
A Highly Configurable Cache Architecture for Embedded
Systems

Chuanjun Zhang
Department of Electrical Engineering

University of California, Riverside
czhang@ee.ucr.edu

Frank Vahid*and Walid Najjar
Department of Computer Science and Engineering

University of California, Riverside
{vahid/najjar}@cs.ucr.edu

http://www.cs.ucr.edu/{~vahid/~najjar}
*Also with the Center for Embedded Computer Systems,

UC Irvine

Abstract
Energy consumption is a major concern in many
embedded computing systems. Several studies have shown
that cache memories account for about 50% of the total
energy consumed in these systems. The performance of a
given cache architecture is largely determined by the
behavior of the application using that cache. Desktop
systems have to accommodate a very wide range of
applications and therefore the manufacturer usually sets
the cache architecture as a compromise given current
applications, technology and cost. Unlike desktop
systems, embedded systems are designed to run a small
range of well-defined applications. In this context, a
cache architecture that is tuned for that narrow range of
applications can have both increased performance as
well as lower energy consumption. We introduce a novel
cache architecture intended for embedded
microprocessor platforms. The cache can be configured
by software to be direct-mapped, two-way, or four-way
set associative, using a technique we call way
concatenation, having very little size or performance
overhead. We show that the proposed cache architecture
reduces energy caused by dynamic power compared to a
way-shutdown cache. Furthermore, we extend the cache
architecture to also support a way shutdown method
designed to reduce the energy from static power that is
increasing in importance in newer CMOS technologies.
Our study of 23 programs drawn from Powerstone,
MediaBench and Spec2000 show that tuning the cache’s
configuration saves energy for every program compared
to conventional four-way set-associative as well as direct
mapped caches, with average savings of 40% compared
to a four-way conventional cache.
Keywords
Cache, configurable, architecture tuning, low power, low
energy, embedded systems, microprocessor.
1. Introduction
Designers of embedded microprocessor platforms have to
compromise between performance, cost, and energy

usage. Caches may consume up to 50% of a
microprocessor’s energy [18][25]. A direct mapped cache
is more energy efficient per access, consuming only about
30% the energy of a same-sized four-way set associative
cache [23]. This reduction occurs because a direct
mapped cache accesses only one tag and data array per
access, while a four-way cache accesses four tag and data
arrays per access. A direct mapped cache can also have a
shorter access time in part because multiple data arrays
need not be multiplexed. While a direct-mapped cache’s
hit rate may be acceptable for many applications, for
some applications a direct-mapped cache exhibits a very
poor hit rate and hence suffers from poor performance
and energy consumption. Adding set associativity
increases the range of applications for which a cache has
a good hit rate, but for many applications, the additional
associativity is unnecessary and thus results in wasted
energy and longer access time.

Deciding on a cache’s total size involves a similar
dilemma. A small cache is more energy efficient and has
a good hit rate for a majority of applications, but a larger
cache increases the range of applications displaying a
good hit rate, at the expense of wasted energy for many
applications.

Since an embedded system typically executes just a
small set of applications for the system’s lifetime (in
contrast to desktop systems), we ideally would like to
tune the architecture to those applications.

One option in embedded systems for solving the cache
design dilemma and tuning the cache architecture to a
small set of applications is for a manufacturer to produce
multiple versions of the same processor, each with a
cache architecture tuned to a specific set of applications.
Another is to provide a synthesizable processor core
rather than a physical chip, so that the cache architecture
can be modified for the intended application. Both
options unduly increase the unit cost. The second option
also suffers from a longer time to market [24].

The diversity among cache architectures found in
modern embedded microprocessors, summarized in Table

1, illustrates that the dilemma of deciding on the best
cache architecture for mass production has yet to be
solved.

We introduce a novel configurable cache architecture
that to a large extent reduces the dilemma. By setting a
few bits in a configuration register, the cache can be
configured in software as either direct mapped or set
associative, while still utilizing the full cache capacity.
We achieve such configurability using a new technique
we call way concatenation. Furthermore, using previously
known techniques, the cache can be configured to
shutdown certain regions in order to effectively reduce
the cache’s size. Way concatenation has no performance
overhead. Way shutdown only has a small amount of
performance overhead. Both have very small size
overhead, compared to a regular four-way set-associative
cache, as verified by our own physical layout of the cache
in a 0.18-micron CMOS technology.

In this paper, we provide the details of our
configurable way concatenation and shutdown cache
architecture. Section 2 describes our base cache
architecture and illustrates the impact of cache
associativity on performance and energy, motivating the
need for a cache with a configurable number of ways.
Section 3 summarizes previous work. Section 4
introduces our way concatenation cache architecture and
provides experimental results showing reductions in
dynamic power compared to non-configurable caches,
using applications drawn from the Powerstone [18],
MediaBench [16] and the Spec2000 [12] benchmark
suites. Section 5 extends the architecture to include way
shutdown and provides experimental results showing
reductions in static power. Section 6 describes methods
for using a configurable cache. Section 7 provides
conclusions and future work.
2. Cache Associativity’s Influence on Energy
2.1 Energy
Energy is the product of power and time. There are two
main components that result in power dissipation in
CMOS circuits, namely static power dissipation due to

leakage current and dynamic power dissipation due to
logic switching current and the charging and discharging
of the load capacitance.

Dynamic energy contributes to most of the total
energy dissipation in micrometer-scale technologies, but
static energy dissipation will contribute an increasing
portion of energy in nanometer-scale technologies [1]
[20][24]. We consider both types of energy in our
evaluation.

Energy consumption due to accessing off-chip
memory should not be disregarded, since fetching
instruction and data from off-chip memory is energy
costly because of the high off-chip capacitance and large
off-chip memory storage. Also, when accessing off-chip
memory, energy is consumed when the microprocessor
stalls while waiting for the instruction and/or data. Off-
chip and stall energies have often been overlooked in
previous works. Thus, our equation for computing the
total energy due to memory accesses is as follows:

Equation 1: energy_mem = energy_dynamic + energy_static

 where:
energy_dynamic = cache_hits * energy_hit +

cache_misses * energy_miss
energy_miss = energy_offchip_access +

energy_uP_stall + energy_cache_block_fill
energy_static = cycles * energy_static_per_cycle

The underlined terms are those we obtain through
measurements or simulations. We compute cache_hits
and cache_misses by running SimpleScalar [5]
simulations for each cache configuration. We compute
energy_hit of each cache configuration through
simulation of circuits extracted from our layout using
Cadence [6] (which happened to reasonably match earlier
work we did using the CACTI model to compute such
energy).

Determining the energy_miss term is challenging.
The energy_offchip_access value is the energy of
accessing off-chip memory and the energy_uP_stall is the
energy consumed when the microprocessor is stalled

Processor Size As. Line Size As. Line Processor Size As. Line Size As. Line
AMD-K6-IIIE 32K 2 32 32K 2 32 Motorola MPC8540 32K 4 32/64 32K 4 32/64

Alchemy AU1000 16K 4 32 16K 4 32 Motorola MPC7455 32K 8 32 32K 8 32
ARM 7 8K/U 4 16 8K/U 4 16 NEC VR4181 4K DM 16 4K DM 16

ColdFire 0-32K DM 16 0-32K N/A N/A NEC VR4181A 8K DM 32 8K DM 32
Hitachi SH7750S (SH4) 8K DM 32 16K DM 32 NEC VR4121 16K DM 16 8K DM 16

Hitachi SH7727 16K/U 4 16 16K/U 4 16 PMC Sierra RM9000X2 16K 4 N/A 16K 4 N/A
IBM PPC 750CX 32K 8 32 32K 8 32 PMC Sierra RM7000A 16K 4 32 16K 4 32
IBM PPC 7603 16K 4 32 16K 4 32 SandCraft sr71000 32K 4 32 32K 4 32

IBM750FX 32K 8 32 32K 8 32 Sun Ultra SPARC Iie 16K 2 N/A 16K DM N/A
IBM403GCX 16K 2 16 8K 2 16 SuperH 32K 4 32 32K 4 32

IBM Power PC 405CR 16K 2 32 8K 2 32 TI TMS320C6414 16K DM N/A 16K 2 N/A
Intel 960IT 16K 2 N/A 4K 2 N/A TriMedia TM32A 32K 8 64 16K 8 64

Motorola MPC8240 16K 4 32 16K 4 32 Xilinx Virtex IIPro 16K 2 32 8K 2 32
Motorola MPC823E 16K 4 16 8K 4 16 Triscend A7 8K/U 4 16 8K/U 4 16

Instruct. Cache Data Cache Instruct. Cache Data Cache

Table 1: Instruction and data cache sizes, associativities, and line sizes of popular embedded microprocessors. As means associativity. DM

means direct-mapped. Size is total cache size in bytes. U means instruction and data caches are unified. Line is line size in bytes. Sources:
Microprocessor Report, and data sheets of various microprocessors.

while waiting for the memory system to provide an
instruction or data. energy_cache_block_fill is the energy
for writing a block into the cache. The challenge stems
from the fact that the first two terms are highly dependent
on the particular memory and microprocessor being used.
To be “accurate,” we could evaluate a “real”
microprocessor system to determine the values for those
terms. While accurate, those results may not apply to
other systems, which may use different processors,
memories, and caches. Therefore, we choose instead to
create a “realistic” system, and then to vary that system to
see the impacts across a range of different systems. We
examined the three terms of energy_offchip_access,
energy_uP_stall, and energy_cache_block_fill for typical
commercial memories and microprocessors, and found
that energy_miss ranged from 50 to 200 times bigger than
energy_hit. Thus, we redefined energy_miss as:

energy_miss = k_miss_energy * energy_hit

and we considered the situations of k_miss_energy equal
to 50 and 200.

Finally, cycles is the total number of cycles for the
benchmark to execute, as computed by SimpleScalar,
using a cache with single cycle access on a hit and using
20 cycles on a miss. energy_static_per_cycle is the total
static energy consumed per cycle. This value is also
highly system dependent, so we again consider a variety
of possibilities, by defining this value as a percentage of
total energy including both dynamic and static energy:

energy_static_per_cycle = k_static *

energy_total_per_cycle

k_static is a percentage that we can set. Low power

CMOS research has typically focused on dynamic power,
under the assumption that static energy is a small fraction
of total energy – perhaps less than 10%. However, for
deep submicron, the fraction is increasing. For example,
Agarwal [1] reports that leakage energy accounts for 30%
of L1 cache energy for a 0.13-micron process technology.
To consider this CMOS technology trend, we evaluate the
situations where k_static is 30% and 50% of the total
energy.
2.2 Base Cache
After examining typical cache configurations of several
popular embedded microprocessors, summarized in Table
1, we choose to use a base cache of 8 Kbytes having four-
way set-associativity and a line size of 32 bytes. The base
cache is the cache that we will extend to be configurable,
and to which we will compare our results.

Figure 1 depicts the architecture of our base cache.
The memory address is split into a line-offset field, an
index field, and a tag field. For our base cache, those
fields are 5, 6 and 21 bits, respectively, assuming a 32-bit
address. Being four-way set-associative, the cache
contains four tag arrays and four data arrays (only two
data arrays are shown in Figure 1). During an access, the
cache decodes the address’ index field to simultaneously
read out the appropriate tag from each of the four tag
arrays, while decoding the index field to simultaneously
read out the appropriate data from the four data arrays.
The cache feeds the decoded lines through two inverters
to strengthen their signals. The read tags and data items
pass through sense amplifiers. The cache simultaneously
compares the four tags with the address’ tag field. If one
tag matches, a multiplexor routes the corresponding data
to the cache output.

Figure 1: A four way set associative cache architecture with the critical path shown.

comparator

column muxes
sense amps

mux driver

line offset

data output

tag part

critical path

6x
64

 a31 tag address a11 a10 index a5 a4 line offset a0

6x
64

6x

64

6x
64

6x

64

6x
64

bitline

data array

2.3 The Impact of Cache Associativity
The associativity greatly impacts system energy. A direct
mapped cache uses less power per access than a four way
set associative cache, since only one tag and one data
array are read during an access, rather than four tag and
four data arrays. The power dissipation of a direct
mapped cache was shown to be about 30% of a same size
four way set associative cache [23]. If a direct-mapped
cache has a low miss rate, such a cache can result in low
overall energy.

However, sometimes a direct mapped cache has a
high miss rate, resulting in higher energy due to longer
time as well as high power for accessing the next level
memory. Increasing cache associativity can decrease the
cache miss rate and hence reduce energy. For example,
the average miss rate for the SPEC92 benchmarks is 4.6%
for a one-way 8 Kbyte cache, 3.8% for a two-way 8
Kbyte cache and only 2.9% for four-way 8 Kbyte cache
[10] (in the remainder of this paper, we will sometimes
refer to a direct-mapped cache as having one way).
Though these differences may appear small, they in fact
translate to big performance differences, due to the large
cycle penalty of misses (which may be dozens or even
hundreds of cycles).

Thus, although accessing a four-way set associative
cache requires more power per access, that extra power
may be compensated for by the reduction in time and
power that would have been caused by misses. Figure
2(a) shows the miss rate for two MediaBench
benchmarks, epic and mpeg2, measured using
SimpleScalar [5] and configured with an 8 Kbyte data
cache having one, two or four-way set-associativity, with
a line size of 32 bytes. Notice that the hit rates for both
are better with two ways than with one way, but the
additional improvement using four ways is very small.

Figure 2(b) shows overall energy for these two examples,
computed using Equation 1, demonstrating that a two-
way cache gives lowest energy for mpeg2, while a one-
way cache is best for epic. Notice that the energy
differences are quite significant – up to 40%.

Clearly, tuning the associativity to a particular
application is extremely important to minimize energy,
motivating the need for a cache with configurable
associativity.
3. Previous Work
Several cache lookup variations have been proposed by
researchers to reduce set-associative cache access energy.
Phased-lookup cache [9] uses a two-phase lookup, where
all tag arrays are accessed in the first phase, but then only
the one hit data way is accessed in the second phase,
resulting in less data-way access energy at the expense of
longer access time. Way predictive set-associative caches
[13][21] access one tag and data array initially, and only
access the other arrays if that initial array did not result in
a match, again resulting in less energy at the expense of
longer average access time. Reactive-associative cache
(RAC) [4] also uses way prediction and checks the tags as
a conventional set associative cache, but the data array is
arranged like a direct mapped cache. Since data from
RAC proceeds without any way-select multiplexor, the
cache can achieve the speed of a direct mapped cache but
consumes less energy than a conventional set-associative
cache. Pseudo Set-Associative Caches [11], such as in
[7], are set-associative caches with multiple hit times. The
ways can be probed sequentially and consume less energy
than that of a conventional set associative cache. Dropsho
[8] discussed an accounting cache architecture that is
based on the resizable selective ways cache proposed by
Albonesi [2]. The accounting cache first accesses part of
the ways of a set associative cache, known as a primary
access. If there is a miss, then the cache accesses the other
ways, known a secondary access. A swap between the
primary and secondary accesses is needed when there is a
miss in the primary and a hit in the secondary access.
Energy is saved on a hit during the primary access.

Filter caching [15] introduces an extremely small (and
hence low power) direct mapped cache in front of the
regular cache. If most of a program’s time is spent in
small loops, then most hits would occur in the filter
cache, so the more power-costly regular cache would be
accessed less frequently – thus reducing overall power, at
the expense of performance loss.

Compression methods can reduce cache energy by
reducing bit switching during accesses. For example,
Yang proposed a scheme for compressing frequently seen
values in the data cache [26].

Researchers have recently begun to suggest
configurable cache architectures. Ranganathan [22]
proposed a configurable cache architecture for a general-
purpose microprocessor. When used in media

Figure 2: Miss rate (a) and normalized energy (b) of epic and
mpeg2 on 8 Kbyte data caches of different associativities.

0.0%
0.5%
1.0%
1.5%
2.0%

1 2 4
Associativity

M
is

s
ra

te

epic
mpeg2

(a)

0%
20%
40%
60%
80%

100%

1 2 4
Associativity

N
or

m
al

iz
ed

 E
ne

rg
y

epic
mpeg2

(b)

applications, a large cache may not yield benefits due to
the streaming data characteristics of media applications.
In this case, part of the cache can be dynamically
reconfigured to be used for other processor activities,
such as instruction reuse. Kim [14] proposed a
multifunction computing cache architecture, which
partitions the cache into a dedicated cache and a
configurable cache. The configurable part can be used to
implement computations, for example, FIR and
DCT/IDCT, which takes advantage of on-chip resources
when an application does not need the whole cache.
Smart memory [17] is a modular reconfigurable
architecture, which is made up of many processing tiles,
each containing local memories and processor cores,
which can be altered to match the different applications.

A CAM (content addressable memory) based highly
associative cache architecture [29] puts one set of a cache
in a small sub-bank and uses a CAM for the tag lookup of
that set, which may have 32 or even 64 ways, saving
power at the expense of area.

One work closely related to ours is that on
configurable caches whose memory hierarchy can be
configured for energy and performance tradeoff, proposed
by Balasubramonian [3]. The size of the L1 and L2 cache
can be dynamically configured by allocating a part of a
fixed size cache to L1 and L2 cache based on different
applications or the same application at different phases.
Their work targets general-purpose microprocessors that
may require different cache hierarchy architectures.
Other work closely related to ours are way-shutdown
cache methods, proposed independently by both Albonesi
[2] and by the designers of the Motorola M*CORE
processor [18]. In those approaches, a designer would

initially profile a program to determine how many ways
could be shut down without causing too much
performance degradation. Albonesi also discusses
dynamic way shutdown and activation for different
regions of a program.

Our way-concatenate method is complementary to
phased lookup, way predictive, pseudo-set associative,
and filter caching methods. Unlike those other methods,
our method does not result in multi-cycle cache accesses
during a hit, but those methods could be combined with
ours to reduce energy further. Our method’s way
shutdown also reduces static power, which those other
methods don’t. Our method does at this time require an
initial profiling step, though in future work we plan to
automate the tuning of the cache to a program.

Compared with memory hierarchy configurable cache,
our configurable cache can have some ways shut down
and tuned to fit the size of the cache to the specific
application. Compared with way shutdown caches, our
way concatenation can have different ways given a fixed
size of cache, which we will show to be a superior
method for reducing dynamic power.
4. Way Concatenation for Dynamic Power
Reduction
4.1 Architecture
Because every program has different cache associativity
needs, we sought to develop a cache architecture whose
associativity could be configured as one, two or four
ways, while still utilizing the full capacity of the cache.
Our main idea is to allow ways to be concatenated. The
hardware required to support this turned out to be rather
simple.

Figure 3: A way-concatenable four-way set associative cache architecture, with the critical path shown.

index

c1 c3 c0 c2

a11

a12

reg1

reg0

sense amps
column mux

tag part

tag address

mux driver

c1

line offset

data output critical path

c0

c2

c0 c1

6x
64

6x

64

c3c2

6x
64

6x
64

 c3

6x
64

6x

64

 a31 tag address a13 a12 a11 a10 index a5 a4 line offset a0

Configuration circuit

data array

bitline

Our way-concatenatable cache is shown in Figure 3.
reg0 and reg1 are two single-bit registers that can be set
to configure the cache as four, two or one way set-
associative. Those two bits are combined with address
bits a11 and a12 in a configuration circuit to generate
four signals c0, c1, c2, c3, which are in turn used to
control the configuration of the four ways.

When reg0=1 and reg1=1, the cache acts as a four-
way set-associative cache. In particular, c0, c1, c2, and c3
will all be 1, and hence all tag and data ways will be
active.

When reg0=0 and reg1=0, the cache acts as a one-
way cache (where that one way is four times bigger than
the four-way case). Address bits a11 and a12 will be
decoded in the configuration circuit such that exactly one
of c0, c1, c2, or c3 will be 1 for a given address. Thus,
only one of the tag arrays and one of the data arrays will
be active for a given address. Likewise, only one of the
tag comparators will be active.

When reg0=0 and reg1=1, or reg0=1 and reg1=0,
then the cache acts as a two-way cache. Exactly two of
c0, c1, c2, and c3 will be 1 for a given address, thus
activating two tag and data arrays, and two tag
comparators.

Notice that we are essentially using 6 index bits for a
four-way cache, 7 index bits for a two-way cache, and 8
index bits for a one-way cache. Also note that the total
cache capacity does not change when configuring the
cache for four, two or one way. Our approach could easily
be extended for 8 (or more) ways.
4.2 Cache Layout
While we initially used the CACTI model to determine
the impact of the extra circuitry on cache access and
energy, we eventually created an actual layout to
determine the impact as accurately as possible. Figure 4
shows our layout of the data part of one way of the cache.
We used Cadence [6] layout tools and we extracted the
circuit from the layout. The technology we used was
TSMC 0.18 CMOS, the most advanced CMOS
technology available to universities through the MOSIS

program [19]. The dimension of our SRAM cell was
2.4µm x 4.8µm, using conventional six-transistor SRAM
cells. We used Cadence’s Spectra to simulate the circuit.
We measured the energy of the various parts of a
conventional four-way set-associative cache during a
cache access, and compared that energy with our
configurable way-concatenatable cache configured for
four, two and one-way, using the cache layout. The access
energies and savings of our configurable cache are shown
in Figure 5. These energies include dynamic power only,
not static. Cnv stands for conventional cache, Cfg stands
for configurable cache. The numbers below Cnv and Cfg
are the size and associativity of the cache, e.g., 8K2W
means an 8 Kbyte, two-way set associative cache. The
energy savings of the configured two-way and one-way
caches come primarily from the fact that fewer sense
amplifiers, bit lines and word lines are active per access
in those configurations.
4.3 Time and area overhead
Perhaps the most pressing question regarding a way-
concatenatable cache is how much the configurability of
such a cache increases access time compared to a
conventional four-way cache. This is especially important
because the cache access time is often on the critical path
for a microprocessor, and thus increased cache access
time may slowdown the system clock. However, note that
the configuration circuit in Figure 3 is not on the cache
access critical path, since the circuit executes
concurrently with the index decoding. The cache critical
path includes a tag decoder, a word line, a bit line
(including the mux), a sense amplifier, a comparator, a
mux driver that selects the output from four ways, and an
output driver. Based on our layout, we can set the sizes of
the transistors in the configure circuit such that the speed
of the configure circuit is faster than that of the decoder.
Such resizing is reasonable because we only have four
OR and four AND gates in the configure circuit. From
our cache layout, the configure circuit area is negligible.

However, we also changed two inverters on the
critical path into NAND gates: one inverter after the
decoder, and one after the comparator. Although a NAND
gate is typically slower than an inverter, we can increase
the NAND gate transistor sizes in the configurable cache
to achieve the speed of the original inverter of the base
cache. We measured the original critical path delay of the
cache to be 1.28 ns. We determined that changing two
inverters along the critical path to NAND gates, having
the same size transistors as the original inverters,
increased the critical path length by 0.062 ns, or by 4.8%.
By increasing the sizes of certain transistors in the NAND
gates to three times their original size, we were able to
reduce the critical path delay to the original 1.28 ns.
Replacing the inverters by NAND gates with larger
transistors resulted in a less than 1% area increase of the
entire cache.

 Figure 4: Layout of one way of our data cache.

Cnv
8K4W 8K4W 8K2W 8K1W 4K2W 4K1W 2K1W

Energy (pJ) 827.1 828.1 471.5 293.8 411.9 234.1 219.0

Savings -0.1% 42.7% 64.0% 50.0% 71.5% 73.4%

Cfg

Figure 5: Dynamic access energy of a configurable cache

compared with conventional four-way set-associative cache.

SRAM cell

One might ask why the original inverter’s transistors
weren’t sized bigger to achieve a faster cache access time.
The reason is that the original inverters themselves only
contributed a small amount to critical path delay – tripling
the two inverters’ transistor sizes would only decrease the
critical path delay by 0.023 ns, representing a mere 1.8%
improvement.
4.4 Experiments
To determine the benefits of our configurable cache with
respect to reducing dynamic power consumption and
hence energy, we simulated a variety of benchmarks for a
variety of cache configurations using SimpleScalar. The
benchmarks included programs from Motorola’s
Powerstone suite [18] (padpcm, crc, auto2, bcnt, bilv,
binary, blit, brev, g3fax, fir, pjpeg, ucbqsort, v42),
MediaBench [16] (adpcm, epic, jpeg, mpeg2, pegwit,
g721) and several programs from Spec 2000 [12] (mcf,
parser, vpr, art). We used the sample test vectors that
came with each benchmark as program stimuli.

All of the energy values we report in this section
represent those from dynamic power consumption. The
original way-shutdown method [2] was also intended to
reduce dynamic power. Thus, we also generated data for
way shutdown, and compare our data with that data.
4.4.1 Results
 Figure 6(a) shows instruction cache miss rates for the
benchmarks for three configurations of our way-
concatenatable cache: 8 Kbytes with 4-way associativity
(8K4W), 8 Kbytes with 2-way associativity (8K2W), and
8 Kbytes with 1-way (direct-mapped) associativity
(8K1W). The figure also shows miss rates for two
configurations of a way shutdown cache: 4 Kbytes with
2-way associativity (4K2W), meaning 2 of the 4 ways
have been shut down, and 2 Kbytes with 1-way
associativity (2K1W), meaning 3 of the 4 ways have been

shut down. Figure 6(b) shows data cache miss rates for
the same cache configurations.

Let us begin by looking at the first three
configurations, representing the way concatenate
configurations, which use all 8 Kbytes of the cache. We
see that the miss rates in the figures support our earlier
discussions in which we pointed out that most
benchmarks do fine with a direct mapped cache.
However, we see that some examples, like jpeg and
parser, do much better with four-way caches. jpeg’s miss
rate is only 6.5% with a four-way instruction cache, but
9.5% with a one-way 8 Kbyte cache. parser’s miss rate is
nearly 0% with a four-way instruction cache, but is 7%
with a one-way 8 Kbyte cache.

Looking now at the latter two configurations,
representing way shutdown configurations, we see
significant increases in the miss rate for many examples.
For example, v42 has a nearly 0% miss rate for all three
way-concatenate instruction cache configurations, but has
4% and 12% miss rates for the way shutdown
configurations. We see that shutting down ways is far
more likely to increase the miss rate than concatenating
ways – which intuitively makes sense since way
shutdown decreases the cache size while way
concatenation does not.

We computed energy data for the benchmarks, for two
different types of configurable instruction and data
caches: caches supporting way concatenation only and
supporting way shutdown only. For each benchmark, we
simulated all possible cache configurations. We show the
energy for those configurations for one of the
benchmarks, g3fax, in Figure 7. The x-axis represents
each configuration. The first configuration is
I8KD8KI4D4, representing an instruction cache with 8
Kbytes active (I8K), a data cache with 8 Kbytes active
(D8K), with the instruction cache configured to be four-

Figure 6: Instruction (a) and data (b) cache miss rates for way concatenate caches (the 8K caches) and way shut down
caches (the 4K and 2K caches).

0 %

5 %

1 0 %

1 5 %

M
is

s
ra

te

0 %

5 %

1 0 %

1 5 %

2 0 %

2 5 %

pa
dp

cm cr
c

au
to

2

bc
nt bi
lv

bi
na

ry bl
it

br
ev

g3
fa

x fir

pj
ep

g

uc
bq

so
rt

v4
2

ad
pc

m

ep
ic

jp
eg

m
pe

g2

pe
gw

it

g7
21 ar

t

m
cf

pa
rs

er vp
r

M
is

s
ra

te 8 K 4 W 8 K 2 W 8 K 1 W 4 K 2 W 2 K 1 W

(a)

(b)

way set associative (I4), and the data cache configured to
be four-way set associative (D4). The first group of nine
configurations represents configurable caches using only
way concatenation. The second group of eight
configurations represents configurable caches using only
way shutdown. The last group of two represents the
conventional (non-configurable) four-way and direct
mapped cache configurations.

We generated such data for every benchmark, found
the lowest energy configuration for each group, and
summarized those best configurations in Table 2. For
most benchmarks, the configuration yielding minimal
energy has both instruction cache and data cache

configured for one way. However, for some benchmarks,
such as mpeg2, jpeg, g721, brev, parser and vpr, one-way
configurations result in more overall energy due to high
miss rates. In those cases, higher associativities are
preferred. jpeg, for example, uses minimal energy with a
four-way instruction cache and a two-way data cache.
parser does best with a four-way instruction cache and a
one-way data cache. mpeg2 does best with a one-way
instruction cache but a two-way data cache.

Figure 8 shows normalized energy, using the energy
of a conventional four-way cache as 100%. CnvI1D1
corresponds to using direct-mapped instruction and data
caches, cnct to using way-concatenate caches, and shut to
using way-shutdown caches.
4.4.2 Main Observations
The first observation we make from the data in Figure 8 is
that a configurable cache results in significant energy
savings for many examples, compared to either a non-
configurable four-way set-associative cache or a non-
configurable direct-mapped cache. A way-concatenatable
cache results in an average energy savings of 37%
compared to a conventional four-way cache, with savings
over 60% for several examples. Compared to a
conventional direct mapped cache, the average savings
are more modest, but the direct mapped cache suffers
large penalties for some examples – up to 284% for
parser, with degraded performance in several examples.

The second observation we make is that way
concatenation is clearly better than way shutdown for
reducing dynamic power. Way concatenation saves more

0.000
0.001
0.002
0.003
0.004

I8
KD

8K
I4

D
4

I8
KD

8K
I4

D
2

I8
KD

8K
I4

D
1

I8
KD

8K
I2

D
4

I8
KD

8K
I2

D
2

I8
KD

8K
I2

D
1

I8
KD

8K
I1

D
4

I8
KD

8K
I1

D
2

I8
KD

8K
I1

D
1

I8
KD

4K
I4

D
2

I8
KD

2K
I4

D
1

I4
KD

8K
I2

D
4

I4
KD

4K
I2

D
2

I4
KD

2K
I2

D
1

I2
KD

8K
I1

D
4

I2
KD

4K
I1

D
2

I2
KD

2K
I1

D
1

C
nv

I4
D

4

C
nv

I1
D

1

Figure 7: Energy of g3fax under way concatenation, and under way shutdown, considering dynamic power only.

284%

0%
20%
40%
60%
80%

100%
120%

pa
dp

cm cr
c

au
to

2

bc
nt bi
lv

bi
na

ry bl
it

br
ev

g3
fa

x fir

pj
ep

g

uc
bq

so
rt

v4
2

ad
pc

m

ep
ic

jp
eg

m
pe

g2

pe
gw

it

g7
21 ar

t

m
cf

pa
rs

er vp
r

Av
er

ag
e

N
or

m
al

iz
ed

 E
ne

rg
y CnvI1D1 cnct shut

Figure 8: Energy consumption compared to an 8 Kbytes four-way cache, for way concatenation and shut down, considering dynamic

power only, with k_miss_energy=50.

Example Best Example Best
padpcm I8KD8KI1D1 ucbqsort I4KD4KI1D1

crc I4KD4KI1D1 v42 I8KD8KI1D1
auto2 I8KD4KI1D1 adpcm I2KD8KI1D1
bcnt I8KD2KI1D1 epic I8KD8KI1D1
bilv I4KD4KI1D1 jpeg I8KD8KI4D2

binary I8KD2KI1D1 mpeg2 I8KD8KI1D2
blit I2KD8KI1D1 g721 I8KD8KI2D1

brev I8KD4KI1D2 art I4KD8KI1D1
g3fax I4KD4KI1D1 mcf I8KD8KI1D1

fir I8KD2KI1D1 parser I8KD8KI4D1
pjepg I4KD8KI1D1 vpr I8KD8KI2D1
pegwit I8KD8KI1D1

Table 2: Cache configuration yield lowest system energy,

considering dynamic power only.

En
er

gy
 (n

J)

Configurations

energy than way shutdown for nearly every benchmark,
sometimes saving 30-50% (e.g., for padpcm and v42).
4.4.3 Impact of k_miss_energy ratio
In our energy calculation equation, we include the
memory access energy and the processor stall energy,
using the ratio k_miss_energy to represent the ratio of the
sum of the memory access and processor stall energy with
the 8 Kbyte 4-way set-associative cache access energy.
We showed the results for k_miss_energy=50 in Figure 8.
We also generated results for a ratio of 200, but we omit
the plots for space reasons. However, those results still
showed significant energy savings for many examples,
compared to either a non-configurable four-way set-
associative cache or a non-configurable direct-mapped
cache, resulting in an average savings across all the
benchmarks of 26% and 10%, respectively. Perhaps more
importantly, we saw big penalties associated with a direct
mapped cache and a way shutdown cache for certain
examples – over 800% for parser, for example.
5. Adding Way Shutdown for Static Energy
Reduction
We have thus far focused on dynamic power
consumption, traditionally the major consumer of power
in CMOS technology. As CMOS technology continues to
evolve, transistors with lower threshold voltages are
becoming common. Low threshold transistors enable a
lower supply voltage, resulting in great reductions in
dynamic power, since dynamic power is proportional to
the square of voltage. However, lower threshold voltages
also result in more sub-threshold leakage current through
the transistor, resulting in increased static power
consumption. Thus, static power is becoming a greater
concern. Some researchers are thus working on leakage
power reductions, such as DRG-Cache [1].

We observe in Figure 6(a) and (b) that although way
shutdown increases the miss rate for some benchmarks,
for other benchmarks, way shutdown has negligible
impact. Such negligible impact means that the benchmark
did not need the full capacity (8 Kbyte) of the cache. To
save static energy, we want to shut down the unneeded
capacity. We choose to use way shutdown for this
purpose. Thus, we extend our way-concatenatable cache
to include way shutdown also.

5.1 Architecture
Albonesi [2] originally proposed way shutdown to reduce
dynamic power, using an AND gate to shut down cache
ways. Since we instead use way concatenation to reduce
dynamic power and since we want to use way shutdown
to reduce static power, we use the shutdown method by
Powell [20], involving a circuit level technique called
gated-Vdd, shown in Figure 9. When the gated-Vdd
transistor is turned off, the stacking effect of the extra
transistor reduces the leakage energy dissipation. Because
the extra transistor can be shared by an array of SRAM
cells, the area increase is only about 5%. Powell showed
8% performance overhead from the extra transistor.
5.2 Energy Calculations
Recall in Equation 1 that we defined:

energy_static = cycles * energy_static_per_cycle.

energy_static_per_cycle = k_static *
energy_total_per_cycle

We have defined a constant k_static which is the
percentage of static energy to the total energy dissipation
of per cycle. To consider future CMOS technology trends,
we evaluate the situations where k_static is 30% and
50%.
5.3 Experiments
Figure 10 shows the energy consumption of g3fax for a
configurable cache supporting both way concatenation
and way shutdown, considering both dynamic and static

Figure 9: SRAM cell with a NMOS gated Vdd control.

Figure 10: Energy of g3fax under way concatenation, way shutdown, and both, considering dynamic and static power.

0.000

0.002

0.004

0.006

I8
KD

8K
I4

D
4

I8
KD

8K
I4

D
2

I8
KD

8K
I4

D
1

I8
KD

8K
I2

D
4

I8
KD

8K
I2

D
2

I8
KD

8K
I2

D
1

I8
KD

8K
I1

D
4

I8
KD

8K
I1

D
2

I8
KD

8K
I1

D
1

I8
KD

4K
I4

D
2

I8
KD

2K
I4

D
1

I4
KD

8K
I2

D
4

I4
KD

4K
I2

D
2

I4
KD

2K
I2

D
1

I2
KD

8K
I1

D
4

I2
KD

4K
I1

D
2

I2
KD

2K
I1

D
1

I8
KD

4K
I4

D
1

I8
KD

4K
I2

D
2

I8
KD

4K
I2

D
1

I8
KD

4K
I1

D
2

I8
KD

4K
I1

D
1

I8
KD

2K
I2

D
1

I8
KD

2K
I1

D
1

I4
KD

8K
I2

D
2

I4
KD

8K
I2

D
1

I4
KD

8K
I1

D
4

I4
KD

8K
I1

D
2

I4
KD

8K
I1

D
1

I4
KD

4K
I2

D
1

I4
KD

4K
I1

D
2

I4
KD

4K
I1

D
1

I4
KD

2K
I1

D
1

I2
KD

8K
I1

D
2

I2
KD

8K
I1

D
1

I2
KD

4K
I1

D
1

C
nv

I4
D

4

C
nv

I1
D

1

Way concatenation Way shutdown Both

Configurations

En
er

gy
 (n

J)

Gnd

Vdd bitline bitline

Gated-Vdd
Control

power, assuming k_static=30%. For this example, we can
see that the combination of way concatenation and way
shutdown is better than either method alone.

Figure 11 is the normalized energy consumption of
the benchmarks, using the conventional four-way cache’s
energy as 100%. As in Figure 8, we compare a
conventional direct mapped cache (CnvI1D1),
configurable caches supporting concatenate only (cnct),
shutdown only (shut), and both (both). We see that the
average energy savings (rightmost column) compared
with a conventional four way cache is over 40%.

Figure 12 shows results for increasing k_static even
further, to an extremely large 50%, and increasing
k_miss_energy to 200 (representing possible values in the
future). We found that, although way shutdown alone
gains most of the savings in most examples, in some
cases (like v42 and padpcm) the combination of both
concatenate and shutdown is necessary – way shutdown
alone increases misses too much for some examples.

Table 3 shows the best cache configuration with
k_static=30%, k_miss_energy =50. We see that several
examples still need the full 8 Kbytes of cache, but may
work best with ways concatenated.
6. Using a Configurable Cache
A configurable cache could be used as follows. An
embedded system designer would have a fixed program
that would run on the microprocessor platform having the
configurable cache. Based on simulations or actual
executions on the platform, the designer would determine
the best configuration for that program. The designer

would then modify the boot or reset part of the program
to set the cache’s configuration registers to the chosen
configuration.

Much of our own ongoing related work has sought to
automate the process of finding the best cache
configurations through dynamic tuning, by implementing
an automatic cache tuner that finds the best configuration.
We have also developed a simulation-based method that
finds the Pareto-optimal set of cache configurations for a
given program [28].
7. Conclusions
We have introduced a novel configurable cache design
method called way concatenation. When considering
dynamic power, we showed average energy savings of
37% compared to a conventional four-way set-associative

265%

0%
20%
40%
60%
80%

100%
120%

pa
dp

cm cr
c

au
to

2

bc
nt

bi
lv

bi
na

ry bl
it

br
ev

g3
fa

x fir

pj
ep

g

uc
bq

so
rt

v4
2

ad
pc

m

ep
ic

jp
eg

m
pe

g2

pe
gw

it

g7
21 ar

t

m
cf

pa
rs

er vp
r

Av
er

ag
e

N
or

m
al

iz
ed

 E
ne

rg
y CnvI1D1 cnct shut both

Figure 11: Energy consumption compared to an 8 Kbytes four-way cache, for way concatenation and shutdown, considering both

dynamic and static power, k_miss_energy=50, k_static=30%.

Example Best Example Best
padpcm I8KD4KI1D2 ucbqsort I4KD4KI1D1

crc I2KD4KI1D1 v42 I8KD8KI1D1
auto2 I4KD2KI1D1 adpcm I2KD2KI1D1
bcnt I2KD2KI1D1 epic I2KD8KI1D1
bilv I4KD2KI1D1 jpeg I8KD2KI4D1

binary I4KD2KI1D1 mpeg2 I4KD4KI1D2
blit I2KD2KI1D1 g721 I8KD2KI2D1

brev I2KD2KI1D1 art I4KD2KI1D1
g3fax I4KD2KI1D1 mcf I4KD4KI1D1

fir I4KD2KI1D1 parser I8KD4KI4D1
pjepg I4KD2KI1D1 vpr I8KD2KI2D1
pegwit I4KD4KI1D1

Table 3: Optimal cache configuration when both dynamic and
static energy are considered, k_static =30%, k_miss_energy = 50.

126%503%127%

0%
20%
40%
60%
80%

100%
120%

pa
dp

cm cr
c

au
to

2

bc
nt bi
lv

bi
na

ry bl
it

br
ev

g3
fa

x fir

pj
ep

g

uc
bq

so
rt

v4
2

ad
pc

m

ep
ic

jp
eg

m
pe

g2

pe
gw

it

g7
21 ar

t

m
cf

pa
rs

er vp
r

Av
er

ag
e

N
or

m
al

iz
ed

 E
ne

rg
y CnvI1D1 cnct shut both

Figure 12: Energy consumption compared to an 8 Kbytes four-way cache, for way concatenation and shutdown, considering

both dynamic and static power, k_miss_energy=200, k_static=50%.

cache, and we showed way concatenation to be superior
to previously proposed way shutdown methods. To also
save static power, we extended the configurable cache to
include a way shutdown method, and we showed this
configurable cache to be the most energy efficient for all
benchmarks considered, across a wide range of
technological assumptions, with average savings of 40%.
The method is simple and imposes little area overhead.

In other work, we also explored the energy benefits of
a cache line concatenation [27]. We will continue our
work to combine with existing multi-cycle cache access
methods like phased lookup, way-prediction, pseudo-
associativity, and filter caching. We are also developing
an on-chip component that can automatically and
dynamically tune the cache’s configuration to a particular
executing program. We plan to also explore the dynamic
tuning of multilevel cache architectures.
8. Acknowledgements
This work was supported by the National Science
Foundation (grants CCR-9876006 and CCR-0203829)
and by the Semiconductor Research Corporation.
References
[1] A. Agarwal, H. Li, and K. Roy, “DRG-Cache: A Data

Retention Gated-Ground Cache for Low Power,” Design
Automation Conf., June 2002.

[2] D.H. Albonesi, “Selective Cache Ways: On-Demand Cache
Resource Allocation,” Journal of Instruction Level
Parallelism, May 2000.

[3] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas, “Memory Hierarchy Reconfiguration for
Energy and Performance in General-Purpose Processor
Architectures,” Int. Symp. on Microarchitecture, 2000.

[4] B. Batson and T.N. Vijaykumar, “Reactive-Associative
Caches,” Int. Conf. on Parallel Architectures and
Compilation Techniques, Sep. 2001.

[5] D. Burger and T.M. Austin, “The SimpleScalar Tool Set,
Version 2.0,” Univ. of Wisconsin-Madison Computer
Sciences Dept. Technical Report #1342, June 1997.

[6] Cadence, http://www.cadence.com
[7] B.Calder, D. Grunwall, and J. Emer, “Predictive Sequential

Associative Cache,” Int. Symp. on High Performance
Computer Architecture, Feb. 1996.

[8] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D.
H. Albonesi, S. Dwarkadas, G. Semeraro, G. Magklis, and
M.L. Scott, “Integrating Adaptive On-Chip Storage
Structures for Reduced Dynamic Power,” Int. Conf. on
Parallel Architectures and Compilation Techniques, 2002.

[9] A. Hasegawa, I.Kawasaki, K.Yamada, S.Yoshioka, S.
Kawasaki, and P. Biswas, “SH3: High code density, low
power,” IEEE Micro, Dec. 1995.

[10] J. L. Hennessy and D .A. Patterson, “Computer architecture
Quantitative Approach,” 2nd Edition, Morgan-Kaufmann
Publishing Co., 1996.

[11] M. Huang, J. Renau, S.M. Yoo, and J. Torrellas, “L1 Data
Cache Decomposition for Energy Efficiency,” Int. Symp.
on Low Power Electronics and Design, 2001.

[12] http://www.specbench.org/osg/cpu2000/

[13] K. Inoue, T. Ishihara, and K. Murakami, “Way-Predictive
Set-Associative Cache for High Performance and Low
Energy Consumption,” Int. Symp. On Low Power
Electronics and Design, 1999.

[14] H. Kim, A.K. Somani, and A. Tyagi, “A Reconfigurable
Multi-function Computing Cache Architecture,” IEEE
Transactions on VLSI, Vol. 9, No. 4, pp. 509-523, Aug.
2001.

[15] J. Kin, M. Gupta and W. Mangione-Smith, “The Filter
Cache: An Energy Efficient Memory Structure,” Int. Symp.
on Microarchitecture, pp. 184-193, Dec. 1997.

[16] C. Lee, M. Potkonjak and W. Mangione-Smith,
“MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems,” Int. Symp. on
Microarchitecture, 1997.

[17] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M.
Horowitz, “Smart Memories: A Modular Reconfigurable
Architecture,” ACM SIGARCH Computer Architecture
News , Volume 28, Issue 2, 2000.

[18] A. Malik, B. Moyer and D. Cermak, “A Low Power
Unified Cache Architecture Providing Power and
Performance Flexibility,” Int. Symp. on Low Power
Electronics and Design, June 2000.

[19] The MOSIS Service, http://www.mosis.org
[20] M. Powell, S.H. Yang, B. Falsafi, K. Roy, and T.N.

Vijaykumar, “Gated-Vdd: A Circuit Technique to Reduce
Leakage in Deep-Submicron Cache Memories,” Int. Symp.
on Low Power Electronics and Design, 2000.

[21] M. Powell, A. Agarwal, T.N. Vijaykumar, B. Falsafi, and
K. Roy, “Reducing Set-Associative Cache Energy via
Way-Prediction and Selective Direct-Mapping,” Int.
Symp. on Microarchitecture, 2001.

[22] P. Ranganathan, S. Adve, and N.P. Jouppi,
“Reconfigurable Caches and their Application to Media
Processing,” Int. Symp. on Computer Architecture, 2000.

[23] Glen Reinman and N.P. Jouppi. CACTI2.0: An Integrated
Cache Timing and Power Model, 1999. COMPAQ Western
Research Lab.

[24] Semiconductor Industry Association. Int. Technology
Roadmap for Semiconductors: 1999 edition. Austin, TX:
Int. SEMATECH, 1999.

[25] S. Segars, “Low power design techniques for
microprocessors,” Int. Solid-State Circuits Conf. Tutorial,
2001.

[26] J. Yang and R. Gupta, “Energy Efficient Frequent Value
Data Cache Design,” Int. Symp. on Microarchitecture,
Nov. 2002.

[27] C. Zhang, F. Vahid, and W. Najjar, “Energy Benefits of a
Configurable Line Size Cache for Embedded Systems,” Int.
Symp. on VLSI Design, 2003.

[28] C. Zhang and F. Vahid, “Cache Configuration Exploration
on Prototyping Platforms,” IEEE Int. Workshop on Rapid
System Prototyping, June 2003.

[29] M. Zhang and K.Asanović, “Highly-Associative Caches for
Low-Power Prossrors,” Kool Chips Workshop, in
conjunction with Int. Symp. On Microarchitecture, Dec.
2000.

