:  energy_mem = energy_dynamic + energy_static 

 where:    
energy_dynamic  =  cache_hits * energy_hit  + 

cache_misses * energy_miss 
energy_miss =  energy_offchip_access   +  

energy_uP_stall + energy_cache_block_fill 
energy_static =  cycles * energy_static_per_cycle 

The underlined terms are those we obtain through 
measurements or simulations. We compute cache_hits 
and cache_misses by running SimpleScalar [5] 
simulations for each cache configuration. We compute 
energy_hit of each cache configuration through 
simulation of circuits extracted from our layout using 
Cadence [6] (which happened to reasonably match earlier 
work we did using the CACTI model to compute such 
energy).  

Determining the energy_miss term is challenging.  
The energy_offchip_access value is the energy of 
accessing off-chip memory and the energy_uP_stall is the 
energy consumed when the microprocessor is stalled 

Processor Size As. Line Size As. Line Processor Size As. Line Size As. Line
AMD-K6-IIIE 32K 2 32 32K 2 32 Motorola MPC8540 32K 4 32/64 32K 4 32/64

Alchemy AU1000 16K 4 32 16K 4 32 Motorola MPC7455 32K 8 32 32K 8 32
ARM 7 8K/U 4 16 8K/U 4 16 NEC VR4181 4K DM 16 4K DM 16

ColdFire 0-32K DM 16 0-32K N/A N/A NEC VR4181A 8K DM 32 8K DM 32
Hitachi SH7750S (SH4) 8K DM 32 16K DM 32 NEC VR4121 16K DM 16 8K DM 16

Hitachi SH7727 16K/U 4 16 16K/U 4 16 PMC Sierra RM9000X2 16K 4 N/A 16K 4 N/A
IBM PPC 750CX 32K 8 32 32K 8 32 PMC Sierra RM7000A 16K 4 32 16K 4 32
IBM PPC 7603 16K 4 32 16K 4 32 SandCraft sr71000 32K 4 32 32K 4 32

IBM750FX 32K 8 32 32K 8 32 Sun Ultra SPARC Iie 16K 2 N/A 16K DM N/A
IBM403GCX 16K 2 16 8K 2 16 SuperH 32K 4 32 32K 4 32

IBM Power PC 405CR 16K 2 32 8K 2 32 TI TMS320C6414 16K DM N/A 16K 2 N/A
Intel 960IT 16K 2 N/A 4K 2 N/A TriMedia TM32A 32K 8 64 16K 8 64

Motorola MPC8240 16K 4 32 16K 4 32 Xilinx Virtex IIPro 16K 2 32 8K 2 32
Motorola MPC823E 16K 4 16 8K 4 16 Triscend A7 8K/U 4 16 8K/U 4 16

Instruct. Cache Data Cache Instruct. Cache Data Cache

 
Table 1: Instruction and data cache sizes, associativities, and line sizes of popular embedded microprocessors. As means associativity. DM 

means direct-mapped. Size is total cache size in bytes. U means instruction and data caches are unified. Line is line size in bytes. Sources: 
Microprocessor Report, and data sheets of various microprocessors. 



while waiting for the memory system to provide an 
instruction or data. energy_cache_block_fill is the energy 
for writing a block into the cache.  The challenge stems 
from the fact that the first two terms are highly dependent 
on the particular memory and microprocessor being used. 
To be “accurate,” we could evaluate a “real” 
microprocessor system to determine the values for those 
terms. While accurate, those results may not apply to 
other systems, which may use different processors, 
memories, and caches. Therefore, we choose instead to 
create a “realistic” system, and then to vary that system to 
see the impacts across a range of different systems. We 
examined the three terms of energy_offchip_access, 
energy_uP_stall, and energy_cache_block_fill for typical 
commercial memories and microprocessors, and found 
that energy_miss ranged from 50 to 200 times bigger than 
energy_hit. Thus, we redefined energy_miss as: 

 
energy_miss =  k_miss_energy * energy_hit 

 
and we considered the situations of  k_miss_energy equal 
to 50 and 200.  

Finally, cycles is the total number of cycles for the 
benchmark to execute, as computed by SimpleScalar, 
using a cache with single cycle access on a hit and using 
20 cycles on a miss. energy_static_per_cycle is the total 
static energy consumed per cycle. This value is also 
highly system dependent, so we again consider a variety 
of possibilities, by defining this value as a percentage of 
total  energy including both dynamic and static energy: 

 
energy_static_per_cycle = k_static * 

energy_total_per_cycle 
 
k_static is a percentage that we can set. Low power 

CMOS research has typically focused on dynamic power, 
under the assumption that static energy is a small fraction 
of total energy – perhaps less than 10%. However, for 
deep submicron, the fraction is increasing. For example, 
Agarwal [1] reports that leakage energy accounts for 30% 
of L1 cache energy for a 0.13-micron process technology. 
To consider this CMOS technology trend, we evaluate the 
situations where k_static is 30% and 50% of the total 
energy. 
2.2 Base Cache 
After examining typical cache configurations of several 
popular embedded microprocessors, summarized in Table 
1, we choose to use a base cache of 8 Kbytes having four-
way set-associativity and a line size of 32 bytes.  The base 
cache is the cache that we will extend to be configurable, 
and to which we will compare our results.  

Figure 1 depicts the architecture of our base cache. 
The memory address is split into a line-offset field, an 
index field, and a tag field. For our base cache, those 
fields are 5, 6 and 21 bits, respectively, assuming a 32-bit 
address. Being four-way set-associative, the cache 
contains four tag arrays and four data arrays (only two 
data arrays are shown in Figure 1). During an access, the 
cache decodes the address’ index field to simultaneously 
read out the appropriate tag from each of the four tag 
arrays, while decoding the index field to simultaneously 
read out the appropriate data from the four data arrays. 
The cache feeds the decoded lines through two inverters 
to strengthen their signals. The read tags and data items 
pass through sense amplifiers. The cache simultaneously 
compares the four tags with the address’ tag field. If one 
tag matches, a multiplexor routes the corresponding data 
to the cache output.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A four way set associative cache architecture with the critical path shown. 
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2.3 The Impact of Cache Associativity 
The associativity greatly impacts system energy. A direct 
mapped cache uses less power per access than a four way 
set associative cache, since only one tag and one data 
array are read during an access, rather than four tag and 
four data arrays. The power dissipation of a direct 
mapped cache was shown to be about 30% of a same size 
four way set associative cache [23]. If a direct-mapped 
cache has a low miss rate, such a cache can result in low 
overall energy. 

However, sometimes a direct mapped cache has a 
high miss rate, resulting in higher energy due to longer 
time as well as high power for accessing the next level 
memory. Increasing cache associativity can decrease the 
cache miss rate and hence reduce energy.  For example, 
the average miss rate for the SPEC92 benchmarks is 4.6% 
for a one-way 8 Kbyte cache, 3.8% for a two-way 8 
Kbyte cache and only 2.9% for four-way 8 Kbyte cache 
[10] (in the remainder of this paper, we will sometimes 
refer to a direct-mapped cache as having one way). 
Though these differences may appear small, they in fact 
translate to big performance differences, due to the large 
cycle penalty of misses (which may be dozens or even 
hundreds of cycles).  

Thus, although accessing a four-way set associative 
cache requires more power per access, that extra power 
may be compensated for by the reduction in time and 
power that would have been caused by misses. Figure 
2(a) shows the miss rate for two MediaBench 
benchmarks, epic and mpeg2, measured using 
SimpleScalar [5] and configured with an 8 Kbyte data 
cache having one, two or four-way set-associativity, with 
a line size of 32 bytes. Notice that the hit rates for both 
are better with two ways than with one way, but the 
additional improvement using four ways is very small. 

Figure 2(b) shows overall energy for these two examples, 
computed using Equation 1, demonstrating that a two-
way cache gives lowest energy for mpeg2, while a one-
way cache is best for epic. Notice that the energy 
differences are quite significant – up to 40%. 

Clearly, tuning the associativity to a particular 
application is extremely important to minimize energy, 
motivating the need for a cache with configurable 
associativity. 
3. Previous Work 
Several cache lookup variations have been proposed by 
researchers to reduce set-associative cache access energy. 
Phased-lookup cache [9] uses a two-phase lookup, where 
all tag arrays are accessed in the first phase, but then only 
the one hit data way is accessed in the second phase, 
resulting in less data-way access energy at the expense of 
longer access time. Way predictive set-associative caches 
[13][21] access one tag and data array initially, and only 
access the other arrays if that initial array did not result in 
a match, again resulting in less energy at the expense of 
longer average access time. Reactive-associative cache 
(RAC) [4] also uses way prediction and checks the tags as 
a conventional set associative cache, but the data array is 
arranged like a direct mapped cache. Since data from 
RAC proceeds without any way-select multiplexor, the 
cache can achieve the speed of a direct mapped cache but 
consumes less energy than a conventional set-associative 
cache. Pseudo Set-Associative Caches [11], such as in 
[7], are set-associative caches with multiple hit times. The 
ways can be probed sequentially and consume less energy 
than that of a conventional set associative cache. Dropsho 
[8] discussed an accounting cache architecture that is 
based on the resizable selective ways cache proposed by 
Albonesi [2]. The accounting cache first accesses part of 
the ways of a set associative cache, known as a primary 
access. If there is a miss, then the cache accesses the other 
ways, known a secondary access. A swap between the 
primary and secondary accesses is needed when there is a 
miss in the primary and a hit in the secondary access. 
Energy is saved on a hit during the primary access.  

Filter caching [15] introduces an extremely small (and 
hence low power) direct mapped cache in front of the 
regular cache. If most of a program’s time is spent in 
small loops, then most hits would occur in the filter 
cache, so the more power-costly regular cache would be 
accessed less frequently – thus reducing overall power, at 
the expense of performance loss. 

Compression methods can reduce cache energy by 
reducing bit switching during accesses. For example, 
Yang proposed a scheme for compressing frequently seen 
values in the data cache [26]. 

Researchers have recently begun to suggest 
configurable cache architectures. Ranganathan [22] 
proposed a configurable cache architecture for a general-
purpose microprocessor. When used in media 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Miss rate (a) and normalized energy (b) of epic and     
mpeg2 on 8 Kbyte data caches of different associativities. 
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applications, a large cache may not yield benefits due to 
the streaming data characteristics of media applications. 
In this case, part of the cache can be dynamically 
reconfigured to be used for other processor activities, 
such as instruction reuse. Kim [14] proposed a 
multifunction computing cache architecture, which 
partitions the cache into a dedicated cache and a 
configurable cache. The configurable part can be used to 
implement computations, for example, FIR and 
DCT/IDCT, which takes advantage of on-chip resources 
when an application does not need the whole cache.  
Smart memory [17] is a modular reconfigurable 
architecture, which is made up of many processing tiles, 
each containing local memories and processor cores, 
which can be altered to match the different applications.  

A CAM (content addressable memory) based highly 
associative cache architecture [29] puts one set of a cache 
in a small sub-bank and uses a CAM for the tag lookup of 
that set, which may have 32 or even 64 ways, saving 
power at the expense of area.  

One work closely related to ours is that on 
configurable caches whose memory hierarchy can be 
configured for energy and performance tradeoff, proposed 
by Balasubramonian [3]. The size of the L1 and L2 cache 
can be dynamically configured by allocating a part of a 
fixed size cache to L1 and L2 cache based on different 
applications or the same application at different phases. 
Their work targets general-purpose microprocessors that 
may require different cache hierarchy architectures.  
Other work closely related to ours are way-shutdown 
cache methods, proposed independently by both Albonesi 
[2] and by the designers of the Motorola M*CORE 
processor [18]. In those approaches, a designer would 

initially profile a program to determine how many ways 
could be shut down without causing too much 
performance degradation. Albonesi also discusses 
dynamic way shutdown and activation for different 
regions of a program.  

Our way-concatenate method is complementary to 
phased lookup, way predictive, pseudo-set associative, 
and filter caching methods. Unlike those other methods, 
our method does not result in multi-cycle cache accesses 
during a hit, but those methods could be combined with 
ours to reduce energy further. Our method’s way 
shutdown also reduces static power, which those other 
methods don’t. Our method does at this time require an 
initial profiling step, though in future work we plan to 
automate the tuning of the cache to a program. 

Compared with memory hierarchy configurable cache, 
our configurable cache can have some ways shut down 
and tuned to fit the size of the cache to the specific 
application. Compared with way shutdown caches, our 
way concatenation can have different ways given a fixed 
size of cache, which we will show to be a superior 
method for reducing dynamic power. 
4. Way Concatenation for Dynamic Power 
Reduction 
4.1 Architecture 
Because every program has different cache associativity 
needs, we sought to develop a cache architecture whose 
associativity could be configured as one, two or four 
ways, while still utilizing the full capacity of the cache.  
Our main idea is to allow ways to be concatenated. The 
hardware required to support this turned out to be rather 
simple. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: A way-concatenable four-way set associative cache architecture, with the critical path shown. 
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Our way-concatenatable cache is shown in Figure 3. 
reg0 and reg1 are two single-bit registers that can be set 
to configure the cache as four, two or one way set-
associative. Those two bits are combined with address 
bits a11 and a12 in a configuration circuit to generate 
four signals c0, c1, c2, c3, which are in turn used to 
control the configuration of the four ways.  

When reg0=1 and reg1=1, the cache acts as a four-
way set-associative cache. In particular, c0, c1, c2, and c3 
will all be 1, and hence all tag and data ways will be 
active. 

When reg0=0 and reg1=0, the cache acts as a one-
way cache (where that one way is four times bigger than 
the four-way case). Address bits a11 and a12 will be 
decoded in the configuration circuit such that exactly one 
of c0, c1, c2, or c3 will be 1 for a given address. Thus, 
only one of the tag arrays and one of the data arrays will 
be active for a given address. Likewise, only one of the 
tag comparators will be active. 

When reg0=0 and reg1=1, or reg0=1 and reg1=0, 
then the cache acts as a two-way cache. Exactly two of 
c0, c1, c2, and c3 will be 1 for a given address, thus 
activating two tag and data arrays, and two tag 
comparators.  

Notice that we are essentially using 6 index bits for a 
four-way cache, 7 index bits for a two-way cache, and 8 
index bits for a one-way cache. Also note that the total 
cache capacity does not change when configuring the 
cache for four, two or one way. Our approach could easily 
be extended for 8 (or more) ways. 
4.2 Cache Layout  
While we initially used the CACTI model to determine 
the impact of the extra circuitry on cache access and 
energy, we eventually created an actual layout to 
determine the impact as accurately as possible. Figure 4 
shows our layout of the data part of one way of the cache. 
We used Cadence [6] layout tools and we extracted the 
circuit from the layout. The technology we used was 
TSMC 0.18 CMOS, the most advanced CMOS 
technology available to universities through the MOSIS 

program [19]. The dimension of our SRAM cell was 
2.4µm x 4.8µm, using conventional six-transistor SRAM 
cells. We used Cadence’s Spectra to simulate the circuit. 
We measured the energy of the various parts of a 
conventional four-way set-associative cache during a 
cache access, and compared that energy with our 
configurable way-concatenatable cache configured for 
four, two and one-way, using the cache layout. The access 
energies and savings of our configurable cache are shown 
in Figure 5. These energies include dynamic power only, 
not static. Cnv stands for conventional cache, Cfg stands 
for configurable cache. The numbers below Cnv and Cfg 
are the size and associativity of the cache, e.g., 8K2W 
means an 8 Kbyte, two-way set associative cache.  The 
energy savings of the configured two-way and one-way 
caches come primarily from the fact that fewer sense 
amplifiers, bit lines and word lines are active per access 
in those configurations. 
4.3 Time and area overhead 
Perhaps the most pressing question regarding a way-
concatenatable cache is how much the configurability of 
such a cache increases access time compared to a 
conventional four-way cache. This is especially important 
because the cache access time is often on the critical path 
for a microprocessor, and thus increased cache access 
time may slowdown the system clock. However, note that 
the configuration circuit in Figure 3 is not on the cache 
access critical path, since the circuit executes 
concurrently with the index decoding. The cache critical 
path includes a tag decoder, a word line, a bit line 
(including the mux), a sense amplifier, a comparator, a 
mux driver that selects the output from four ways, and an 
output driver. Based on our layout, we can set the sizes of 
the transistors in the configure circuit such that the speed 
of the configure circuit is faster than that of the decoder. 
Such resizing is reasonable because we only have four 
OR and four AND gates in the configure circuit. From 
our cache layout, the configure circuit area is negligible.  

However, we also changed two inverters on the 
critical path into NAND gates: one inverter after the 
decoder, and one after the comparator. Although a NAND 
gate is typically slower than an inverter, we can increase 
the NAND gate transistor sizes in the configurable cache 
to achieve the speed of the original inverter of the base 
cache. We measured the original critical path delay of the 
cache to be 1.28 ns. We determined that changing two 
inverters along the critical path to NAND gates, having 
the same size transistors as the original inverters, 
increased the critical path length by 0.062 ns, or by 4.8%. 
By increasing the sizes of certain transistors in the NAND 
gates to three times their original size, we were able to 
reduce the critical path delay to the original 1.28 ns. 
Replacing the inverters by NAND gates with larger 
transistors resulted in a less than 1% area increase of the 
entire cache.  

 
 
 
 
 
               Figure 4: Layout of one way of our data cache. 
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Figure 5: Dynamic access energy of a configurable cache 

compared with conventional four-way set-associative cache. 
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One might ask why the original inverter’s transistors 
weren’t sized bigger to achieve a faster cache access time. 
The reason is that the original inverters themselves only 
contributed a small amount to critical path delay – tripling 
the two inverters’ transistor sizes would only decrease the 
critical path delay by 0.023 ns, representing a mere 1.8% 
improvement. 
4.4 Experiments 
To determine the benefits of our configurable cache with 
respect to reducing dynamic power consumption and 
hence energy, we simulated a variety of benchmarks for a 
variety of cache configurations using SimpleScalar. The 
benchmarks included programs from Motorola’s 
Powerstone suite [18] (padpcm, crc, auto2, bcnt, bilv, 
binary, blit, brev, g3fax, fir, pjpeg, ucbqsort, v42), 
MediaBench [16] (adpcm, epic, jpeg, mpeg2, pegwit, 
g721) and several programs from Spec 2000 [12] (mcf, 
parser, vpr, art). We used the sample test vectors that 
came with each benchmark as program stimuli. 

All of the energy values we report in this section 
represent those from dynamic power consumption. The 
original way-shutdown method [2] was also intended to 
reduce dynamic power. Thus, we also generated data for 
way shutdown, and compare our data with that data.  
4.4.1 Results 
 Figure 6(a) shows instruction cache miss rates for the 
benchmarks for three configurations of our way-
concatenatable cache: 8 Kbytes with 4-way associativity 
(8K4W), 8 Kbytes with 2-way associativity (8K2W), and 
8 Kbytes with 1-way (direct-mapped) associativity 
(8K1W). The figure also shows miss rates for two 
configurations of a way shutdown cache: 4 Kbytes with 
2-way associativity (4K2W), meaning 2 of the 4 ways 
have been shut down, and 2 Kbytes with 1-way 
associativity (2K1W), meaning 3 of the 4 ways have been 

shut down. Figure 6(b) shows data cache miss rates for 
the same cache configurations.  

Let us begin by looking at the first three 
configurations, representing the way concatenate 
configurations, which use all 8 Kbytes of the cache. We 
see that the miss rates in the figures support our earlier 
discussions in which we pointed out that most 
benchmarks do fine with a direct mapped cache. 
However, we see that some examples, like jpeg and 
parser, do much better with four-way caches. jpeg’s miss 
rate is only 6.5% with a four-way instruction cache, but 
9.5% with a one-way 8 Kbyte cache. parser’s miss rate is 
nearly 0% with a four-way instruction cache, but is 7% 
with a one-way 8 Kbyte cache. 

Looking now at the latter two configurations, 
representing way shutdown configurations, we see 
significant increases in the miss rate for many examples. 
For example, v42 has a nearly 0% miss rate for all three 
way-concatenate instruction cache configurations, but has 
4% and 12% miss rates for the way shutdown 
configurations. We see that shutting down ways is far 
more likely to increase the miss rate than concatenating 
ways – which intuitively makes sense since way 
shutdown decreases the cache size while way 
concatenation does not. 

We computed energy data for the benchmarks, for two 
different types of configurable instruction and data 
caches: caches supporting way concatenation only and 
supporting way shutdown only. For each benchmark, we 
simulated all possible cache configurations. We show the 
energy for those configurations for one of the 
benchmarks, g3fax, in Figure 7. The x-axis represents 
each configuration. The first configuration is 
I8KD8KI4D4, representing an instruction cache with 8 
Kbytes active (I8K), a data cache with 8 Kbytes active 
(D8K), with the instruction cache configured to be four-

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Instruction (a) and data (b) cache miss rates for way concatenate caches (the 8K caches) and way shut down                              
caches (the 4K and 2K caches). 
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way set associative (I4), and the data cache configured to 
be four-way set associative (D4). The first group of nine 
configurations represents configurable caches using only 
way concatenation. The second group of eight 
configurations represents configurable caches using only 
way shutdown. The last group of two represents the 
conventional (non-configurable) four-way and direct 
mapped cache configurations. 

We generated such data for every benchmark, found 
the lowest energy configuration for each group, and 
summarized those best configurations in Table 2. For 
most benchmarks, the configuration yielding minimal 
energy has both instruction cache and data cache 

configured for one way. However, for some benchmarks, 
such as mpeg2, jpeg, g721, brev, parser and vpr, one-way 
configurations result in more overall energy due to high 
miss rates. In those cases, higher associativities are 
preferred. jpeg, for example, uses minimal energy with a 
four-way instruction cache and a two-way data cache. 
parser does best with a four-way instruction cache and a 
one-way data cache. mpeg2 does best with a one-way 
instruction cache but a two-way data cache.  

Figure 8 shows normalized energy, using the energy 
of a conventional four-way cache as 100%. CnvI1D1 
corresponds to using direct-mapped instruction and data 
caches, cnct to using way-concatenate caches, and shut to 
using way-shutdown caches. 
4.4.2 Main Observations 
The first observation we make from the data in Figure 8 is 
that a configurable cache results in significant energy 
savings for many examples, compared to either a non-
configurable four-way set-associative cache or a non-
configurable direct-mapped cache. A way-concatenatable 
cache results in an average energy savings of 37% 
compared to a conventional four-way cache, with savings 
over 60% for several examples. Compared to a 
conventional direct mapped cache, the average savings 
are more modest, but the direct mapped cache suffers 
large penalties for some examples – up to 284% for 
parser, with degraded performance in several examples.  

The second observation we make is that way 
concatenation is clearly better than way shutdown for 
reducing dynamic power. Way concatenation saves more 
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Figure 7: Energy of g3fax under way concatenation, and under way shutdown, considering dynamic power only. 
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Figure 8: Energy consumption compared to an 8 Kbytes four-way cache, for way concatenation and shut down, considering dynamic         

power only, with k_miss_energy=50. 

Example Best Example Best
padpcm I8KD8KI1D1 ucbqsort I4KD4KI1D1

crc I4KD4KI1D1 v42 I8KD8KI1D1
auto2 I8KD4KI1D1 adpcm I2KD8KI1D1
bcnt I8KD2KI1D1 epic I8KD8KI1D1
bilv I4KD4KI1D1 jpeg I8KD8KI4D2

binary I8KD2KI1D1 mpeg2 I8KD8KI1D2
blit I2KD8KI1D1 g721 I8KD8KI2D1

brev I8KD4KI1D2 art I4KD8KI1D1
g3fax I4KD4KI1D1 mcf I8KD8KI1D1

fir I8KD2KI1D1 parser I8KD8KI4D1
pjepg I4KD8KI1D1 vpr I8KD8KI2D1
pegwit I8KD8KI1D1  

 
Table 2: Cache configuration yield lowest system energy, 

considering dynamic power only. 
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energy than way shutdown for nearly every benchmark, 
sometimes saving 30-50% (e.g., for padpcm and v42).  
4.4.3 Impact of  k_miss_energy ratio 
In our energy calculation equation, we include the 
memory access energy and the processor stall energy, 
using the ratio k_miss_energy to represent the ratio of the 
sum of the memory access and processor stall energy with 
the 8 Kbyte 4-way set-associative cache access energy. 
We showed the results for k_miss_energy=50 in Figure 8. 
We also generated results for a ratio of 200, but we omit 
the plots for space reasons. However, those results still 
showed significant energy savings for many examples, 
compared to either a non-configurable four-way set-
associative cache or a non-configurable direct-mapped 
cache, resulting in an average savings across all the 
benchmarks of 26% and 10%, respectively. Perhaps more 
importantly, we saw big penalties associated with a direct 
mapped cache and a way shutdown cache for certain 
examples – over 800% for parser, for example.   
5. Adding Way Shutdown for Static Energy 
Reduction 
We have thus far focused on dynamic power 
consumption, traditionally the major consumer of power 
in CMOS technology. As CMOS technology continues to 
evolve, transistors with lower threshold voltages are 
becoming common. Low threshold transistors enable a 
lower supply voltage, resulting in great reductions in 
dynamic power, since dynamic power is proportional to 
the square of voltage. However, lower threshold voltages 
also result in more sub-threshold leakage current through 
the transistor, resulting in increased static power 
consumption. Thus, static power is becoming a greater 
concern. Some researchers are thus working on leakage 
power reductions, such as DRG-Cache [1].  

We observe in Figure 6(a) and (b) that although way 
shutdown increases the miss rate for some benchmarks, 
for other benchmarks, way shutdown has negligible 
impact. Such negligible impact means that the benchmark 
did not need the full capacity (8 Kbyte) of the cache. To 
save static energy, we want to shut down the unneeded 
capacity. We choose to use way shutdown for this 
purpose. Thus, we extend our way-concatenatable cache 
to include way shutdown also. 

5.1 Architecture 
Albonesi [2] originally proposed way shutdown to reduce 
dynamic power, using an AND gate to shut down cache 
ways. Since we instead use way concatenation to reduce 
dynamic power and since we want to use way shutdown 
to reduce static power, we use the shutdown method by 
Powell [20], involving a circuit level technique called 
gated-Vdd, shown in Figure 9. When the gated-Vdd 
transistor is turned off, the stacking effect of the extra 
transistor reduces the leakage energy dissipation. Because 
the extra transistor can be shared by an array of SRAM 
cells, the area increase is only about 5%. Powell showed 
8% performance overhead from the extra transistor. 
5.2 Energy Calculations 
Recall in Equation 1 that we defined: 

energy_static =  cycles * energy_static_per_cycle. 

energy_static_per_cycle = k_static * 
energy_total_per_cycle 

 
We have defined a constant k_static which is the 
percentage of static energy to the total energy dissipation 
of per cycle. To consider future CMOS technology trends, 
we evaluate the situations where k_static is 30% and 
50%. 
5.3 Experiments 
Figure 10 shows the energy consumption of g3fax for a 
configurable cache supporting both way concatenation 
and way shutdown, considering both dynamic and static 

 
 
 
 
 
 
 
 
 
 

Figure 9: SRAM cell with a NMOS gated Vdd control. 

 
 
 
 
 
 
 
 

Figure 10: Energy of g3fax under way concatenation, way shutdown, and both, considering dynamic and static power. 
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power, assuming k_static=30%. For this example, we can 
see that the combination of way concatenation and way 
shutdown is better than either method alone. 

Figure 11 is the normalized energy consumption of 
the benchmarks, using the conventional four-way cache’s 
energy as 100%. As in Figure 8, we compare a 
conventional direct mapped cache (CnvI1D1), 
configurable caches supporting concatenate only (cnct), 
shutdown only (shut), and both (both). We see that the 
average energy savings (rightmost column) compared 
with a conventional four way cache is over 40%. 

Figure 12 shows results for increasing k_static even 
further, to an extremely large 50%, and increasing 
k_miss_energy to 200 (representing possible values in the 
future). We found that, although way shutdown alone 
gains most of the savings in most examples, in some 
cases (like v42 and padpcm) the combination of both 
concatenate and shutdown is necessary – way shutdown 
alone increases misses too much for some examples.  

Table 3 shows the best cache configuration with 
k_static=30%, k_miss_energy =50. We see that several 
examples still need the full 8 Kbytes of cache, but may 
work best with ways concatenated. 
6. Using a Configurable Cache 
A configurable cache could be used as follows. An 
embedded system designer would have a fixed program 
that would run on the microprocessor platform having the 
configurable cache. Based on simulations or actual 
executions on the platform, the designer would determine 
the best configuration for that program. The designer 

would then modify the boot or reset part of the program 
to set the cache’s configuration registers to the chosen 
configuration. 

Much of our own ongoing related work has sought to 
automate the process of finding the best cache 
configurations through dynamic tuning, by implementing 
an automatic cache tuner that finds the best configuration. 
We have also developed a simulation-based method that 
finds the Pareto-optimal set of cache configurations for a 
given program [28]. 
7. Conclusions 
We have introduced a novel configurable cache design 
method called way concatenation. When considering 
dynamic power, we showed average energy savings of 
37% compared to a conventional four-way set-associative 
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Figure 11: Energy consumption compared to an 8 Kbytes four-way cache, for way concatenation and shutdown, considering both                    

dynamic and static power, k_miss_energy=50, k_static=30%. 

Example Best Example Best
padpcm I8KD4KI1D2 ucbqsort I4KD4KI1D1

crc I2KD4KI1D1 v42 I8KD8KI1D1
auto2 I4KD2KI1D1 adpcm I2KD2KI1D1
bcnt I2KD2KI1D1 epic I2KD8KI1D1
bilv I4KD2KI1D1 jpeg I8KD2KI4D1

binary I4KD2KI1D1 mpeg2 I4KD4KI1D2
blit I2KD2KI1D1 g721 I8KD2KI2D1

brev I2KD2KI1D1 art I4KD2KI1D1
g3fax I4KD2KI1D1 mcf I4KD4KI1D1

fir I4KD2KI1D1 parser I8KD4KI4D1
pjepg I4KD2KI1D1 vpr I8KD2KI2D1
pegwit I4KD4KI1D1  

Table 3: Optimal cache configuration when both dynamic and   
static energy are considered, k_static =30%, k_miss_energy = 50. 
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Figure 12: Energy consumption compared to an 8 Kbytes four-way cache, for way concatenation and shutdown, considering                 

both dynamic and static power, k_miss_energy=200, k_static=50%. 



cache, and we showed way concatenation to be superior 
to previously proposed way shutdown methods. To also 
save static power, we extended the configurable cache to 
include a way shutdown method, and we showed this 
configurable cache to be the most energy efficient for all 
benchmarks considered, across a wide range of 
technological assumptions, with average savings of 40%. 
The method is simple and imposes little area overhead.  

In other work, we also explored the energy benefits of 
a cache line concatenation [27]. We will continue our 
work to combine with existing multi-cycle cache access 
methods like phased lookup, way-prediction, pseudo-
associativity, and filter caching. We are also developing 
an on-chip component that can automatically and 
dynamically tune the cache’s configuration to a particular 
executing program. We plan to also explore the dynamic 
tuning of multilevel cache architectures. 
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